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ABSTRACT

We propose a weakly-supervised, multitask framework for
training a convolutional neural network to solve the problem
of cloud shadow mitigation given only cloud and shadow
masks as labels. The network minimizes the Wasserstein dis-
tance between shadows and their proximal sunlit neighbor-
hoods, generating a supervisory signal directly from within
the input image. We extract further utility from the shadow
mask through multitask learning by introducing an auxiliary
task of shadow segmentation. Our approach is advantageous
since it performs mitigation in an end-to-end framework
which requires only a shadowed image for inference. We
apply this process to the Landsat 8 OLI SPARCS validation
data set and demonstrate plausible results.

Index Terms— cloud shadow mitigation, deep learning,
weak supervision, multitask learning, satellite imagery

1. INTRODUCTION AND OVERVIEW

Cloud shadow mitigation is the task of reversing the radiomet-
ric impact of a cloud shadow such that the shadowed and sun-
lit portions of an image appear to be lit by a consistent source.
The proposed framework aims to train a convolutional neural
network (CNN) to perform this task in an end-to-end manner
so that inference can be performed given a partially shadowed
image and no additional inputs.

Ideally, this would be conducted under the paradigm of
supervised learning. However, obtaining the required labeled
data is infeasible in the context of cloud shadow mitigation.
We address this issue through weak supervision, using sunlit
portions from within the input image to serve as pseudo-
labels. We train the network to minimize the Wasserstein
distance between the radiometric distributions of a shadowed
region and its proximal sunlit neighborhood in an image.
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This assumes that the shadowed region and its proximal sun-
lit neighborhood have the same scene content. As this is an
approximation, we classify this approach as weakly super-
vised.

For a given shadow, we define its proximal sunlit neigh-
borhood as the set of sunlit pixels within a user-specified ra-
dius of the shadowed region. Computing this requires a priori
knowledge of the cloud and shadow locations, which are pro-
vided in the form of segmentation masks. These are only used
during training and, other than partitioning imagery, are not
used directly in supervision. We incorporate the availability
of masks into the learning framework through multitask learn-
ing, training the CNN not only to estimate a shadow mitigated
image but also an estimate of the shadow mask. This ensures
a more robust mapping of a shadow pixels to sunlit pixels by
imposing an additional regularizing constraint.

2. RELATED WORK

Cloud shadow mitigation can be viewed as a special case of
cloud and cloud shadow removal, which is the general task
of replacing cloud-contaminated regions of imagery. There
are several deep learning based methods for cloud and cloud
shadow removal in the literature, but most require the use of
external information as opposed to recovering the informa-
tion present in the original input image. For example, [1]
proposes an iterative, spatio-temporal CNN framework which
requires the use of multi-temporal data. [2] leverages a deep
residual network to perform EO-SAR data fusion to recover
ground scene content. The literature related to deep learn-
ing approaches to cloud shadow mitigation is relatively unex-
plored, especially when assuming only the original image as
input.

3. METHODS

Fig. 1 represents an overview of our weakly-supervised,
multitask framework employed during training. The neural
network is comprised of three components: a shared en-
coder, G, and two task-specific decoders, D1, D2, tasked



Fig. 1. Schematic of our framework used to train the CNN.
The three major loss terms computed are binary cross-entropy
Lbce, identity Lidt, and histogram Lhist.

with mitigation and segmentation, respectively. We define X
as the partially shadowed image with Nc channels. Mshadow,
Mcloud, and Mneighbor are binary masks denoting the shad-
owed, clouded, and proximal sunlit neighborhood pixels,
respectively. M̂shadow = D2(G(X)) is the output of a
sigmoid activation and represents a semantic prediction of
Mshadow. α = D1(G(X)) is the output of a ReLU activation
and represents a per-pixel, per-channel adjustment which is
applied through the correction model in Eq. (1), inspired by
[3], to generate a prediction of the mitigated image, Ŷ

Ŷ = (α+ 1)X (1)

3.1. Loss Formulation

For notation, the region of an image indexed by a mask will
be represented with []. For example, X[Mshadow] represents
the region of X corresponding to Mshadow.

The network is tasked with optimizing three separate loss
terms. The primary loss, denoted Lhist, is generated by com-
puting the Wasserstein L1 distance, per channel, between the
code value distributions of the shadowed region in the mitiga-
tion prediction, Ŷ [Mshadow], and the proximal sunlit neigh-
borhood in the input, X[Mneighbor]. To compute this dis-
tance in a differentiable manner, the cumulative distribution
functions (CDF) are determined via the methods of [4], us-
ing their suggested hyper-parameters. We compute the loss
across k = 256 bins and across each image channel as

Lhist =

Nc∑
i=1

k∑
j=1

|CDFj(Ŷi[Mshadow])− CDFj(Xi[Mneighbor])|

(2)

We also introduce an identity loss, Lidt, which penalizes ad-
justments outside of the shadowed region. The sunlit region is
defined as Msunlit = 1−Mshadow. Lidt is then computed as
the mean squared error between Ŷ [Msunlit] and X[Msunlit].

Fig. 2. The CNN architecture employed. A standard residual
U-net design inspired by [5, 6] with hard parameter sharing
in the encoder, G.

We leverage multitask learning by having the auxiliary
decoder, D2, predict the shadow mask. We enforce hard-
parameter sharing in the network encoder which helps pro-
duce more robust features and reduce the risk of over-fitting
the training data. The loss for this task, Lbce, is computed as
the binary cross-entropy between Mshadow and M̂shadow.

The total loss, Ltotal, is a weighted summation of the his-
togram, identity, and binary cross-entropy losses with an addi-
tional regularization constraint on the L1 norm of the network
weights, W , as

Ltotal = Lhist + λidtLidt + λbceLbce + λreg||W ||1 (3)

The loss coefficients are empirically set as λidt = 103,
λbce = 4, and λreg = 10−4 so that all loss terms have ap-
proximately the same order of magnitude.

3.2. Proximal Sunlit Neighborhood

The proximal sunlit neighborhood is computed by a binary
dilation of Mshadow for r iterations. We then use Mshadow

and a cloud mask, Mcloud, to exclude shadowed and clouded
pixels, respectively, resulting in a ring of sunlit pixels around
the perimeter of the shadow. The optimal value of r is de-
pendent upon the ground sample distance of the imagery. In
practice, it is set empirically to provide enough samples to
form a representative distribution.

If a sample contains multiple shadows, the proximal sunlit
neighborhood, as defined, will be the union of the individual
sunlit neighborhoods. This effectively groups all shadowed
regions together, and means that they may not be compared
directly with their corresponding neighborhoods. Correcting
this was intractable from a computational standpoint, but can
be mitigated by reducing tile size.



Fig. 3. Results from the proposed procedure applied to the validation partition of the SPARCS data set [7]. The top row
represents the input (X) while the bottom row represents the resulting mitigation (Ŷ ).

3.3. Architecture

The network architecture, shown in Fig 2, is based upon a U-
net architecture with depth 4 with residual blocks [6, 5]. In
an effort to limit the trainable parameters while maintaining
the receptive field provided by a depth 4 U-net, all convolu-
tional layers (excluding output layers) have 32 filters. Addi-
tionally, bilinear interpolation is selected as the up-sampling
operation. Spatial dropout is used to discourage over-fitting
and is applied with a rate of 0.5. The total architecture con-
tains 640,000 trainable parameters.

4. RESULTS

4.1. Experimentation

For experimentation, the proposed method is applied to the
Spatial Procedures for Automated Removal of Cloud and
Shadow (SPARCS) Validation data set [7], which contains
80 Landsat-8 OLI images of size 1000 × 1000 pixels. For
the results presented, we utilize false-color renderings with
bands 6, 5, and 4 mapped to the red, green, and blue channels,
respectively. The proposed method is capable of running over
an arbitrary number of spectral bands. The decision to use
these three is made for ease of visibility, as in [8], with a
secondary motive of computational efficiency.

For training, we partition the data into 256 × 256 chips,
879 of which contain cloud shadows. We randomly select
80% of the data for training, applying rotation and flip data
augmentation, and reserve the remaining 20% for validation.
The network is trained for 500 epochs using an Adam op-
timizer [9] with an initial learning rate of 10−4. Proximal
neighborhoods are computed using a radius of r = 10 pixels.

4.2. Evaluation

4.2.1. Mitigation

Due to the lack of ground truth, the most effective way to eval-
uate results at this time is visually. A selection of validation
results can be seen in Fig 3. In general, the results demon-
strate plausible mitigation across a wide variety of cloud and
shadow characteristics and scene content. In particular, the
result in the middle column demonstrates the ability to distin-
guish between shadows caused by clouds and those caused by
ground terrain (hills, in this case).

Despite encouraging results, there are still a few areas
for improvement. In particular, partially clouded regions
tend to be over-corrected. Additionally, despite heavy con-
straints from the multiplicative correction model, the miti-
gated shadow regions tend to exhibit a fair amount of blurring
compared to the sunlit portions. Currently, there is no term
in the loss function which accounts for this and we plan on
addressing this in our work moving forward.

4.2.2. Segmentation

The primary function of the shadow segmentation decoder,
defined as D2 in Fig 1, is to provide multitask context to en-
hance the feature space produced by the encoder. As a re-
sult, we do not discuss its performance in great detail. On
validation data, we report a peak Intersection over Union of
IoU = 0.686.

4.3. Corrective Model and Constraints

The objective of minimizing the Wasserstein distance be-
tween shadowed regions and their proximal sunlit neigh-
borhoods is under-constrained. In particular, any spatial



Fig. 4. A comparison of results from identical experiments using different correction models. All solutions yield similar
histogram matches despite massive differences in mitigation quality.

permutation of the shadow region will produce an equivalent
response as measured by this objective. To discourage spatial
permutations, we apply heavy constraints through network
weight regularization and a corrective model.

Three forms of corrective model are considered: no
model, additive, and multiplicative. Fig. 4 demonstrates
subjectively that the multiplicative model better preserves
spatial features. We conjecture that this is because the multi-
plicative model provides a more convenient way of restoring
contrast in the shadow regions compared to the others.

Theoretically, each correction model is capable of per-
forming radiometric restoration, at least to a first order. This
may seem counter-intuitive, but keep in mind that the cor-
rective model ultimately imposes constraints on the network
output, α, which is the result of a complex, context dependent
non-linear mapping. Changing the correction model alters the
interpretation of α accordingly.

5. CONCLUSIONS

We propose a novel framework for training a convolutional
neural network to perform cloud shadow mitigation in satel-
lite imagery in spite of the lack of directly labeled data. Our
approach is advantageous in multiple ways: 1) It is an end-
to-end framework which only requires a shadowed image as
input for inference. 2) For training, the only labels required
are cloud and cloud shadow segmentation masks, which are
feasibly obtained. 3) It can be generalized for arbitrary multi-
spectral data. The algorithm is still considered a work in
progress and there are issues to be addressed in our future
efforts. Of chief concern is constraining the network output.
We still require a solution which preserve structure in the mit-
igated shadow regions while providing sufficient constraints
to ensure the histograms are matched in a desirable fashion.
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