

INNOVATION • DEFENSE
NONPROLIFERATION • ENVIRONMENT

FLUOR • NEWPORT NEWS NUCLEAR • HONEYWELL

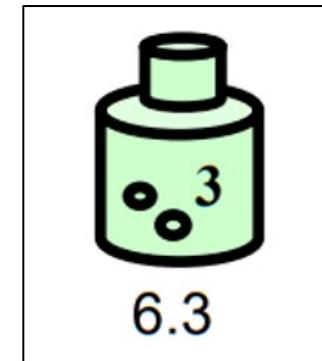
We make the world safer.

Zirconium Sludge Criticality Calculations in Large Process Tanks

Brindley Wade, Nathan Devine

Nuclear and Criticality Safety Engineering

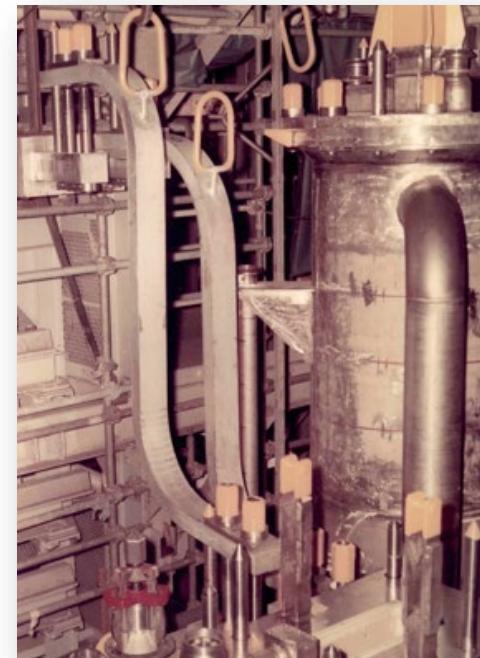
American Nuclear Society 2024 Annual Meeting, June 16-19, 2024.



- The Savannah River Site's H-Canyon facility has been tasked with accelerating the disposition of used research reactor fuels.
- Future missions will involve dissolution of “Non-Aluminum” clad fuels
 - not easily dissolved
 - Nitric acid is not capable of dissolving stainless steel, Zirconium, and Hastelloy, clad fuels by itself
- The electrolytic dissolver has been (re) selected as a disposition path for these fuels.

Project Introduction

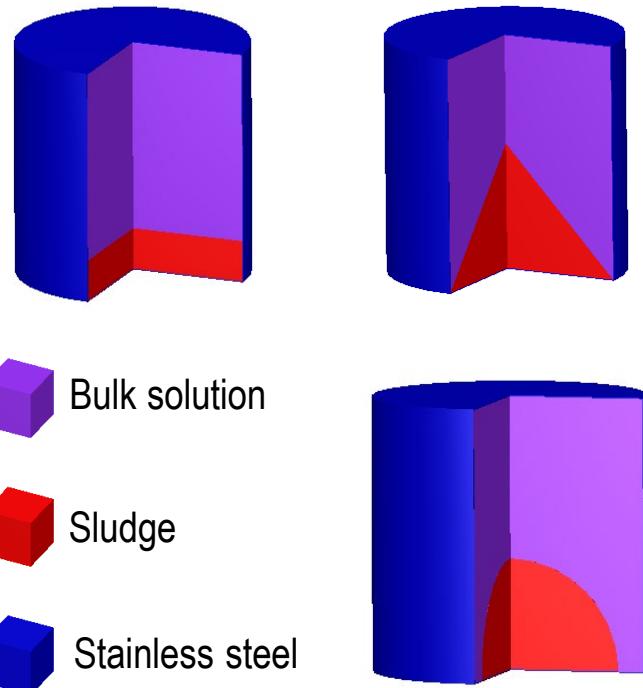
- 6.3D is the dissolver tank designed to dissolve 'NA-SNF' through electrolytic dissolution.
- Zr clad fuel is the concern, with 'sludge' creation happening historically for Zr fuels.
- The tank is approximately 8 ft. tall with an 8 ft. diameter.



Inputs and Assumptions

From Savannah River National Laboratory Literature Review:

- 85% of the zirconium is converted to an oxide resulting in about 0.33 gallons of sludge settling to the tank bottom per kilogram of zirconium dissolved.
- Reports from the 1960s show a 7% holdup of uranium in the sludge, but further rinsing the sludge reduces this to 0.5%.
- 40kg of U-235 per batch is the conservative maximum, assuming 40 kg of beginning of life U-235 fuel.
- Use only pre-defined “Campaign 1” fuels.


Evaluate the k-effective and feasibility for these scenarios.

Project Setup

- One 40kg U-235 batch will be initially evaluated.
 - Vary the percentages of uranium holdup.
- Three different geometries representing potential sludge buildup.
 - Actual sludge geometry is unknown.
- Assume 95% U-235 enrichment (conservative)
- Bulk solution is uranyl nitrate.
- SCALE 6.1 will be used for all calculations.
 - ENDF-VII 238 cross-section library.

Material Compositions

Material	SCALE 6.1 Composition Title	Density (g/cc)	Purpose in Model
Stainless steel	ss304	7.94	Vessel material
Sludge	wptsludge	Dependent on holdup	Byproduct of dissolving
Uranyl Nitrate (bulk solution)	SCALE 6.1 Composition Title	Number Density (g/cc)	Purpose in Model
U-235	u-235	1.458E-5	Byproduct of dissolving
Hydrogen	h	0.054	Byproduct of dissolving
Nitrogen	n	0.004	Byproduct of dissolving
Oxygen	o	0.036	Byproduct of dissolving

Hold Up Percentages

All of Campaign 1	Dissolved zirconium (kg)	Starting uranium (kg)	Uranium in sludge (kg)	U-235 in sludge (kg)	Total mass (kg)	Total volume (liters)	Density (g/cc)
7% Uranium Holdup	1,607.00	12,917.00	904.19	858.98	2,748.33	2,027.73	1.36
0.5% Uranium Holdup	1,607.00	12,917.00	64.59	61.36	1,908.73	2,027.73	0.94

- Rinsing = reducing the uranium holdup by using a dilute acid spray and agitating the sludge mixture.
 - The holdup for unrinsed sludge is typically 7%, but it can be reduced to 0.5% by rinsing.
 - However, some reports showed even higher losses of uranium to sludge (60% or higher).

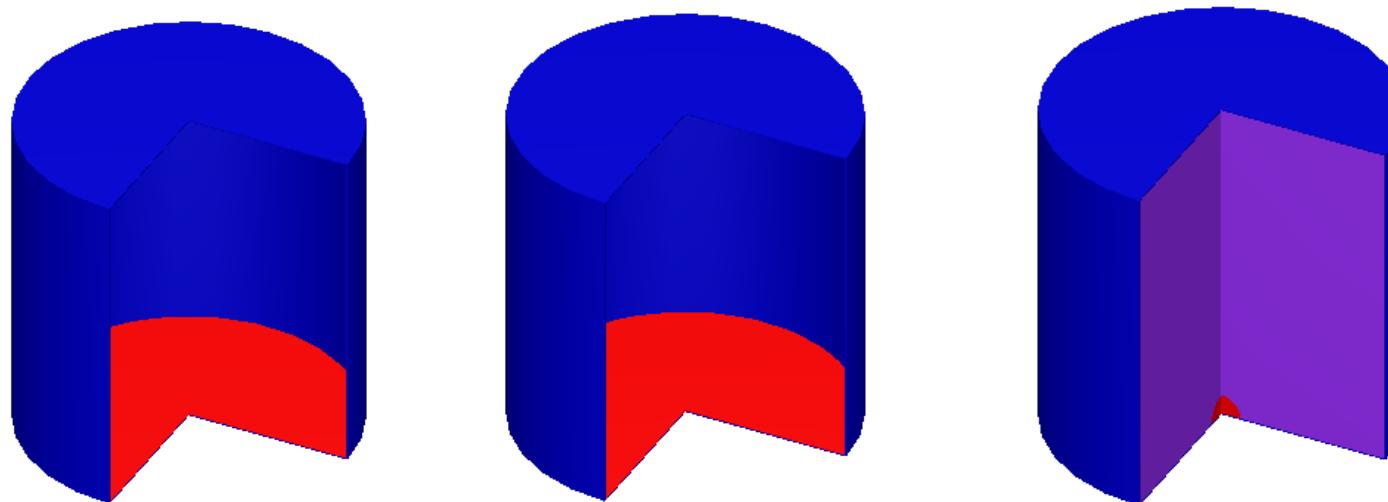
Percentage vs. Batch Size

40kg U-235 batch	Dissolved zirconium (kg)	Starting uranium (kg)	Uranium in sludge (kg)	U-235 in sludge (kg)	Total mass (kg)	Total volume (liters)	Density (g/cc)
7% Uranium Holdup	4.98	40.00	2.80	2.66	8.51	6.28	1.36
0.5% Uranium Holdup	4.98	40.00	0.20	0.19	5.91	6.28	0.94

- Holdup percent directly impacts the density and fissile mass.
 - The volume stays the same as holdup increases.
 - Volume is only dependent on the batch size (dissolved zirconium) and not the holdup percentage of uranium.

Campaign 1 and 40kg Batch K-effective

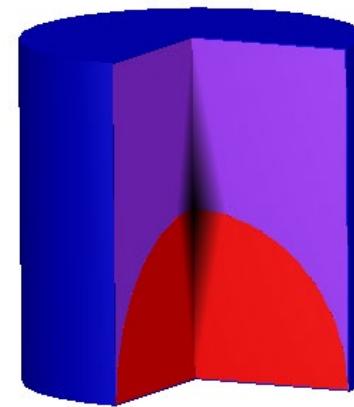
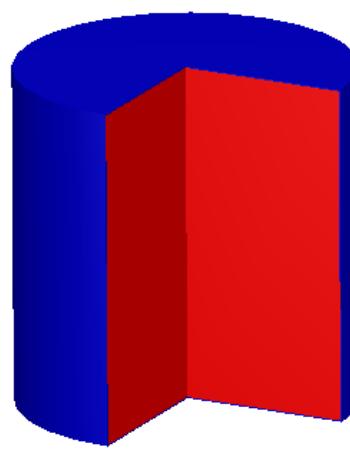
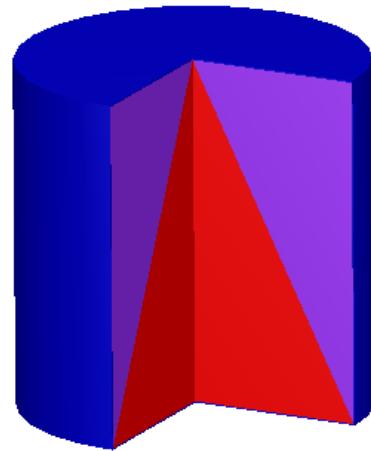
	Cone K-eff	Cylinder K-eff	Hemisphere K-eff
Campaign 1 7% holdup	0.8510 ± 0.00025	0.7040 ± 0.00029	0.8706 ± 0.00026
Campaign 1 0.5% holdup	0.7665 ± 0.00029	0.6316 ± 0.00018	0.7850 ± 0.00027
40kg U-235 batch 7% holdup	0.5667 ± 0.00004	0.5668 ± 0.00004	0.5668 ± 0.00005
40kg U-235 batch 0.5% holdup	0.5667 ± 0.00004	0.5667 ± 0.00004	0.5667 ± 0.00004


Campaign 1 and 40kg Batch K-effective

	Cone K-eff	Cylinder K-eff	Hemisphere K-eff
Campaign 1 60% holdup	1.4680 ± 0.00012	1.2248 ± 0.00010	1.49890 ± 0.00010
Campaign 1 100% holdup	1.6852 ± 0.00011	1.4818 ± 0.00010	1.70635 ± 0.00011
40kg U-235 batch 60% holdup	0.5668 ± 0.00003	0.5669 ± 0.00003	0.5734 ± 0.00008
40kg U-235 batch 100% holdup	0.5668 ± 0.00003	0.5669 ± 0.00003	0.6336 ± 0.00010

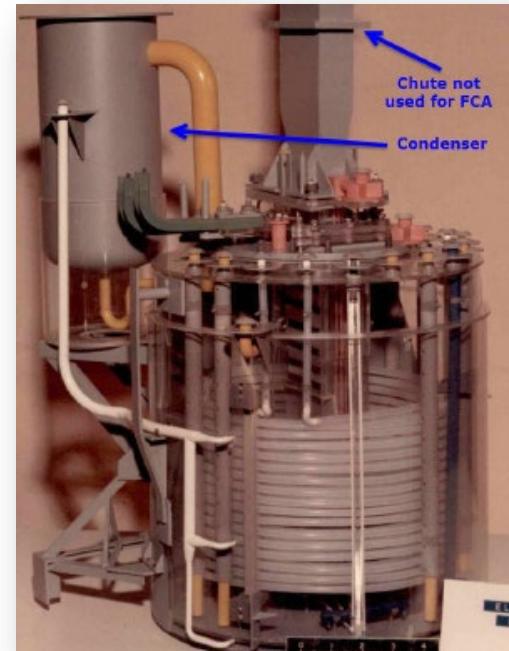
Realistic Visualization For 40kg Batch

- Bulk solution
- Sludge
- Stainless steel




Filling Up the Entire Tank With Sludge

Material	Cone	Cylinder	Hemisphere
Dissolved zirconium (kg)	3,008.00	9,024.30	3,008.00
Uranium (kg)	1,692.47	5,077.58	1,692.47
U-235 (kg)	1,607.85	4,823.70	1,607.85
Total volume (liters)	3,795.52	11,386.90	3,795.52
K-eff of 7% holdup	0.9700 ± 0.00027	0.9181 ± 0.00026	0.9263 ± 0.00025
K-eff of 60% holdup	1.6237 ± 0.00034	1.7685 ± 0.00032	1.6105 ± 0.00036

Filling Up the Entire Tank (1.87 times Campaign 1 Volume)


- Bulk solution
- Sludge
- Stainless steel

Results

The results indicate that:

- **Criticality should not be a concern for 40kg batch sizes at any holdup percentage.**
 - Even at 100% holdup, k -effective ≈ 0.64 for the least conservative model.
- **The entire tank could be filled with sludge at the predicted 7% holdup, and it still would remain subcritical.**
 - This is 1.87 times the total amount for Campaign 1.
- **If all of campaign 1 was dissolved at or below 19.16% holdup as a single batch, there should not be a criticality concern.**
 - This would go against procedure anyways.
 - Rinsing/washing and batch processing further mitigates any risk.

Future Work

- Evaluate the number of batches - How many batches remain subcritical?
- Evaluation of sludge washing procedures/upsets
- Other modeling options geometries (angle of repose?)
- Mixing the sludge with the bulk solution at different amounts
- Vary the uranyl nitrate uranium concentration in the bulk solution

References

- SRNL-TR-2020-00313, Revision 0, NASNF Processing and Packaging Technical Study, Savannah River National Laboratory, Aiken, SC.

Acknowledgements

This work was funded by the Savannah River Nuclear Solutions, LLC, Summer Internship Program,

Questions??

INNOVATION • DEFENSE
NONPROLIFERATION • ENVIRONMENT

SRNS

Savannah River Nuclear Solutions
We make the world **safer.**

