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Introduction
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Introduction – BLUF

• This lecture covers deterministic particle transport
• Deterministic: non-random, reproducible, implies discretized equations
• Particle: describing the behavior of (an aggregate of) free particles, not fluids or 

materials
• Transport: rooted in Boltzmann’s kinetic theory of gases, distribution of particles is 

not fully described by a Maxwellian or Planckian distribution

• This lecture does not cover:
• Non-neutral (i.e., charged) particles – equations and methods get too complicated for 

an intro course
• Neutral particle examples: neutrons, gamma rays, thermal photons via thermal radiative 

transfer (TRT)
• I will primarily talk about neutron/gamma (n/γ) transport in this talk, but most is applicable to 

TRT as well
• Monte Carlo methods – some information in passing, but that is another lecture
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Introduction – Some Context

• Transport is a big part of the Lab’s computational efforts
• ASC-IC-Transport funds four teams that primarily focus on transport methods and 

code development – PARTISN, MCATK, Jayenne, and Capsaicin; >25 staff + 
additional support + students

• Additional transport code teams, namely MCNP, outside(ish) of ASC Transport aegis
• Huge user base of LANL-developed transport codes internally and externally

• Transport team members have a diverse educational background – typically 
nuclear engineering, astrophysics, and mathematics

• Historically, many, if not most, transport methods and discretization schemes 
used at LANL were developed at LANL, by scientists in academia with LANL 
connections, or elsewhere in the DOE complex
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Introduction – Shielding Example

Collimated 
Neutron Source

Shield
Worker

Q: What are the relevant 
components of this system?
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Introduction – Shielding Example

Collimated 
Neutron Source

Shield
Worker

Q: What are the relevant 
components of this system?
A: Free neutrons and atomic 
nuclei

Velocity Vectors
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Introduction – Shielding Example

Collimated 
Neutron Source

Shield
Worker

Q: What are the relevant 
components of this system?
A: Free neutrons and atomic 
nuclei

Atomic nuclei are isotropic in 
direction of travel and 
Maxwellian in energy – treated 
as a fluid
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Introduction – Shielding Example

Collimated 
Neutron Source

Shield
Worker

Q: What are the relevant 
components of this system?
A: Free neutrons and atomic 
nuclei

Free neutrons are 
monodirectional and 
monoenergetic – must 
be treated 
kinematically and 
tracked as particles
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Basic Nuclear Physics
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Basic Nuclear Physics – Microscopic Cross Sections

• In our example, how do we determine if a neutron interacts with a nucleus?
• We use a probabilistic quantity called the “microscopic cross-section”, σ, 

which has units of area (1 barn = 1e-24 cm2)
• Units of area are merely an abstraction, but a useful one – larger the effective size of 

a nucleus, the higher the probability of interaction (nucleus is not physically bigger)

Small σ = Small Probability of Interaction Big σ = Large Probability of Interaction

Microscopic cross sections are specific to a nuclide and 
change with the energy (i.e., temperature) of the nucleus 
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Basic Nuclear Physics – Macroscopic Cross Sections

• We are not really interested in whether a single neutron interacts with a single 
nucleus – we are interested in whether an aggregate of neutrons interact with 
an aggregate of nuclei

• The microscopic cross section, σ, is averaged over nuclei locally to get a 
”macroscopic cross section”, Σ, which has units of inverse-distance (cm-1)

Σ =#
!

𝜌!𝑁"
𝑀!

𝜎!

• A “mean-free-path” (mfp) is the average distance between interactions
• Typical neutron mfp’s are ~1 cm

• Analogous quantity called “opacities” in TRT

• i – nuclide
• ρi – mass density of 

constituent nuclide in material
• NA – Avogadro’s number
• Mi – atomic mass of nucleus

Notation note: 𝜎 is often used as macroscopic 
cross section, too, especially in TRT
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Basic Nuclear Physics – Interaction Types

• Every interaction type has its own cross section; total cross section, Σ#, is the 
summation of cross sections of all interaction types

Σ# =#
$

Σ$

• Neutron interactions fall into two basic categories: scattering and absorption

where x is an 
interaction type

Scattering Absorption

• A neutron hits a nucleus causing a 
change in direction and energy

• Scattering may be elastic or inelastic
• The event may liberate additional 

neutrons/particles

• A neutron hits a nucleus and is captured, incrementing 
the neutron number of the nucleus by one

• The nucleus is left in an excited state
• The nucleus may fission or otherwise release one or 

more neutrons, but still considered an absorption event
• Other forms of radioactive decay or particle emission 

may occur, too
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Basic Nuclear Physics – Energy Dependence

From nndc.bnl.gov/sigma

U-235

O-16

U-238

H-1

resonances

• Cross sections are a function of incoming neutron 
energy

• Generally, cross sections decrease with increasing 
incident energy, but it’s complicated…

• “Resonances” are maxima and minima in the 
cross section that arise from many possible 
excited states of compound nuclei

• This will become very important when we 
get to modelling
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Basic Nuclear Physics – Interaction Type and Energy

From nndc.bnl.gov/sigma

• H-1 is the simplest nucleus, just 1 proton
• Scatter is up to 5 orders of magnitude more 

likely than absorption
• From a design perspective, different materials 

provide different properties that can be 
beneficial or detrimental

• Neutron shielding often uses 
hydrogenous material (e.g., water or 
polyethylene) to slow down (de-
energize) neutrons via scatter to make 
them easier to absorb

• The same strategy is used for better 
neutron detection

H-1 Absorption (n,γ)

H-1 Scattering (elastic)

Factor 
of 105
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Basic Nuclear Physics – Interaction Type and Energy

From nndc.bnl.gov/sigma

• U-235 is a complicated nucleus
• 92 protons and 143 neutrons
• Is fissile (no threshold for fission)
• Has endothermic reactions like (n,2n)

• The Big Picture:
• Cross sections are complicated – multiple interaction 

types, complicated dependence on energy, etc.
• Scattering is especially complicated – dependent on 

incident and resultant neutron energies, plus 
anisotropy

• “Opacities” are the analogous quantity for thermal 
photons

• XCP-5 nuclear data team processes cross sections 
and gives us data we can use in transport codes

U-235 Fission (n,f)
U-235 Capture (n,γ)

U-235 Scattering

U-235 (n,2n) 
Scattering

Fission – a neutron collides with a nucleus causing 
it to split into multiple nuclei and release 
additional particles like gamma rays and neutrons
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Basic Nuclear Physics – Determinism

Collimated 
Neutron Source

Shield
Worker

Q: Do we know exactly how 
many neutrons will reach our 
worker?

Velocity Vectors
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Basic Nuclear Physics – Determinism

Collimated 
Neutron Source

Shield
Worker

Q: Do we know exactly how 
many neutrons will reach our 
worker?
A: NO – it is random!

Velocity Vectors
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Basic Nuclear Physics – Determinism

Collimated 
Neutron Source

Shield
Worker • Neutron emission is given by 

a rate – merely describes the 
average behavior

• Neutron energy and 
direction of travel (when not 
collimated) also belong to a 
distribution

• If source is from fission, 
number of neutrons emitted 
per event is also a 
distribution

Q: Do we know exactly how 
many neutrons will reach our 
worker?
A: NO – it is random!

Neutron energy spectrum 
from thermal fission of U-235

Prelas, Mark & Weaver, Charles & Watermann, Matthew & Lukosi, Eric & Schott, Robert & Wisniewski, Denis. 
(2014). A review of nuclear batteries. Progress in Nuclear Energy. 75. 117–148. 10.1016/j.pnucene.2014.04.007. 
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Basic Nuclear Physics – Determinism
Shield

Worker
Q: Do we know exactly how 
many neutrons will reach our 
worker?
A: NO – it is random!

All probabilistic:
• Whether an interaction occurs
• What type of interaction occurs
• Resultant properties of the target 

nuclei, incident neutrons, and any 
production particles
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Modelling
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Modelling – Monte Carlo Approach

• There are two competing complementary ways to figure out what particles are 
doing – Deterministic and Monte Carlo

• Monte Carlo follows a neutron over the course of its life, using a random 
number generator to sample from distributions to make decisions as to what 
the particle will do while it is alive

• particle birth location, 
time, energy and direction

• whether/where a 
particle interacts

• what type of interaction

• resultant neutron properties
• resultant nuclide properties

could have happened, 
and may for the next 
sampled particle
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Modelling – Monte Carlo Approach

Pros:
• Highly tunable to a specific quantity 

of interest
• No need for complicated meshing
• Can use continuous-energy cross 

sections
• Arguably more intuitive to understand
• User feedback on solution quality 

through statistical metrics
• “Embarrassingly” parallel

• Many (106-1010) source particles (𝑁%&'#.) are modeled to obtain an average behavior 
of the aggregate of particles

Cons:
• Computationally intensive – variance 

scales as 1/ 𝑁%&'#.
• Full phase-space solution requires 

many particles and lots of 
sophisticated “tricks”
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Modelling – Deterministic Approach

• Rather than follow around individual particles, model the average behavior of 
particles in a continuum of phase-space
• In order to be accurate to real-life, the system must be adequately characterized by 

the mean – many particles must be present

• The neutron distribution is represented by:

• The total number of particles in a differential 
spatial element 𝒅𝒓 about 𝒓, a differential energy 
element 𝒅𝑬 about 𝑬, and a differential solid angle 
element 𝒅𝜴 about 𝜴 at time 𝒕

𝑵 𝒓,𝛀, 𝑬, 𝒕 𝒅𝒓𝒅𝜴𝒅𝑬



256/14/24

Modelling – BTE: Assumptions 1/2

• Can use Kinetic Theory of Gases, statistical mechanics, and Newton’s Laws to 
derive the Boltzmann Transport Equation (BTE)

NOTE: questioning these assumptions produces much of the cutting-edge research of our transport teams!
1.  Particles may be described as points

• On average, particles travel many interatomic distances between collisions

2.  Particles travel in straight lines between point collisions
• Particles are neutral
• Atomic radius << interatomic distance

3.  Collisions and absorption/reemission (fission, scattering) events occur instantaneously
• Prompt fission neutrons are emitted 10-4-10-5 ns after absorption

4.  Delayed neutrons may be neglected
• Not necessary, but it simplifies the equations
• Delayed neutrons only account for 0.2-0.7% of fission neutrons, depending on target nuclide

5.  Particle-particle interactions may be neglected
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Modelling – BTE: Assumptions 2/2

6. Material properties are isotropic
• Anisotropy can still exist, but only in a relative sense

7.  Neutron decay can be neglected
• Neutron half-lives are ~12 minutes, neutron lifetimes are much less

8.  The distribution function can be adequately characterized by the mean
• We have enough particles for “good” statistics
• Also not a requirement – while we never model individual particles with deterministic methods, we can derive equations that model the 

broader statistical behavior of the distribution

9.  Assume the material is at rest
• Also not a requirement, but makes the equation and algorithm for solving it much easier

10. External forces (e.g., gravity) can be neglected

and more…
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Modelling – Heuristic Derivation of BTE

• For a differential element centered about a given point in phase space, a statement of particle 
balance is made

change in particle number = production of neutrons – loss of neutrons
𝑑𝑁
𝑑𝑡 𝑟, Ω, 𝐸, 𝑡 = 	 𝐺̇ 𝑟, Ω, 𝐸, 𝑡 	− 	 𝐿̇ 𝑟, Ω, 𝐸, 𝑡

• Production:
1. Fission: 𝜈̅ neutrons emitted on average
2. (n,xn) reactions: energy absorbed in neutron capture liberates x neutrons
3. Source: boundary or volumetric source independent of processes in BTE

• Loss:
1. Capture: particle is captured by material, regardless if one or more particles are later emitted by the excited nucleus
2. Leakage: particles exit the domain of interest

• Redistribution (shifting between phase-space elements):
1. Streaming: particles travel the domain in straight lines with constant momentum
2. Scattering: collisions with material nuclei cause a change in momentum
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Modelling – The BTE in “Numbers”

𝜕𝑁
𝑑𝑡 + Ω ⋅ ∇𝑣 𝐸 𝑁 𝑟, Ω, 𝐸, 𝑡 + Σ# 𝑟, 𝐸, 𝑡 ⋅ 𝑣 𝐸 𝑁 𝑟, Ω, 𝐸, 𝑡 =

@
)

*
𝑑𝐸+@

,-
𝑑Ω′ Σ. 𝑟, 𝐸+ → 𝐸,Ω+ ⋅ Ω, 𝑡 ⋅ 𝑣 𝐸+ 𝑁 𝑟, Ω+, 𝐸+, 𝑡 +

@
)

*
𝑑𝐸+ 𝜈̅Σ/ 𝑟, 𝐸+, 𝑡 𝜒 𝐸+ → 𝐸, 𝑡 ⋅ @

,-
𝑑Ω′ 𝑣 𝐸+ 𝑁 𝑟, Ω+, 𝐸+, 𝑡 + 𝑄 𝑟, Ω, 𝐸, 𝑡

• 𝐸!, Ω′	– incoming neutron energy, angle
• 𝑣(𝐸) – neutron speed
• 𝜈̅Σ"(𝑟, 𝐸!, 𝑡) – average number of neutrons released by fission multiplied by fission cross section
• Σ#(𝑟, 𝐸! → 𝐸,Ω! ⋅ Ω, 𝑡) – scattering cross section from 𝐸′ to 𝐸 with scattering angle Ω! ⋅ Ω
• 𝜒(𝐸! → 𝐸, 𝑡) – probability that a fission neutron born from a fission event caused by incoming 

neutron with energy 𝐸′ has energy 𝐸
• 𝑄(𝑟, Ω, 𝐸, 𝑡) – inhomogeneous source term
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Modelling – The BTE in “Numbers”

𝜕𝑁
𝑑𝑡 + Ω ⋅ ∇𝑣 𝐸 𝑁 𝑟, Ω, 𝐸, 𝑡 + Σ# 𝑟, 𝐸, 𝑡 ⋅ 𝑣 𝐸 𝑁 𝑟, Ω, 𝐸, 𝑡 =

@
)

*
𝑑𝐸+@

,-
𝑑Ω′ Σ. 𝑟, 𝐸+ → 𝐸,Ω+ ⋅ Ω, 𝑡 ⋅ 𝑣 𝐸+ 𝑁 𝑟, Ω+, 𝐸+, 𝑡 +

@
)

*
𝑑𝐸+ 𝜈̅Σ/ 𝑟, 𝐸+, 𝑡 𝜒 𝐸+ → 𝐸, 𝑡 ⋅ @

,-
𝑑Ω′ 𝑣 𝐸+ 𝑁 𝑟, Ω+, 𝐸+, 𝑡 + 𝑄 𝑟, Ω, 𝐸, 𝑡

Time rate of change of the neutron 
population in the phase space element

Straight-line “streaming” to and from 
spatial element
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Modelling – The BTE in “Numbers”

𝜕𝑁
𝑑𝑡 + Ω ⋅ ∇𝑣 𝐸 𝑁 𝑟, Ω, 𝐸, 𝑡 + Σ# 𝑟, 𝐸, 𝑡 ⋅ 𝑣 𝐸 𝑁 𝑟, Ω, 𝐸, 𝑡 =

@
)

*
𝑑𝐸+@

,-
𝑑Ω′ Σ. 𝑟, 𝐸+ → 𝐸,Ω+ ⋅ Ω, 𝑡 ⋅ 𝑣 𝐸+ 𝑁 𝑟, Ω+, 𝐸+, 𝑡 +

@
)

*
𝑑𝐸+ 𝜈̅Σ/ 𝑟, 𝐸+, 𝑡 𝜒 𝐸+ → 𝐸, 𝑡 ⋅ @

,-
𝑑Ω′ 𝑣 𝐸+ 𝑁 𝑟, Ω+, 𝐸+, 𝑡 + 𝑄 𝑟, Ω, 𝐸, 𝑡

Total interaction rate, considered a “loss” 
from the phase-space element, even if the 
interaction ultimately produces a neutron 
in the phase-space element.
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Modelling – The BTE in “Numbers”

𝜕𝑁
𝑑𝑡 + Ω ⋅ ∇𝑣 𝐸 𝑁 𝑟, Ω, 𝐸, 𝑡 + Σ# 𝑟, 𝐸, 𝑡 ⋅ 𝑣 𝐸 𝑁 𝑟, Ω, 𝐸, 𝑡 =

@
)

*
𝑑𝐸+@

,-
𝑑Ω′ Σ. 𝑟, 𝐸+ → 𝐸,Ω+ ⋅ Ω, 𝑡 ⋅ 𝑣 𝐸+ 𝑁 𝑟, Ω+, 𝐸+, 𝑡 +

@
)

*
𝑑𝐸+ 𝜈̅Σ/ 𝑟, 𝐸+, 𝑡 𝜒 𝐸+ → 𝐸, 𝑡 ⋅ @

,-
𝑑Ω′ 𝑣 𝐸+ 𝑁 𝑟, Ω+, 𝐸+, 𝑡 + 𝑄 𝑟, Ω, 𝐸, 𝑡

Scattering from all velocity vectors 
(including this one) into this one

Fission neutrons caused by fissions from all 
velocity vectors into this one

Inhomogeneous source (all other sources 
of neutrons)
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Modelling – BTE Boundary Conditions

1. Vacuum/Source

• BTE requires boundary fluxes on one edge of the spatial and time boundaries
• We do not know the end state of the system or the outgoing neutron state, so we make 

educated approximations of the beginning and inflow neutron states

• Time boundary condition is always an initial condition analogous to 1, but obtaining a 
suitable initial guess at the neutron distribution is a subject of much work

2. Reflective/Albedo 3. Periodic

va
cu

um
so

ur
ce
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Modelling – The BTE in “Fluxes”
1

𝑣(𝐸)
𝜕𝜓
𝑑𝑡 + Ω ⋅ ∇𝜓 𝑟, Ω, 𝐸, 𝑡 + Σ# 𝑟, 𝐸, 𝑡 ⋅ 𝜓 𝑟, Ω, 𝐸, 𝑡 =

@
)

*
𝑑𝐸+@

,-
𝑑Ω′ Σ. 𝑟, 𝐸+ → 𝐸,Ω+ ⋅ Ω, 𝑡 ⋅ 𝜓 𝑟, Ω+, 𝐸+, 𝑡 +

@
)

*
𝑑𝐸+ 𝜈̅Σ/ 𝑟, 𝐸+, 𝑡 𝜒 𝐸+ → 𝐸, 𝑡 ⋅ 𝜙(𝑟, 𝐸+, 𝑡) + 𝑄 𝑟, Ω, 𝐸, 𝑡

• In neutron/gamma transport, we typically operate in angular and scalar “fluxes”:

𝜓 𝑟, Ω, 𝐸, 𝑡 = 𝑣 𝐸 𝑁 𝑟, Ω, 𝐸, 𝑡 #
45"⋅678⋅9:7;⋅9<

𝜙 𝑟, 𝐸, 𝑡 = ∫=>𝑑Ω𝜓 𝑟, Ω, 𝐸, 𝑡 #
45"⋅678⋅9<

• Linear, time-dependent, integro-differential equation
• 6-dimensional phase-space (+time)
• This equation is the basis for all SN/PN/Monte Carlo/MoC transport codes
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Stretch Break
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Solving the BTE
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Solving the BTE – Summary

• Aside from some extremely idealized and simplified problems, the BTE cannot 
be solved analytically (i.e., with a pen and paper)

• Each aspect of the phase-space requires discretization
• Time: first-order derivative
• Space: first-order derivative
• Direction: integral
• Energy: integral

• Typically, many orders of magnitude are spanned by the phase-space, making 
discretization a difficult problem
• Note: in the following slides there is a lot of dropping of superfluous indices and 

dependencies for brevity’s sake
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Solving the BTE – Time Discretization

• TRT - Backward Euler: 0
1#!

∫#!
#!"# 𝑑𝑡	𝜓(𝑡) ≈ 𝜓230

• Pros: robust - no oscillation, implicit (unconditionally stable), always positive (physically 
correct) - good for large opacities in TRT

• Cons: only 𝑂(Δ𝑡), often unable to resolve absorption-emission timescales in TRT

• n/γ - Crank-Nicolson: 0
1#!

∫#!
#!"# 𝑑𝑡	𝜓(𝑡) ≈ 4!"#34!

5
• Pros: semi-implicit (still unconditionally stable), 𝑂(Δ𝑡?), can resolve typical time-scales 

for n/γ transport
• Cons: can oscillate at high Δ𝑡 values, can go negative (physically incorrect)

• requires flux fixup, which is nonlinear - can cause iterative oscillations,
     and can be nonconservative

Timestep 
n

Δ𝑡2 Time 
mesh

𝑡2 𝑡230 𝑡235

Timestep 
n+1

𝜓2 = 𝜓(𝑡2)
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Solving the BTE – Space Discretization

• n/γ – Diamond difference: N𝜓! =
4$"#/&34$'#/&

5
• Analogous to Crank-Nicolson (a.k.a. “diamond difference in time”) – same pros and cons

• TRT – LDFEM: 
⋅ ⋅
⋅ ⋅

𝜓!,7
𝜓!,8

=
⋅
⋅

• Pros: 𝑂(Δ𝑥?), always positive, approaches the diffusion limit
• Cons: 2@#$%.x more unknowns than DD → higher memory usage and longer compute times

𝑥!90/5 𝑥!30/5 𝑥!3;/5

Cell i Cell i+1

Δ𝑥!
Spatial 
mesh

𝜓!90/5 = 𝜓(𝑥!90/5)

N𝜓! =
1
Δ𝑥!

@
$$'#/&

$$"#/&
𝑑𝑥	𝜓(𝑥)

𝑥!90/5 𝑥!30/5 𝑥!3;/5

𝜓!,7 𝜓!,8
𝜓!30,8

𝜓!30,7
Cell i Cell i+1

Depends on 
𝜓$%&,(, assuming 
Ω) > 0
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Solving the BTE – Angle Discretization: Collocation

TRT/n/γ – Discrete Ordinates (SN): 𝜙 = ∫,- 𝑑Ω 	𝜓 Ω ≈ ∑<=0> 𝑤<𝜓 Ω<
• Use quadrature rules to solve integrals by performing discrete summation

• choice of quadrature weights (𝑤𝑚) and ”points” (Ω𝑚) on the unit-sphere is important

• Pros: highly tunable to problem of interest – can ”aim” at important areas of the 
domain, parallelizable

• Cons: ray effects – unphysical numerical artifacts

Example 2D 
quadrature 
points (Ω!):

D
*+&

,

𝑤* = 4𝜋
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Solving the BTE – Angle Discretization: Anisotropic      
       Scattering
n/γ – Spherical Harmonics:

𝜙IJ = 5
5KL

6

𝑌IJ	(Ω5)𝑤5𝜓 Ω5

𝜓 Ω5 = 5
IKM

N

5
JKOI

I

𝑌IJ Ω5 𝜙IJ

• Angular moments of the scattering cross section come from nuclear
 data team

• Able to approximate anisotropic scattering:

9
=>
𝑑Ω′ Σ9 ΩP ⋅ Ω5 ⋅ 𝜓(Ω′) ≈ 5

IKM

N

5
JKM

I

(2 + 𝛿5M)𝑌IJ Ω5 Σ9,I𝜙IJ

TRT – Isotropic scattering sufficient to describe most processes

c/o – Wolfram Alpha
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Solving the BTE – Energy Discretization

• Multigroup approximation - weighted average of cross sections over group
• n – group 1 is highest-energy; γ/TRT – group G is highest-energy

Σ$,? =
∫@)
@)'# 𝑑𝐸	𝑓 𝐸 Σ$(𝐸)

∫@)
@)'# 𝑑𝐸	𝑓 𝐸

𝜓? = @
@)

@)'#
𝑑𝐸	𝜓 𝐸

• Accuracy of multigroup approximation depends on 𝑓 𝐸
• ΣQ,R would be EXACT if 𝑓 𝐸 = 𝜓(𝐸), but 𝜓(𝐸) is not known
• In practice, 𝜓 is a function of the full phase-space, so it will
      never be exactly right

𝐸? 𝐸?90 𝐸?95

Group g Group g-1

No discretization
618 energy groups

30 energy groups

Fe-56 cross section (full of resonances)

Energy mesh

Example 𝑓 𝐸

Watt Fission 
Spectrum

1/E Slowing-Down 
Spectrum

Thermal 
Maxwell 

Spectrum
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Solving the BTE – The Transport Sweep

• The discretized BTE forms a linear system for each angle and group that can 
be solved by back substitution
• We never actually form the linear system, which would be huge - we do the back 

substitution on the fly in what is called a “sweep”

• “But wait… isn’t the right-hand side of the equation dependent on 𝜙, which is 
dependent on 𝜓, which is what you’re solving for?”

Sweep Step 1
Ω! > 0, Ω" > 0

Compute 𝜓#,%,% from
known inflows

𝑦!
𝑦"

𝑦#
𝑦$

𝑥! 𝑥" 𝑥# 𝑥$

Sweep Step 2
Ω! > 0, Ω" > 0

Compute 𝜓#,&,% from 
𝜓#,%,% and

known inflow

𝑦!
𝑦"

𝑦#
𝑦$

𝑥! 𝑥" 𝑥# 𝑥$

Sweep Step 5
Ω! > 0, Ω" > 0

Compute 𝜓#,%,& from 
𝜓#,%,% and

known inflow

𝑦!
𝑦"

𝑦#
𝑦$

𝑥! 𝑥" 𝑥# 𝑥$

…

Sweep Step 6
Ω! > 0, Ω" > 0

Compute 𝜓#,&,& from 
𝜓#,&,% and 𝜓#,%,&

𝑦!
𝑦"

𝑦#
𝑦$

𝑥! 𝑥" 𝑥# 𝑥$

…

Sweep Step 16
Ω! > 0, Ω" > 0

Compute 𝜓#,',' from 
𝜓#,(,' and 𝜓#,',(

𝑦!
𝑦"

𝑦#
𝑦$

𝑥! 𝑥" 𝑥# 𝑥$
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Solving the BTE – Inner and Outer Iterations

• Inner iterations:
• for a given energy group, the angular flux solution is obtained with the previous inner and outer iteration’s 

scattering and fission source
• after the sweeps are finished, update the in-group scattering, and do another set of sweeps
• when the iterative error of the scalar flux solution reaches a user-defined threshold, inner iteration has 

converged
• Outer iterations:

• when all energy groups have converged their inner iterations, update out-group scattering and fission, and 
proceed with another set of inner iterations

• continue until outer iterations reach convergence

Inner: 𝐿𝜓*+, = 𝑆-./0(𝜙*) + 𝑆123/0(𝜙4) + 𝐹(𝜙4) + 𝑄; 𝜙*+, = ∑56,7 𝑤5𝜓5*+,

if -8-.//8-
8- ≤ 𝜖, continue to outer, else, 𝑠 = 𝑠 + 1, do another inner

Outer: 𝜙4+, = 𝜙*+,, if -80.//80
80 ≤ 𝜖, you are done J, else, 𝑟 = 𝑟 + 1, go back to inner

𝐿 - LHS of BTE
𝑆)*+,  - Within-group scattering source
𝑆-./+,  - Out-group scattering source
𝐹 - Fission source
𝑄 - Inhomogeneous source term

For those keeping track, we’re up to ≥ 10 indices now…
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Solving the BTE – Source Iteration

The previous scheme is known as “Source Iteration” (SI) or “fixed-source iteration”
• Requires an initial guess of the solution

• For time-dependent, the previous time-step’s solution will do, though you can “time accelerate”
• For static, zero everywhere or a constant value tends to be popular

For a zero initial guess, each SI iteration “𝑠” corresponds with the (𝑠 − 1)th-collision source,

i.e., the 𝑠th iteration is the solution of particles that have undergone (𝑠 − 1) collisions

• For highly-scattering (optically-thick) media, it takes many iterations to converge
• Other linear solvers (e.g., GMRES, Gauss-Seidel, Davidson) exist
• Acceleration methods also exist
• Diffusion Synthetic Acceleration (DSA)
• Variable Eddington Factor (VEF), a.k.a., Quasi-Diffusion (QD)
• Nonlinear Diffusion Acceleration (NDA)
• Coarse Mesh Rebalance (CMR), Multilevel/Multigrid, High-Order-Low-Order (HOLO) schemes 

𝜙0- Uncollided
Flux 𝜙5- 1st-collision

Flux 𝜙;- 2nd-collision
Flux 𝜙,- 3rd-collision

Flux
etc.
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Solving the BTE – Simplification
• If I haven’t convinced you already - it is a lot of work to solve the BTE 

deterministically
• We try not to solve a full phase-space system if we can help it

• Represent a 3D geometry as 2D or 1D
• Use tricks to reduce number of unknowns
• Model with steady-state when possible

• Reactor design needs to take advantage of modelling tricks afforded by the BTE

BC: Vacuum

BC: Vacuum

BC
: V

ac
uu

m

BC: Vacuum

BC: Vacuum

BC
: R

ef
le

ct
iv

e

BC: Vacuum

BC: Reflective

Judiciously using reflective BCs to take advantage of 
symmetry decreases unknowns by 4x 

BC: Vacuum

BC: Vacuum

BC
: V

ac
uu

m

BC: Vacuum BC: Reflective

BC: Reflective

BC
: R

ef
le

ct
iv

e BC: Reflective

If interested in something like peak pin power, 
generating Σ!  weight functions, collapsing group sets, 
or diffusion coefficients, no need to model the entire 

reactor or even the entire fuel pin lattice

image c/o MIT CANES
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Solving the BTE – Parallelism

• General 3D deterministic transport is intractable 
without leveraging parallel computing

• The catch: Integro-differential nature of BTE makes 
exposing parallelism difficult

• Some flexibility in how we parallelize – energy, 
angle, space

x-y Spatial Mesh
16 Proc Spatial 
Decomposition

proc 1 proc 2
proc 4
proc 6
proc 8

proc 10
proc 12
proc 14
proc 16

proc 3
proc 5
proc 7
proc 9

proc 11
proc 13
proc 15

BC: Known

BC
: K

no
w

n

BC: Known

BC: Know
n

one 8x8 domain becomes 
16 4x2 domains with BCs 
updated iteratively
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Solving the BTE – Parallelism

• Parallelism is a balance between reducing communications (very computationally 
intensive) and balancing work across compute units
• Idle processors = bad – wasted resources

idle
idle
idle
idle
idle
idle
idle
idle

idle
idle
idle
idle
idle
idle
idle

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

Example sweep:

idle
idle
idle
idle
idle
idle
idle
idle

idle
idle
idle
idle
idle
idle

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

idle
idle
idle
idle
idle
idle
idle
idle

idle
idle
idle
idle
idle

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

idle
idle
idle
idle
idle
idle
idle
idle

idle
idle
idle
idle

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

idle
idle
idle
idle
idle
idle
idle

idle
idle
idle

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

idle
idle
idle
idle
idle
idle
idle

idle
idle

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

idle
idle

Max of 8 procs (50%) working at 
any given time in this example. 
16 stages/octant.

stage – a piece of work bookended by cross-processor communications

Ω% > 0,
Ω& > 0
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Solving the BTE – Multisweep

• To minimize communications and increase work distribution, we utilize multisweep

idle
idle
idle
idle
idle
idle

idle
idle
idle
idle
idle
idle

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

Example sweep:

idle
idle
idle
idle

idle
idle
idle
idle

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

idle
idleidle

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

BC: Known

BC
: K

no
w

n BC: Know
n

BC: Known

Max of 16 procs 
(100%) working 
at once in this 
example.

Ω% > 0,
Ω& > 0

Ω% < 0,
Ω& > 0

Ω% < 0,
Ω& < 0

Ω% > 0,
Ω& < 0

idle

In some places, the sweep does 
not proceed as the proc waits to 
finish other work.

This example has 22 stages to 
complete the sweep over all octants 
(5.5 stages/octant)
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Solving the BTE – Summary

• To summarize, in order to make a working deterministic transport solver, you need:
• angle discretization

• + anisotropic scattering approximation
• + directional derivative scheme for non-Cartesian geometries

• space discretization
• I have not even covered meshing; n/γ is typically structured rectangular, TRT is unstructured arbitrary 

polygons/polyhedral
• energy discretization

• + accurate nuclear data and weight functions
• time discretization
• iterative scheme

• + possibly an acceleration scheme
• probably a parallelism scheme if you want to solve anything anyone cares about with alacrity
• a lot of money to buy after-work beers
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Advanced Transport 
Methods
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Advanced Transport Methods – 𝒌𝒆𝒇𝒇-Eigenvalue
• For a static approximation (𝑡 → ∞,ST

S:
= 0), it is impossible to converge the transport 

solution for a supercritical system
• Fission neutron production will grow towards infinity with each successive iteration
• We define a 𝑘@AA-eigenvalue problem that balances fission production with losses (dependencies 

dropped for brevity)

Ω ⋅ ∇𝜓I + Σ: ⋅ 𝜓I = ,
M

U
𝑑𝐸P,

=>
𝑑Ω′ Σ9 ⋅ 𝜓I +

1
𝑘7VV

,
M

U
𝑑𝐸P 𝜈̅ΣV𝜒 ⋅ 𝜙I

• Three states: supercritical (𝑘7VV > 1), critical (𝑘7VV = 1), subcritical (𝑘7VV < 1)
• Accurate flux solution when close to critical (like a reactor), can
      normalize the integrated flux to a quantity like reactor power
• Also useful in criticality safety

Sandia Labs’ ACRR
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Advanced Transport Methods – 𝜶-Eigenvalue
• Assume material properties are static and define an ansatz: 𝜓 𝑡 ≈ 𝑒A#𝜓A

• We define an 𝛼-eigenvalue problem that describes the dominant time-dependent state of 
the system (dependencies dropped for brevity)

𝛼
𝑣 𝜓A 	+ Ω ⋅ ∇𝜓A + Σ# ⋅ 𝜓A = @

)

*
𝑑𝐸+@

,-
𝑑Ω′ Σ. ⋅ 𝜓A +@

)

*
𝑑𝐸+ 𝜈̅Σ/𝜒 ⋅ 𝜙A

• Three states: supercritical (𝛼 > 0), critical (𝛼 = 0), subcritical (𝛼 < 0)
• Can use advanced solvers (like Davidson) to obtain higher order eigenpairs and 

reconstruct the time-dependent behavior of the solution
• In point kinetics (a 0-D time-dependent representation of the neutron population), 

the following equation relates 𝛼 to 𝑘B//:

𝛼 =
𝑘B// − 1

𝑙
Neutron lifetime - the total phase-
space-integrated loss rate divided 

by the neutron population
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Advanced Transport Methods – Adjoint Transport
• Define an adjoint operator 𝐻∗ such that 𝜁∗𝐻𝜁 = 𝜁𝐻∗𝜁∗  is satisfied
• The non-multiplying adjoint transport equation is:

−1
𝑣(𝐸)

𝜕𝜓∗

𝑑𝑡 − Ω ⋅ ∇𝜓∗ 𝑟, Ω, 𝐸, 𝑡 + Σ: 𝑟, 𝐸, 𝑡 ⋅ 𝜓∗ 𝑟, Ω, 𝐸, 𝑡 =

,
M

U
𝑑𝐸P,

=>
𝑑Ω′ Σ9 𝑟, 𝐸 → 𝐸′, Ω ⋅ Ω′, 𝑡 ⋅ 𝜓∗ 𝑟, Ω′, 𝐸P, 𝑡 + 𝑄∗ 𝑟, Ω, 𝐸, 𝑡

• The adjoint equation can be thought of as going ”backwards” in time and space
• Initial and inflow boundary conditions are replaced by “final” and outflow boundary conditions
• 𝜓∗ is often conceptualized as an importance or sensitivity for inverse problems
• Choice of boundary conditions and 𝑄∗ dictate the physical relevance of 𝜓∗ - what is the quantity of 

interest? What happens here is not 
very relevant to protecting 
the worker. The adjoint 
solution, with a proper 𝑄∗, 
would tell us that.
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Advanced Transport Methods – Stochastic Transport
• We said previously that the deterministic transport solution is only valid as a mean
• We can derive adjoint-like equations that can be solved for either probabilities of 

specific numbers of neutrons in the system, or moments of the neutron distribution
• I will spare you even a glimpse of this math, as it’s quite overwhelming for an intro talk
• New eigenvalue problems can be formulated with these equations

• Very useful for nonproliferation and SNM assay

Moussa, Prinja, Hart, Davis, 2023 Mattingly, 2012
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Advanced Transport Methods – Moving Materials
• Define a general neutron transport equation in co-moving frame:

𝜕𝑁
𝜕𝑡

+ ∇'⃗ ⋅ 𝑢𝑁 + 𝑞⃗ ⋅ ∇'⃗𝑁 + Σ#𝑞𝑁 = 𝐺̇ + ∇D ⋅ 𝑁𝐻

𝑞⃗ - neutron velocity in co-moving frame
𝑢 - material velocity

𝐺̇ - combined source term
• Spatial advection term – how material motion affects spatial position of neutrons
• Momentum advection term – how material motion affects energy and direction of 

neutrons
• Requires operator splitting - all the memory and parallelism paradigms we set up for 

the transport operator pretty much get nuked by the momentum advection operator

Davis, 2018
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Advanced Transport Methods – Error Transport
• Cast the transport equation in operator notation as:

𝐿𝜓 = 𝐺̇ + 𝑞
• The spatially discretized equation and solution become:

_𝐿 _𝜓 = _̇𝐺 + 𝑞
• Inserting 𝜓 into the discretized equations gives:

_𝐿𝜓 = 𝐺̇ + 𝑞 + 𝑅
• Subtracting the two gives:

_𝐿𝑒 = _̇𝐺B + 𝑅
• Accurately approximating 𝑅 and solving the transport equation gives an estimate of 

the spatial discretization error

Residual term – the true 
solution does not satisfy the 

discretized equation perfectly

Combined error 
source term

Example log10 Estimated/True Error
Hart, Azmy, Duo, 2020
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Thermal Radiative 
Transfer
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Thermal Radiative Transfer
• Hot materials emit photons at energies proportional to material temperature

𝐵 𝐸, 𝑇 =
2

ℎ;𝑐5
𝐸;

𝑒
@
EF − 1

4𝜋@
)

*
𝑑𝐸	𝐵 𝐸, 𝑇 = 𝑎𝑐𝑇,

• Simplified TRT equations (nonlinear in T)
1
𝑐
𝜕𝐼
𝜕𝑡 + Ω ⋅ ∇𝐼 𝑟, 𝐸, Ω, 𝑡 + 𝜎& 𝐸, 𝑇 𝑟, 𝑡 𝐼 𝑟, 𝐸, Ω, 𝑡 = 𝜎& 𝐸, 𝑇 𝑟, 𝑡 𝐵(𝐸, 𝑇 𝑟, 𝑡 )

𝐶G 𝑟, 𝑡
𝜕𝑇 𝑟, 𝑡
𝜕𝑡

= @
,-
𝑑Ω′@

)

*
𝑑𝐸+ 𝜎&(𝐸+, 𝑇 𝑟, 𝑡 ) 𝐼 𝑟, 𝐸+, Ω+, 𝑡 − 𝐵(𝐸+, 𝑇 𝑟, 𝑡 )

• Intensity (𝐼) and temperature are coupled, hence, nonlinear
• Radiation deposits energy non-locally (heat transfer)

Planck Function

Grows quickly with
material temp. (T)

Radiation Intensity

Material Temp.
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Congrats! You now know everything there is to know 
about deterministic transport (well, not really…)
Deterministic Particle Transport at LANL
• Workhorse deterministic code for neutron/gamma transport:

• Workhorse deterministic code for thermal radiative transfer:

Capsaicin
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