UCRL-ID-124115

The Inductrack Concept: a New Approach to Magnetic Levitation

RECEIVED

Richard F. Post and Dmitri Ryutov JUN 0 3 1995

OST]

May, 1996

This is an informal report intended primarily for internal or limited external

distribution. The opinions and conclusions stated are those of the author and may or

may not be those of the Laboratory.

Workperformed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48.

- b’

MASTER:

“CTRIBVION OF THIS DOGYMENT IS LNLIITED

s, ot OF THIS DOCw 22wl 19 UNLIMITED

v er i¥.



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or Implled, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, or process disclosed, or represents thatits use would not
infringe privately owned rights. Reference herein to any specific commerdial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The viewsand
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.0. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Infermation Service
US. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161



The Inductrack Concept: a New Approach to Magnetic
Levitation

Richard F. Post and Dmitri D. Ryutov

Table of Contents

page
LISt Of IOTAtIONS ....cuvueuuemeereeceeirietresessssensssesesssseaesesenesenssssesesenssssemsesneene 3
I) INTOQUCHION ...eveiieniiieieceteeetetree e e ete i sen s seebensesessesseanasenes 4
II)  Technical ASPECES ....cccoerrcevectrreererereeereereesesseseeesessssenesesseseneesens 5
III)  Outhing Of TOPICS...covorueurieerrerietrtssetersesseseseseseserese s sesssssssasasasasnn 7
IV) Lumped-Circuit Analysis of the Inductrack ...................... 7
A. Circuit Equations and the Transition Speed ............ 9
B. An Example of an Inductrack System ....................... 16
V) Effects of Distributed Inductance..............covvieveueeeeneeeeecuvennnen. 19
A. Distributed Inductance in the Window-Frame
SCRETNE ...oeveieriecirceeceneneisieesiesetesesesesssssessasassesesessesssesesens 19
B. A “Flat” Track Design «.cccccceeeeeeneeerecrereeeeeeeeceeeseesenseennn 22
C A Track in the Form of a Conducting Slab ................ 24
VI) Brief Discussion of Some Practical ISSUES ...ccceoveoeeeeeeeennn.n... 26
VII) Summarizing Examples and Equations ..........ccccceeeeveenerennene. 28
VIII) Concluding Remarks 31
Appendix 1: Fourier Decomposition of the Magnetization
Currents and of the Magnetic Field of a Halbach
ATTAY cooveervirirrreneieteececeeeseseasetssenesasssessssssssesssasensesasssssnsesenen 32
Appendix 2: Evaluation of Distributed Inductance ................... 34
Appendix 3: Magnetic Levitation over a Conducting Slab ....... 37
Appendix 4: Resistive Losses in the Bus Bars .......cccccceveeeurennnee. 38
Appendix 5: Eddy Current Losses in the Track .........ccccoeeereenenn. 41
Appendix 6: Negative Damping of the Vertical Oscillations
OF the Car ......cvieeececeeeeceeceieee e ceeecererereaeee st ese s sene 44
Appendix 7: Optimization of the Ratio of Levitated Weight
Relative to Magnet Weight ......ccoceeeiecceenninneceseceennee. 49
Appendix 8: Traction SYSIEM .....ccceceeceeoierieirereareaeiesre e ee e ereseesenes 53
Appendix 9: Minimum Value of the Design Parameter, "K" .... 56
TADIES ..ottt stesste st s e se s s b st s b st a e seaans 59
REFEIEIICES ....ouvnititinnieenceracieccnrietesnearsietetstse s st s s ssassstesesesessesesesesessesesesesasas 61
FIGUIE CAPOMNS ...ccvoteveuemrrnereneeneeerereetetereesasstatesesasesesesessesssesessasssssessssssesns 62






List of notations

a - radius (m.) of a single wire of which the track conductors are
made

A - x-component of the vector-potential

B - magnetic field (Tesla)

Bo- amplitude value of the magnetic field on the surface of the track

B, - remanent magnetic field of the permanent magnets

d - distance between the tower and upper side of the Halbach array

d.- width of a conductor (in the direction of track)

S - filling factor of the winding (fraction of the winding occupied by
metal)

F, - lifting force (Newtons)

F, - drag force

h - the distance between the upper and the lower legs of the circuit

I - current in an individual circuit (amperes)

j - current density (amperes/m?2)

k - wave-number of the Halbach array (k=2n/ A)

K - the ratio of the lifting force to the power loss (Newtons/Watt)

L - lumped self-inductance associated with every conductor (Henrys)

L®_distributed inductance

L;qr-length of the car

M - number of magnet bars per wavelength of the Halbach array
(section IVA); mass of the car (Appendix 6)

P - dissipated power (Watts)

P - perimeter of the circuit (in the vertical plane)

R - resistance of the individual circuit of the track (ohms)

v - speed of the car (m./sec.)

V - electromotive force produced by the external source in the circuit
(Volts)

w - the width of the Halbach array

y; - the distance between the track and the lower side of the Halbach
array

A, - vertical thickness of the conductor

B - number of circuits per quarter-wavelength

y- dimensionless thickness of the coil (y=A/44.)

6 - skin-depth

A — spatial period of the Halbach array

Ko - permeability of free space (4n x 107 hy/meter)

¢ - magnetic flux of permanent magnets enclosed by an individual
circuit




¢o - amplitude value of the same quantity

p — resistivity of the conductor (ohm-meters)

o - frequency of the magnetic field variations in the track frame (@
=kv) (radians/sec.)

I) Introduction

This report describes theoretical and experimental
investigations of a new approach to the problem of the magnetic
levitation of a moving object. By contrast with previously studied
levitation approaches, the Inductrack concept represents a simpler,
potentially less expensive, and totally "passive" means of levitating a
high-speed train. It may also be applicable to other areas where
simpler magnetic levitation systems are needed, for example, high-
speed test sleds for crash-testing applications, or low-friction
conveyor systems for industrial use.

In present maglev train systems [1], test tracks of which have
been built in Germany and Japan, the train cars are levitated by the
use of electromagnets that are energized so as to produce a lifting
force against a specially designed ferromagnetic track. In such
situations  Earnshaw's Theorem dictates that the levitated system
(the train car) will be unstable against vertical displacements. Thus
it is necessary to employ sophisticated sensors and control circuitry
in order to maintain the train in a levitated state at the proper height
above the track, independent of speed. Failure of these control
systems could lead to serious consequences, so that high reliability is
required. Energizing the magnets also requires an on-board source of
power of high reliability and non-trivial power level, an additional
complication.

It would be highly desirable if a passive levitation system
could be employed, one that relied only on the kinetic motion of the
train to produce its levitating force, and one for which the
consequences of a failure of the source of driving power leads to a
benign failure in the levitation. While some earlier approaches to
passive levitation [2] aimed at a similar objective, they involved
substantial power losses to achieve levitation. These power losses
are both on board in the train (to refrigerate superconducting
magnets) and in the track itself (eddy current losses in sheet
conductors). The present proposal aims at accomplishing passive




levitation with zero on-board power requirements and minimal track
losses. It also aims at a system that efficiently combines both
passive levitation and electric propulsion means in the same track
structure.

II) Technical Aspects

The concept to be explored here involves the following two
main components:

. One or more arrays of permanent magnets on the moving
object, producing a spatially periodic magnetic field below
each array.

. A "track" made up of a close-packed array of inductively
loaded circuits embedded in the surface of the track.

At rest ("in the station") no levitation occurs and the train car
relies on auxiliary wheels to carry its weight. However as soon as it
is in motion at an appreciable speed (a few kilometers per hour) the
moving magnet array will induce currents in the conductor array and
thereby levitate the train. Owing to the inductive loading of the
circuits (self-inductance, plus the effect of mutual inductances) the
phase of the induced current is shifted by ninety degrees, thus
maximizing the lift force, while minimizing the drag force. As a
result, in a high-speed train the drag' power can be made to be a
small fraction of the power required to overcome aerodynamic
friction (in an example, of order three percent of the drive power
was all that was needed). As long as the train is in motion it will be
levitated. Furthermore, theory shows that, for properly chosen
shapes of the magnets and the track, the levitation mechanism is
stable against both vertical and transverse displacements,
independent of speed or load (up to the maximum permitted load of
the car). If the driving power fails, the train will simply slow down,
and come to rest on its auxiliary wheels as its speed approaches zero.
No on-board power or levitation control circuitry is required, and the
permanent magnet arrays should have a high degree of reliability.

A preliminary estimate of the cost of a track based on the new
concept indicates that it should be not more than, and possibly could
be less than, that of the present systems. One reason for this is that,
as noted above, it should be possible to incorporate the driving
function into the same circuits that are to be employed for levitation,




thus eliminating the need for a separate linear induction motor in the
track [3].

Fig. 1 is a schematic representation of the Inductrack concept.
Shown in the drawing is the track, made up of a close-packed array
of inductively loaded circuits, and the permanent-magnet arrays on a
levitated car.

In a theoretical analysis of the concept (discussed in a later
section) a very simple approximate expression for the lift-to-drag
ratio of the system was derived. From this expression it is easy to
show that the drag force actually decreases as the speed increases,
by contrast with aerodynamic drag or bearing-friction drag on a
conventional train, which always increases with speed. The
expression derived is as follows:

Lift _ (wL/R)
Drag

Here L (hy) is the inductance of an individual circuit, R (ohms)
is the resistance of the circuit, and ® is the angular frequency of the
exciting wave. This frequency is in turn determined simply from the
spatial wavelength of the permanent magnet array and the speed of
the train over the track. Since ® increases directly with speed, above
a transition speed (that speed where o becomes equal numerically to
R/L) the lift-to-drag ratio increases linearly with increasing speed,
reaching values of order 300:1 at typical operating speeds (compare
25:1 for the typical airfoil of a jet airplane). It is a straightforward
matter to adjust the L/R of the circuits so that the lift-to-drag ratio is
very large compared to unity at all but the lowest speeds,
corresponding to a very low power requirement per kilogram
levitated. @ As a typical number, a levitating parameter of 2.0
Newtons per Watt could be targeted. This corresponds to a levitating
power requirement (derived solely from the motion of the car
relative to the track) of about 250 kw for an example train car
[4] weighing 50,000 kilograms and requiring 8.3 MW to overcome
aerodynamic losses at operating speeds (500 kilometers per hour).
The calculated levitating power is thus about 3 percent of the drive
power at full speed.




III) Outline of Topics

The report consists of three main sections. These cover the
following topics:

. A "lumped-circuit" theoretical treatment that defines the
main parametric scaling laws for the concept and provides a
practical basis for the design of such systems.

* A generalization of the "lumped-circuit’ analysis that allows
one to take into account effects of inductive interactions of
the circuits' and also provides a means to evaluate the
Inductrack concept against one that provides the maximum
possible levitation force from the permanent-magnet array
(i.e., by conceptually replacing the inductively loaded
circuits in the "track" with a continuous sheet of a perfect
conductor).

* A brief discussion of some of the practical and economic
issues that can be expected to be encountered in the
implementation of the Inductrack concept in full-scale
systems.

A discussion of some issues of a more computational nature is
presented in Appendices 1-9.

IV) Lumped-Circuit Analysis of the Inductrack

Before beginning the analysis it is necessary to define the
geometry of the system being analyzed. Fig. 2 shows schematically
one possible form of the circuits in the track. (Other possible
configurations will be mentioned later). As can be seen, the circuits
resemble window frames, the lower horizontal portions of which are
surrounded by ferromagnetic material so as to provide the necessary
inductive loading. An appropriate ferromagnetic material would be
ordinary transformer laminations (with an air gap to limit the flux

! Though inductive interaction occurs between many circuits, it turns

out that its contibution to the circuit equation can be reduced just to an
additional inductance L' which is additive to the self-inductance L of
every cirquit. The superscript “d” stands for the word “distributed”
because the term L describes what can be called “distributed
inductance”.




density). By appropriately staggering the location of these
lamination stacks the circuits could be closely packed together, as
shown. The circuits themselves are to be made up of multi-turn
windings of multi-strand (litzendraht) wire. The use of multi-turn
windings forces the current density to be constant within a conductor
bundle; the use of multi-stranded wire minimizes parasitic eddy
currents (whose role is quantitatively assessed in Appendix 5).

Beyond the function of providing inductive loading to the
circuits, the lamination stacks can fulfill another function, that of
coupling in electrical energy to the track in order to propel the car.
By threading the lamination stacks with other windings, these stacks
become equivalent to transformers, with the Inductrack circuits
functioning as their secondary windings. Now, if pulses properly
synchronized with the passage of the car are applied to the primary
windings, a forward driving force will be exerted on the Halbach
array magnets. Braking forces could also be provided in the same
manner, by controlling the phase of the driving pulses.

The second major components of the Inductrack system, shown
schematically in Fig. 3, are spatially periodic arrays of permanent
magnet bars located on the levitated car. We here choose an iron-
free array, the "Halbach array" [5], which makes optimal use of the
permanent magnet material, maximizing the field below the array,
while cancelling out the field above the array. As derived by
Halbach (for application of his array ‘to free-electron lasers), simple
analytic expressions are available that accurately reproduce the
magnetic field produced by such arrays. These expressions will be
used in deriving the lift and drag equations.

Many of the salient features of the concept can be obtained
from a lumped-circuit type of analysis, one in which the individual
circuits are considered to be decoupled electrically from their
neighbors, so that the lift and drag forces are calculated by a simple
superposition of the forces from each circuit. Simply stated, the main
condition that is to be satisfied in order for such an analysis to be
valid is that the self-inductance of each circuit should be
substantially larger than the mutual inductance between the circuits.
In many cases this condition will be well satisfied. In the broader
theoretical analysis (Section V) this approximation will not be made,
providing a means for correcting the lumped-circuit analysis to
include mutual inductance effects.




Another requirement for the simplest equations to apply is
that the operating speed should be high compared to the transition
speed. That is, it should be high compared to the speed where
w=27nv/A=R/L, with v m-sec’’ being the speed of the levitated object,
and A m. being the wavelength of the periodic magnet array.
Typically the magnitude of R/L corresponds to speeds of one or two
kilometers per hour, i.e., very much lower than the operating speed.

An important assumption, one which we use throughout the
report, is that the width of the conductors in the direction of motion
(z direction), d_, is small compared to k'= A2n. The significance of
this assumption will be highlighted in the appropriate parts of our
report.

A. Circuit Equations and the Transition Speed.

The equivalent circuit of one circuit of the Inductrack circuit
array is shown in Fig. 4. The circuit equation for this configuration
takes the form:

V= L% + RI = ¢, cos(wr) ¢))

Here I is the induced current and ¢, is the peak flux enclosed by
the circuit. (Other terms have been previously defined); V is
proportional to the rate of change of flux through the circuit. The
flux itself has been taken to vary as sin(wt). We consider Halbach
arrays of sufficient length (many wavelengths) in the direction of
motion so that one can neglect transient phenomena and limit oneself
to the analysis of steady-state oscillations only.

The steady-state solution of Eq.(1) is:

I(®) L1t (RIaL) sin(wt) + s cos(wt) 2)

As can be seen, in the limit @>>R/L the phase is shifted 90° with
respect to the voltage so that the current is in phase with the flux
(that phase which will be seen to correspond to the maximum lifting
force). In this limit the expression for the current takes the simple
form:

1) =%sin(wt) 3)




Since we are to calculate the force on a magnet array with a
wavelength, A m., in the z direction, moving at velocity v m. sec’!, we
will replace (ot) by (kz) in equation (3) in calculating the forces,
where k = 2mn/A.

Equation (2) can also be seen to provide a rationale for defining
the "transition speed" as that speed where ® = 2nv /A = R/L.

The coordinate frame that we are going to use throughout this
report is shown in Fig. 2: its origin is situated on the upper surface of
the track, with axis z pointing in the direction of the car motion along
the track, axis y pointing towards the magnet array and axis X
pointing across the track. The distance between the track and the
lower surface of Halbach array will be denoted by yi.

To calculate the lift and drag forces we will require expressions
for the longitudinal (z) and vertical (y) components of the magnetic
field from a Halbach array. To a close approximation these are given
by:

B, = B,sin(kz) exp[—k(y1 - y)] “)

B, = B, cos(kz)exp|—k(y; — )] (5)

where By is the peak strength of the magnetic field at the surface of
the Halbach array (i.e., at y=y;). The value of Bgin terms of the
remanent field, B, of the permanent magnet material, and the
thickness (in the y direction), d m., of the magnet bars is given by
the expression [5]:

sin(zw/ M)

/M ©)

B, = B,[1—exp(—kd)]

Here M is the number of magnet bars per wavelength (4 in the
Figure). Some details related to this expression for M=4 are discussed
in Appendix 1.

In the case where M = 4 and d = A/4 (square magnet bars, as

shown in the figure), the value of By is equal to 0.713B.. For typical
NdFeB (Neodymium-Iron-Boron) commercial-grade magnets the
value of B, is about 1.25 Tesla, so that By = 0.9 T. Recently NdFeB
magnet material with B, values of 1.41 T has become available. If
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combined with larger M values (more magnet bars per wavelength)
and/or thicker magnet sections, By values in excess of 1.0 Tesla
become feasible.

As an index of the levitating power of such fields, a field of 1.0
Tesla in interaction with a conducting surface is capable of levitating
about 40,000 kilograms per square meter. An evaluation of the
actual levitating forces for the Inductrack system will be derived in
what is to follow. The force limit ultimately arises from the
constraints imposed by the Maxwell stress tensor of the field.
However, it can already be deduced from the estimate given above
that modern permanent magnet material can create fields capable of
levitating masses that are one to two orders of magnitude larger than
the mass of the magnets themselves, auguring well for the economic
potential of the Inductrack concept.

An expression for the induced flux, ¢, can be obtained by
integration of equation (4) for B, over y between the upper and
lower legs of the circuit. Thus the integral is to be taken between
y=0, the location of the upper leg of the circuit (relative to the lower
surface of the Halbach array) and y=-h, where h m. is the distance
between the upper and lower legs of the circuit:

¢ = WTB"exp(—kyl)sin(kz)[l— exp(—kh)] @ -

In this analysis the circuit is considered to be of negligible thickness
in y and z. Later, we will introduce corrections that would allow us to
take into account the finite thickness of the track winding.

As for the latter approximation (d.<<k’'), this is just the
approximation mentioned in the last paragraph before Sec.IVA. It
may be called “a quasi-continuous approximation” and is quite
significant: Within this approximation, the z-t dependence of the
currents in the track follows a simple harmonic law, Acos(kz-
ot)+Bsin(kz-wt). In the reference frame of a magnet, where (kz-wt) is
constant, the track currents do not vary with time and, therefore,
there are no hysteresis or other losses in the magnets. A coarser
segmentation would have two undesirable consequences: first, it
would reduce the amplitude of magnetic flux variations through each
circuit; second, it would cause the appearance of time-varying
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magnetic fields in the car frame and, thereby, introduce a new
channel for losses (induced eddy currents).

Typically, the distance between the upper and the lower legs of
the circuit, h, is greater than the wavelength, making the exponential
term in square brackets of equation (7) very small. Indeed, even for
h=A this term is equal to 1/500. In what follows, we will therefore
always neglect the terms involving exp(-kh).

Inserting equation (7) into equation (3) for the current (and
neglecting the just-mentioned exponentially small terms) one finds
for the current in the x direction, Ix(z) , the expression:

_ ABw 1
27l 1+(R/wL)

1.(2) exp(-kyl)[sin(kz)+£cos(kz)], amp/circuit  (8)

Here w m. is the width of the magnet bars in the x direction, i.e.
transverse to the direction of motion along the track, thus parallel to
the direction of the induced current in the track.

This current then interacts with the magnetic field to produce
the levitating force (i.e., the force in the vertical (y) direction), and
the drag force (i.e., the force in the horizontal (z) direction):

F,=IBw, F,=IBw  N/circuit. ®

Averaging this expression over the wavelength one finds the
average force to be given by:

_hw 1 2 N/circuit (10

(F;) - 2%kL 1+(R/COL)2 CXP(—- k)’l) circul ( )
2.2

<Fz> = %’kz 1_5227;2)2 exp(—2ky,) N/circuit (1D

The fact that the winding has a finite thickness (A.) in the y-direction
means, for a uniform distribution of the current in the winding, that
the “center of gravity” of this current is situated at a distance A./2
from the surface of the winding. Thus, in order to obtain a more
accurate expression for the forces, one should replace y; in equations
(10) and (11) by y;+(A/2). A more detailed analysis (which we will
not present here) shows that the accuracy of these expressions is
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better than 10% if A, is not too large, i.e., if A.<1/(2k). These more
accurate expressions for the forces then read:

AR 2 N/circui 10°
)= 3 TrRrapy o020 —ka) Nicireuit (107
(E)= Biw* (R/wL)

In what follows, we will present all results pertinent to multiturn
windings in a form analogous to equations (10) and (11), i.e., in the
approximation of the zero-thickness winding. The transition to the
more accurate expressions can be made in the final results for the
forces simply by the substitution that leads from equations (10) and

(11) to (10°) and (11°), that is, y;— yi+(AJ/2).

The Lift/Drag ratio can be obtained immediately from
equations (10) and (11):

Lip _(E)_oL_2mL (12)
-

Drag (F) R AR

As noted before, the Lift/Drag ratio increases monotonically
with velocity.

At this point it is useful to calculate the levitating efficiency,
i.e., Newtons of levitating force per Watt of power dissipated in the
track. This parameter is useful in evaluating proposed designs and is
directly related to the Lift/Drag ratio. The average power, <P>,
dissipated per circuit is given by the product v<F,>. Therefore, from
equation 12),

F.
* -<—)>- = 2nL Newtons/Watt (13)
(P) AR

Comparing equation (13) for the power efficiency and equation
(10) for the lifting force, we see that for any given circuit resistance,
R, we can obtain any desired degree of efficiency by increasing the
loading inductance, L, but necessarily at the expense of the reducing
the lifting force per circuit.
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The favorable effect of inductive loading on the efficiency
comes about for two reasons: First, it shifts the phase of the current
by 90°, corresponding to the optimum phase for producing lift by
interaction with the z component of the magnetic field. Second, since
the circuit power losses vary as the square of the current, while the
lifting force onmly varies linearly with current, inductive loading
(reduces the current) operates to increase the efficiency over what
can be obtained for unloaded circuits, or, in the continuum limit, over
that associated with eddy current losses in a sheet of conducting
material. The gains that can be obtained practically will therefore be
determined by a compromise between power efficiency (increases
with inductive loading) and the lifting force per circuit (decreases
with inductive loading).

Returning to equation (10) for the lifting force exerted by a
single circuit, we must now consider the collective levitation force
exerted by a close-packed array of circuits. We will assume, as noted
earlier, that each circuit has a width in the z-direction of d. m, that is,
that there are (1/d.) circuits per meter. Thus total levitation force
per meter will be given by summing the contribution from each
circuit. It follows that the total levitating force exerted underneath a
Halbach array that is one wavelength in length will be given by the
expression:

Z(F,)z AByw” ! exp(—2ky,) Newtons/wavelength - (14)
»I7 2kl 1+(R/@L)?

Since the area of the Halbach array per wavelength in the z-direction
is WA mz, we find for the levitating force per unit area of the Halbach
array the value:

(E) Bw 1

4 - L 1T (RIGL) exp(—2ky,)  Newtons/m? (15)

For the special case M = 4 (four magnet bars per wavelength),
inserting the definition of By (equation (6)), we find the result in
terms of the remanent field, B :

*(F) 4 Bw 1
A 7 kdL1+(RIGLy

1—exp(—kd)]’ exp(—2ky;) (16)
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We consider now the quantitative constraints on the resistance,
needed to evaluate real systems. In the embodiment of the circuits
here being considered, the conductor array resembles rectangular
window frames. We will take the length of the upper and lower legs
of these rectangles to be equal to w m., ie., the same as the
transverse length of the magnets. Since w >> A can be assumed in
most cases, we will take the length of the vertical legs of the circuit,
h, to be equal to w/2. Thus the perimeter of the circuit, P., is taken

to be 3w m:
P.=3w

We further assume that the circuits form a close-packed array, made
up of multiple turns of multi-stranded wire forming a bundle of
rectangular cross-section. The width in the z direction, d. m., of each
bundle should be small compared to the wavelength, so that flux
cancellation does not occur. Also, the depth of the bundle, A, m, (in
the y direction) must be small compared to the wavelength. Owing
to the exponentially rapid fall-off of the magnetic field in this
direction deeply located conductors would be ineffective in
producing lift.

Considering the factors mentioned above we will take the
circuit coils to be made of conductors the packing fraction of which is
f (fractional area of conducting material). Typical values of f might
be 0.8 to 0.9. We will also assume that there are B circuits per
quarter-wavelength, i.e., their width in z, d, is A/4p m. Similarly, we
will take the thickness of the circuit bundle in the y direction, A, to
be equal to A/4y m. That is, the bundle has a thickness in y which is a
fraction 1/4y of a wavelength. Given these parametric variations we
may now define the single-turn-equivalent resistance of each circuit
as being given by:

R=p Length _ 16P.pBy _ 48wpPy  ohms, (17)

Area § 25 fZ5

where p ohm-m. is the resistivity of the conductor (1.7 x 10® ohm-m.
for copper, for example).

To continue the process of developing equations useful in
arriving at practical designs, we will take as a design parameter the
ratio of lifting force to power loss, as defined in equation (13). That

15



is, we define a parameter, K Newtons/Watt, through the relationship
given in equation (13):
(F) 2mL

Kz(_li)z_l—R— Newtons/Watt (18)

Note that as defined the K factor is closely related to the
previously defined transition speed, that is, the speed where @wL/R2
1.0. From this definition we see therefore that transition occurs when
the condition Kv > 1.0 is satisfied, where v is in meters per second.

K=2.0 therefore corresponds to a transition speed of 0.5 meters per
second or 1.8 km/h (a slow walk!).

Using K as a design parameter allows us to eliminate the
inductance from the equations for the lifting force. That is:

_KAR

[ ==
27

hy (19)

Inserting also now equation (17) for the resistance into
equations (16) and (18), we are led to a design equation for the
lifting force per square meter in terms of these parameters:

2
Z<R> = By A L —-exp(—2ky, —kA,), Newtons/m> (20)
A 24Kpy 1+(Kv) .

As will later be derived, the parameter K has a lower bound,
set by the effect of mutual inductance between the windings. Thus
the levitating force per unit area predicted by equation (20) has an
upper bound. This bound in effect arises from the aforementioned
constraint imposed by the magnitude of the Maxwell stress tensor
associated with the magnetic field produced by the Halbach array.
However, none of the Inductrack examples given herein will
approach this upper bound.

B. An Example of an Inductrack System

An example, using parameters that might be appropriate for a
levitated train car, will now be given to illustrate the potentialities of

the Inductrack concept. We choose A = 0.5 m., w = 1.0 m,, By=0.9
Tesla (equation 6, with B,=1.25 Tesla), and magnet thickness, d=A/4),
K = 2.0 N/Watt, f = 0.8, v = 4 (1/16 of a wavelength circuit thickness
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in the y direction), and p = 1.7 x 10 ohm-m. (copper). At v
exceeding a few meters per second, we find from equation (20) a
levitating force per square meter having the value:

¥ = 6.8-10* exp(—2ky,)

The maximum force, occurring at y;=0, corresponds to the
levitation of about 7000 kilograms per square meter of magnet
array, i.e., about 15 percent of the maximum limiting value (derived
in Section V - equation 29). For the magnet array with its depth of
A/4=0.125 meters, the mass per square meter is about 900
kilograms, so that the maximum lifting force in this example
corresponds to about 8 times the mass of the magnet array. At a K
factor of 2.0 N/Watt, the power required to levitate 10,000 kilograms
would be about 50 kW. To levitate a railroad car, such as the one
considered in the study by Grumman [6], weighing 50,000 kilograms,
would then require of order 7.0 square meters of magnet array
(about 6 percent of the area of the undercarriage of the car), and
would imply a drag load of about 250 kW, or about 3 percent of the
8.3 MW required to overcome aerodynamic drag at 500 km/h.

As previously mentioned, the approximate transition speed for
a K value of 2.0 is about 1.8 km/h, a very low value compared to the
operating speed. Also, at 500 km/h the Lift/Drag ratio, as calculated
from equations (12) and (19), with K=2.0 and A=0.5 m., is about 280.

Also, calculating backwards from the definition of K (equation
18) and the value of R for this example (calculated from equation
17), we find for the single-turn value of R the value 65 micro-ohms,
and for L the single-turn value of 10.4 micro-henrys. Note that it
does not matter electrically whether the circuit consists of a single
turn occupying the entire cross-section, or of many turns having the
same total cross-section: The L/R value for both cases will be the
same. As a practical matter, for reasons cited earlier it will be
preferable to use a circuit having many turns of multi-stranded wire,
but the design calculations can be made as though the circuit is a
single turn of wire of the given cross-section.

Now we evaluate the weight of copper per 1 m of the track.
The thickness A, of the winding is A/16=3.125.10"2 m, its perimeter
P. in the xy-plane is 3 m, the filling factor £ is 0.8, i.e., the volume of
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copper per one meter is f(A/16)P.=7.5-10"2 m*/m. Accordingly, the
mass of copper is 0.67 t/m.

Knowing the mass of copper per unit length allows one to
evaluate the temperature rise after a passage of a car through a
certain point. The energy dissipated per unit length of a track is just
<P>/v, where v is car velocity. In the aforementioned example, with
<P>=250 kW and v=140 m/s, this energy is 1.8 kJ/m. As the thermal
capacity of copper at room temperature is 0.385 kJ/kg°K, the
temperature rise is less than 102K and therefore can be ignored.

As mentioned previously, there are obvious trade-offs that can
be made in the design. For example, the adoption of a K parameter
value of 1.0 (where this is allowed as a result of the choice of other
parameters) would halve the magnet weight required at the expense
of doubling the power required to levitate the car.

As will be discussed in a later section, the "window-frame"
configuration of the Inductrack circuits here discussed 1is not
necessarily the most efficient design or the one of least cost. The
example given here should therefore only be considered as
illustrative of the numbers involved. Note also that if in the example
we had posited the use of the latest NdFeB magnet material, with a
remanent field of 1.41 Tesla instead of the 1.25 Tesla value we
assumed, and if we had taken M = 8 (number of magnet bars per
wavelength), we would have obtained (using equation 6) a value of
By equal to 1.1 Tesla, corresponding to an increase of (1.1/0. 9)’=1.5
in the levitating power for the same magnet weight. This gain might
be more than sufficient to compensate for the use of a (likely) more
expensive magnet material, and a somewhat more complex magnet
array.

In the loss calculations given up to this point the losses in the
laminated iron inductive loading elements in the track have not been
included. The reason for this omission is based on the fact that a
prehmmary estimate shows that when properly designed (using air
gaps in the lamination stacks) the losses from these elements will be
at most a few percent of the conductor losses. There will, however,
again be an opportunity for optimization. That is, one might adopt
designs with somewhat higher core losses in exchange for lower
initial capital cost.
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To summarize up to this point, using lumped-circuit
approximations with some simplifying assumptions, equations have
been derived that may be used for the design of one form of an
Inductrack system. This system employs Halbach arrays interacting
with a "track" consisting of a close-packed array of inductively
loaded circuits the conductor bundles of which resemble window
frames. That is, they are rectangular in shape and lie in vertical
planes.  The equations derived have been used to calculate the
properties of an example system, one that would levitate a 50,000 kg
car with the expenditure of 250 kW of drag power (3 percent of the
aerodynamic drag at 500 km/h), employing magnet arrays that
would comprise about 10 percent of the total weight of the car.

In the next section an analysis not involving the simplifying
assumptions used in the lumped-circuit analysis will be outlined. In
the proper limits this broader-based analysis corroborates the
lumped-circuit results. Furthermore, it provides a means for
correcting those results so as to include the effects of mutual
inductance in the design equations in a simple way.

V) Effects of Distributed Inductance

Details of the corresponding analysis are presented in
Appendices Al through A4. Here we summarize main results and
compare them with results of the previous section. In addition, we
consider a modified version of the track design, in which the currents
flowing on the upper surface of the track close, not through the lower
leg of the circuit, but rather through highly conductive side walls.

A. Distributed Inductance in the Window-Frame Scheme

The current induced in any particular track conductor produces
magnetic flux which couples with a number of neighboring
conductors, occupying a length (in the z-direction) of order of 1/k.
The fact that the interaction occurs not just between two or three
windings but rather between groups of them makes the analysis of
the effect of mutual inductances somewhat complicated. However, as
we show in the aforementioned appendices, the final result 1is
remarkably simple: what should be changed in the basic equations
(10), (11) of the previous section is simply to replace the self-
inductance L of a winding by a sum L+L@, with L@ being a term,
responsible for the inductive interaction between the circuits (the
superscript “d” stands for the word “distributed”: we prefer to use
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this term and not the term “mutual” because the former more fully
reflects the essence of the effect). This contribution (of the dimension
of inductance, Hy), has the form:

Ed) - :uﬂpc (21)
2kd

c

where P, is the perimiter of a single track coil. Instead of our basic
equation (15), we now have:

A AL+Ld, . R
o*(L+ L“”)2
while lift-to-drag ratio is now determined by the relationship
i o(L+L?
Lip _ o(L+L?) 23

Drag R

Of course, in the limit L”<< L one just recovers the results of Sec.IV.
Note also that to take into account the finite thickness of the track

one should replace y; in (22) by y;+(A/2).

Using the above considerations, the example given in Section
IV may be updated. To review, the parameters were: A=0.5 m., By =
0.9 Tesla (equation 6, with Br=1.25 Tesla, and d=A/4), K=2.0 N/Watt,
f=0.8, y=4 (1/16 of a wavelength circuit thickness in the y direction),
and p=1.7 x 10® ohm-m. (copper).

We first establish whether the assumed value of K exceeds its
lower bound which is obviously set by the distributed inductance
term equation (21). Here all parameters are known except P, which
we have earlier taken to be equal to 3.0 w m. If we now take w =
1.0 m. for our example, then we find LY =4810"° Hy. We
previously found for R the value 65-10° ohms. These numbers
result in a K value of 0.92, approximately factor of 2 below our
assumed value of 2.0.

An alternative means for the calculation of the minimum value

of the design constant K is given in Appendix 9, equation (A9.5). It is
there shown that this constant can be defined in terms of only three

20




parameters:  the depth of the track conductors, A_, the packing

fraction of the windings, f, and the resistivity of the conductor
material, p. In terms of these parameters we then have the result:

pofA
Kmin = ;p € Newtons/Watt

Inserting the numbers for the above example, with A, =A/4y =
0.03125 m., we again find Knin = 0.92.

Returning to the question of the added inductance, it follows
from equation (19) that at a K value of 2.0, with the given resistance
the total inductance should be equal to 10.3-10° Hy. Thus the added

single-turn inductive loading should be (10.3-4.8) = 5.5-10°° Hy.

The Lift/Drag ratio is unchanged from the value of 280
previously calculated, except that we now recognize the important
role of mutual inductance in determining the effective inductance of
the circuits.

All other numbers remain unchanged from those given
previously.

It is convenient to present the lift-to-drag ratio in the form:

: (d)
Lig WL (1+ Ld)swl“Of(H Ij,) (24)
Drag R L 8pyk 9

If the dimensionless geometrical factors (f, ) and the ratio L/L® are
kept constant from one design to another, then the lift-to-drag ratio
scales as a product of the wavelength (1) and car velocity (v).
Therefore, for a small and slow system, one may have to introduce
considerable lumped self-inductances, L> >L(d), in order to reach a
high enough value of lift/drag. For large, fast systems the required
self-inductances become comparable with or even smaller than L.
Thus we conclude that relative role of lumped inductances increases
with the transition to smaller and slower systems.
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B. A "Flat" Track Design

The continuum approach can be used to analyze another
configuration of the Inductrack, one possibly possessing economic
and other advantages over the "window frame" configuration that
has been analyzed in the preceding sections.

The geometry of the alternate configuration is shown
schematically in Fig. 5. As can be seen, this configuration is made up
of a close-packed array of conductors lying transversely in the
surface of the track. However, instead of continuing the circuit below
the surface of the track, as in the window-frame design, all
conductors are terminated at each end by a low-resistance bus bar
through which all return currents flow. To provide inductive loading,
rings of ferromagnetic material are placed around the conductors
near their ends (i.e., before the conductors connect with the bus bar).

To minimize the ohmic losses, every conductor should be made
by a litz wire technique, with every particular current lead crossing
the thickness of the track up and down several times (Fig. 6). This
configuration will make the current distribution uniform over the
thickness of the conductor. (If one makes conductor of a solid
uniformly conducting rod, the current would be concentrated only
within a skin-depth of the surface, thus increasing resistive losses).
Each current lead, traversing between the upper and the lower
surfaces, could be, again, composed of litz wire, thereby minimizing
eddy current losses.

The potential gains that can be provided by this design, are
four-fold:  first, we reduce the ohmic losses compared to the
window-frame design, simply because the length of a conductor
becomes half as long as in this former design; second, because the
mutual inductance term also decreases proportionally to the
conductor length, one could increase the maximum lift force, as
shown by equation (22); third, we reduce the weight of conductor,
thereby reducing the cost of the track; fourth, the amount of
ferromagnetic material used in the inductive loads can also be
reduced. (To maintain the same L/R ratio, it should be reduced,
roughly speaking, proportionally to the conductor length).

A disadvantage of this scheme is that one might have to use

more expensive custom-made litz conductors, instead of using
multiturn windings as in previous designs.
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Engineering design equations for the “flat” design remain
basically the same as for the “window-frame” design, with an
obvious identification of the perimeter of the conductor P. with the
width of the conductor between bus-bars. As an illustration of
possible parameters of this scheme, we repeat calculations of the
Section IVB for the “flat” design, assuming that the width of the track
between the bus-bars is

P=12w (25)

Accordingly, instead of equation (17), we have

R=122081% 1 (26)
- 7
As we show in Appendix 4, to take into account Ohmic losses in the
bus bars, one should increase R by some “added resistivity”

Ry = deﬁ Ohms @7

with & being a skin-depth in the bus bar material,

o= _gp_ (28)
‘\/ @y .

Other design parameters will be kept the same as before, i.e., w=1.0
m, A= 0.5m, d= A4, K = 2.0 N/Watt, f= 0.8, y= 4 (i.e., Ac= d/4 = A/16),
=4 (i.e., dc= d/4 = A/16). Then, according to equation (26), the
resistance of a single conductor is reduced by a factor of 2.5 (to 26
micro-ohms). The added resistance at the speed of 500 km/h is 12
micro-ohms. Therefore, the total resistance is 38 micro-ohms,
approximately 1.7 times less than in a window-frame design. To
keep the parameter K constant, one should reduce the total
inductance by the same factor. Therefore, instead of a total
inductance L+L@ of 10.4 microhenrys, we should have a total
inductance of 6.1 microhenrys. Of this total, according to equations
(21) and (25), 1.92 microhenry would come from the effect of
distributed inductances. Thus, the lumped self-inductance of each
conductor should be 4.3 microhenrys.
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As the total inductance is reduced by a factor of 1.7 compared
to the example considered in Sec. IVB, the lift force increases by a
factor of 1.7 (to approximately 11 t/m*). The weight of conductor
and ferritic material in the track is reduced by factors 2.5 and 1.3,
respectively. As we kept parameter K constant, the lift-to-drag ratio
remains unchanged (280 at the speed 500 km/h).

If one wants to push the lift force to its maximum possible
level achievable with the “flat”, track design, one has to reduce the
length of the conductors to the minimum value P;=w and completely
eliminate ferritic inductive elements (make L=0). Then, equation (22)

in the limit of high speed (oL@/R>>1) yields:

_———Z <p;"m> = £‘i—exp(-—2ky1 - kAC) (29)
A Ho

Here we have explicitly taken into account the correction caused by
the finite thickness of the conductor. For the Halbach array
considered in Sec.VI (M=4, d=A/4, B=1.25 Tesla), and y;=0 and
kA.=n/8 (y=4) this force is equal to 44 Ton/m? (!). Of course, one
should remember that, by making L=0, one somewhat decreases the
lift-to-drag ratio. Still, this example shows that the absolute value of
the lift force will hardly be a serious limiting factor in the inductrack
design.

We may compare the maximum force (29) and the levitating
force (22), at speeds where the resistive term in the denominator of
(22) is small (i.e., the speed is large compared to the transition
speed). In this limit we have:

DUE) _w ¥
S{r) RE >

We see that increasing the lumped self-inductances, L, decreases the
lift force while, at the same time, it increases the lift-to-drag ratio.
This is in a full agreement with conclusions drawn in Sec.IV.

C. A Track in the Form of a Conducting Slab

To compare the Inductrack with earlier proposals, one can
consider a track made just of a slab of a conducting material, i.e., one

24




without any windings at all (Fig. 7). This design is indeed very simple
but now the currents flow only in a relatively thin skin-layer (not
being forced to occupy the whole thickness of the slab by Litz
winding or multiturn winding techniques of the previous sections),
and one can expect increased Joule losses and reduced lift-to-drag
ratio.

As is shown in the Appendix 3, in the case under consideration
the expressions for the lift force and for the lift-to-drag ratio read:

k464 k252 312
1+ -
4 2

(R)=(F") 31)
k5+( 1+k‘154 +k25zj
4 2
(R) 1([ ¥& ws)
GRS O (32)

where F,™** is determined by equation (29) and & is a skin-depth
within the conductor, given by equation (28).

The dependences given in equations (31) and (32) are
illustrated in Figs. 8a and 8b for the case of a copper conductor
(p=0.017 micro-Ohms m) and a wavelength of the Halbach array

A=0.5 m.

In the limit kd<<l1 (skin depth small compared to the
wavelength, as can expected to be the case in practical situations) the
expression (32) reduces to:

E,
( 2 > -1 2425 for copper (33)

In this case, by contrast with the Inductrack scaling, above a critical
speed (determined by the actual thickness of the sheet conductor as
compared to the skin depth), although the Lift/Drag ratio also
increases with the velocity, it varies only as the square root, rather
than linearly. Furthermore, its numerical value at 500 km/h and at
a wavelength of 0.5 m. has only risen to 20, more than an order of
magnitude smaller than the L/D ratio in the example given in Section
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IV. Although the magnetic field configuration of the Inductrack is not
the same as used in earlier concepts, this example illustrates the
substantial improvement in efficiency that is possible with the
Inductrack concept, as compared to previous eddy-current-based
systems.

VI) Brief Discussion of Some Practical Issues

Of course, evaluation of thé Inductrack concept, as well as of
any other new transportation concept, should be based not only on
the “bare bones” design of the type presented in our report, but also
on detailed discussion of a host of practical problems, ranging from
resilience of the transportation system to possible attempts of
vandalization, through possible effects of seasonal and diurnal
temperature variations, of snow- and rain-falls, to limitations on the
noises produced by the trains. For high-speed trains serious
constraints can be imposed by the topography of the land. Many of
the “practical” issues are more or less common for all high-speed
systems, others are more specific. Here we will discuss only a few
such issues which have direct relevance to the electrodynamical part
of the concept as described in the present report.

The first issue is that of the gap between the track and the
lower surface of magnet array. According to our master equation
(22) this gap (y;) strongly affects the lifting force. Theoretically, the
gap can be made very small but in Ppractical situations there exist
important limitations on its minimum value. Indeed, if the car is a
passenger car, then one must make provisions for its safe operation
even if all passengers have moved to the front seats (or to the left
seats) leaving the rest of the car empty. Let us, for instance, consider
a scenario when all the passengers have moved to the front rows.
This will cause a forward tilt of the car which will produce a
restoring torque. Assuming that magnet arrays occupy only short
sections of the car near the front and rear ends, one can easily find
that the front end of the car will lower by the distance

m
E —————— 4-
M 2k(m + M) (34)

where m and M are the masses of passengers and of the car,
respectively (see first few paragraphs of Appendix 6 for relevant
details). Clearly, the gap can not be made smaller than this distance.
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Taking a factor 2 as the safety margin, we obtain the following
limitation on the minimum possible gap width:

m

g k(m+ M) (33)

N

According to (22), for the mass of passengers equalling 20% of the
mass of the car, this constraint means a 40% loss of the lifting force
compared to its theoretical maximum (at y;=0).

For the mass of passengers being 0.2 of the mass of the car, and
for the wavelength A=0.5 m, y; should exceed 1.33 cm; for the
wavelength A=1 m, y; should exceed 2.66 cm.

The other limitation of the gap is related to possible
imperfections of the surface of the track, in particular, imperfections
with a scale-length Ain, in the z-direction of order of the car length
Lcar- The average gap should exceed with some margin the height of
these non-uniformities.

Non-uniformities with long wave-length in z-direction (Aipmp
much greater than L.,) can be of some concern if they would cause
perturbations resonating with vertical oscillations of the car. The
frequency Q of the latter (see Appendix 6) is equal to (2kg)'? i.e., for
Halbach array with the wavelength of -0.5 m this frequency is equal
to 16 s'. At the car speed of 140 m/s, these oscillations will resonate
with the wavelength Aip, = 60 m.

At very high car speeds the car will possibly experience an
action of pulsating forces arising from the vortex air flow around the
car. The distance between the car bottom and the track should be
sufficient to accomodate the time-dependent tilts arising from these
forces. Quantitative limitations will become clear after a preliminary
aerodynamical design of the car has been made.

Added to the thickness of the gap should be also the thickness
of a protection layer which should be placed on the upper surface of
the track windings (between the windings themselves and the
bottom of the car) and which should protect the windings from
mechanical damage. This layer should be insulating (or have a low
conductivity) to avoid eddy current losses in it. Its thickness should
probably be about 0.5 cm. Taking into account all these
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considerations, we assume that the gap y, can be made equal to
3.125 cm. Of course, there is a considerable degree of arbitrariness in
this choice. One reason for choosing this particular number is that it
corresponds to 1/16 of the wavelength A=0.5 m and thereby
considerably simplifies numerical estimates. This gap will also allow
for a thin metallic sheath over the surface of the magnet array, to
protect it from damage.

The electromotive force, V, induced by the periodically varying
magnetic field in each conductor is equal to d¢/dt. Its amplitude,
according to equation (7) (with exp(-kh) neglected), is

V=wvBjexp(-kyi)

Taking w=1 m, v=140 m/s and Bgexp(-ky;)=0.7 T, we find that the
electromotive force is approximately 100 V. Most of this voltage
drop occurs over the lumped inductances. However, the value of 100
V is easily manageable and should not cause concern.

The forces acting on conductors will have not only a vertical
component acting downward but also a horizontal component of
comparable amplitude and with a sign alternating at the wave
period. According to our estimates of the lift force (see Sec. IVB) this
horizontal component is of order of 10 t/m*. The mechanical
structure of the track should be made strong enough to. withstand
these tangential stresses.

VII) Summarizing Examples and Equations

In this section we present in a compact form self-consistent
sets of parameters for several track and magnet designs (TABLES 1
and 2). In these designs we assume that the number of magnets per
wavelength of the Halbach array is M=4, the remanent magnetic field
is B,=1.25 T, the width of the array is w=1 m, the thickness of the
magnets is d=0.125 m, magnet material has a den51ty of 7.2 t/m’
(accordingly, the weight of the magnets is 0.9 t/m*), the thickness of
the conductor in the track is A.=0.03125 m, the width of the
conductor in z-direction is d.=0.03125 m, the filling factor is f=0.8,
the gap between the lower surface of the magnets and the surface of
the conductors is y;=0.03125 m, the Newton/Watt parameter is K=1
s/m for TABLE 1 and K= 2 s/m for TABLE 2. To find the power lost in
the track (in MW), one should multiply the weight of the car in
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tonnes by the factor 0.0098/K. For reference purpose, we note that,
for the Grumman design of the magnetically levitating car weighing
50 tonnes, aerodynamic losses were calculated to be 8.3 MW. The
calculated power required for levitation in this example is about 500
kW, or 6 percent of the propulsion power at 500 km/s.

The parametric variations of various quantities of interest, such
as the Lift-to-Drag ratio and the levitation force vs speed, the
variation of levitating force with levitation height, the power
required for levitation, and the maximum levitated mass, are
illustrated graphically in Figs. 9, 10, 11, 12, 13, and 14. Figs. 13 and
14 are comparisons, in block graph form, of the levitation power and
the maximum levitated mass for three different cases: (1) a
conducting surface (copper), (2) a flat track with no extra inductive
loading, and, (3) an inductively loaded flat track with K = 3.0. All
three cases are for a Halbach array wavelength of 1.0 m. The trade-
offs between drag power and levitating force can be seen from these
plots.  Also obvious from the plots is the marked increase in
efficiency associated with the Inductrack system, as compared to
conventional eddy current-based systems.

Finally, we summarize the equations needed to calculate the
above quantities in terms of the basic design parameters Bgp, A, p, 1, £,

and K, the separation and winding thickness parameters, y, and A_,

respectively, and the velocity, v. The. dimensionless parameter ¥y, is
equal to the ratio of a quarter-wavelength to the winding thickness,
A., (ie., ¥ = 4 corresponds to the case A, = 1/4(A/4) = A/16), so that

either one may be calculated in terms of the other one.
We have for the Ilevitating force of the window-frame

Inductrack , in Newtons/m2 (Equation 20):

X F, 2
(£)__BA _ 1 —exp(—2ky, —kA,),  Newtons/m?
A 24Kpy 1+ (Kv)

For the minimum value of the parameter K (no added
inductive loading) we have (equation A9.5 of Appendix 9):

pafA
Kmin = ;p = Newtons/Watt
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For the Lift-to—Drag~Ratio we then have, for the window-frame
Inductrack:

; )
Lift WL (1+ I;)Evl#°f(1+id)
Drag R Y 8py\ [

The first part of this equation is general, and can be used to
calculate the Lift-to-Drag ratio for the flat-track, inserting the value

of R and the distributed inductance, L(4), appropriate to that
geometry.

For the flat-track design with a circuit perimeter equal to 1.2w,
(w is the width of the track facing the Halbach array), the value of R
is given by the expression (equation 26):

R= _19.2% Ohms

For the distributed inductance, L9, we have (equation 21):

o gy

where P_ is the perimeter of either the window-frame coil or
the flat-track coil.

For the flat-track Inductrack we have for the maximum value
of the levitating force (occurring when the width of the track, w,
facing the Halbach array is equal to P_ ) the expression (equation 29):

E™ 2
X_Afl = %@xp(—zky1 —kA,) Newtons/m?
0

For both the window-frame and the flat-track systems we have
for the ratio of the lifting force to its maximum possible value the
expression (equation 30):

YAE) _w 1@

d(E™) EL+L?
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Finally, we have for the maximized ratio of the levitated weight
to the magnet weight, the expression (equation A7.5 of Appendix 7):

2
Wit. lev.] I:Br:l

T = 26.31 | —|(exp[-2k(y,-A_./2)]

[Wt. mag. | . kdy A P 1 Te

VIII) Concluding Remarks

The analyses presented in this report show that the Inductrack
concept represents a viable approach to the passive magnetic
levitation of moving objects. As has been described, it operates by
exploiting the repelling force between magnets on the moving object
interacting with currents induced in a stationary track. However, the
Inductrack concept is to be distinguished from earlier induced-
current passive magnetic systems by the fact that its configurations,
involving close-packed conductor arrays and optimally efficient
arrays of permanent magnets, lead to markedly improved
characteristics relative to those earlier approaches. Specifically, the
levitating forces can be made to approach the theoretical maximum
value achievable by the levitating magnetic fields, i.e., that value
associated with movement of the magnet array over a perfectly
conducting surface. In addition, the Lift-to-Drag ratios, increasing
linearly with speed, can reach values in excess of 200, one to two
orders of magnitude higher than those typical of earlier systems.
Correspondingly, the “transition speeds”, i.e., those speeds at which
magnetic levitation begins to become effective, are much lower than
those for other systems, being as low as one or two kilometers per
hour. An important additional feature is that by taking advantage of
the special magnet array design (Halbach arrays), and of new high-
field permanent magnet materials, it is not necessary to contemplate
the use of electromagnets employing superconducting coils in order
to achieve adequate levitation forces relative to the weight of the
levitating magnets. With the Inductrack system the ratio of levitated
weight to magnet weight can, in typical cases, be in the range of 10:1
to 40:1. The higher of these values is an order of magnitude greater
than values that have been quoted for some earlier systems.

For the designer of magnetically levitated systems, one

important consequence of our analyses is that the results can be
reduced to simple yet accurate design formulae, allowing for

31



characterization and optimization prior to actual construction. To be
discussed in another report is the analysis of the general stability of
the system. Here again the simplicity of the Inductrack concept and
its tractability for analysis leads to well-defined criteria for passively
stable operation. With the Inductrack there is no requirement for
active stabilizing control circuitry of the type required for some
other approaches to the magnetic levitation, those that must deal
with the intrinsic instability of magnetic levitation implied by
Earnshaw’s theorem.

Although this report has not dealt, other than superficially,
with the topic of costs and economics, it seems probable that the
basic simplicity of the Inductrack concept should translate to
economic practicality in high-speed transit systems, particularly
when the “fail safe” nature of the concept is taken into account.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48.

Appendix 1.
Fourier Decomposition of the Magnetization Currents and of
the Magnetic Field of a Halbach Array

We consider a Halbach array of the form shown in Fig.3, i.e.,
with four magnet bars per wavelength. It is assumed that this
system is continued periodically in both directions of axis z. Direction
of magnetization of each particular bar is shown by arrows. The
absolute value of remanent magnetic field is identical for all the
rods and is equal to B,. The linear density of the magnetization
current that flows on the boundaries between the bars is:

I=B./lto (ALI)

where o 1is permeability of free-space (47r,~10’7 H-m’l). Directions
of the magnetization currents are shown by dots (to the observer)
and crosses (from the observer). The current density corresponding
to this current pattern can be written on the interval 0<z<A/2 as
follows: ’

%y 2)=H{ Z(y-y1-d)-Z(y-yD]-[ 8(z-M/8)+ 8(z-3M/8)]+
[Z(z-3M/8)-Z(z-M8)1-[8(y-y1)- 8(y-y1-d)] (A1.2)
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where X is a Heavyside step-function (equal to 1 at positive values of
its argument and to zero at the negative values). At -A/2<z<0 the
current density can be found from the condition j,(y,-z)=-jx(y.z).
Outside the interval -A/2<z<A/2 the current density can be found by
periodic continuation.

As jx(x,z) is an odd function of z, its Fourier decomposition in z
will contain only sines (no cosines):
x(¥y,2)= 2 Jn(y) sin2nm/A)z (Al.3)
where
/2

jn(x)='§" | i 2)sinnkedz =BUA)sin(am/2){ [£(y-y1-0)-E(y-y1)] -
~212

.cos(n/4)+(1/kn)-[8(y-y1)- 8(y-y,-d)]sin(nn/4)}, (Al4)
with
k=2 /A (A1.5)

being a wave-number of Halbach array. Obviously, the Fourier
coefficients are non-zero only for odd n’s (n=1, 3, etc).

It is instructive to find the magnetic field produced by separate
Fourier-harmonics of the current. We present expressions for
magnetic field below (y<y;) and above (y>y; +d) the magnet array:

B, =-2l gy % (COS% *sin %> €0 (1— ™M) sinknz  (below)
(A1.6)
Bu = _Msin % . (cosﬂ — Sin %) . ekn()‘—-)‘; -d) . (1 - e_nkd) . Siﬂ knz (abOVC)

Note that only Fourier harmonics with n=1, 5, 9, etc contribute to the
magnetic field below the array and, only harmonics with n=3, 7, 11,
etc contribute to the magnetic field above the array. As amplitudes
of the harmonics are inversely proportional to n, this means that
magnetic field is much stronger on the lower side of the magnet than
it is on the upper side. This circumastance is one of attractive
features of the Halbach array: The magnetic field is concentrated just
on that side of the array where it (the magnetic field) interacts with
the track and provides lifting force.
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For n=1, the magnetic field determined from (A1l.6) coincides
with the expression (4) of the main text.

On the lower side of the array, the first harmonic of the
magnetic field is strongly dominant: the next non-vanishing
harmonic is n=5. The amplitude of this harmonic is 5 times less than
of the main one. Magnetic forces are proportional to the square of
the magnetic field. If we average them over the wavelength A, the
interference between different harmonics disappears because of
their orthogonality. Therefore, the 5th harmonic gives only, roughly
speaking, a 4% contribution to the forces. This allows us to neglect
effects of all the harmonics but the first one in evaluating the forces
acting on the Halbach array from the side of the track.

Appendix 2
Evaluation of Distributed Inductance

In this Appendix we consider a Halbach array moving parallel
to the track surface in the direction z. For the system whose length
in x direction is large compared to A, the magnetic field can be
uniquely described by the x-component of the vector-potential
Ax =A(y,z):

By=0A/dz; Bz=-0A/dy . (A2.1))
The vector-potential satisfies Poisson equation:
VA =—14].(3,2) (A2.2)

where jx comprises both magnetization current and the conductivity
current in the slab. As has already been mentioned, it is accurate
enough to retain only the first Fourier harmonic n=1 of the
magnetization current (A1.3), i.e., to represent a magnetization
current density in the form:

= %{[Zb’ ~n—d)=Z(y-»)]+ %[5@ —n)+8(y—»- d)]}sin[k(z ~vi)]=

"]':(m) (y)ei(kz-ax) +c.c. (A2.3)
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where the subscript “m” designates magnetization current, and

T(m 2'\/51 1
)= iT{[Z(y =n=d)=Z(y=y)]+ [0~ ) +8(y-»- d)]} (A2.4)
w=kv (A2.5)
The solution of equation (A2.2) for A should have the same
form as equation (A2.3), i.e., A should be represented as:

A=A ® qcc. (A2.6)
The equation for A reads:
d&A - 4m-
—KFA=-——j A2.7
dx* c I ¢ )

We first consider the solution of equation (A2.7) in the upper
half-plane (y>0). The solution can be represented as a sum of two
terms: the vector potential A produced by the magnetization
current, and the vector potential A“produced by the conductivity
current in the track. The former can be easily found from equations
(A2.1) and (A1.6). We will need an expression for A only below the
Halbach array. In this domain

A = __B;f 01— M) - (A28)

To find A®, we must first to know the current in the track. But the
functional dependence of A® on y is clear (as A® satisfies equation
(A2.7) with r.h.s. equal to zero - no conductivity currents above the
track):

A© — Cexpl-k(y—y,)] (A2.9)

where C is some constant (which, indeed, is determined by the
current in the track).

The force acting on the Halbach array is determined by the
interaction of the magnetization current and that part of the

magnetic field which is produced by the currents in the track. In
other words, the lifting force Fy (per unit area) is equal to:

F, = [(j"B®)x (A2.10)
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The angular brackets denote averaging over the wavelength. Using
the presentation in equation (Al.3) for j)‘_"”, one obtains:

SﬁI e'k)'l
A

F,=—k[(7"C+ce)evdy = (1-e™)ImC (A2.11)

In the same fashion, one obtains the drag force Fz:

= §%e"‘>‘l (1-e™)ReC (A2.12)

F == [ (i By
The parameter I in these equations is defined according to equation
(A1.1).

Neglecting the thickness of the track compared to the other
dimensions of the problem, we can approximate the current
distribution in the track by a surface current, with a linear (per unit
length in z) current density

I = [ exp(~iwt + kz) + c.c (A2.13)

From the condition that the jump of the tangential (z) component of

magnetic field should be equal to ,uOI(S) , while the normal (y)
component of the magnetic field should be continuous, we easily find
C in terms of T¢: '

7 ()
c= Eosz_ (A2.14)

Now we can find the magnetic flux under the track (it is this
flux that induces the loop voltage that drives the conductivity
current). Its temporal and spatial dependence is the same as
equation (A2.13):

¢ = pexp(—iot +ikz) + c.c. (A2.15)

The contribution to this flux comes from the magnet array and the
currents in the track:

7(s)
- (1 gty 4 Pl e (A2.16)

B,w«/i .
7k 2k

¢=—i
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The current per conductor is equal to I(S)dc, and the contribution to

the loop voltage from the lumped inductance is —de(dl(s)/a’t) . The
total loop voltage Vipop has a form identical to equations (A2.13) or
(A2.14), with

Vop = i@+ LdT) (A2.17)

The loop voltage drives a current against the resistance of the
conductor:

V., =RI¥d (A2.18)

Equations (A2.16)-(A2.18) allow one to find 7 and, via relationships
(A2.14) and (A2.11), the lift and drag forces. The results have been
presented in the main body of our report (equations.(22) and (23)).

Our discussion pertained so far to the “flat” track design. It
turns out that our main results remain valid also in the window-
frame design, as long as the vertical dimension, h, of the frame
remains large compared to 1/k. The cross-section should not even be
necessarily rectangular, simply all the dimensions should be greater
than 1/k. Indeed, in this case one can (conceptually) split the whole
conductor into a number of (almost) straight segments of the length
Al>>1/k; the contribution to Eq.(A2.16) from each segment will be

(4, 1)/2k)A1, so that the contribution of the whole conductor will be

just as given by Eq.(A2.16), with P¢ having the meaning of a total
perimeter of the conductor.

The other comment that should be made here is that we have
neglected the presence of the high-permeability rings encircling
every conductor. The corresponding corrections contain a small
parameter equal to the ratio of the characteristic dimension of the
ring and the perimeter Pc of the conductor.

Appendix 3
Magnetic Levitation Over a Conducting Slab

In this Appendix, we consider the electrodynamics of a Halbach
array moving over the slab of a conducting material. We will assume
that the slab thickness (4.) considerably exceeds the skin-depth, so
that one could replace the slab by a conducting half-space.
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The contribution of the conductivity currents to the vector
potential above the track is still determined by equation (A2.9).
Therefore, the problem of finding lift and drag forces is again
reduced to finding of the complex constant C. To do that, we first note
that the vector potential inside the slab satisfies the usual skin-
effect equation [7]

27 .
%y—f—(k2+ﬁl;—w)ﬁ=0 (A3.1)

The solution of this equation, one which exponentially decreases at
negative y 1is:

A = Dexp(qy) (A3.2)
with
g= \/kz +% = \/kz +% (A3.3)

and § being a standard skin-depth as defined by equation (23).

Above the conducting surface (but below the Halbach array)
the vector potential is a linear superposition of equations (A2.8) and
(A2.9),

Al —

_.._.B;rkﬁ ek()“)'l)(l_ e'kd) + Cexp-— k(y —yl) (A3.4)

From the condition that both A and dA/dx should be continuous on
the y=0 surface, one finds that

C= ik—_—gﬂi—e""‘ (1-e™) (A3.5)
k+qg mk

Using equations (A2.11) and (A2.12) and separating the real and
imaginary parts of C, one obtains after some algebra expressions (31)
and (32) of the main text of the report.

Appendix 4
Resistive Losses in the Bus Bars

Consider magnetic fields and currents in the vicinity of the
terminating bus bar, Fig.15. On this figure we do not depict lumped
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inductances and do not show small up and down displacements of
the neighboring conductors required to accomodate these inductive
elements. Under conditions of practical interest, the skin-depth, 9§, in
the bus bar is smaller than 1/k, so that the current in the bus bar, in
terms of its influence on the magnetic field outside the conductor,
can be considered as a surface current. Qualitatively, the pattern of
this surface current is shown by arrows on Fig.16.

The linear density of the surface current can be determined
from conditions

B B,
[ =22 [ =—2 am (Ad.1)
T Hy My

where B is a magnetic field on the surface of the conductor. We
consider a situation when the gap (in x-direction) between the
Halbach array and the bus bars is greater than 1/k. Then the
magnetic field on the bus-bar surface is entirely determined by
expressions (A2.1), (A2.9), with only a contribution from the currents
in the track playing a role.

The magnetic field of the track currents exponentially decays
in the vertical direction, as also do the surface currents. In order not
to increase resistivity, it is desirable to have the height of the bus
bar larger than 1/k. We assume that this condition is satisfied.

As we can neglect the contribution of the Halbach array to the
magnetic field on the surface of the bus bar, the problem becomes
symmetric with respect to the surface of the track. We will consider
only the region above the track. At y>0, the magnetic field can be
presented as

B, =§y exp(—iwt +ikz— ky) + c.c. (A4.2)
B, = B, exp(—iwt +ikz— ky) +c.c.

where B, B, are some constants related to each other through

condition V-B = 0:
f?), = iBZ (A4.3)

In case kd<<l, current inside the skin-layer wvaries
proportionally to exp(-qx), with q=(1+i)/8, and & being the standard
skin-depth, equation (31). Using this observation and relationships
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(A4.1)-(A4.2), one can write the following expression for the current
distribution in the bus-bar:

B
J, = 4 exp(—iot+ikz—ky—gx)+c.c.

a % (A4.4)
Jj, = ———exp(—iat +ikz — ky — gx) + c.c.

Hy

The average power dissipated in the bus bars per unit length of the
track (in z-direction) is:

Ops = 4p]° dxf dy(j2 +J?) (A4.5)
0 0

where p is the resistivity of the track, and the factor “4” in front of
the integral takes into account the presence of two bus bars and the
symmetry of the problem with respect to the horizontal plane.
Simple integrations taking into account relationship (A4.3) yield:

s _8pl%] (A4.6)

To express these losses in terms of resistive losses in the
conductors, we first represent the surface current in the track in the
form:

I, = I, exp(—iat +ikz) +c.c. (A4.7)

and then note that
I _25 (A4.8)
U,y

Resistive losses in the conductors per unit length of the track (in z-
direction) are:

2

~

I

z

=8Rd,"—- (A4.9)

ITh

Py = RA{IY=2Rd,

where R is a resistance of a single (multiwire) conductor. From
comparison of equations (A4.6) and (A4.9) ome sees that the effect of
the Ohmic losses in the bus bars can be described by adding some
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resistance to the resistance of every conductor. This “added
resistance” is

Ryu = (A4.10)

P
kd 6
Appendix 5
Eddy Current Losses in the Track

To be specific, we consider the geometry of the flat track. We
evaluate the dissipation associated with eddy currents which are
present in every separate wire of the conductor. The dissipation of
these currents becomes particulary important when the “net” current
which flows from one end of the conductor to another, is strongly
suppressed, for instance, by large lumped inductances at the ends. In
agreement with reality, we assume that the wire radius a is much
less than the skin-depth (28), so that the wire is penetrated by the
magnetic flux. This flux induces a vortex electric field which
generates eddy currents, Fig.17.

We first find the eddy current dissipation in a single wire
(many of such wires constitute the conductor) in a specific case when
magnetic field intersecting the wire does not vary along its length. If
the magnetic field, in fact, varies along the wire, then our results
could be generalized by the introduction of a simple integration along
the wire length. '

The eddy current pattern in the wire is illustrated by Fig. 17
The direction of these currents is parallel to the wire axis
everywhere except short ( = a) regions near the ends where these
currents get closed across the wire. If we are not considering the
vicinity of the ends, which gives only a small contribution to the
dissipation (because the corresponding volume is small), then, using
Faraday’s law, we can write the following expression for the eddy
current:

B o
j. = Z__Z____ZEY_ (A5.1)
p
The power dissipated in the wire of the length w is
P= ij dydz( jf), per wire (A5.2)
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where the integration is carried out over the wire cross-section and
the angular bracket denotes averaging over the wave period.
Elementary calculations yield:

P= m;’;“’z ((B2)+(B?)), per wire  (A5.3)

Equation (A5.3) solves the problem of eddy current losses in
principle. To make more concrete estimates, one has to have
information regarding the magnetic field strength in the location of a
particular wire. We will make these further calculations for the case
when the lump inductances keep the total current in the conductor
well below its maximum possible value determined by mutual
inductances. This assumption corresponds reasonably well to the set
of parameters for a "flat" track design considered in Sec.VB (L=4.3
microhenrys, L(4)=1.9 microhenrys). In this situation, the magnetic
field created by the currents in the track is small compared to the
magnetic field created by permanent magnets and all the wires are
exposed to the same magnetic field as determined by expressions (4),
(5). In this case Eq.(AS5.3) yields:

4 2
P= ”“4“’“’ B2 exp(-2ky,), per wire (A5.4)
)

The number of wires per conductor is, obviously, dA fIma*.
Therefore, the power dissipated per conductor is '

_ d’'wPo’

P B? exp(—2ky,), per conductor  (AS5.5)

where R=P/(fdA.p) is the resistance of the conductor bundle.

Now we will compare this result with the drag power per
conductor. In case L>>L(d) which we are considering now,

F 2 (m)
Pdra = <_)}- Wdc = BO eXp (—Zky 1 ) K—L_ wdc =
KA Kitg P L

c
2 2

= B—”exp(——Zkyl)

w_, per conductor  (A5.6)
K 2kL

(See relationships (18), (21), (29), (30); in the latter we neglect
mutual inductance term in denominator). Dividing equation (AS5.5) by
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equation (A5.6), we find a convenient expression for eddy current
dissipation vs main current dissipation:

Eddy current dissipation
y P _ K2 do? P

2

= (Kv)*(ka)' 2= (A5.7)
Main current dissipation 2w

For the design parameters discussed in Sec.VB (K=2 s/m, v=500

km/h=140 m/s, Pc/w=1.2, k=12.6 m'l) this ratio is less than 1 for
wires whose radius is less than, roughly speaking, 0.3 millimiters.
The number of wires per conductor in the reference design is then
approximately 2,000.

For thicker wires, eddy currents give a dominant contribution
to dissipation. This, however, may be tolerable because the losses are
still small: we can raise the losses in the track to, say, 30% of the
aerodynamic losses and still remain in the domain of practical
interest. Wires with radius of 1 millimeters (2 mm in diameter)
would become then acceptable. Note that the power dissipation via

eddy currents scales as vZ2 (see (A5.5)) and at somewhat lower
velocities (say, 150 km/h = 43 m/s) becomes quite modest. Also, if it
is economically practical to use strands smaller than 0.3 mm in the
litz wire, eddy current losses can always be made negligible
compared to the resistive losses of the main current.

At high velocities (of order 500" km/h) the mzdepehdence of
the eddy current losses argues for increasing the wavelength of the
Halbach array up to a limit determined by other economic factors.
When the maximum advantage of this scaling has been taken and the
smallest possible strand diameter has been used, the Inductrack
concept can be evaluated versus the use of a uniform conducting
slab, where eddy current losses are confined to the surface of the
conductor. In some special circumstances the efficiency gains from
using the Inductrack system might not be worth the extra
complexity. One should note, however, that the unstructured track is
incompatible with the concept of driving the car by controlled
currents.

One caveat regarding the validity of equation (A5.5): When
deriving it, we assumed that all the wires experience action of the
same magnetic field. This may become incorrect in case of small (or
non-existent) lumped inductances. In such cases the magnetic field
may vary considerably between the upper and the lower sides of the
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conductor (normal to the track). This effect can also be taken into
account by performing integrations over the thickness of the
conductor. We will, however, not present here these tedious
derivations.

Appendix 6
Negative Damping of the Vertical Oscillations of the Car

In all other parts of this report we were considering steady-
state motion of the car over the track. In this Appendix which
somewhat deviates from the general course of this report, we
consider damping of the vertical oscillations of the car. Much more
detailed analyses of the car dynamics will be presented in a separate
report [8]. However, evaluation of the damping rate is so tightly
interwoven with the contents of the present report that we feel it
appropriate to present this particular piece of mechanical analysis
here. To be specific, we consider vertical oscillations of a car moving

with a constant velocity. Somewhat surprisingly, the damping of

vertical oscillations turns out to be negative. In other words,
dissipative processes in the track tend to make these oscillations
unstable. The energy that drives these oscillations comes from the
work exerted on the car by the force that keeps it moving along the
track with a constant speed.

Before evaluating the damping rate, we present a remarkably
simple expression for the eigenfrequency of the vertical oscillations.
For this we note that the lift force depends on the gap (y;) between
the magnets and the track in a universal way (see (22)):

F, = const -exp(~2ky,) (A6.1)

where const does not depend on y;.

In the equilibrium state, the lifting force is equal to the weight
of the car, Mg, where M is the mass of the car and g is gravity
acceleration. We denote the equilibrium value of y by 3 and

consider small deviation & with respect to it :

=5+ (A6.2)




Linearizing the lifting force with respect to &, we immediately find
that
OF, = const - exp(—2ky,) - (—2kdy) = —2Mgkdy. (A6.3)

Inserting this perturbation into Newton equation

Mé&y = &F,, (A6.4)
we find the eigenfrequency Q , of vertical oscillations:

Q, = 7g (A6.5)

Remarkably, the only design parameter that enters this equation is
the wavelength of Halbach array. For k=12,6 m-1 (A=0.5m), this
frequency is approximately 16 s-1 (fo=2.5 Hz).

To proceed with evaluation of the damping coefficient, we
return to equation (1) which we rewrite in the form:

L4 gr=-% (A6.6)
dt dt

According to our previous results, by L here one should understand
the total inductance per conductor (self+mutual) and by R a total
resistance (self+added; the latter appears only for the "flat" track
design). The flux term entering the r.h.s. of this equation is (Cf
equation (7)):

¢ = (Byw/ k)exp(—ky, — kdy)sink(z — vt) = (Byw/ k)exp(—ky,) (L~ kéy)sink(z — vt)
(A6.7)

Our further plan is as follows: We consider a harmonic
perturbation of y,

Oy = Oy, cos(Qs) (A6.8)

and find an expression for the vertical force in this case. In this
expression, in addition to the terms varying as cosQr, we find terms
varying as sinQt. Being phase-shifted by 90° with respect to
displacement, these terms are obviously responsible for the
dissipation of vertical oscillations. From their amplitude, the
damping rate of vertical oscillations can be easily found. This
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approach is good as long as the damping rate of the oscillations is
small compared with their frequency (and we will make this
assumption).

Magnetic flux (A6.7) for y, as in (A6.2), (A6.8) can be presented
as:

¢ =9, {sin(kz —ot)— %k&yo[sin(kz —@,1) +sin(kz - a)_t)]} (A6.9)

where
¢, = (Byw/k)exp(—ky,), o =kv, @, =0 +Q, ©_=0—-Q (A6.10)

We used here trigonometric identity
cosasinf§ = %[sin(ﬁ +a) +sin(f— )] (A6.11)
Integrating (A6.6) with this expression for the flux, one finds:

Bw 1
I=—-2—exp(-k)){————
kL p( kyl){1+(R/coL)2

kSy 1 . R,
5 o TR Ialp |ism(kz -0, o.L cos(kz — a),,t)} - (A6.12)

{sin(kz — Q) — -;;Lcos(kz - a)t)] -

kY, 1 e — i 1) — R cos(hkz—
2 Tt (RI0.L7 [sm(kz w_t) . Lcos(kz co_t)]}

We add suffixes “+” and “-” to resist'c.mce R to show that, generally
speaking, it may depends on frequency (as in the case of the flat
track design where added resistance depends on frequency).

The magnetic field on the surface of the track, according to (4) and
(A6.2), (A6.8) is (up to the terms linear in &y):

B, =B, exp(—k'y'l){sin(kz —t)— %k@o[sin(kz —,t) +sin(kz — a)_t)]} (A6.13)

The average over the wavelength vertical force can now be found
from equations (A6.12) and (A6.13). Retaining only the terms up to
the first order in &y, and up to the first order in R/wL, one finds:
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F, o ( ¥.){1—
—2k5y0 [(sm(kz a) (£)sin(kz — @r)) + (sin(kz — @_t)sin(kz — wt))] -

+ -

R (A6.14)
p” —*(cos(kz — w,#)sin(kz — wt))+w—(cos(kz @_t)sin(kz — o)) |-
wL [(cos(kz at)sin(kz — ,1)) + {cos(kz — wr)sin(kz — @ t))]
To take the averages, one can use relationships (A6.11) and
sinasin ff = %[cos(a —B)—cos(ax + ﬁ)] (A6.15)
As a result, one obtains:
F = Mg[l 2kdy, cosQt +—=2 koy, 0 ( )Qstt:lE
L) L do\w (A6.16)
Y
ow
Here we used an approximation
R _R _ zgi(ﬁ) (A6.17)
0, o Jo\w

which implies that the oscillation frequency, Q, is much less than the
frequency of the current in conductors, m=kv.

Strictly speaking, our derivation pertains only to an infinitely
long Halbach array. One can show, however, that it remains valid for
relatively short arrays comprising several full wavelengths. We will
not present here these rather lengthy derivations.

Substituting the perturbed part of the force into equation
(A6.4), one finds an equation for small vertical oscillations, taking
into account dissipative processes:

kg o

o+ T %0 ( )5y 2kgdy =0 (A6.18)
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Assuming that the damping rate y is small, one easily finds the
following expression for y (we define y according to relationship

Oyecexp(-11).):

kg 0 (R)
==—]= A6.1
v 2L o\ @ (A6.19)

For the window-frame design, in which resistance does not
depend on frequency, one obtains:

g 1 ,
=—=__ A6.20
4 2v Kv ( )

where K is a parameter defined by equation (18). As has been
already mentioned, the damping is negative, i.e., the system is
unstable.

The condition for applicability of our derivation requires that
the growth-rate should be small compared to the eigenfrequency of
the oscillations, equation (A6.5). This imposes the following
constraint on the velocities for which equation (A6.20) is valid:

v>(g/2K)"*(2ke)™"" (A6.21)

For K=2s/m and k=12.28 m™' (A=0.5 m), the r.h.s. of this inequality is
approximately 0.35 m/s, that is, it is even lower than the critical
velocity 1/K. In such a situation, the applicability condition for our
analysis is just

v>1/K (A6.22)

For high speeds the growth rate of the instability, given by
equation (A6.20), is very small and it can be easily stabilized, for
example, by damping elements situated in the car. At slower speeds,
in particular at the speeds not much greater than “critical” speed 1/K,
without damping the growth rate would become significant.
However at these speeds the back-up wheels will be engaged,
damping the growth until inboard damping elements take over at
higher speeds. Generally speaking, as the instability manifests itself
only at low speeds, where many additional stabilization techniques
based on the touch-down elements can be used, it should not be of
serious concern.
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The full dynamics of the system depends on the characteristics
of the driving force. In the example we considered, this driving force
was such as to provide constant-v motion of the car. In other
situations, for instance in case when the driving force is constant,
there will occur a peculiar coupling of the translational motion and
vertical oscillations. This and the other issues of the similar nature
will be considered in our forthcoming report [8].

Appendix 7.

Optimization of the Ratio of Levitated Weight Relative to
Magnet Weight

In some applications of the Inductrack concept, for example in
its use in a high-speed test track, it becomes important to maximize
the ratio of the levitated weight to the weight of the magnets. For
such applications the Lift/Drag ratio may be a less important
parameter, so that maximizing the lift through elimination of extra
inductive loading is an appropriate path. In this case the use either
of a "flat track" design or of a conductive surface can be considered,
as these permit maximization of the lifting force per unit area. We
here consider the problem of maximizing the ratio of levitated
weight relative to the weight of the magnets in the Halbach arrays
through optimal choice of the thickness, d m., of the magnets, of the
number of magnet segments, M, per wavelength, and of the
wavelength, A m., of the arrays. '

For the case of an optimized "flat" track, equation (29) gives an
expression for the force per unit area in the limit of high speed (wL/R
>>1):

2

Z<Fmax> B

—— = u_o exp(-2ky; - kA,) N/m (A7.1)
0

Here B, is defined as before, in terms of B, d, and M, through the
expression:

sin(nw/M)
By=[1 - exp(-kd)] [—T;/‘M—] B, Tesla (A7.2)
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The magnet mass per unit area is given by pd kg/m. It follows that
we can write for the ratio of the levitated weight to the magnet
weight the following expression:

2
Wt. lev. B k [sin(n/M)

2
Wt. Of mag. = uogp E/M ] G(kd) CXP(-Zkyl- k-Ac) (A7.3)

where

, .
G(x) = “'exf:(’x)] (A7.4)

The function G(kd) describes the competition between the increased
levitation that accompanies the use of thicker magnets and the
increased mass of magnet material associated with thicker magnets.
As shown in Fig. (18) this function varies only slowly in the vicinity
of its maximum value (0.4073) which occurs at kd = 1.256 (i.e., at a
magnet thickness corresponding to 0.1999 Ai). It remains within 10
percent of its maximum value between kd = 0.7 and kd = 2.1, ie., a
factor of 3 in kd values between the extremes. Values of kd near the
lower limit imply the need for larger areas of magnets to accomplish
the same lifting force (relative to the optimum value); kd values
near the upper limit imply the opposite.

. If we now choose M = 8 (to appfoach the maximally efficient
Halbach array: M — o), insert the density, p = 7500 kg/m, adopt the
maximum value for G(kd), and insert the other constants into
equation A7.3, we then arrive at an expression for the maximum
value of the ratio of levitated weight to magnet weight given by:

2
Wt. lev.] [Br]
o = 26.31 | = |(expl-2k(y,-A/2)]  (A7.5)
[Wt' mag-lnax(kd) A toe

In any given application there remains one more parameter to
vary in order to achieve the maximum possible value of this ratio.
This parameter is the wavelength of the Halbach array, which
appears in two places in the above equation, namely, in the
denominator and in the exponential term, through k = 2m/A. We will
illustrate this last optimization for the case that gives the maximum
possible value of the parameter, i.e., when the Inductrack is replaced
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by a conducting surface, represented by setting the term A= 0. Here
our equation for the maximized ratio as function of A and y; becomes

Wt. lev.} 2
= = 26.31 B_H(A,y,) (A7.6)
[Wt. mag. | kd) r 1
where
HAy)) = {exp[-4ny1/7t]}/7» (A7.7)

For a given value of y,, the maximum value of H(A,y;) occurs at a
wavelength

[A] 4wy, m. (A7.8)

optimum

The corresponding maximized value of H(A,y;) is therefore
[H(A,y 1= exp(-1)/(4my,) = .02928/y, (A7.9)

Inserting this optimized value into equation (A7.6) we therefore find

t. lev.
[E_zv_ = 0.7702 B/y, (A7.9)

Wt. mag ’jlmax(kd,x)

There is now available a NdFeB magnet material for which B, =

1.41 Tesla. If we insert this value into equation (A7.9) we find an
expression for the best ratio of levitated weight to magnet weight
that is presently achievable for the system we have described. This
value is

[Wt. lev.

= 1.53/y (A7.10)
Wt. mag']max(kd,l) 1

The value of y; that can be used will depend, of course, on the

application. For a high-speed test track a typical value might be .03
m. In this case we find for the optimum wavelength
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the value [A] = 4ny,= 377 m, and for the ratio of levitated

optimum™
weight to magnet weight the value

Wt. lev.
[__ev_ sy

wt. mag']max(kd,x)

Thus to sustain a downward force of, say 5 metric tonnes
(11,000 Ibs) would require Halbach arrays weighing a total of 98
kilograms. The maximum upward force that these arrays could then
exert (for a magnet-to-track gap, y;, approaching zero) would be,

from equation A7.6, equal to 13.6 metric tonnes (30,000 Ibs.).

For the case of a flat Inductrack where the vertical depth of the
conductors of the track is a fixed fraction of the wavelength, i.e.,
where A, =€, the optimum wavelength remains the same as before,

but the expression for the ratio of the levitated weight to the magnet
weight is multiplied by a term exp(-2me) so that we have

Wt. lev.
[———e‘i— = 1.53 [exp(-2me)/y,] (A7.11)

Wt. mag :]max(kd,l)

For the case considered before, with ¢ = 1/16, and for y; = .03
m., we then have

Wt. lev.
[——lev = 34.4

Wto mag ‘]max(kd,x)

Because of the exponential dependence of this ratio on the
thickness of the conductor it may be advantageous in some situations
to use a smaller value of A, in return for a closer approach to the

limiting value. For example, choosing € = 1/32 results in a value

Wt. lev.
[——ﬂ— = 46.2

Wt. mag -:lmax(kd,?»)

which is 91 percent of the limiting value, while still retaining a much
higher value of L/D at high speeds than that for a conducting surface.
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Appendix 8.
Traction System

We remind the reader that the lumped inductance incorporated
into every conductor is conceived as a cylinder of a high-p material
(made of thin laminations, to reduce eddy current losses) which
(cylinder) surrounds a short section of a conductor (see Figs. 2, 5).
We now assume that each cylinder is threaded with another winding
attached to the external source of voltage which creates a periodic
electromotive force

E=Egsin(wt+) (A8.1)

with the frequency coinciding with that excited in the conductor by
the moving car. In other words, we assume that the equality o=kv
holds. For the first rough assessment, we characterize this external
circuit by its resistance r and do not include possible capacitive or
(additional) inductive elements which may be present in this circuit.
We also assume that inductive coupling between the two circuits is
perfect. This means that, if the flux (through the laminations) linked
with the current in the track conductor is ¢, then the flux through the
external circuit is N¢ where N is the number of turns of the external
winding (Fig. 19).

The circuit equations describing interaction of the two circuits
are:
(L+L“) +RI =-¢-NLI,
. ) ‘ (A8.2)
N(NLL,,, + LI)+11,,, = Eysin(et + ¢)
here ¢ is the magnetic flux induced by the Halbach array, ¢ = ¢,sin(ar)
(Cf. equation (1)), while I, is a current in the external circuit. By L
we mean the lumped inductance (as in equation (1)) and by L the
distributed inductance, equation (21).1In the case of small Ohmic
losses (which is of maximum practical importance), resistive terms in
these equations can be neglected in the first approximation. Then
equations (A8.2) yield:

_ @gsinax E,cos(ax+ )
@ @

_@psinax E, (1 1
o =TT _a)Nz L‘"’+_I_, cos(@t + @)

I=
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Using relationships (4), (5) and (9) and taking the average, one finds
for the force per conductor:

2.2 A
BO w —2ky, —kA,. EOBOW ~ky —k—

E)= 2 sin
< y ) ZkL(d) 2NL“”a) ¢ ¢ ( AS .4)
(F) = EOBOW ~ky 'k% cos
@ INI[Dw ¢

Maximum traction force <F,> corresponds to the phase shift ¢ =0. One
can note in passing that in this case there is no interference between
the lift and the traction force.

External voltage in the neighboring external circuits (exciting
the neighboring conductors) should have a relative phase shift equal
to 2r divided by the number of conductors per wavelength (16 in
our base case discussed on p.15). This means that a multi-phase
power supply system will be required. Use of an 8-phase power
supply, with the voltage for two neighboring circuits having the same
phase, is also conceivable (if a 16-phase power supply poses too
challenging of an engineering problem).

The maximum traction force corresponding to the phase shift
¢ =0, can be conveniently related to the lifting force:

(E)
(F)

For the parameters of the Grumman design of the car, the ratio of the
aerodynamic drag to the weight is approximately 0.13 (7 tonnes vs
50 tommnes). For By~I T, v~150 m/s, w=Im, the required
electromotive force E, which can be evaluated from equation (A8.5),
is in the range of 50 V.

E 0 kyy +IcA

2 ' (A8.5)

=0
= vwB,

To make the system stable with respect to possible slight
variations of the drag force, one should operate the system at ¢
different from zero. For ¢=30 degrees, the reduction of the traction
force is approximately 15% with respect to the maximum value.

The phase velocity of the driving wave should closely concide

with the velocity of the car - otherwise the “sliding” of the wave with
respect to the car will occur. The upper limit of the velocity
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mismatch can be evaluated from the condition

Av<<(drag force/car weight)"*(g/k)" (A8.6)

For drag/weight =0.13 and the wavelength A=1m, one finds that the
r.h.s. of the inequality is equal to 0.4 m/s.

Generally speaking, the presence of the external circuit affects
the lift and drag forces. For instance, the first of the equations (A8.4)
shows that the lift force contains now only the distributed inductance
L and not the total inductance as was the case when there was no
external circuit.(Cf. equation (22)).

Now we evaluate the Ohmic losses in the system. Assuming
that the they are small, one can find them from a simple expression:

B,.=R(I")+r(L,) (A8.7)

(per conductor). For small drag/weight ratios, one can neglect the last
terms in the expression (A8.3) compared to the first ones, thereby
arriving at the following expression for the losses:

P —¢—§(R+l-) (A8.8)

loss — 2 [@D2 N2 :
The presence of the factor I/N° in the term responsible for the Ohmic
losses in the external circuit shows that a relatively high resistance
of this circuit is permitted; accordingly, the use of litz wire may be
unnecessary in the external circuit.

In case of the “flat” track design, the current providing the
traction force can be excited directly (not inductively) through the
cuts in every conductor, as shown in Fig. 20. Expressions equivalent
to equation (A8.4) in this case read:

A
Sy iy Be
(F;) = W—B"€—(Bovwe EE Eysin go]
2Lw
(A8.9)
~ky —~F
wB,Ee 2
E)=—"3"%_____cos
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In both schemes, the traction force depends on the distance
between the car and the track. This shows that, generally speaking,in
the stability analysis of the car motion, one should take into acount
the coupling between vertical and horizontal oscillations.

The scheme for a power supply to the traction circuits could be
as follows: There could be a power line (Dc or 60 Hz) along the track;
the feeds from it could be branched to the sections of 2-3 car
lengths (for a 30 m car, every 60-100 m), containing a few hundreds
of track conductors and external circuits. FEach section should be
engaged just before the car enters it and be disengaged as soon as
the car leaves it; every section should have a converter that would
provide a periodic voltage of a desired frequency and amplitude
during the passage of the car.

One could also use an alternative system in which capacitive or
inductive energy storages would be attached to every section of the
track. One could then charge them slowly in advance, when the car 18
approaching, and discharge them quickly, through the LC contour
which would allow to adjust the frequency of oscillations (tunable
elements will be required; mechanical tuning is probably possible).
One should remember that for the friction force of 70,000 N
(discussed in the text), one should store approximately 70 kJ of
energy per one meter of the track. Cost-wise, this would probably
give an advantage to the inductive energy storages.

Appendix 9:
Minimum Value of the Design Parameter, "K"

The parameter K, Newtons/Watt (or sec./m.) is an important
quantity in the design of Inductrack systems. It is defined, through
Equation (18) of the text and what follows, by the relationship

2m [L+L@]

K AR

Newtons/Watt (A9.1)

Here, as noted before, the inductance term includes both the
inductance added to each circuit by ferromagnetic elements, L, and

the distributed-inductance term, L(4), arising from the
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presence of adjacent circuits. The term L(9) is defined by Equation
(21) of the text

1oP,
d) _ 0 c
(d) = 2kd_ hy (A9.2)

Here P, is the perimeter of a coil, and d; is the axijal length of the
conductor bundle of the coil.

In the design of an Inductrack system it is important to
determine the minimum value of the parameter K, occuring when
there is no added inductive loading. Thus we have

2xL.(d)
Kpin = R Newtons/Watt (A9.3)

This quantity is also useful for determining the maximum
lifting force obtainable from an Inductrack system, as compared to"
the theoretical maximum (see Equation 30 of the text).

The expression for K . can be simplified, and made easier to

n

apply, if we insert the definitions for L(4) and R into Equation
(A9.3). The resistance term, R can be defined in terms of the length
of the circuit, P, (m.), the axial length of the circuit, d (m.), its depth,

A, (m.), and the resistivity, p (ohm-m.), and the packing fraction, f, of
its windings. We have

R= ohms (A9.4)

Inserting these definitions into Equation A9.3 we find the
expression:

leOfAc
Kmin = 2 p

Newtons/Watt (A9.5)

Note that K_. is independent of the overall scale of the system,

depending only on the packing fraction and depth of the windings
and the resistivity of the material from which they are fabricated.
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As an example, consider an Inductrack system made of copper
windings (p = 1.7 x 108 ohm-m.) with a packing fraction f = 0.8 and
a depth, A_, of 0.03125 m. (as in the examples summarized in Section
VII). From Equation A9.5 we then find K ;, = 0.92 Newtons/Watt.
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TABLES
TABLE 1

Parameters of the Inductrack system for several design
options for the case K=1 s/m.

Window- Window- Window- Flat, Flat,
frame, frame, frame, copper aluminum
copper aluminum aluminum
Spatial period of the Halbach | (.5 0.5 1.0 0.5 0.5
array, A, m
Perimeter of 3.0 3.0 3.0 1.2 1.2
the conductor, P, m
Weight of the | 0.67 0.2 0.2 0.27 0.081
conductor, T/m
Resistance of the 65 105 105 26 42
conductor, R, fOhm
Added resistance of the bus-
bars at the speed v=140 m/s, 0 0 0 11 11
RAdd ’ uOhm
Distributed inductance, L[ 4.8 4.8 9.6 1.9 1.9
uHy )
Lumped inductance, 04 3.6 7.2 0.2 1.5
L, pHy
Liftizng force at high speed,| .2 9.3)] 3.8 3.2 15.1 973
T/m™) (5.7) (4.8) 27.7) {139

*) Shown in brackets are the values of lifting force for a more advanced Halbach array, with M=8 and B,=1.41 T
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TABLE 2

Parameters of the Inductrack system for several design
options for the case K=2 s/m.

Window- Window- ‘Window- Flat, Flat,
frame, frame, frame, copper aluminum
copper aluminum aluminum
Spatial period of the Halbach | (.5 0.5 1.0 0.5 0.5
array, A, m
Perimeter of 3.0 3.0 3.0 1.2 1.2
the conductor, P, m
Weight of the 0.67 0.2 0.2 0.27 0.081
conductor, T/m'
Resistance of the 65 105 105 26 42
conductor, R, ptOhm
Added resistance of the bus-
bars at the speed v=140 m/s, | () 0 0 11 11
Raga > HOhm
Distributed inductance, L | 4.8 4.8 9.6 1.9 1.9
pHy
Lumped inductance, 55 11.9 1 23.9 2.3 4.8
L, pHy
Liftzing force at high speed, | 3.1 (4.7)| 1.9 1.6 7.6 4.7
tm (2.9) (2.4) (114 | @.1)

*) Shown in brackets are the values of lifting force for a more advanced Halbach array, with M=8 and B,=1.41 T

‘ 60




References

. RF. Luerkin, “Trans Rapid - The First High-Speed Maglev Train
System Certified and Ready. for Application: Development Status
and Prospects for Development”, Proceedings of the Second
International Symposium on Magnetic Suspension Technology,
Seattle, Washington, August 1113, 1993, NASA Conference
Publication, 3247, Part 5, p.77.

. JR. Powell and GR. Danby, “Magnetic Suspension for Levitated
Tracked Vehicle”, Cryogenics, Vol. 11, (1971) pp- 192204.

. R.F. Post, “Magnetic Levitation System for Moving Objects” (patent
pending).

. S.S. Kalsi, “Superconductive Electromagnetic Suspension for
Grumman Maglev Concept”, Proceedings from the Second
International Symposium on Magnetic Suspension Technology,
Seattle, Washington, August 1113, 1993, NASA Conference
Publication, 3247, Part 5, p.197.

. R. Halbach, “Application of Permanent Magnets in Accelerators
and Electron Storage Rings”, Journal of Applied Physics, 57 (1985)
3605.

. S.S. Kalsi, “Superconductive Electromagnetic = Suspension for
Grumman Maglev Concept”, Proceedings from the Second
International Symposium on Magnetic Suspension Technology,
Seattle, Washington, August 1113, 1993, NASA Conference
Publication, 3247, Part 5, p.197.

. J.D. Jackson, Classical Electrodynamics, Wiley, (1975).

RF. Post and DD. Ryutov, “The Inductrack Concept: Linear
Stability Theory” (in preparation).

<

61




Fig 1

Fig.2

Fig.3

Fig.4.

Fig.5

Fig.6

Fig.7

Figure Captions

(Sec. II, p.6) Schematic representation of the Inductrack
concept.

(Sec.IV, p.7) Schematic of the “window-frame” track design.
The Halbach array will be situated above y=0 plane and will
move in z-direction, parallel to the track surface. Shown in
dotted 1lines are inductive elements enclosing every
conductor. To provide space for this elements, the lower
parts of neighboring conductors are shifted in the vertical
direction with respect to each other.

(Sec.IV, p.8) Periodic array of permanent magnet bars

(Sec.IVA, p.9) The equivalent circuit of one circuit of the
Inductrack circuit

(Sec.VB, p.22) Schematic of the “flat” track design. Shown are
two of the conductors forming the track. The ends of the
conductors are slightly bent in opposite directions to provide
space for accomodating the rings of the laminated high-p
material (lumped inductances). The bus bars are shown as
flat surfaces at the left and at the right.

(Sec.VB, p.22) Litz-type structure of the conductor for the
“flat” track design. Shown are two of many hundreds or even
thousands of insulated wires which wonder between the
upper and the lower surface of the conductor. The scale is not
observed: the transverse dimension of the conductor is
exaggerated. In reality, the wires will form a considerably
smaller angle with the horizontal direction. Two wires (thin
solid and dashed lines on the figure), in the points of their
apparent intersection are, in fact, slightly displaced with
respect to each other in the direction normal to the figure.
This type of winding forces the average current (averaged
over many wires) to be almost uniform over the conductor.

(Sec.VC, p.25) The track in the form of a conducting slab. Slab
thickness, A, is assumed to be greater than the skin-depth 8.
The width of the slab is greater than the width of the
Halbach array.
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Figs.8a and 8b

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig.15

(Sec.VC, p.25) Velocity dependence of lift force and lift-to-
drag ratio in the “slab” design. It is assumed that the track is
made of copper and the wavelength of the Halbach array is
A=0.5 m. The vertical line corresponds to the velocity v=2.2 m
at which the skin-depth & becomes equal to the slab
thickness (A, = A/16)

(Sec. VII, p.29) The velocity dependence of the lift-to-drag
ratio for two Inductrack cases (K = 3.0 and K = K

compared to that for a conducting plate.

min)

(Sec. VII, p.29) The velocity dependence of the levitation
force vs its limiting value (for v >> v, ... for the case K =

Kmin'
(Sec. VII, p.29) The velocity dependence of the levitation
force ys its limiting value (for v >> v, on fOr the case K =

3.0. Note the low value of the transition speed (1.2 km/hr).

(Sec. VII, p.29) Plot of the decrease of levitation force with
height above the Inductrack, for the case A = 1.0 meter.

(Sec. VII, p.29) Block graph plot of the power required for
levitation for three cases: (1) an Inductrack with K = 3.0, (2)
an Inductrack with K = K., and, (3) a conducting plate track.

(Sec. VII, p.29) Block graph plot of the maximum levitated

mass in tonnes/m? for (1) a conducting plate, (2) an
Inductrack with K = K and (3) and Inductrack with K =

3.0. For comparison the calculated value of the mass/m? of
the Halbach array magnets (for magnets A/4 in thickness) is
also shown. In these plots the wavelength is 1.0 meter and
the value of B is 1.0 Tesla.

(Appendix 4, p.38) Cross-section of M=4 Halbach array. The
array is moving in the direction z>0. Double arrows indicate
the directions of magnetization of every rod; encircled dots
and crosses indicate the direction of the magnetization
current.

min?
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Fig.16

Fig.17

(Appendix 4, p.39) Schematic of the zone where the track
surface intersects the bus-bar. Both the track thickness and
small bends of the ends of the conductors (see Fig.5) are
neglected on this figure. Arrows show the current pattern.

(Appendix 5, p.41) Towards evaluation of the eddy-current
losses in the separate wires. Shown on the figure are strongly

~ magnified meridional (above) and equatorial (below) cross-

Fig. 18

Fig. 19

Fig. 20

sections of the separate wire in the flat-track conductor. We
neglect small wiggles of the wire in y-direction (Fig. ) and
present a model of the wire “rectified” in the x-direction.
Small deviations of a real wire from a straight line give rise
to corrections of order a’<<l where a is an angle of a
particular stretch of the wire with respect to axis x (Fig. ).

(Appendix 7, p.50) Plot of the function G(x) encountered in
the maximization of the levitated mass relative to the mass
of the magnets.

(Appendix 8, p.53) Inductive excitation of the traction force.
External electromototive force E,sin(ot+¢) is applied to a

circuit which is threaded N times through ferritic laminations
(the latter serve also as a lumped inductance for the
levitation current).

(Appendix 8, p.55) Direct excitation of the the traction force
in the flat-track design. External electromotive force

E,sin(wt+¢) is applied to the cut in the conductor. The exact

location of the cut is not important and can be chosen to
satisfy other possible design/economics constraints.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
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