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A major difficulty in quantum simulation is the adequate treatment of a large collection of entangled particles, syn-
onymous with electron correlation in electronic structure theory, with coupled cluster (CC) theory being the leading
framework in dealing with this problem. Augmenting computationally affordable low-rank approximations in CC the-
ory with a perturbative account of higher-rank excitations is a tractable and effective way of accounting for the missing
electron correlation in those approximations. This is perhaps best exemplified by the “gold standard” CCSD(T) method,
which bolsters the baseline CCSD with effects of triple excitations using considerations from many-body perturbation
theory (MBPT). Despite this established success, such a synergy between MBPT and the unitary analog of CC theory
(UCC) has not been explored. In this work, we propose a similar approach wherein converged UCCSD amplitudes
are leveraged to evaluate energy corrections associated with triple excitations - leading to the UCCSD[T] method. In
terms of quantum computing, this correction represents an entirely classical post-processing step that improves the
energy estimate by accounting for triple excitation effects without necessitating new quantum algorithm developments
or increasing demand for quantum resources. The rationale behind this choice is shown to be rigorous by studying the
properties of finite-order UCC energy functionals, and our efforts do not support the addition of the fifth-order contri-
butions as in the (T) correction. We assess the performance of these approaches on a collection of small molecules, and
demonstrate the benefits of harnessing the inherent synergy between MBPT and UCC theories.

I. INTRODUCTION

The exact solution of the time-independent, non-relativistic
Schrödinger equation is the “holy grail" of quantum chem-
istry, as ab initio prediction of several important molecular
and materials properties becomes immediately accessible.1

Unfortunately, full configuration interaction (FCI), i.e., the
accounting of all possible electronic configurations in a one-
particle basis, scales combinatorially with system size, mean-
ing that the exact solution is beyond reach for the vast majority
of chemical space. Nevertheless, methods based on low-rank
coupled-cluster (CC) theory have the advantage of converg-
ing rapidly to the FCI limit in polynomial time,2 and therefore
are of immense value to the computational chemistry and ma-
terials science communities.3 In fact, systematic convergence
to FCI is assured by considering higher-rank cluster operators
into the ansätze albeit at increasing computational cost.4,5

Contrary to approaches centered around expectation values,
CC lends itself to a series of residual equations emerging from
projections of the Schrödinger equation onto the space of ex-
citations out of the reference function, typically Hartree-Fock
(HF), but applicable to any single determinant that overlaps
with the exact wavefunction. One way to circumnavigate the
mounting intractability in including arbitrarily high-orders of
the cluster operator is to introduce corrections post hoc based
on some flavor of perturbation theory. The most prominent of
these methods is the perturbative energy correction for triple
excitations with infinite-order single (S) and double (D) exci-
tations that results in the CCSD(T) method6–8 - the so-called
“gold standard" of quantum chemistry. And, on the same to-

ken, a similar philosophy can be used to bolster - for example,
CCSDT - by incorporating a perturbative treatment of missed
quadruple excitations.9–11 This framework ultimately culmi-
nates in a hierarchy of methods whose focus is to provide a
perturbative estimate of electron correlation associated with
higher-rank cluster operators that are explicitly omitted once
the cluster operator has been truncated.12 Methods based on
the factorization theorem of MBPT have also been proposed
and investigated,13 showing that further reduction in calcu-
lation cost can be achieved while simultaneously providing
some estimate of higher-order correlation effects.14–16

A simplistic view of the CC ansatz would define it as an ex-
ponential map of excitation operators, which is used in its pre-
dominant projective variant. This “simplicity" arises by virtue
of the natural truncation of the Baker-Campbell-Hausdorff
expansion of the similarity-transformed Hamiltonian, and it
comes at the expense of a loss of unitarity/variationality.
However, other perspectives have investigated alternative CC
ansätze17 in the pursuit of satisfying exact conditions,17,18

such as the generalized Hellman-Feynman (GHF) theorem.19

The original expectation value formalism20 - which, in the
limit, converges toward variational CC21,22 - and the unitary
CC (UCC) ansätze23 fall into this category. By design, these
ansätze are arguably more suitable for the calculation of prop-
erties as compared to the standard CC formulation. Unfor-
tunately, they inherently scale as FCI since the Hamiltonian-
cluster commutator expansion does not truncate.4 Again, per-
turbation theory can be used to “pick" a suitable truncation
point for tractability,24 although admittedly methods that are
truncated at low-orders do not necessarily provide results that
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are comparable to similar, standard CC counterparts.25,26 Al-
ternatively, truncations based on commutator-rank have also
been explored.27,28

This impasse between projective and alternative ansätze
may potentially be solved with the emergence of quantum
computing paradigms, which would enable UCC without re-
sorting to arbitrary truncation. This is because the UCC an-
sätze can be effectively encoded as a series of gate-based op-
erations acting on an easy-to-prepare state,29,30 e.g. HF. In
fact, there is supporting evidence that untruncated UCC the-
ory provides more accurate results than the equivalent, stan-
dard CC method.5,22,31 Nevertheless, fundamental issues in-
hibit routine UCC calculations on a quantum computer; no-
tably, circuit width and depth – either of which ultimately re-
strict the maximal rank of the cluster operator.32 This is un-
fortunate since CC/UCC typically converges toward the exact
solution of the Schrödinger equation (in a basis set) by adding
the abovementioned higher-rank cluster operators.2 The con-
vergence properties of a hierarchy of UCC methods that sys-
tematically include up to hextuple excitations is studied in
more detail in Ref.5, where it is shown that UCCSDTQPH is
reliably close the FCI. A less typical approach is to relax the
concept of excitation rank by considering generalized excita-
tions, e.g., i† j or a†b. Within this paradigm, one is afforded
to converge to FCI without explicit inclusion of higher ex-
citation manifold.5,33 A further point of consideration lies in
the distinction between the complete, non-terminating UCC
ansatz and the Trotterized, or so-called disentangled, counter-
part, with the latter rising from known product formulas and
proven exact under certain conditions.34

To address the lack of a framework enabling perturbative
corrections for the UCC ansatz, we explore potential synergies
between MBPT and UCC theory which have not been scruti-
nized until now. By studying the properties of finite-order
UCC equations, we propose a pathway towards perturbative
corrections to the infinite-order UCCSD energy designed to
recover the missed effects of higher-rank excitations. While
other strategies are similar in spirit,35–37 extending even to
excited states,28 we introduce the explicit unitary analogs of
the pioneering perturbative accounting for triple excitations,
leading to the UCCSD[T] method. We show that such an
approach is a robust way of recovering electron correlation
that is missed by restricting the unitary cluster operator. By
employing what can be seen as a post-processing step born
from rigorous theory, our results reinforce the perspective
that resource-efficient interplay between quantum and clas-
sical computers should be harnessed to achieve more accu-
rate results without imposing extra burden on current, fragile
quantum computers.

II. THEORY

We motivate the problem using semi-canonicalized orbitals
for a general reference function, e.g., non-HF. The normal-

ordered Hamiltonian is then of the form

HN = ∑
p

εpp{p† p}︸ ︷︷ ︸
fN

+∑
ia

fia{i†a}+∑
ai

fai{a†i}+ 1
4 ∑

pqrs
⟨pq||rs⟩{p†q†sr}︸ ︷︷ ︸

WN

,
(1)

where indices a,b,c,d · · · , i, j,k, l · · · , and p,q,r,s · · · specify
virtual, occupied, and arbitrary spin-orbitals. Note that the
perturbation WN now contains the occupied/virtual blocks of
the Fock operator.

Standard CC theory begins by defining the form of the clus-
ter operator, T ,

T = T1 +T2 +T3 + · · · , (2)

where each Tn can be expressed in the language of second
quantization as

Tn =
1

(n!)2 ∑
a,b,c,···
i, j,k,···

tabc···
i jk··· {a†ib† jc†k · · ·}. (3)

Once an appropriate level of cluster restriction has been cho-
sen, the unitary cluster operator can be defined as

τ = T −T †, (4)

where our working assumption is that we are using real or-
bitals, hence tab···∗

i j··· = tab···
i j··· . In this context, the Schrödinger

equation becomes

HNeτ |0⟩=
(
HNeτ

)
C |0⟩= ∆Eeτ |0⟩ , (5)

with C indicating a restriction to connected diagrams and
∆E = ECC −EHF being the correlation energy. We point out
that if we follow the traditional CC route of projecting Equa-
tion 5 onto elements of the excitation manifold, the result-
ing residual equations will not terminate. Therefore, we have
to pick a point to truncate the resulting expressions based on
some specified criteria. In order to generalize upon prior work
on the topic,23,38 we define orders in terms of WN assuming a
non-canonical HF reference, denoted by |0⟩. In other words,
fN is zeroth-order and WN arises in first-order of MBPT and
therefore both τ1 and τ2 show up at first-order whereas the re-
maining higher-order operators, τn, arise in the (n− 1)-order
wavefunction of MBPT.

For the purposes of this work, our starting point is the com-
plete, fourth-order UCC(4) energy functional
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∆E(4) =−⟨0| 1
3!

(
(T †

1 )
2T1 fNT1(T

†
2 )

2T2 fNT2

)
+

1
2

(
T †

3 T1 fNT2 +T †
3 T2 fNT1

)
− 1

3
T †

1 T †
2 T1 fNT2 +T †

2 T †
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− 1
3!

(
(T †

1 )
2T1WN

)
+

1
3!

(
(T †

2 )
2T2WN

)
+

1
2

(
T †

3 T1WN +T †
3 T2WN

)
− 1

3
T †

1 T †
2 T1WN +T †

2 T †
1 T2WN

− 1
6

T †
2 T1T †

1 fNT2 +T †
2 T1T †

1 WN +
1
4
(T †

1 )
2 fNT 2

1 +(T †
2 )

2 fNT 2
2 +T †

3 fNT3 +T †
3 fNT1T2 +T †

1 T †
2 fNT1T2

+
1
2
(T †

1 )
2WNT1 +(T †

2 )
2WNT2 +T †

3 WN(T1 +T2)+T †
2 T †

1 WN(T1 +T2)

− 1
2

T †
2 T1WN(T1 +T2)+

1
2
(T †

1 )
2WNT2 +h.c.|0⟩.

(6)

Although Equation 6 involves fully linked diagrams that are
connected overall, there may be instances where a given dia-
gram is internally disconnected and therefore requires cancel-
lation. The Supplementary Material discusses how to resolve
such examples, and also provides the complete derivations for

UCC(2), UCC(3), and UCC(4) in the case of non-canonical
HF orbitals.

With this in mind, several internal cancellations are found
in Equation 6, leading to a simplified expression for the
UCC(4) functional. From there, the residual equations can
be formulated:

∂∆E(4)

∂T †
1

= 0 ⇒ D1T1 =WN +WNT2 +WNT1 +
1
4

WNT 2
1 +

1
2

T †
1 WNT1 +T †

2 WNT2, (7a)

∂∆E(4)

∂T †
2

= 0 ⇒ D2T2 =WN +WNT2 +WNT1 +
1
4

WNT 2
2 +

1
2

T †
2 WNT2 +WNT3 +T †

1 WNT2 +WNT1T2, (7b)

∂∆E(4)

∂T †
3

= 0 ⇒ D3T3 =WNT2. (7c)

After inserting these stationary conditions into the simpli-
fied form of Equation 6, the final, reduced UCC(4) energy
is shown to be

∆E(4) = ⟨0|WNT2|0⟩+ ⟨0|WNT1|0⟩

− 1
4

(
⟨0|(T †

1 )
2WNT1|0⟩+ ⟨0|(T †

2 )
2WNT2|0⟩

)
. (8)

The following developments focus on Equations 7 and
8 where we are only interested in fully iterating the sin-
gles/doubles equations. In order to derive perturbative cor-
rections designed to account for missing T3-like excitations
in UCCSD and variants, we “trace" the residual equations -
starting with the T3 equation of Equation 7 - to determine this
operator’s role in the UCC(4) energy. As the derived UCC(4)
equations are subsumed within those of UCC(n → ∞), any set
of T3 corrections designed for UCCSD(4) are equally viable
for infinite-order UCCSD.

This procedure starts by circumnavigating the explicit solu-
tion for the T3 equations by adopting the approximation

T [2]
3 =

1
D3

(WNT2)C (9)

using T2 amplitudes from any converged, UCCSD-like calcu-
lation. The superscript denotes the order in MBPT through

which this contribution is correct, meaning that in this case,
T [2]

3 is correct through second-order in MBPT. Although T3 is
not directly specified in Equation 8, it does couple to the T2
equation. Inserting Equation 9 into 7b, we find that

T [3]
2 ≡ 1

D2
(WNT [2]

3 )C. (10)

Note that these contributions are “new" in the sense that they
originate from an approximate solution to T3. By inserting
this “new" T [3]

2 into the first term of Equation 8, we can re-
cover a correction to either UCCSD(4) and/or the infinite-
order UCCSD energy which solely originates from T [2]

3

∆E(T [2]
3 ) = ⟨0|WNT [3]

2 |0⟩

≈ ⟨0|T †
2

(
WNT [2]

3

)
C
|0⟩ .

(11)

Note that the standard convention is to cap with an infinite-
order T †

2 , shown in the final line of Equation 11. These two
terms ultimately lead to diagram C in Figure 1, which de-
fines the [T] correction6 to infinite-order UCCSD as well as
UCCSD(4).

In light of the [T] diagram showing up in both standard and
unitary coupled cluster theory, it is reasonable to see if there is
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[2] [2]

A B C

FIG. 1. Outline of the procedure to extract triples’ energy correc-
tions by first A) approximating T3 with (WNT2)C, which B) is correct
through second-order in MBPT. If the UCC(4) equations are traced,
diagram C) is shown to originate at fourth-order in MBPT and com-
pletely defines the [T] correction.

any further overlap in perturbative correction definitions that
can be found. A natural place to start in the context of T3 is
the remaining two diagrams that define the (T) correction in
standard coupled cluster theory. The first term that shows up
in standard CC (T) is of the form ⟨0|T †

2 fiaT [2]
3 |0⟩. However,

in the second line of Equation S17 (Supplementary Material)
this term and its hermitian conjugate are internally cancelled
in UCC(4), and as a consequence, this diagram will not appear
in any perturbative triples correction to UCC. The remaining
(T) diagram is of the form ⟨0|T †

1 WNT [2]
3 |0⟩. Here again, we

show in the first line of Equation S17 that this term is also
internally canceled in the UCC(4) functional. Because these
two diagrams are entirely neglected in UCC theory, it does not
have a (T) equivalent.

However, a similar term of the form Q1
(
T †

2 (WNT2)C
)

does
exist in the UCC(4) T1 equation, where the subtle relationship
with the T3 equations is noted and Q1 is the projector onto sin-
gle excitations. Inserting this term directly into the UCC(4)
energy expression gives rise to a diagram that is strikingly
similar a constituent term in (T), but which is independent
of the set of triples excitations that are directly tied to the T3
operator; this can be seen by the absence of any factors of 1

D3
.

Despite yielding a net excitation effect that appears as triples,
the overall diagram is managed solely by products of T1, T2,
and WN making its contribution redundant for our purposes.

III. COMPUTATIONAL DETAILS

The following UCC results are obtained using the XACC
quantum computing framework,39,40 and PySCF41 to gener-
ate the Hamiltonians, to calculate FCI energies, and to select
important τ’s suggested by CCSD amplitudes. Converged
UCC amplitudes are then manipulated by the UT2 python
module42, a software dedicated to rapidly prototype alterna-
tive coupled cluster theories, to extract the triples corrections.
Standard CC calculations were performed using CFOUR43

and ACESII44. The STO-6G45 basis set was used through-
out this work, and core orbitals were dropped, with details re-
garding the electronic state and geometries being provided in
Table S1 of the Supplementary Material. Errors with respect
to FCI are defined as Emethod −EFCI, where Emethod represents
the energy of a particular UCC method. All FCI, UCCSD, and
UCCSD[T] energies are provided in Table S2 of the Supple-
mentary Material.

IV. RESULTS AND DISCUSSION

With quantum computing in the background, two forms of
UCC ansatz are adopted here. The first follows closely the
standard CC formalism where we simply replace the routine
T cluster operator by its anti-Hermitian analog τ and construct
the exponential wave operator:

|ΨUCCSD⟩= e∑ia θ a
i (a

†i−h.c.)+∑i jab θ ab
i j (a

†b†i j−h.c.)|0⟩. (12)

As previously noted, this ansatz does not naturally trun-
cate the underlying Schrödinger equation as does the standard
eT . A similar operator more suitable for implementation on a
quantum computer is the Trotterized or disentangled form of
the ansatz, which we refer to as tUCCSD hereafter

|ΨtUCCSD⟩= ∏
IA

eθ A
I (A†I−h.c.)eθ Ā

Ī (Ā† Ī−h.c.)×

∏
I<J
A<B

eθ AB
IJ (A†B†IJ−h.c.)eθ ĀB̄

ĪJ̄ (Ā†B̄† ĪJ̄−h.c.)
∏
IJAB

eθ AB̄
IJ̄ (A†B̄†IJ̄−h.c.)|0⟩,

(13)

with I,J,A,B indexing α orbitals and Ī, J̄, Ā, B̄ indexing the
corresponding β orbitals.

While the UCCSD ansatz in Equation 12 is unique,
the composition of the excitation operators alone will not
uniquely define its Trotterized analog, since such operators do
not commute in general. The potential ambiguity is removed
by fully specifying the indices over the products in Equation
13. Such ordering is in line with previous results. However, it
is not adequate for geometries away from equilibrium, as will
be discussed later.46 As shown later on, the energy difference
between UCCSD and tUCCSD - as well as the corresponding
triples corrections - is nominal.

In this work we analyze the performance of three classes of
CC/UCC methods:

1. “Standard" CC methods that incorporate triples cor-
rections into CCSD, namely CCSD[T], CCSD(T),
CCSDT-1, and ΛCCSD(T);

2. Finite UCC methods based on a truncated energy func-
tional that is correct through fourth-order in MBPT;

3. Infinite-order UCCSD and tUCCSD and the corre-
sponding [T] corrections.

The main goal of this paper is to evaluate the performance
of methods under class 3, that is, UCCSD[T] and tUCCSD[T].
Those are built with the set of optimal τ1 and τ2 learned by
subjecting the two choices of ansätze to the Variational Quan-
tum Eigensolver algorithm (VQE)47

τ
∗
1 ,τ

∗
2 = argmin

τ1,τ2

⟨Ψ(τ1,τ2)|H|Ψ(τ1,τ2)⟩ , (14)

with τ∗1 and τ∗2 being employed in the diagrams of Figure 1
and Equation 11.
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Table I records the error of each method against FCI,
and the corresponding percentage of total correlation energy.
“Standard" CC methods largely align with FCI, with CCSD
missing up to 16 mH of correlation energy in the worst case.
The inclusion of (T) that perturbatively accounts for triple ex-
citations represents a significant improvement. As an aside,
we note that T †

2 is the lowest-order approximation to the com-
plete solution of the left-hand eigenvalue problem defining Λ2
in standard coupled cluster theory.48 If we cap the relevant (T)
diagram using Λ1 and Λ2 instead of T †

1 and T †
2 , respectively,

the resulting method is known as ΛCCSD(T). To this end, we
note that ΛCCSD(T) leads to results that are slightly worse
than CCSD(T), except for CO. This is somewhat counter-
intuitive, but is a trend that has been previously observed.49

Overall, the infinite-order CCSDT-1 shows the best perfor-
mance amongst the methods we consider, except for LiF. This
method takes the T2 portion of the diagram in Figure 1 and
adds it to the CCSD T2 residual equations, accounting for
some coupling between T2 and a diagram that originates from
T3 at lowest order. Thus, the energy “feels" effects from this
diagram that originate from T [2]

3 , which is responsible for this
improvement.

Moving to the truncated UCC methods, we see that UCC(2)
- or equivalently MBPT(2) - captures 71-98% of the corre-
lation energy across the set of molecules tested, and is con-
sistently above FCI by 3-30 mH. UCC(3) - or equivalently
LCCD - is generally a marked improvement, reporting errors
no larger than 15 mH except in the case of LiF. The results
from UCC(4) are less straightforward; except in the case of
CO, UCC(3) results are in overall better agreement with FCI.
We also note that - except in the case of the 1∆ state of O2
- UCC(4) consistently underestimates FCI. A byproduct of
prematurely terminating the commutator expansion is that we
forgo any guarantee of achieving an upper bound to FCI, as
might otherwise be realized by a fully variational method.
Noting the exception of O2 again, we find that omitting the
triples portion of UCC(4) - which defines the UCCSD(4)
method - has been shown to lead to improvements,25 and is
of comparable quality to UCC(3). In fact, the UCCSD(4)
method is the only truncated UCC method reasonably close
to FCI. By adding the [T] correction for the missed triple ex-
citations on top of UCCSD(4), the resulting UCCSD(4)[T]
method - with the exception being O2 - seems to represent
a middle ground between UCCSD(4) and UCC(4). This indi-
cates that adding perturbative triples corrections is a step to-
ward the complete UCC(4) method which iterates the triples
residual equations.

Turning to the infinite-order UCC methods, both the
UCCSD and tUCCSD methods are of comparable or superior
quality to the standard CCSD method, and for either ansatz,
adding [T] yields a clear and consistent improvement over the
baseline ansätze. In fact, for H2O and N2 the [T] variants of
UCCSD are within 1% of the FCI. For O2 and C2, adding
[T] improves upon the UCCSD and tUCCSD energies by 2%.
This is also true for CO when using UCCSD[T], but for this
case the tUCCSD[T] result recovers 6% to the tUCCSD cor-
relation energy. For LiF, the results are more dramatic: the
[T] correction improves upon both UCCSD and tUCCSD by

more than 20%.
A visual comparison of these infinite-order UCC methods

and their “standard" CC counterparts is shown in Figure 2.
Here, we see that the UCC-based [T] offers the best perfor-
mance for both N2 and O2, whereas the standard CC methods
that attempt to correct for triples excitations generally yield
better results for CO and C2. In the case of LiF, there is a
clear benefit from adding some flavor of triples correction to
the underlying singles/doubles-only method with the excep-
tion of CCSDT-1.

CO C2 O2 N2 LiF
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FIG. 2. Bar plot of the errors (with respect to FCI) reported in Table
I.

Outside the equilibrium region, the [T] correction to
UCCSD yields more dramatic improvements as compared to
the standard CCSD and CCSD(T) methods. This is illustrated
in Figure 3, which shows the potential energy surface (PES)
of N2. Around 1.75 Å, standard CCSD/CCSD(T) methods be-
gin to diverge with respect to FCI. However, both UCCSD[T]
and tUCCSD[T] lead to results that are better-behaved in this
regime.
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FIG. 3. Comparison of the UCCSD/[T] and tUCCSD/[T] results for
the dissociation of N2. Errors are reported with respect to FCI.

Beyond 2.2 Å, tUCCSD[T] exhibits perplexing behavior
that is not seen in UCCSD[T], as shown in Figure S1 of
the Supplementary Material. It is known that one byproduct
of the tUCCSD ansatz is the inherent sensitivity to operator
ordering.46 While both UCCSD and tUCCSD ansätze remain
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TABLE I. Error with respect to FCI, in mH, and the corresponding percentage of the total correlation energy (in parentheses). ‡ denotes an
all-electron calculation, with errors corresponding to the all-electron FCI.

Method H2O CO C2 O2 N2 LiF
UCCSD 0.100 (99.79) 8.183 (94.12) 11.90 (95.61) 9.132 (94.15) 2.176 (98.62) 18.84 (73.24)
UCCSD[T] 0.023 (99.95) 6.105 (95.61) -4.841 (101.78) 6.018 (96.14) 0.383 (99.75) 2.053 (97.08)
tUCCSD 0.098 (99.80) 7.888 (94.33) 11.08 (95.91) 9.122 (94.16) 2.172 (98.62) 18.42 (73.82)
tUCCSD[T] 0.020 (99.95) -1.776 (101.27) -6.109 (102.25) 5.842 (96.25) 0.623 (99.60) 0.809 (98.85)
CCSD 0.118 (99.76) 8.157 (94.14) 16.33 (93.98) 10.47 (93.29) 3.983 (97.48) 16.33 (76.79)
CCSD(T) 0.050 (99.89) 0.865 (99.37) 2.817 (98.96) 7.411 (95.25) 2.231 (98.59) -1.142 (101.62)
CCSDT-1 0.048 (99.9) -1.163 (100.83) 2.774 (98.97) 6.201 (96.02) 2.164 (98.63) -12.64 (117.97)
ΛCCSD(T) 0.085 (99.82) -0.574 (100.41) 4.375 (98.38) 7.819 (94.99) 2.294 (98.55) -1.870 (102.66)
UCC(2) 14.22 (71.56) 10.74 (92.28) 25.29 (90.68) 29.76 (80.94) 2.921 (98.15) 12.34 (82.46)
UCC(3) -0.338 (100.67) 9.795 (92.96) 14.97 (94.48) 2.312 (98.51) 1.036 (99.34) 22.59 (67.90)
UCC(4)‡ -0.942 (101.88) -9.555 (106.84) -31.46 (111.56) 21.77 (88.81) -1.707 (101.07) -36.78 (152.27)
UCCSD(4)‡ -0.858 (101.71) -2.326 (98.33) -6.288 (102.31) 31.61 (83.75) 0.346 (99.78) 6.161 (91.24)
UCCSD(4)[T]‡ -0.936 (101.87) -7.697 (105.51) -19.81 (107.28) 29.77 (84.7) -1.396 (100.87) -24.11 (134.27)

variational upper bounds to FCI - as expected - it is intrigu-
ing that only the [T] corrections built upon tUCCSD behave
poorly in this region. Further analysis of the role of the oper-
ator ordering is deferred to the Supplementary Material.

V. CONCLUSION AND OUTLOOK

In summary, we study finite-orders of UCC theory to de-
sign a perturbative treatment for triple excitations in infinite-
order UCCSD, in line with what gave rise to the so-called
“gold standard” of quantum chemistry. We show that such
an approach reliably improves the energy of several small
molecules at - or near - equilibrium geometries as compared
to baseline UCCSD. This result is independent of whether the
full or Trotterized UCCSD operator is used. An important
finding is that the triples correction presented here is much
more resilient to the divergent tendencies of analogous meth-
ods in standard coupled cluster theory that similarly use per-
turbation theory to build corrections that account for higher-
rank excitations. This becomes particularly evident when
stretching N2 beyond the Coulson-Fischer point, where the
[T] correction is surprisingly robust when using unitary clus-
ter amplitudes. However, we note that tUCCSD[T] eventually
displays erroneous behavior albeit at bond lengths well be-
yond the point in which standard perturbative corrections are
known to break down; this can be attributed to the operator
ordering in the tUCCSD ansätze.

In determining τ1 and τ2 according to the VQE algorithm,
this step presently constitutes the main computational bottle-
neck, constraining the present approach to minimal/small ba-
sis sets. This likely prevents certain quantitative correlation
effects to be observed that would otherwise appear if larger
basis sets were used, such as in the case of O2, which has only
2 virtual orbitals. With advances in quantum computing simu-
lators and hardware, the true benefit of turning to our approach
will become apparent, while also revealing the O(N7) scaling
that is a signature of non-iterative triples corrections. Another
relevant limitation of this approach is that, while UCCSD is
variational, hence conforming with the GHF theorem, the [T]

correction implies the energy functional is no longer station-
ary with respect to T1 and T2, nor does it satisfy an eigenvalue
problem. The immediate consequence of this is that prop-
erties no longer follow from derivatives of the energy func-
tional. Nonetheless, it is not uncommon to evaluate properties
in terms of a variational piece and perturbation contribution,
which we anticipate being the most obvious approach for cal-
culating properties within UCCSD[T].

The current work opens the door to several topics worth
exploring. The most immediate is that it naturally lends it-
self to the development of additional perturbative corrections.
For example, it is conceivable that energy corrections origi-
nating from T1 could be constructed to account for missing
single excitation effects in infinite-order UCCD and tUCCD
by studying the UCC(4) equations for T1 and tracing the logic
followed in the development of UCCSD[T]. In addition to
the inherit formal contribution of MBPT in conjunction with
the UCC ansatz, the ideas presented here have potential ap-
plications in quantum computing. More specifically, energy
corrections become accessible from hybrid algorithms – e.g.
VQE – with a classical post-processing step free from requir-
ing extra quantum resources. This is embodied by the eval-
uation of the diagrams in Figure 1 constructed using τ1 and
τ2, which can be obtained on a quantum computer. Continued
efforts focusing on the symbiotic relationship between MBPT
and UCC that exploit hybrid classical/quantum computing al-
gorithm paradigms will be the target of forthcoming work.

SUPPLEMENTARY MATERIAL

The supplementary material contains detailed derivations
of the working equations, geometric and spectroscopic infor-
mation, raw energy values, and a discussion on the effect of
operator ordering.
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