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ABSTRACT

A physics-informed neural network (PINN) is used to evaluate the fast ion distribution in the hot spot of an inertial confinement fusion tar-
get. The use of tailored input and output layers to the neural network is shown to enable a PINN to learn the parametric solution to the
Vlasov-Fokker-Planck equation in the absence of any synthetic or experimental data. As an explicit demonstration of the approach, the spe-
cific problem of Knudsen layer fusion yield reduction is treated. Here, the predictions from the Vlasov-Fokker-Planck PINN are used to pro-
vide a non-perturbative solution of the fast ion tail in the vicinity of the hot spot, thus allowing the spatial profile of the fusion reactivity to be
evaluated for a range of collisionalities and hot spot conditions. Excellent agreement is found between the predictions of the Vlasov-Fokker-
Planck PINN and the results from traditional numerical solvers with respect to both the energy and spatial distribution of fast ions and the
fusion reactivity profile, demonstrating that the Vlasov-Fokker-Planck PINN provides an accurate and efficient means of determining the
impact of Knudsen layer yield reduction across a broad range of plasma conditions.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0207372
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I. INTRODUCTION

Inertial confinement fusion (ICF) experiments generate plasmas

quantities such as the heat flux,” ~ the magnitude and spatial profile

of the fusion reactivity," '® and atomic physics rates'’ and thus can

0€:0%'Gl #20Z 8unr 61

that encompass an exceptionally broad range of densities and tempera-
tures. This broad range of plasma conditions creates a challenge with
regard to selecting the level of physics fidelity required for accurately
describing an ICF implosion. In particular, while radiation-
hydrodynamic codes have emerged as the backbone to integrated sim-
ulations of ICF capsules,”” such a framework is based on perturbative
closures that are only valid for asymptotically small values of the
Knudsen number K, = Z,,p/A, where 4, is the particle’s mean-free-
path and A is the smallest gradient length scale. Although the limit
K, < 1 is well satisfied across a range of ICF conditions, this limit is
strongly violated in low density exploding pusher experiments”* and,
due to the strong temperature dependence of the Knudsen number
(K, o< T?), becomes increasingly suspect for burning plasmas capable
of achieving high ion and electron temperatures.’

The presence of low to modest levels of collisionality allows for
strong deviations from a local Maxwellian distribution to develop that
cannot be treated by perturbative closures.”” Such deviations of an ion
or electron distribution from a local Maxwellian impact closure

strongly impact the trajectory of an ICF implosion.”’ In addition, suffi-
ciently strong deviations from a Maxwellian impact diagnostics based
on neutron”"** or hard x-ray spectra.”” In this paper, we describe how
physics-informed machine learning methods enable the development
of an efficient surrogate model for the tail ion distribution to be rapidly
inferred. Such an approach offers a complement to traditional numeri-
cal solvers focusing on the solution to the Vlasov-Fokker-Planck
(VEP) equation.”*”” Here, rather than relying on data, this approach
seeks to embed physical constraints into the training of a neural net-
work (NN). In so doing, the quantity of data needed to train the NN
can be sharply reduced, or even eliminated.

As an initial study, we demonstrate the ability of this approach to
provide a comprehensive description of Knudsen layer reactivity reduc-
tion in the hot spot of an ICF target. In particular, a physics-informed
neural network (PINN) is used to solve the time dependent VFP equa-
tion for a geometry with one spatial dimension and two velocity space
dimensions (1D-2V) in the absence of any data. It is shown that the
VFP PINN is able to learn the parametric dependence of solutions to
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the VFP equation. Although computationally intensive to train, the
online inference time of the VFP PINN is far more efficient than a tra-
ditional solver. Further noting that a single VFP PINN is able to learn
the fast ion distribution for a broad range of hot spot conditions, this
approach provides an attractive means of developing rapid surrogate
models of fast ion transport in high energy density plasmas.

The remainder of this paper is organized as follows: Sec. II pro-
vides a brief description of physics-informed neural networks, with an
emphasis on how they may be used to learn the solution space of para-
metric PDEs.”””” An overview of the VEP equation is given in Sec. 111,
along with a description of how customized input and output layers
enable the evaluation of the fast ion distribution in the vicinity of an
ICF hot spot. Section IV describes the fast ion solution predicted by
the VFP PINN. The fusion yield of an ICF hot spot is described in Sec.
V, along with a comprehensive description of how hot spot parameters
impact Knudsen layer yield reduction. The conclusions and a brief dis-
cussion are given in Sec. V1.

Il. PHYSICS-CONSTRAINED DEEP LEARNING

A primary aim of this paper is the development of a PINN cus-
tomized to treat the VFP equation. Before doing so, it will be useful to
briefly review fundamental aspects of the PINN framework, which has
emerged as a prominent example of physics-informed machine learn-
ing methods.”” The present discussion will only focus on the essen-
tial concepts, where the interested reader is referred to Ref. 30 and
references therein for a more detailed discussion. Here, the underlying
strategy is to impose physical constraints into the training of an NN.
This can be accomplished either via the use of customized layers in the
NN that directly constrain the predictions of the NN (i.e,, hard con-
straints) or via the addition of physical constraints into the loss func-
tion (i.e., soft constraints). A PINN in its simplest form is focused on
the latter strategy, with the loss expressed as™

Niay

1 2
is Ly A WZ[J?—f(ZiJiJi)}

Nppe
Loss =

1 Ninit

+I\Iinit§;[fi_f(zi,t:();li)]z7 N

where frepresents the field being solved for (the ion distribution in the
present paper), z; are phase space coordinates (energy, pitch, and a
spatial coordinate), ¢; is time, 4; represents parameters of the physical
system (Knudsen number, for example), and R(z;, t;; 4;) is the resid-
ual of the PDE. The second and third terms on the right-hand side set
the boundary and initial conditions, respectively, whereas the first
term enforces the PDE. An additional term containing any available
data®" can be added to the loss in Eq. (1), though no data will be
used in the present study. Our motivation will instead be to demon-
strate the ability of PINNs to accurately learn solutions to the Vlasov-
Fokker-Planck equation across a broad range of parameters 4 in the
zero data limit.

The use of a vanilla PINN such as Eq. (1) will fail to accurately
evaluate the ion distribution at high energies. This is due to the expo-
nentially small number of tail ions compared to bulk ions, such that
the tail ion distribution makes very little contribution to the PDE resid-
ual given by the first term in Eq. (1). A primary motivation of the pre-
sent work will thus be to develop a tailored PINN, with a loss function
calibrated to give appropriate weight to the tail ion distribution and

pubs.aip.org/aip/pop

custom input and output layers that ensure physical constraints and
symmetries of the system are exactly satisfied.

lll. MODEL EQUATIONS
A. Physics model

For modest Knudsen numbers, ions in the bulk plasma will be
nearly Maxwellian and will thus be well approximated by collisional
closures based on perturbative Chapman-Enskog expansions.” Due to
the mean-free-path of an ion scaling with the square of the ion’s energy,
however, we anticipate strong deviations from a Maxwellian distribu-
tion at high energy. A non-perturbative treatment of such deviations
can be achieved by utilizing a test-particle collision operator,’® whereby
the fast ion population is evolved under the assumption that collisions
between the tail and the Maxwellian bulk are dominant compared to
tail-tail collisions.”” In this limit, the VEP equation reduces to”®

VEL D vy = KvaEaE)fa}

ot
o)) o

where the collisional coefficients are defined by

V. = CE, (3a)

=N 3/2

_ E N
Ve = 7ET7 14+ (f) ] — E,CE, (3b)
E.
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—\ 32

- E
Dy = 7ET°* |1 4 (,_) } (3d)

E,

=3/2

T .

D =v;—(1-8), (3¢)
with the normalizations
- E __x - T __n _ o ulse
EE%’ JC:Z7 T:%, I’l:“%, t = ;7
g oo@fl vl . vl oo E
a — b — 9 — 9 c —
Ths a U}'Il::l a Uq‘sa hs

Here, T" is the hot spot temperature, n™ is the density at the center of
the hot spot, v = \/2T" /m,, we have assumed a slab geometry
with one spatial dlmension x, L is the spatial normalization (taken to
be approximately half the system size), E = m,v*/2 is the ion kinetic
energy, ¢ = v,/v is the pitch, and £ is the electric field. For non-
thermal ions satisfying v > v7,, the dimensionless collision frequencies
for a DT plasma are given by

L —
DfEZA—ﬁ(@%Jrﬂﬂ), (4)

ne Mg ne my

| -1
pgz—afﬂ(1+ﬂ)<1+ﬂ@) , (5)
4 “m, ng ng my
where 1, is the mean free path of a thermal ion. The collisional
dependence can be described by the Knudsen number
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where In A is the Coulomb logarithm, taken as a constant in the pre-
sent study for simplicity. We have also defined the quantity E,, which
defines the energy scale above which ion slowing down by electrons
becomes dominant, i.e.,

2/3
EC——TF\f("dm%"’ )} . @)

m, 4 Ne Mg Ne My

While E, > 1 in the hot spot, noting that E decreases with tempera-
ture, this term will impact ion slowing down in the neighboring cold
plasma.

B. Hot spot profiles and boundary conditions

Our aim will be to utilize a PINN to evaluate the ion distribution
in an idealized hot spot, where, for definiteness, we adopt slab geome-
try and use the same spatial profiles as Ref. 38. In particular, we will
assume an isobaric equilibrium with density and temperature profiles
of the form

_ n X —x X — X,
n= 1—5—7 {2+tanh( Ax ) +tanh( Ax )},

T =1/n,
where 71 = n/n*, T = T/T", and for simplicity, we have assumed
each particle species to have the same temperature. For all cases treated
in this work, we will take x, = —x; = 0.6. The electric field will be
evaluated from the electron momentum equation, which can be
approximated by

€= (“Vp. + R ®)

en,

Here, R, describes electron—-ion momentum exchange, and we have
neglected the electron inertia and viscosity terms. For an electron-
proton plasma, the thermal force in the momentum exchange term

(@)

10+

-10 -05 00 05 1.0
x/L
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can be written as R, = —B.n,VT,, with B, = 0.71.”” After normali-
zation, the electric field can then be expressed as

g, 7071—VT_70716—“8—T, 9)
e Ox

where since we are considering an isobaric equilibrium, with no equi-
librium ion or electron flow, only the thermal force contributes to the
electric field. The sign of this electric field is such that it accelerates
ions away from the hot spot, thus enhancing fast ion losses. The
assumed density and electric field profiles are shown in Fig. 1. For the
remainder of this paper, we will drop overbars of normalized quanti-
ties for notational simplicity unless explicitly indicated.

To complete the description of the problem setup, we will need to
introduce the initial and boundary conditions. With regard to the
boundary conditions, we will match the ion distribution to a
Maxwellian at the low energy boundary and take its value to be negligi-
bly small at the high energy boundary. While no rigorous boundary
condition is available at the high energy boundary, taking the distribu-
tion to a small value was shown in Ref. 38 to have minimal impact on
the solution of the fast ion distribution across the range of energies
that strongly impact the fusion reactivity. The specific value of the dis-
tribution at the high energy boundary will be taken to be

fo(E = Epay) = 1a(x) (2n”;a(x)>3/2 exp <_ %) (10)

where T,,;, indicates the minimum temperature in the simulation
domain, which, in dimensionless units, is given by Ty, = 1/(1 + ny).
The initial ion distribution will be taken to be a Maxwellian evaluated
at the local density and temperature but modified to match the high
energy boundary condition, i..,

-10 -05 00 05 1.0
x/L

FIG. 1. Normalized density [panel (a)] and electric field [panel (b)] profiles used for evaluating the fast ion distribution. The parameters were chosen to be ny =9 and

Ax =0.1.

Phys. Plasmas 31, 062701 (2024); doi: 10.1063/5.0207372
© Author(s) 2024

31, 062701-3

0€:0%'Gl #20Z 8unr 61


pubs.aip.org/aip/php

Physics of Plasmas ARTICLE

where AE < E,4. For all cases considered in this work, we will take
AE = 0.005E, 4. It can be verified that for energies E < E,,uy, this
distribution reduces to a Maxwellian, but at E = E,,,, recovers the
high energy boundary condition defined by Eq. (10). The high energy
boundary condition will be taken to be E,,,,, = 15, and the low energy
boundary will be taken to be E,,,, = 0.01 for the cases considered in
this paper unless explicitly indicated. This high energy boundary con-
dition will enable an accurate solution of the ion distribution for the
energies of interest for evaluating the fusion reactivity for hot spots
with temperatures of at least 2keV. With regard to the low energy
boundary, while the test-particle collision operator will not be quanti-
tatively accurate at energies comparable to the thermal energy, the
test—particle collision operator described by Eq. (3) does recover a
Maxwellian distribution in the limit of high collisionality. For an accu-
rate calculation of closure quantities such as the heat flux, plasma vis-
cosity, or momentum and energy exchange rates, which are strongly
impacted by first-order corrections to the Maxwellian, the low energy
boundary should be taken to be several times the thermal energy and
then the tail distribution matched to a particle distribution computed
from a collisional closure as described in Ref. 40. On the spatial bound-
aries, X, and x,,,,, the ion distribution will be taken to be fy.

For the hot spot geometry described above, the fast ion tail is
described by the four physics parameters (K, n,, Ax, n,/ng). Here,
K’ characterizes the collisionality in the hot spot, #; and Ax quantify
the density and temperature difference between the cold and hot
regions, together with the steepness of the gradient region, and n, /n,
is the trititum-deuterium fraction. For the present work, we will take
n¢/ng = 1 such that we will aim to infer the fast ion solution as a func-
tion of the three remaining parameters (K/*, ;, Ax). We note that
when evaluating the fusion reactivity, the hot spot temperature T will
emerge as an important parameter determining the location of the
Gamow peak, though it does not appear explicitly in Eq. (3). This is
due to the Chandrasekhar functions being expanded in the limit
v > vg,. Its influence thus enters implicitly via the strong dependence
of the Knudsen number K'* on the hot spot temperature.

C. Embedding physical constraints into the neural
network

A key component to ensuring the robust training of the PINN
representation of the VFP will be to limit solutions the optimizer
searches for to those that are consistent with the physical problem of
interest.”' In particular, we will introduce customized input and output
layers of the NN that (i) ensure the positivity of f,, (ii) satisfy the low
and high energy boundary conditions, (iii) exactly recover f,o as the
initial distribution, and (iv) recover known symmetries of the particle
distribution. While these constraints could be enforced by a penalty
function in the loss of the VFP PINN, by enforcing them as hard con-
straints, this will enable more robust training of the VPF PINN and
ultimately a lower loss.

First noting that for the slab description of a hot spot centered
about x =0 described in Sec. IIT A, Eq. (2) is invariant under the trans-
formation (x, ) — (—x, —¢), indicating that the ion particle distribu-
tion must obey

ﬁl(_x,_£7E7 t) :fu(x7 €7E> t) (12)

This symmetry can be enforced exactly by introducing an additional
layer to the NN between the input layer and the hidden layers.

pubs.aip.org/aip/pop

In particular, the inputs to the NN will be the independent variables
(x, &, E, t) along with the physical parameter 4. The additional layer
will take the inputs (x, &, E,t;4) and pass them through a layer
defined by (x2, &%, x&, E, t; A). Here, the parameter inputs as well as
energy and time are simply passed through the additional layer with-
out modification; however, the spatial coordinate and pitch are trans-
formed by (x, &) — (x2, &, x&). Such a transform ensures predictions
of the NN satisfy the symmetry indicated by Eq. (12).

The additional three constraints indicated above can be enforced
by introducing an output layer to the neural network of the form

fa = fuoos (13a)

7 t E— Emin Emax —E
Jo=exp
tmax Emax - Emin Emax - Emin
« X — Xmin Xmax — X ¢NN ’ (13b)
Xmax — Xmin ) \Xmax — Xmin

where fy is the initial ion distribution defined by Eq. (11) and ¢y is
the output of the hidden layers of the neural network. From Eq. (13), it
is apparent that regardless of the value of ¢y, f; is (i) positive definite,
(ii) obeys the boundary conditions, and (iii) recovers the initial particle
distribution f, at t=0.

An additional component to the VFP PINN will be the selection
of an appropriate form of the loss. Specifically, in addition to the resid-
ual of the Vlasov-Fokker-Planck equation, the selection of an appro-
priate weighting factor will be crucial to ensure the optimizer is able to
find an accurate solution across the broad range of energies needed
when describing the fast ion distribution. Noting that the boundary
and initial conditions are automatically satisfied and thus do not need
to be included in the loss, we will weigh the residual to the VFP equa-
tion by the following factors:

1 ¥ 1 E; ’
L = Ri is '7EA7ti.}“‘ .
0ss Z (eﬁ%lax +fa) 1+E i(xi, &, By 133 A7)

Nppe <
(14)

Here, R; corresponds to the residual of Eq. (2), ;‘61‘”‘
= na(x)[ma/ (27T (x))]*/? is a Maxwellian evaluated at E=0, and € is
a hyperparameter of the model. The factor \/E/(1 + E) softens the
divergence of the test—particle collision operator at low energy, but
then asymptotes to unity for E >> 1. The factor 1/(ef¥* + f,) serves
two purposes. The first is that due to the large density and temperature
variation between the hot spot and the surrounding cold region, the
magnitude of f, will vary substantially due to fM* oc n,/T%2. This
factor thus helps ensure that the residual is weighted evenly over these
regions. In addition, by choosing an appropriate value of e, this factor
controls the weighting of different energies. Noting the approximate
exponential decay of the ion distribution with energy, a small value of
€ leads to the high energy regions of f, being more heavily weighted,
whereas a larger value of ¢ will give more weight to lower energy
regions that have larger values of f,. For all the cases treated in this
paper, we will take € = 0.01, thus providing a substantial weight to
energies that are several times the thermal energy. Further details of
the models used in this paper are listed in Table 1.

Phys. Plasmas 31, 062701 (2024); doi: 10.1063/5.0207372
© Author(s) 2024

31, 062701-4

0€:0%'Gl #20Z 8unr 61


pubs.aip.org/aip/php

Physics of Plasmas

ARTICLE

pubs.aip.org/aip/pop

TABLE I. Summary of models used in different figures. All models used a fully connected feedforward neural network with four hidden layers each with a width of 64 neurons.

Figures showing Initial training Time Input

results of model points dependent transform X range Khs ny Ax
Figures 2(a), 2(c), and 2(e) 10° Yes No (—1.25,1.25) (0.01,0.2) (2,9) 0.1
Figures 2(b), 2(d), and 2(f) 10° Yes Yes (—1.25,1.25) (0.01,0.2) (2,9) 0.1
Figures 5 and 6 2 x 106 Yes Yes (0,1.25) (0.01,0.2) (2,9) (0.05,0.15)
Figures 8-10 2 x 10° No Yes (0,1.25) (0.01,02)  (2,9)  (0.05,0.15)

D. Impact of input transform on the fast ion solution

This section will investigate the impact of the input layer
(x,&) — (x2, &, x&) described in Sec. 111 C on the fast ion distribu-
tion. Figure 2 shows a comparison of the fast ion distribution with and
without introducing the input transform (other parameters are indi-
cated in Table I). Considering cross cuts of the fast ion solution in the
(x, ) plane at t=1 for three different energies, it is apparent that the
loss of fast ions from the hot spot leads to substantial deviations from a
Maxwellian distribution. In particular, noting that the temperature is
maximal in the hot spot between x &~ (—0.6,0.6), this is the region
that would be expected to have the largest number of fast ions. For the
highest energy cross cut shown [E= 10, Figs. 2(¢) and 2(f)], it is evi-
dent that a large asymmetry in the number of ions with x¢ > 0 com-
pared to x& <0 is present. This is due to the relatively low
collisionality at this energy allowing the fast ions to free stream toward
the interface between the hot and cold regions. Once these fast ions
reach the cold region, the high collisionality results in the fast ions
slowing down, which leads to maxima of the ion distribution forming
at lower energies at (x, &) ~ (0.6,1) and (x, &) &~ (—0.6,—1). These
are particularly evident in the E =5 cross cut shown in Figs. 2(a) and
2(b). While this physics is evident for cases when the input transform
is applied [Figs. 2(b), 2(d), and 2(f)], and when it is not [Figs. 2(a),
2(c), and 2(e)], the latter ion distribution does not precisely satisfy the
symmetry f(—x,—& E t) = f(x, &, E, t), with the deviations most
evident at the highest energy cross cut.

A comparison of the loss histories for the two cases is shown in
Fig. 3. Here, an ADAM optimizer is used for the first 15000 epochs,
and L-BFGS is used thereafter. A total of 10° training points obeying a
Hammersley sequence’"’ are applied along with 262 144 test points
sampled according to a uniform random distribution. After periods of
50000 epochs of L-BFGS training, an additional 100 training points
are added at locations where the residual is maximal,"* leading to peri-
odic spikes in the training loss. We also note that since the training
and test points obey different distributions, we do not expect the mag-
nitude of the training and test losses to match. The addition of training
points at locations of maximal residual will further push the training
and test losses apart. It is evident that the loss for the case where an
input transform is included is substantially reduced. Hence, the input
transform provides a means of reducing the loss, thus improving the
accuracy of the solution, while exactly satisfying a known symmetry of
the system. Furthermore, noting the symmetry of the solution is auto-
matically satisfied, it is only necessary to solve for the solution in one
half of the spatial domain. Hence, for the remainder of this analysis,
we will limit the spatial domain to positive values of x during training,
where the solution for negative values of x can be recovered by noting

the symmetry f(—x, =&, E, t) = f(x, &, E, t).

IV. FAST ION SOLUTION
A. Temporal evolution of the fast ion distribution

Incorporating the input transform (see the third row of Table I
for further details of the model), the loss history for time dependent
models of the deuterium and tritium distributions is shown in Fig. 4.
The test loss drops by over six orders of magnitude, indicating the
VEP PINN was able to successfully train. Time slices of the pitch-angle
averaged tritium distribution are shown at different spatial locations in
Fig. 5. Here, Fig. 5(a) indicates five time slices at x = 0, where it is evi-
dent that while the low energy bulk plasma remains approximately
Maxwellian, the hot tail becomes significantly depleted by t=1.
Considering the transition region [x= 0.5, Fig. 5(b)], the fast ions lost
from the hot spot lead to an increase in the number of fast ions in the
neighboring region. After this fast ion tail forms, it slowly decreases as
the fast ion tail in the hot spot decreases. Turning to a spatial location
deeper into the cold region [x=0.6, Fig. 5(c)], the time evolution is
similar to the x = 0.5 location, though the fast ions have slowed down
substantially by the time they reach this spatial location. Figure 5(d)
shows a comparison of the fast ion distribution at the three spatial
locations at t= 1. From this comparison, it is clear that the magnitude
of the fast ion tail decreases as x is increased, though the slope of the
fast ion distribution with respect to energy is similar at each spatial
location.

B. Legendre moments of the fast ion distribution

More insight into the fast ion solution can be gained by projecting
the solution onto a basis of Legendre polynomials P;(¢). In particular,
noting the relations

(na%pa) = Jd%(l,%mavz)%(é) . (15a)

Naly = Jd3va1(§) L (15b)

Pax — Pal = Mg JdSyvaz(é)fa. (15¢)
If the ion distribution is expanded as

fux E;E) = > PUOf(x,E) (16)

1=0,1,.2,...

and Eq. (16) is substituted into Eq. (15), this yields

(na,%pa) = 4njdvvz<l,%mav2>fu(o), (17a)
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FIG. 2. Cross cuts of the fast ion distribution in the (x, &) plane. The cases shown in (a), (c), and (e) do not include the input transform (x, &) —
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(X2, &, x¢&), whereas (b), (d),

and (f) do. The ion species was chosen to be deuterium, K, = 0.15, ny = 9, Ax/L = 0.1, and t=1. Panels (a) and (b) are for E=15, panels (c) and (d) are for E=38, and

panels (e) and (f) are for E=10.

4
Mgy :?EJdUL*3ﬂ1), (17b)

4
Pax = Pal = ?nma JdL’U4f;2)' (17¢)

It is thus evident that the fu component describes the density and i 1so—
tropic pressure, ﬁ,( is linked to the spatial flux of fast ions, and ﬁ,

describes the pressure anisotropy of the high energy ion tail. The
energy and spatial dependence of the ﬁrst three Legendre coefficients
are shown in Fig. 6. Considering the fa Legendre coefficient, it is
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FIG. 3. Loss history for the ion distributions shown in Fig. 2. The neural networks
contained six inputs (E, &, x, t, K", ny). The solid curves indicate the training loss,
whereas the “x” markers indicate the test loss. The blue curve/markers are for the
case where an input transform was included, whereas the red curve/markers indi-
cate the case where the input transform was not used. Each step refers to a com-

FIG. 4. Loss histories of PINNs for the tritium and deuterium distributions with
seven inputs (E, &, x, t, K, ny, Ax). The blue curve/markers indicate the loss his-
tory for the tritium case, whereas the red curve/markers indicate the loss for the
deuterium case. The solid curves are the training loss, whereas the “x” markers are
the test loss.
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FIG. 5. Time slices of the pitch-angle averaged tritium distribution at three different spatial locations. Panel (a) is for x=20, panel (b) is for x=10.5, and panel (c) indicates
x=0.6. The blue curves correspond to { =0, the black curves correspond to t=0.25, the green curves correspond to t= 0.5, the cyan curves to t=0.75, and the red curves
correspond to {=1. Panel (d) compares the ion distribution at different spatial locations at t= 1. The red curves correspond to x =0, the blue curves correspond to x= 0.5,
and the cyan curves correspond to x=0.6. Dashed curves in panel (d) indicate Maxwellian distributions, whereas solid curves indicate the computed ion distribution. The

Knudsen number was taken to be K, = 0.15, ny = 9, and Ax/L = 0.1.

Phys. Plasmas 31, 062701 (2024); doi: 10.1063/5.0207372

© Author(s) 2024

31, 062701-7

0€:0%'Gl #20Z 8unr 61


pubs.aip.org/aip/php

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop
(a) (b) (©)
8 fo — 1 8 2 0.000750
0.00075 9:0082 0.000625
0.00060 0.0036 0.000500
6 0.00045 0.0030 0.000375
N g'gggig B 00024 o 0.000250
= * =4 =4
g 0.00000 @ 0.0018  ‘uy g'gggégi
-0.00015 0.0012 0000125
2 —0.00030 0.0006 ‘ —0.000250
~0.00045 0.0000 ~0.000375
~0.00060 i :
0.0 05 1.0 0.00 025 050 075 100 125 0.0 05 10
X X

FIG. 6. Projections of the tritium distribution onto the fi rst three Legendre polynomials at t = 1. Panel (a) indicates the difference between f,(o) and a Maxwellian, panel (b) is the

f“) component of the distribution, and panel (c) is thef

evident that the number of fast ions is reduced inside the hot spot, with
a substantial surplus present in the neighboring cold region. This deple-
tion of fast ions is mediated by an outﬂow of fast ions from the hot spot
as indicated by a positive value of fa at high energies. Considering
fa @), it is evident that within the hot spot pay < pai athigh energy, indi-
cating that fast ions whose direction is primarily in the x direction are
depleted more rapidly than those whose motion is perpendicular to the
x direction, with this trend reversed in the neighboring cold region. We
note that we do not anticipate the ion solution to be quantitatively accu-
rate at low energies due to the use of a test—particle collision operator
expanded in the limit v > vy,. However, as indicated by Fig. 5, the
model does recover that the ion distribution is nearly Maxwellian near
the thermal energy. Noting that the fusion reactivity is most sensitive to
the ion distribution at energies of several times the thermal energy, we
anticipate that the present model will be most accurate for small to
modest Knudsen numbers, where substantial deviations from a
Maxwellian distribution only emerge at high energies.

C. Comparison with previous results

Here, we will provide a comparison of the fast ion distribution
predicted by the VFP PINN with the results given in Ref. 38, which
evaluated a nearly identical model of the fast ion distribution using a

Loss History

1071
10734
10-5_
X
LR D B B e
0 100 200 300 400

thousands of steps

FIG. 7. Loss histories of steady state VFP PINNs for the tritium and deuterium dis-
tributions with six inputs (E, &, x, K7 "s ny, Ax). The blue curve/markers indicate the
loss history for the tritium case, whereas the red curve/markers indicate the loss for
the deuterium case. The solid curves are the training loss, whereas the “x” markers
are the test loss.

2 component. The Knudsen number was taken to be K, = 0.15, ny = 9, and Ax/L = 0.1.

traditional numerical solver. Noting that Ref. 38 considered the limit
of a steady state fast ion distribution, we will also modify the VFP
PINN to evaluate the steady state fast ion distribution. This is done by
removing the time derivative term in Eq. (2) and removing time as an
input into the VFP PINN. The input parameters for the steady state
VFP PINN are thus given by (E, &, x, K™ n;, Ax) (further model
details are given in the fourth row of Table I). The loss history for the
steady state VFP PINNS is shown in Fig. 7. Here, the test loss for both
the tritium and deuterium VFP PINNs decreases by nearly seven
orders of magnitude, implying that the VFP PINNs were able to suc-
cessfully train. We note that while the time required to train the VFP
PINN was substantially longer than the traditional solver employed in
Ref. 38, the online inference time of the PINN is drastically faster as
discussed further in Sec. VI.

A comparison of the predicted pitch-angle averaged tritium dis-
tribution from the VFP PINN and Fig. 17 of Ref. 38 is shown in Fig. 8.
Here, excellent agreement is evident for the ion distribution in both
the hot spot (x =0, red curves) and the adjacent cold region (x ~ 0.5,
blue curves). While the physical parameters utilized in this comparison
were matched, a handful of numerical parameters differed slightly,
yielding modest differences in the predictions between the present

Average Energy Dist.

100,
1073
“* 1076

107°

10—12

E/To

FIG. 8. Pitch-averaged tritium distribution in the hot spot (x = 0, red curves/markers)
and adjacent cold region (x = 0.4975, blue curves/markers). The dashed curves indi-
cate the nominal Maxwellian distribution, the solid curves indicate predictions from
the PINN, and the “x” markers indicate values from Fig. 17 of Ref. 38 extracted using
the software from Ref. 45. The values extracted from Fig. 17 of Ref. 38 were divided
by 2%/2 o account for the different normalizations used between this paper and Ref.
38. The Knudsen number was taken to be K’ hs —0.05, ny = 9,and Ax/L = 0.1.
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paper and Ref. 38. In particular, the upper and lower energy bounds
employed by the two papers are different. In the present model, the low
energy boundary was taken to be E,,;,, = 0.01, whereas Ref. 38 chose
Ejnin = 2. Furthermore, Ref. 38 chose E,.c = 20, whereas the present
paper selected E,;c = 15. While the PINN implementation could be
straightforwardly modified to incorporate a low energy boundary of
E,,in=2, we chose E,,;,, = 0.01 to demonstrate that PINNs are able to
learn the ion distribution across the full range of energies. In contrast,
since contributions to the fusion reactivity are negligible beyond
E =15 for T" > 2keV, we opted to restrict the energy range to
E,ax=15. As a result of these different choices of energy ranges, Fig. 8
only includes values from Fig. 17 of Ref. 38 between E =~ 2 and E ~ 12.
Furthermore, since Ref. 38 used a grid based approach, where the ion
distribution was only available at discreet spatial locations, a careful
examination of the Maxwellian distributions shown in Fig. 17 of Ref. 38
indicated that the blue curves in that paper were evaluated at
x=10.4975, rather than x = 0.5 (using the normalization of the current
paper). Finally, while both the present paper and Ref. 38 chose a high
energy boundary condition such that the ion distribution was forced to
a small value, this value differed between the two studies, yielding
slightly different behavior near the high energy boundary. This choice
of boundary condition, however, does not strongly impact the solution
at energies of interest for evaluating the fusion reactivity for tempera-
tures greater than a few kiloelectron volt.

V. KNUDSEN LAYER REACTIVITY REDUCTION

In this section, we will utilize VFP PINNGs for the tritium and deu-
terium fast ion distributions to quantify how the fusion reactivity
varies with hot spot parameters (K, n, Ax, T"). To accomplish this,
the fast ion distributions will be inferred using the steady state VFP
PINNS described in Sec. I'V C. The fusion reactivity can then be evalu-
ated from the expression

(o) = Jdvadvbaub(u)ufa(va)fb(vb)/nanh, (18)

where u = |v, — v;| is the relative velocity and o, is the fusion cross
section parameterized by

(a)
le—16 Reactivity
"""" S — K,=0.05
1.00 \ "
\ — K,=0.15
‘\‘ ---- Maxwellian
\

<ov> [cm?/s]

0.00 0.25 050 0.75 1.00 1.25
x/L
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E.., E
UabZS(E )CXP( EG) (19)

Here, E,, is the center of mass energy, E., =m,u*/2, m,
= mgmy/(m, + mp) is the reduced mass, Eg is the Gamow energy
Eg = 2n*m, 222 73(e*/hc)’, and S(E,,) will be taken to have the
form

S(Eu) = Ay + AyEqy + AsEX 4+ ALES, + AsEL
" 14 ByEgy + ByE2, + B3E3 + ByE:

where the specific values of the coefficients A; and B; used in the pre-
sent study will be taken from Ref. 46. The six-dimensional integral
defined by Eq. (18) can be simplified by expanding in Legendre coeffi-
cients, yielding"”

87232 1 00 00 .
v — dva (1) U J dv/v/z (1) : Ul
<6 >a17 Hally ;:0: 20+ 1 ,[0 fa (x ) 0 fb (X )

1
X J déPi(&py)oap(u)u. (20)
-1

Here, the relative velocity can be written as u = /v? + v'2 — 200/},

the pitch-angle variable is given by &;, = cos 05, where 0;, is the
angle between v and v/, and fa(l) are the Legendre coefficients defined
in Eq. (16). As shown in Ref. 38, the sum in Eq. (20) converges rapidly,
such that only a few Legendre coefficients are required for conver-
gence. In the present study, only the first three Legendre coefficients
will be used. The fusion yield can then be written as

Yah = 6ubRab = €ab <O'U>uh, (21)

NaNyp
1+ O
where €, is the energy released in a given fusion reaction and R, is
the reactivity rate.

A plot of the reactivity (ov), and reactivity rate Ry, for different
Knudsen numbers is shown in Fig. 9. From Fig. 9(a), it is evident that
as the Knudsen number is increased, the fusion reactivity is substan-
tially decreased in the hot spot. The escaping fast ions, however,

(b)
Reactivity Rate

©
»

ning<ov> [A.U.]
=]
N

0.0
0.00 025 050 075 1.00 1.25
x/L

FIG. 9. Fusion reactivity [panel (a)] and fusion reactivity rate [panel (b)]. The parameters were taken to be ny = 9, Ax/L = 0.1, and T" = 10keV. The “x’ markers in panel
(b) correspond to values extracted from Fig. 24 of Ref. 38, the dotted curves are predictions of a VFP PINN trained with a low energy boundary of E,,;, = 1.5, whereas the solid
curves in panels (a) and (b) correspond to the prediction from the VFP PINN with E,;;, = 0.01. The dashed curves are the nominal Maxwellian reactivity.

Phys. Plasmas 31, 062701 (2024); doi: 10.1063/5.0207372
© Author(s) 2024

31, 062701-9

0€:0%'Gl #20Z 8unr 61


pubs.aip.org/aip/php

Physics of Plasmas ARTICLE

introduce a slight increase in the reactivity in the neighboring cold
region. While this increase in reactivity is small, the reaction rate
Ry = nani(ov), is substantially increased due to the high density pre-
sent in the neighboring cold region [see Fig. 9(b)]. Despite this increase
in the neighboring cold region, the net fusion yield (jol dxRy)
decreases as K'* increases (see Fig. 10), suggesting radiation-
hydrodynamic codes that are based on the assumption of a
Maxwellian plasma will overpredict the fusion reactivity at high tem-
peratures and low densities where the Knudsen number is largest.

A comparison of the spatial fusion reaction rate profile with Fig.
24 of Ref. 38 is shown in Fig. 9(b). Here, the solid curves represent the
predictions of the VFP PINN, whereas the “x” markers indicate values
shown in Fig. 24 of Ref. 38 extracted using the software from Ref. 45.
Due to the different normalizations employed between the present
work and Ref. 38, both datasets have been normalized to the fusion
reactivity at the center of the hot spot for a Maxwellian ion distribu-
tion. Considering first the case of a modest Knudsen number (solid
black curve, Kﬁs = 0.05), the VFP PINN is in excellent agreement in
the region adjacent to the hot spot, with good agreement also evident
inside the hot spot. In contrast, for a large Knudsen number of
K* = 0.15, the VFP PINN predicts lower fusion yield across the entire
hot spot. The origin of this systematic shift in predictions is that the
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low energy boundary conditions were different for the two cases. In
particular, Ref. 38 matched the fast ion solution to a Maxwellian at
E/T" = 2 for the tritium distribution, and E/T" = 4/3 for the deu-
terium distribution. In the present work, we have taken E/T" = 0.01
for both ion distributions. As the Knudsen number is increased, devia-
tions from a Maxwellian distribution will emerge at lower energies,
which were not entirely captured by Ref. 38 due to the low energy
boundary conditions applied in that work. In contrast, while the pre-
sent study evaluates nearly the entire distribution, the fast ion model
employed is not quantitatively accurate for E/T < 1. Hence, if devia-
tions from a Maxwellian emerge at E/T ~ 1, these will not be accu-
rately quantified by the collision coefficients defined by Eq. (3). As
discussed in Ref. 38, the fast ion model employed will thus be most
accurate for cases of small to modest Knudsen numbers.

The dependence of the fusion reactivity rate on the low energy
boundary is confirmed by training a VFP PINN with a low energy
boundary of E,,,;, = 1.5 for both tritium and deuterium. The results are
shown by the dotted curves in Fig. 9(b). Here it is evident that for
K" = 0.05, the reactivity predictions are in good agreement for all
three cases. However, for the case with K/ = 0.15, the location of the
low energy boundary significantly impacts predictions of the fusion
reactivity. In particular, for the case with E,,;,, = 1.5, the VFP PINN is
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FIG. 10. Parametric dependence of spatially integrated fractional yield reduction j01 dXRat(X)/ j01 xR} (x) vs the hot spot parameters (K, ny, T", Ax). Panel (a) was eval-
uated for ny = 9 and Ax = 0.1, panel (b) took T = 10keV and Ax = 0.1, panel (c) was for ny = 9 and T" = 10keV, and panel (d) took K* = 0.1 and Ax/L = 0.1.
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now in good agreement with Ref. 38, which employed a similar low
energy boundary. This sensitivity to the low energy boundary for
K" = 0.15 implies that the test-particle VFP equation will not give
quantitatively accurate predictions for Knudsen numbers of this mag-
nitude, though it does recover the qualitative trend of reduced reactiv-
ity in the center of the hot spot, with a subsequent increase in the
adjacent region.

More insight into how the hot spot parameters impact Knudsen
layer reactivity reduction can be gained by considering the dependence
of the net fusion yield on (K, n;, Ax, T"). Here, a single VEP PINN
trained across this parameter space will be used to evaluate the spatially
integrated fusion yield fol dxRg(x) as inferred from the VFP PINN
and then compare with the nominal Maxwellian value J"01 dxRY™ (x).
The ratio of these two quantities is shown in Fig. 10. First considering
the dependence of the Knudsen number K, it is apparent that the
spatially integrated fusion yield always decreases with increasing K'*.
This is due to larger Knudsen numbers enabling more fast ions to
escape the hot spot, where they will collide with colder ions and hence
will on average have a lower relative velocity and thus lower fusion
cross section. Furthermore, fast ions that escape from the hot spot will
lose some of their energy to ion-electron collisions, further reducing
the net fusion yield. We caution that while we are showing results
across the full range of Knudsen numbers included in the training of
the VEP PINN, the fast ion model will be most accurate for small to
modest Knudsen numbers as discussed above.

Turning to the dependence on the hot spot temperature T", the
ratio JOI dxRy(x)/ jol dxRY*(x) increases as the temperature is
increased. This is due to the location of the Gamow peak normalized
to temperature decreasing as T™ is increased. Specifically, for ions
obeying a Maxwellian distribution, the energy of the Gamow peak nor-
malized to the local temperature is given by

EcGrff EG 1/3
T — \4T1/)

which decreases as 1/T"/3. Since the depletion of the ion distribution
at low values of E/T is less pronounced compared to higher energies,
the fractional reduction of fusion yield is also reduced. From Figs.
10(b) and 10(c), it is also evident that the Knudsen layer yield reduc-
tion becomes more severe as the temperature and density change
between the hot spot and the cold region become more extreme, or as
the density gradient between these regions becomes sharper. This is
due to the density and temperature variation providing the drive for
fast ion losses, such that as #; is increased, or the gradient length scale
Ax is reduced, larger reductions on the fusion yield are expected.

VI. CONCLUSIONS AND DISCUSSION

A physics-informed neural network was used to evaluate the fast
ion tail of the tritium and deuterium distributions in the context of
Knudsen reactivity layer depletion. This approach was shown to yield
accurate predictions of the fast ion distribution in both the hot spot
and the neighboring cold region and thus provide a robust description
of fast ion depletion. A feature of the present approach is that the off-
line training time for each network was long, requiring approximately
a day to reach a saturated level of loss on an Nvidia A100 GPU.
However, the online inference time is short, typically only a microsec-
ond per prediction. While this offline training time is expected to be
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long compared to most traditional fast ion solvers, a single VFP PINN
is able to learn the parametric dependence (K, n;, Ax) of the fast ion
solution; thus, the model only needs to be trained once and can then
be deployed to efficiently explore the parameter space. This can be
contrasted with a traditional fast ion solver, where the run time for a
geometry of this complexity would be expected to be far shorter than
the training time of the VFP PINN, but the traditional solver would
need to be rerun for each parameter set. While the present model
involves a relatively low 3D parameter space, we do not anticipate the
treatment of more comprehensive descriptions of the target hot spot
(including a variable mix of materials, for example) to pose a funda-
mental obstacle. Such a study will be carried out in future work.

While in the present paper our focus was on Knudsen layer reac-
tivity reduction, with appropriate modifications to the VFP PINN,
additional quantities of interest linked to a non-Maxwellian tail distri-
bution can be evaluated analogously. Planned improvements to the
VFP PINN include the incorporation of the field-particle collision
operator, which is essential for evaluating closure quantities such as
the heat flux, and the incorporation of a broader range of ion species.
Furthermore, we do not anticipate any difficulties in extending the
approach to a fast electron population. We thus expect the present
approach to provide a path through which surrogate models can be
developed for a range of plasma kinetic effects. The exploration of this
approach for the purpose of providing a non-perturbative evaluation
of the fast particle distribution for a broader range of applications will
be left to future work.
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