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ABSTRACT

The nuclear imaging system at the National Ignition Facility (NIF) is a crucial diagnostic for determining the geometry of inertial confinement
fusion implosions. The geometry is reconstructed from a neutron aperture image via a set of reconstruction algorithms using an iterative
Bayesian inference approach. An important step in these reconstruction algorithms is finding the fusion source location within the camera
field-of-view. Currently, source localization is achieved via an iterative optimization algorithm. In this paper, we introduce a machine learning
approach for source localization. Specifically, we train a convolutional neural network to predict source locations given a neutron aperture
image. We show that this approach decreases computation time by several orders of magnitude compared to the current optimization-based
source localization while achieving similar accuracy on both synthetic data and a collection of recent NIF deuterium-tritium shots.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0205472

. INTRODUCTION

The National Ignition Facility (NIF) at Lawrence Livermore
National Laboratory recently achieved thermonuclear ignition.’
This achievement was aided by a suite of diagnostics. Among these
diagnostic techniques, the Nuclear Imaging System (NIS) plays a
crucial role in determining the geometry of the fusion reaction.”
Reconstructed fusion source images give information on the size,
symmetry, and shape of the fusion hot spot and surrounding cold
fuel and have been vital for inertial confinement fusion (ICF) exper-
imentation, including recent experiments that have achieved igni-
tion. Neutron images, in particular, are used to reconstruct the hot
spot geometry.

The NIS team currently utilizes a suite of Bayesian-based infer-
ence and optimization algorithms to construct a source image from
experimental neutron data. A key component of this algorithmic
suite is source localization, i.e., finding the fusion source location
within the camera field-of-view. Currently, an optimization routine
must be run on a shot-by-shot basis to determine the source location.
In this paper, we discuss an approach using machine learning (ML)

methods to replace the current source localization algorithm. In
particular, we train deep neural networks (DNN) to predict source
locations within the camera field-of-view from neutron aperture
images.

DNNs have revolutionized the field of image processing with
their ability to learn from large datasets.” Traditional image process-
ing techniques often rely on handcrafted features, which limits their
flexibility and increases the human-time cost of their use. In con-
trast, DNNs are often more accurate and less time-consuming for
human analysts than traditional techniques and have demonstrated
major success in imaging tasks such as medical and scientific imag-
ing. The dominance of DNNs in image processing is attributed to
their ability to process raw real-world data. In addition, DNNs can
often reduce computation time over traditional iterative algorithms.

Il. SOURCE LOCALIZATION

During a typical ICF experiment at the NIF, the NIS diagnos-
tic will produce an aperture image [Fig. 1(a)], which is formed via
the interaction of neutrons with an aperture array. This aperture
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FIG. 1. (a) Image, /, produced by the aperture array for line-of-sight NIS-3. The array consists of three large penumbras in the center vertical column, as well as eight columns
of small triangular pinholes. Color intensity represents neutrons per pixel. (b) Reconstructed source distribution S. The red outer contour traces the pixels at 17% intensity.>
The white outer contour is the Legendre polynomial fit to the 17% contour. The Pn represents the modes of the Legendre polynomial fit. (c) Neutron imaging aperture array
and coordinate system notation (not to scale). Figure (c) is reproduced from Volegov et al., Rev. Sci. Instrum. 85, 023508 (2014) and Volegov et al., Rev. Sci. Instrum. 85,

123506 (2014) with the permission of AIP Publishing LLC.

image is captured via a scintillator-based detection system.* A suite
of iterative Bayesian inference algorithms uses the aperture image to
construct a fusion source distribution [Fig. 1(b)]. This process is car-
ried out over three nearly orthogonal lines of sight, which allow for
viewing the source from different angles.

We can analytically define the relationship between the aper-
ture image and the fusion source as follows: Given a source, S, and
aperture point spread function, K, we define the aperture image, I,
recorded by the detector as

Na
I(u) = Z; /VK,v(u —p;+d,v—q,)S(v)dv, (1)

where N, is the number of apertures, d is the center position of the
scintillator, and p; and q; are the coordinates of the central axis of
aperture i in the detector plane and source plane, respectively. The
vectors u and v define a position in the detector and source plane,
respectively [see Fig. 1(c)].

Given an image, I, current reconstruction algorithms discretize
Eq. (1) and find the source, S, by using expectation maximization
algorithms to solve for the Maximum Likelihood Estimation (MLE)
solution.”

The first step in a full source reconstruction is the deter-
mination of the source location within the field-of-view. Due to
limitations in the mechanical placement of fuel capsules and align-
ment of the aperture array, the location of the source can vary by
several hundred microns for each experiment. Figure 2 shows a
collection of source center locations for recent shots on the NIS-3
line-of-sight.

The neutron imaging team currently uses an optimization-
based approach to find the source location for each NIF shot. The
optimization-based approach, which we will refer to as SrcLocOpt,
is an iterative algorithm that minimizes the reduced chi-square

objective function,
5 2
no(L -1
D (u) , (2)

where m is the number of pixels in the aperture image, I} is the kth
pixel of the recorded image, I is the kth pixel of the model image
produced by Eq. (1), and oy is the standard deviation of the kth
pixel computed according to the noise model described in Volegov
et al.” At each iteration, SrcLocOpt minimizes Eq. (2) by adjusting
the source location and shape parameters. We use the Nelder-Mead
simplex algorithm® to optimize, as it has shown the best perfor-
mance. This optimization problem is computationally expensive and
can result in non-optimal solutions.” In addition, SrcLocOpt often
requires multiple runs with different parameter choices made by
human operators, thereby increasing the computation and human
labor time.

Determination of the source location is crucial as errors
can propagate downstream to the final reconstruction, as shown
in Fig. 3. In the bottom plot, we compare the effect of source
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FIG. 2. Locations of source centers for NIF shots in the NIS-3 field-of-view. The

origin represents the central axis of the center penumbra. We see that the source
location can vary up to several hundred microns from the origin.
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FIG. 3. Reconstruction error of a 30 um source with varying amounts of source
location error (mispointing). The top figure shows the change in reconstruction
goodness of fit y* as the source location changes. The bottom figure shows the
change in PO as the source location changes. PO is the zeroth Legendre polyno-
mial mode describing the 17% outer contour. Figures are reused from Guler et al.,
Rev. Sci. Instrum. 83, 10D316 (2012), with the permission of AIP Publishing LLC.

localization on PO for a circular 30 ym source where PO is the zeroth
Legendre polynomial mode of the 17% outer contour.” We choose
a 30 ym source, as this size is typical for NIF experiments.'’ We see
that a source location prediction error of 50 ym produces an error
in PO of less than 1 ym. However, as we increase beyond 50 ym, the
error increases substantially.

To compare the effect of source localization on the overall
source reconstruction, we measure the change in the source recon-
struction goodness of fit as a function of source location error. These
results can be seen in the top plot of Fig. 3. Here, the ¥ intro-
duced in Eq. (2) is used as a measure of goodness of fit for source
reconstruction. Similar to our PO results before, we see that there is
little variation in x* below 50 um. However, as the source location
error increases beyond 50 um, the y* changes dramatically, indicat-
ing larger errors in the overall source reconstruction. Overall, the
results of Fig. 3 indicate that we should strive for location prediction
methods that stay below 50 ym of error. We will see in Sec. IV that

ARTICLE pubs.aip.org/aip/rsi

our DNNs meet these criteria. For further discussion on the effects
of source localization on reconstruction, see Guler et al.'’

Ill. OVERVIEW OF NEURAL NETWORKS

In this section, we give a brief overview of two types of neural
networks, the feedforward neural network (FNN) and the Convo-
lutional Neural Network (CNN). FNNs are motivated by biological
neural networks. Biological neural networks process information
using a system of interconnected neurons that transmit electrical
and chemical signals. Inspired by this biological model, FNNs sim-
ulate these processes using algorithms and data structures to solve
complex problems. In FNNs, units called neurons are connected in
layers and send signals to each other, mimicking the communication
in biological networks. Although the functionality of FNNs is sim-
plified compared to their biological counterparts, the foundational
principles derive directly from observing how biological neural net-
works function. For more detail on the biological underpinnings
of neural networks and their relationship to FNNs, see Yang and
Wang.!!

FNNs are versatile and have been shown to perform well on
a variety of tasks. However, FNNs typically have poor performance
on imaging tasks due to the complexity of imaging data and their
inability to easily discover spatial relationships through the training
process. Conversely, CNNs are designed for tasks involving spatial
relationships and work well on variable-size inputs and complex
data like images, where traditional FNNss fail. In this work, we adopt
CNN, as it has been shown to perform well on a variety of imaging
tasks.'” See the Appendix for more details on the inner workings of
FNNs and CNNs.

The parameters of the neural network are iteratively updated
through an optimization process called training. During a typical
training session, a practitioner must choose several hyperparameters
that control the optimization process. The choice of these hyper-
parameters can have a major effect on the final performance of the
network. Typical hyperparameters include the number of convolu-
tion and feedforward layers, as well as the number of nodes in the
feedforward layers. These parameters are crucial, as increased depth
and width of the network tend to improve representational capac-
ity.”” However, increased depth or width comes at the expense of
more computation for training. Additionally, the number of out-
put channels for each layer of the CNN, as well as the size of the
convolution filter, have an important influence on the final CNN
performance. Finally, the choice of optimization algorithm and its
associated parameters play an important role in training. In partic-
ular, the learning rate determines the weight update size at every
iteration and plays a crucial role in gradient-based optimization
algorithms that are typically used for training neural networks. This
set of hyperparameters tends to have the most impact on the per-
formance of the final model'*, so we focus on tuning them in
Sec. IV B. For more information on neural network hyperparame-
ters and hyperparameter tuning, we refer to Yu and Zhu'* and Yang
and Shami."”

IV. EXPERIMENTAL RESULTS

A. Dataset and preprocessing

Our goal in this work is to use a CNN to predict source loca-
tions given an aperture image. Therefore, to train the CNN, we
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require a set of data points with aperture images for model input
and source locations as output. Ideally, we would like to train the
CNN using real-world experiment data. However, a typical neural
network requires thousands of data points to train sufficiently, and
there are currently only a few hundred total data points from NIF
experiments. Therefore, in this work, we use synthetic data gen-
erated via a forward model'® described by Eq. (1). Equation (1) is
an idealized imaging equation that does not take into account vari-
ous imperfections in the imaging system. Nevertheless, this forward
model has proven adequate for both source localization and recon-
struction with the current NIS suite of algorithms.” We will see in
Sec. IV F later that these generated data are accurate enough for
training the CNN to predict source locations on real NIF data.

Using Eq. (1), we specify the source location and shape and
project the source through the aperture array to generate an aper-
ture image. In addition, to reduce the computation time required
for generating the synthetic data, we generate aperture images using
the penumbral projections only, i.e., the center vertical column in
Fig. 1(a). Previous works have shown that the penumbra is often
sufficient for determining source location.’

A pixel in the aperture image represents the number of neu-
trons in a 4 x 4 um* region of the field-of-view. The total number
of neutrons in the aperture image is determined by the total neu-
tron yield. At the NIF, this neutron yield can be measured accurately
using other diagnostics such as neutron time-of-flight.!” For our
synthetic data, we can manually choose a neutron yield and pass it
as a parameter to our forward model. For this work, we generate all
sources with a yield of 10", which is a typical yield for many NIF
shots.

In order to fully cover the use cases of the model, we
require a dataset with a varied number of source locations and
shapes. We sample source locations on an evenly spaced grid using
50 ym spacings over a 600 x 600 um? field-of-view, resulting in 29
evenly spaced locations over the field-of-view. For most NIF experi-
ments, the source position is typically within 300 ym of the center of
the field-of-view. Therefore, these location samples cover most use
cases.

Typical NIF experiment source sizes can be as small as 25 ym
or as large as 125 ym. In addition, the source is often not symmet-
ric, i.e., it may be prolate or oblate. Changes in source shape and size
affect the neutron aperture image and, therefore, we must include
varied source shapes in the training dataset. While a typical NIF
source may include higher order asymmetries, we model the asym-
metry with an elliptical contour for simplicity. At each of the grid
locations, we generate elliptical source shapes with varied radii on
the major and minor axes. We choose radii between 25 and 125 ym,
inclusive, in increments of 25 ym. Therefore, at each of the 29 loca-
tions, we obtain 25 total sources, which include a variety of circular,
prolate, and oblate sources. This data generation scheme results in a
total of 4225 data points.

We apply several preprocessing steps to the data. First, we
reduce the aperture image size from 1000 x 1000 pixels to 400 x 400
pixels. This removes empty space from the image and reduces the
required computation time for training and inference. Next, we stan-
dardize the data using the equation I‘;” , where I; refers to aperture
image i in our dataset and y and o refer to the mean and standard
deviation of all the collective pixels in the training data. Since the
neutron image pixels represent neutron counts, each pixel typically

ARTICLE pubs.aip.org/aip/rsi

has a value in the thousands. Feeding these images directly into the
CNN results in large parameter explosions and unstable training.
Standardization ensures that the training dataset distribution as a
whole has a mean centered at 0 and a standard deviation of 1. The
standardization reduces pixel values to be in a much smaller range
while still retaining the pixel distribution of the images, which results
in faster and more stable training for the CNN. '

After standardization, we center the image on the brightest
pixel of the center penumbra. We then produce nine copies of each
data point. In each copy, we randomly shift the image by up to
10 pm. Therefore, for each aperture image, we have the original
image with centered penumbra as well as nine copies with random
shifts. These shifted images assist in training the model by allowing
it to make predictions even if the apertures are shifted within the
image.

After preprocessing we have a total of 42,250 data points. We
use 80% of the data for training and 20% for validation. In addition,
we ensure that every data and its shifted variants fall within the same
dataset (either training or validation). The shifted variants share the
same source location and shape with the original. Therefore, group-
ing shifted variants together ensures that we do not mix data points
between training and validation, i.e., it ensures we do not train on
validation data or validate on training data.

We construct a test dataset using real NIF experiment data.
The NIF data are used to show the applicability of our CNN to
real-world experiments and allow us to test in real-world condi-
tions where our forward model data may not match reality, e.g.,
additional background and noise. For constructing the NIF data,
we collected 56 recent shots on the NIS-3 line-of-sight shown in
Table III.

We apply several preprocessing steps to the NIF data as well. As
mentioned earlier, we also apply image size reduction, standardiza-
tion, and centering. We do not make shifted copies, as these images
are not used for training. In addition, we must apply yield scaling
to the aperture images. Our training data were generated using a
yield of 10'; however, NIF experiment images are produced from
experiments where the yield can vary drastically. Changes in the
yield introduce a proportional change in the number of neutrons per
pixel, which will affect the CNN predictions. In order to obtain an
equivalent input image representation as used in training, we scale
each image according to the equation %, where Y is the yield for the
NIF experiment that produced aperture image i and Y; is the train-
ing data yield, which in our case is 10'*. This scaling ensures the NIF
images have the same proportion of pixel brightness to neutrons per
pixel as the training images.

B. Model and training parameters

For our experiments, we performed a grid search over the
hyperparameters of a CNN and chose the model with the lowest
validation error. In particular, we trained a model with every com-
bination of the parameters in Table I. With this combination of
parameters, we train a total of 324 CNN models.

Additionally, for each model, we apply a 2 x 2 max pooling
to the output of each convolution layer. The final hidden layer of
the FNN is fed into a layer that consists of two nodes. The first
node predicts the x location of the source center, while the second
node predicts the y location. The output of each convolution and

Rev. Sci. Instrum. 95, 063503 (2024); doi: 10.1063/5.0205472
© Author(s) 2024

95, 063503-4

SG'L¥'LZ ¥20T dunr 02


https://pubs.aip.org/aip/rsi

Review of

Scientific Instruments

TABLE 1. Hyperparameters used to train the model. We train models over every com-
bination of these parameters and keep the model that performs best on the validation
set. Note that for the convolution output channels, we use the value specified in the
table for the first layer and then double the number of channels for each successive
convolution layer, i.e., if the first convolution layer has 40 channels, then the second
convolution layer has 80 channels, and so on.

Hyperparameter Hyperparameter value

No. convolution layers (2,3,4)
No. ENN hidden layers (1, 3)

No. hidden nodes (128, 256)
Convolution filter size (3x3,5x5,and7 x 7)
Convolution output channels (10, 20, 40)

Learning rate (0.001, 0.01, 0.1)

hidden layer is fed through ReLU activations. We used a training
batch size of 8 and trained the model for three epochs with the
ADAM optimizer."”” We use the mean squared error loss function,

> (X _Xi)z» (3)

i=1

L=

S =

where 7 is the number of training data points, X; is the source
location predicted by the CNN, and X; is the ground truth source
location. We used the PyTorch*’ framework to construct our ML
models. In our experiments, we measure error using the Euclidean
distance between the ground truth and predicted source locations in
the field-of-view.

After a grid search, the best performing CNN has two convolu-
tion layers with 40 channels on the first layer and 80 channels on the
second layer, a single hidden layer with 256 hidden nodes, a convo-
lution filter size of 5 x 5, and was trained with a learning rate of 0.1.
We depict this CNN in Fig. 4. This CNN obtains a validation error
of 15.42 um, i.e., the average error in source location prediction for
data not in the training set is 15.42 ym.

Max Pool

2x2
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C. Performance over field of view

As discussed previously, source locations can vary by hundreds
of microns for each NIF shot. Therefore, it is important that our
CNN make accurate predictions over a large field-of-view. Figure 5
shows the CNN performance over a 600 x 600 um?” field-of-view for
two circular sources with radii of 25 and 125 ym. Given a location in
the field-of-view, the heatmap color represents the amount of error
in the CNN prediction of that particular source location. In addi-
tion, we show the training points as red dots. If a dot is missing from
the grid structure, it indicates that this location was used in the vali-
dation set. We see that the error remains below 30 ym over much of
the field-of-view. However, the error tends to increase in areas where
we have fewer training data points. For example, in Fig. 5(a), we see
the vertical green band near 300 ym rests between two sets of train-
ing points. These errors can likely be improved by generating more
location data, i.e., by refining the grid of training points.

We also note that the CNN performs poorly in the bottom left
corner of the field of view for both source shapes in Figs. 5(a) and
5(b). To analyze this heatmap feature further, we studied the perfor-
mance of other CNN models in this region. In particular, we plotted
the error heatmap of the CNN, which gave the second best valida-
tion performance of 16.16 ym in Fig. 6. This CNN has 128 hidden
nodes and four convolution layers. All other hyperparameters are
identical to our best performing CNN. We see that the regions of
strong performance have changed compared to our previous CNN.
In particular, this CNN performs strongly in the bottom left cor-
ner. However, it performs more poorly in the top left corner. These
results indicate that, in addition to dependence on training data
location, CNN performance in various regions is highly dependent
on the particular CNN. This variance in performance over certain
regions occurs regardless of the close agreement in validation error
(15.42 vs 16.16 pm).

D. Comparison to SrcLocOpt

We now compare the performance of the CNN with previous
optimization algorithms used by the NIS team. We generate 50 new

Max Pool

Conv. Layer 1
40 output channels
5x5 filter

Aperture Image

Conv. Layer 2 Hidden Output
80 output channels
5x5 filter Layer Layer
256 nodes 2 nodes

FIG. 4. The best performing CNN after hyperparameter search. This CNN has two convolution layers with 40 output channels on the first layer and 80 output channels on the
second layer, a single hidden layer with 256 hidden nodes, a convolution filter size of 5 x 5, and was trained with a learning rate of 0.1. Each convolution layer output is fed
through a 2 x 2 max pooling layer. A ReLU activation is applied to every layer except the final output layer. An aperture image with penumbra is the input to the CNN. This

CNN obtains a validation error of 15.42 ym.
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40 40
-100 -100
20 20
-200 -200
-300 0 -300 0
-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300
x (um) X (um)
(@) FIG. 6. Prediction error in um over field-of-view for a source shape of 25 x 25
NIS3 Distance Error (um) /Amz. Here, we use our second-best performing CNN. Darker colors represent less
300 100 error. The red points are the locations of the training points. Note that the features
present in the heatmap have changed compared to the best performing CNN used
in Fig. 5, indicating that performance for various regions is highly dependent on
200 80 the CNN parameters.
100
60 predictions tend to be more accurate overall. However, in several
- cases, SrcLocOpt makes large inaccurate predictions.
5. 0 Table II shows the overall error and run time requirements
> for both algorithms. We see that the CNN outperforms SrcLocOpt
a0 in mean error. However, the median error is lower for SrcLocOpt
~100 compared to CNN. The difference in performance can be explained
by the large outlier mistakes made by the optimization method.
—200 20 In general, these types of outlier mistakes can be fixed; however,
-300 0 NIS3 Validation Point Predictions
-300 -200 —100 0 100 200 300
x (um) 400
(b) - |
- : . . MR Vs
FIG. 5. CNN model prediction error in um over field-of-view for a circular source 200 1 Jlems B P At
radii of (a) 25 um and (b) 125 um. Darker colors represent less error. The red R0 P e
points are the locations of the training points. Here, we see that CNN predictions . —‘—"" " ¥ ;" e
typically have an error of less than 30 ym. g 0 e i o P
; < e e 4‘,’ ‘
: e o "" F
-200 A PR T
af IRFiTae ey i
il ¥
data points within the 600 x 600 ym? field-of-view with a circular
source with a radius of 109 ym and predict the source location using -400 — —
the CNN and SrcLocOpt. In addition, to facilitate a fair compari- T
son to CNN, we supply the ground truth source shape to SrcLocOpt -400 -200 0 200 400
so that it only has to predict locations. The ground truth valida- X (um)
tion points, as well as the corresponding predictions, are shown in .
the field-of-view in Fig. 7. The predictions are connected to their FIG. 7. CNN performance (blue) comparison to SrcLocOpt (orange) for 50 data

points. Ground truth (red) locations are generated randomly with a circular source

ground truth location via a line. We can see that the overall perfor- of radius 109 um. Corresponding predictions are conneced by a ine.

mance is comparable between the two algorithms. The SrcLocOpt
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TABLE II. Errors and run times for CNN and SrcLocOpt. SrcLocOpt is typically more  TABLE lll. Data for the NIF shots used in the test set.

accurate, while CNN requires less computation time.

Shot no. Shot Neutron yield Shape (um) Location (ym)
Method Mean error (um) Median error (um) Run time (s) 1 N190318 2.96 x 10" (59, 35) (102, 205)
2 N190707 2.69 x 10" (44, 31) (92, 205)
CNN 26.5 22.8 1.11 3 N190721 1.92 x 106 (34, 35) (67, 149)
SrcLocOpt 60.9 11.4 559.2 4 N190730 429 x 10" (42,35) (74,132)
5 N191007 2.12 x 10" (59,43) (16, 190)
6 N191013 8.16 x 10™ (45, 39) (32, 198)
7 N191021 9.39 x 10" (50, 36) (48, 126)
8 N191105 5.48 x 10" (53,32) (53, 119)
they require additional human input and computation time. The 9 N191110 3.76 x 10'° (54, 35) (48, 260)
table shows that CNN excels at run time, making predictions more 10 N191126 1.86 x 10 (31, 36) (29, 261)
than two orders of magnitude faster than SrcLocOpt. Therefore, 11 N191202 1.83 x 10 (115, 135) (39,177)
CNN may be preferable in cases where a fast and automated but 12 N191229 2.95x 101: (129, 143) (-1,157)
13 N200125 2.99 x 10 (79, 30) (54, 177)
14 N200229 4.76 x 10" (67,34) (46, 246)
Performance for Gaussian 15 N200308 2.77 x 10" (46, 42) (69,200)
SNR 16 N200608 5.03 x 10" (57,37) (~4,207)
1.654 1.651 1.638 1.614 1.593 1.579 17 N200727 3.35 x 10'° (56, 44) (41, 194)
100 ! ] 7 ] 7 1 18 N200810 4.62 x 10 (46, 75) (40, 82)
19 N200816 5.91 x 10" (49, 29) (64, 150)
. 20 N201011 4.80 x 10" (44, 44) (44, 61)
S 10 21 N201101 5.74 x 10" (38, 54) (63,77)
fr 22 N201122 2.04 x 10" (44, 36) (23, -118)
§ 10° 23 N210117 6.40 x 10%° (55, 55) (88, 165)
° 24 N210207 5.99 x 10" (44, 40) (42, -1)
[ 25 N210307 1.67 x 10" (46, 38) (13,172)
o 102 26 N210328 4.86 x 10'° (56, 34) (300, 265)
2 27 N210411 7.52 x 10" (40, 32) (44, 45)
§ 28 N210418 3.42 x 10'° (36, 50) (46, 76)
< 10! 29 N210418 3.42 x 10'° (36, 50) (46, 76)
30 N210605 1.33 x 107 (38, 38) (64, 62)
oo 31 N210711 7.56 x 101: (44, 46) (100, 454)
00 01 02 03 0a 0's 32 N210725 7.39 x 1018 (55,39) (68, —67)
Standard Deviation 33 N210808 137 x 1015 (59, 55) (70, 104)
34 N210906 1.93 x 10 (56, 53) (72,108)
(a) 35 N211024 5.24 x 10" (36, 48) (14, 6)
Performance for Poisson 36 N211107 5.58 x 107 (52,52) (47,33)
SNR 37 N211121 334 x 10" (50, 51) (41, 158)
1.654 1.622 1.601 1.587 1.579 1.574 38 N220102 1.39 x 10*° (50, 50) (=27,26)
105 ! i 7 7 i ] 39 N220109 3.10 x 10"7 (50, 50) (24, 461)
40 N220115 1.55 x 10" (50, 50) (23, 88)
. 100 41 N220124 8.46 x 10%° (50, 50) (-21,0)
3 42 N220129 1.80 x 10" (50, 50) (52, 161)
w 43 N220220 9.90 x 10" (50, 50) (31, —24)
8 103 44 N220305 4.85 x 10' (50, 50) (39, 48)
b 45 N220402 1.46 x 10*° (50, 50) (24, 54)
) 46 N220417 1.29 x 107 (50, 50) (~3,165)
'S 102 47 N220507 3.78 x 10" (50, 50) (23,158)
g 48 N220521 9.65 x 10" (50, 50) (29, 46)
g 49 N220530 4.53 x 10'° (50, 50) (10, 88)
< 10! 50 N220604 2.16 x 10%° (50, 50) (24, 88)
51 N220626 1.59 x 10" (45,47) (37,123)
- 52 N221023 2.37 x 10" (47,37) (55, 24)
00 o1 02 03 04 05 53 N221120 1.87 x 1012 (37,43) (83,153)
Mean number of events (1) 54 N230304 6.57 x 1017 (46,10) (88, 288)
55 N230416 8.39 x 10 (54,47) (~11,292)
(b) 56 N230508 232 x 10" (47, 32) (12,175)

FIG. 8. Change in CNN prediction error (in um) as a function of noise (bottom x
axis) and SNR (top x axis). We randomly sample 50 data points from the validation

set. We test for both (a) Gaussian noise as the standard deviation varies and (b) reasonably accurate prediction is sufficient. As we saw in Sec. 11,

SG'L¥'LZ ¥20T dunr 02

Poisson noise as the mean number of events varies. Note that noise is applied to
the standardized images whose pixel values lie heavily in a range between —1 and
1. The CNN performs well for noise levels near typical SNRs (1.636) expected at
the NIF.

prediction errors less than 50 ym tend to have little effect on the
full source reconstruction. Given that the median error of the CNN
prediction is 22.8 ym, we expect that the faster CNN prediction is
preferable in most cases.
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E. Performance on noisy data

Previous results assumed a noiseless environment. However,
noise in NIF experiments can often corrupt the aperture image,
which may harm the CNN predictions. Typically, the noise in
environments encountered by the neutron imaging system can be
described by either a Gaussian or Poisson distribution.” In order to
confirm the reliability of our models, we require that they perform
well under noisy conditions. In this section, we test the performance
of the CNN by adding noise to the aperture images and computing
the change in prediction error.

Figure 8 shows CNN performance as varying amounts of
noise are added to 50 randomly sampled validation data points. In
Fig. 8(a), we apply a Gaussian noise distribution with a mean of 0 and
vary the standard deviation while measuring the change in the aver-
age distance error of the model. In Fig. 8(b), we apply a Poisson noise
distribution while varying the mean number of events. We see that
under both noise models, the CNN performance degrades as noise
is added. However, for low amounts of noise, the CNN prediction
error remains near its non-noise performance.

It is important to relate the various noise levels used in Fig. 8 to
a typical noise level encountered at the NIF. To make this compari-
son, we compute a signal-to-noise ratio (SNR) of the validation data
for each level of noise added. Additionally, we compute the SNR of
the NIF data shown in Table I11. By comparing the SNR of the two
datasets, we can confirm that the CNN is performing acceptably for
expected levels of NIF noise, i.e., the CNN should perform well at
the level of SNR computed on the NIF data.

We use the following to compute SNR over the aperture image
datasets:

1 X i
SNRavg = K]Z %, (4)
i=1 9i

where N is the number of aperture images in the dataset, g, is the
mean of aperture image i, and o; is the standard deviation of image i.
In other words, Eq. (4) calculates the individual SNR*! for each aper-
ture image and computes an average over the dataset. Using Eq. (4)
on the NIF dataset gives an SNR,yg of 1.636.

For each noise amount added to the validation data, we calcu-
late SNRyy, using Eq. (4). We plot this SNRay, on the top x axis in
Fig. 8. We see that the CNN performs well for validation SNRgg
greater than or near the NIF SNRyy, of 1.636. The noise levels at
which the CNN performs poorly correspond to an SNRy,, lower than
the level typically expected at the NIF. Therefore, we expect the CNN
to perform well under NIF noise conditions.

F. Performance on NIF data

We now discuss the performance of CNN on NIF experiment
data. We collect the 56 recent shots shown in Table III and test
the CNN performance against SrcLocOpt on the NIS-3 line-of-sight.
Figure 9(a) shows the results over the NIS-3 field-of-view. We see
that the CNN predictions are closely aligned with the SrcLocOpt pre-
dictions. It is important to note that since these are experiment data,
no ground truth source locations are known. Therefore, we cannot
say for certain which algorithm is more accurate in each of these
cases. Regardless, the strong agreement between both algorithms
gives us confidence in the performance of CNN. Figure 9(b) shows
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FIG. 9. (a) Comparison of predictions for NIS-3 on NIF data for SrcLocOpt (red)
and the CNN (blue). Corresponding predictions are connected by a line. (b)
Euclidean distance for predictions using the two methods. The shot number here
corresponds to the shot number in Table Ill. Most predictions are fewer than
20 um apart.

the Euclidean distance between predictions for the various shots.
We see that in most cases, the difference is less than 20 ym. As we
saw in Sec. II, this performance is sufficient to ensure an accurate
reconstruction. Therefore, given its additional speed advantage over
SrcLocOpt, CNN is the preferred algorithm for use in real NIF data.

If we require additional accuracy, a possible alternative is to
combine the two algorithms and receive benefits from both. Cur-
rently, SrcLocOpt starts optimization using the field-of-view center
as the initial location guess. Instead, we can obtain a quick predic-
tion using the CNN and provide this as the SrcLocOpt starting state.
In doing so, we reduce the number of required iterations and speed
up the SrcLocOpt optimization process while providing accuracy
guarantees.
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V. CONCLUSION

Due to the complexity of fusion geometry reconstruction from
neutron aperture images, it is critical to determine the source loca-
tion within the field-of-view. In this paper, we developed a machine
learning system based on CNNs to perform source localization. We
showed that CNNs can predict source locations two orders of mag-
nitude faster than previous optimization approaches while obtaining
comparable accuracy. In addition, we showed that CNNs are robust
to noise that may affect the aperture. Finally, we demonstrated the
real-world applicability of our approach on the NIS-3 line-of-sight
at the NIF.

There are several avenues for future work. First, in this work,
we trained the CNN entirely with synthetic data generated by the
forward model. We can likely improve performance by generating
more data, e.g., either more locations or source shapes. In addition,
to improve the model’s performance on NIF data, we can utilize
transfer learning’” approaches to train the model on both synthetic
and real NIF data. Second, we can improve performance by combin-
ing an ensemble of ML models.”” Ensemble methods can improve
robustness and increase confidence in the ML system. Third, our
models were trained using non-noisy data. By incorporating noisy
data into the training set, we can further improve the robustness of
the models in noisy environments.

ACKNOWLEDGMENTS

We would like to acknowledge the dedicated staff at NIF for
their contributions and hard work. This work was supported by
the U.S. Department of Energy through the Los Alamos National
Laboratory (LANL), operated by Triad National Security, LLC, for
the National Nuclear Security Administration under Contract No.
89233218CNA000001.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Gary Saavedra: Conceptualization (equal); Data curation (equal);

ARTICLE pubs.aip.org/aip/rsi

ing - original draft (lead); Writing - review & editing (lead).
Verena Geppert-Kleinrath: Data curation (equal); Funding acqui-
sition (lead); Project administration (equal); Software (equal). Chris
Danly: Conceptualization (equal); Data curation (equal); Software
(equal). Mora Durocher: Data curation (equal); Software (equal).
Carl Wilde: Data curation (equal); Software (equal). Valerie Father-
ley: Data curation (equal). Emily Mendoza: Data curation (equal).
Landon Tafoya: Data curation (equal). Petr Volegov: Conceptu-
alization (equal); Data curation (equal); Software (equal). David
Fittinghoff: Data curation (equal); Project administration (equal);
Writing - review & editing (supporting). Michael Rubery: Data
curation (equal). Matthew S. Freeman: Conceptualization (equal);
Data curation (equal); Project administration (equal); Software
(equal); Writing - review & editing (supporting).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

APPENDIX: INNER WORKINGS
OF NEURAL NETWORKS

Figure 10(a) shows an example of a neuron used in an FNN. We
adopt the common terminology within machine learning and refer
to the neuron as a node throughout this text. Given an input x, a node
outputs variable y according to the following weighted summation:

y=> wixi+b, (A1)

i=1

where x; is feature i of the input variable x, w; is weight i of the
node, and b is an additional bias term. The features that describe
the input are often dataset-specific. In imaging applications, a single
pixel is often considered a feature. Therefore, a single node may take
a weighted summation over every pixel in the image.

Non-linearities are often applied to the output of a neuron to
improve the representational ability of the neuron and the network
as a whole. A common non-linearity is the Rectified Linear Unit
(ReLU),

Formal analysis (lead); Investigation (lead); Software (equal); Writ- f(y) =max (0,y). (A2)
T 1 1 4
- » 2 {202
- : NXE7 57 2|3
)y, /”’&”A g o I
wy - ' / ’
r3 Tn o
(a) (b) ©

FIG. 10. (a) A single neuron with three inputs and one output. Each input is multiplied by the corresponding edge weight. The output is the summation of these weighted
inputs. (b) A feedforward neural network constructed with layers of neurons. The output of every neuron in the preceding layer is fed into the input of every node in the next
layer. (c) An example of a 3 x 3 convolution kernel over an aperture image. The kernel is applied to every location in the image to produce a convolved image.
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We utilize the ReLU in this paper as it has been shown to result in
superior convergence properties for neural networks compared to
other activation functions.”

On their own, single nodes have limited representational abil-
ity and, therefore, can only solve very simple problems. Therefore,
nodes are often combined to improve the representation power,
resulting in a FNN. A FNN is constructed with nodes arranged into a
series of layers, as shown in Fig. 10(b). In a FNN, inputs flow through
the layers, transforming the input data into a set of output variables.
The combination of nodes into layers increases the representational
capacity of the network and allows for the solution of more complex
problems.

CNNs use image convolutions to find localized patterns within
an image. A convolution is a weighted summation similar to
Eq. (A1) but applied to small neighborhoods of pixels in the image
using a weighted filter, as shown in Fig. 10(c). The convolution
is applied iteratively over the whole image to produce various
convolved images, often referred to as channels. The final output
channels are then input into a FNN for final prediction. For a more
in-depth discussion of neural networks, see Goodfellow et al.*®
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