

1 **Modeling Interactive Effects of Manganese Bioavailability, Nitrogen**
2 **Deposition, and Warming on Soil Carbon Storage**

3

4

5 Benjamin N. Sulman^{1,†} (0000-0002-3265-6691) &
6 Elizabeth M. Herndon^{1,†} (0000-0002-9194-5493)

7

8 ¹ Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830

9

10 Corresponding author: Elizabeth Herndon (herndonem@ornl.gov)

11 †Authors contributed equally to this work

12

13 **Key Points:**

14

15

16

17

18

19

20

- We developed a biogeochemical model simulating how manganese bioavailability impacts soil carbon storage in temperate forests
- Manganese redistribution to surface soils by plants enhanced decomposition and decreased carbon storage in the soil profile
- Our model predicts that low manganese bioavailability may generate nutrient limitation that decreases warming effects on decomposition

21 **Abstract**

22 Manganese (Mn) is a redox-active micronutrient that has been shown to accelerate plant litter
23 decomposition; however, the effect of Mn-promoted decomposition on soil C storage is unclear.
24 We present a novel biogeochemical model simulating how Mn bioavailability influences soil
25 organic C (SOC) stocks in a soil profile (< 50 cm) within a temperate forest. In our model, foliar
26 Mn increased in response to increasing soluble Mn released through Mn-oxide (birnessite)
27 dissolution in mineral soil layers. The ensuing Mn enrichment in leaf litter redistributed Mn to the
28 surface forest floor layer, promoted enzymatic oxidation of lignin, and decreased SOC stocks.
29 Total SOC loss was partially mitigated by accumulation of lignin-oxidation products as mineral-
30 associated organic C. We also explored how Mn-driven changes to C storage interacted with
31 effects of N deposition and warming. Nitrogen enrichment inhibited Mn-dependent lignin
32 degradation, increasing SOC stocks and weakening their dependence on Mn bioavailability.
33 Warming stimulated decomposition and reduced C stocks but was less effective at low Mn
34 bioavailability. Our model results suggest that SOC stocks are sensitive to Mn bioavailability
35 because increased plant uptake redistributes Mn to surface soils where it can enhance litter
36 decomposition. Based on our simulations, we predict that Mn becomes limiting to litter
37 decomposition where Mn is poorly soluble. Depletion of bioavailable Mn or other cofactors that
38 are critical to decomposition could limit the response of organic C stocks to warming over time,
39 but quantitative projections of the role of Mn bioavailability in regulating decomposition requires
40 additional measurements to constrain model uncertainties.

41

42 **Plain Language Summary**

43 Carbon that is removed from the atmosphere by plants and stored in soils has the potential to
44 partially offset greenhouse gas emissions and mitigate climate change. However, predictions of
45 soil carbon storage are challenged by limited understanding of complex interactions between
46 biological and geochemical processes that influence how quickly organic matter decomposes in
47 the soil. We developed a novel model that simulates how cycling of the micronutrient manganese
48 between soils and plants impacts carbon storage in a soil profile. Although it has been
49 demonstrated that manganese is involved in breakdown of lignin, an important component of plant
50 litter, its effects on soil carbon storage are unknown. We also explore how effects of manganese
51 interact with two other major global perturbations: warming and nitrogen deposition to soils. From
52 our model results, we determine that high levels of manganese uptake by plants ultimately generate
53 manganese-rich surface soils that promote litter decomposition and decrease soil carbon storage.
54 Nitrogen deposition increased carbon storage by inhibiting effects of manganese on
55 decomposition. Decomposition increased with warming but was inhibited by low manganese
56 bioavailability. Our model provides a novel framework for simulating how soil properties that
57 control micronutrient availability to plants can impact soil carbon dynamics.

58

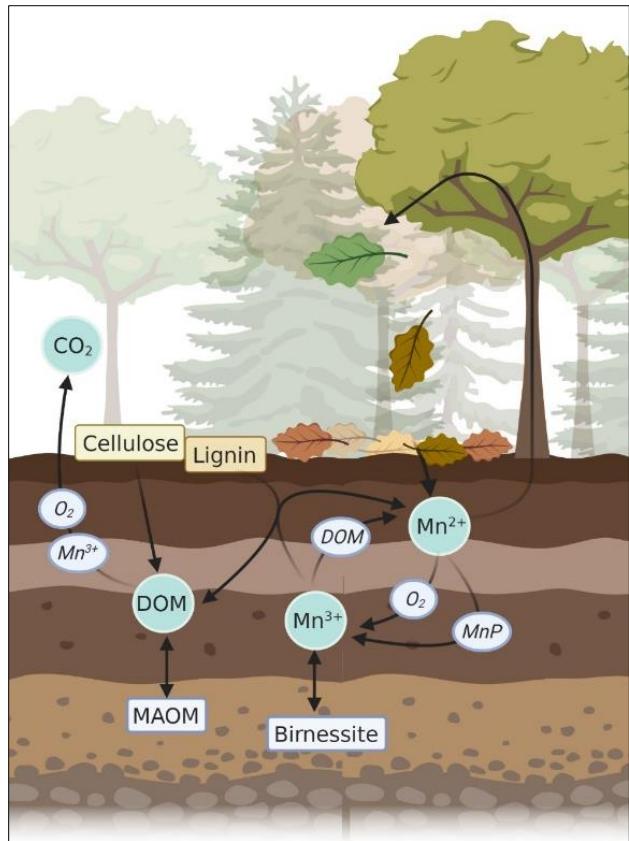
59 **1 Introduction**

60 Changes in soil C stocks driven by climate change, nitrogen deposition, and other global
61 change factors as well as temporal changes driven by plant-soil interactions are important
62 uncertainties in projections of the global C cycle (Ciais et al., 2013). Current terrestrial C cycle
63 models generally simulate soil organic matter (SOM) decomposition rates using simple, empirical
64 approaches that depend only on the properties of specific SOM pools (e.g., litter quality) and a
65 limited set of climatic and soil factors (e.g., temperature, moisture, and nutrient constraints) (Todd-
66 Brown et al., 2013). However, the response of soil respiration to warming is highly dependent on
67 soil parameters that vary across and within biomes (Haaf, Six, & Doetterl, 2021). Many
68 biogeochemical and land surface models, including the widely used CENTURY model,
69 parameterize litter quality as a function of decomposition-resistant lignin pools (Parton, 1998;
70 Ricciuto, Sargsyan, & Thornton, 2018; Zaehle et al., 2014). While some soil organic C (SOC)
71 models are beginning to incorporate microbiology, interactions with macronutrients, and
72 simplified representations of physico-chemical SOC protection [e.g., MIMICS, CORPSE, etc.]
73 (Sulman et al., 2018; Wieder et al., 2015), even these newer models omit redox processes and
74 interactions with micronutrients. These omissions limit the ability of SOC models to reproduce
75 variations in SOC cycling across soils with different geochemical properties and parent materials
76 (Doetterl et al., 2015; Kramer & Chadwick, 2018; Lehmann et al., 2020) and make it difficult for
77 models to represent pH and redox effects.

78 Manganese (Mn) is a redox-active micronutrient that influences ecosystem C cycling by
79 enabling photosynthesis (Broadley, Brown, Cakmak, Rengel, & Zhao, 2012), facilitating litter
80 decomposition (Björn Berg et al., 2015; Davey, Berg, Emmett, & Rowland, 2007; Keiluweit et al.,
81 2015; Sun et al., 2019), and (de)stabilizing organic compounds through organo-mineral
82 interactions (Li, Santos, Butler, & Herndon, 2021; Remucal & Ginder-Vogel, 2014; Stone &
83 Morgan, 1984). Dissolved Mn²⁺ in soil solution is moved through the roots and transported
84 primarily to leaves where it accumulates as dissolved or organic-bound Mn²⁺ and is not
85 remobilized to other plant tissues or reabsorbed during senescence (Fernando & Lynch, 2015; E.
86 M. Herndon, C. E. Martínez, & S. L. Brantley, 2014; McCain & Markley, 1989). In soils where
87 Mn is readily soluble as bioavailable Mn²⁺ or where changes in land cover favor Mn-accumulating
88 plants, seasonal uptake and litterfall result in Mn accumulation in surface soils after mere decades
89 (Jobbágy & Jackson, 2004; Oh & Richter, 2005). Microbial Mn oxidation facilitates Mn retention
90 in surface soils by converting readily soluble foliar Mn²⁺ to insoluble Mn(III/IV) oxides (E. M.
91 Herndon et al., 2014; Keiluweit et al., 2015).

92 High Mn²⁺ concentrations in leaf litter and organic horizons are proposed to reduce soil C
93 storage by accelerating decomposition (Kranabetter, 2019; Santos & Herndon, 2023; Stendahl,
94 Berg, & Lindahl, 2017). Soil fungi within Basidiomycetes produce extracellular Mn-dependent
95 peroxidase (MnP) enzymes that convert Mn²⁺ to diffusible Mn³⁺-chelates that indiscriminately
96 oxidize phenolic bonds within lignin and polyphenols (Hofrichter, 2002; Keiluweit et al., 2015;
97 Kellner et al., 2014; Morgenstern, Klopman, & Hibbett, 2008). This process degrades litter by
98 generating organic radicals that depolymerize and destabilize lignin structures (Hatakka, Lundell,

99 Hofrichter, & Maijala, 2003). Other ligninolytic enzymes, e.g., lignin peroxidase (LiP) and
100 laccase, are present at much lower activities in litter layers of boreal, temperate, and tropical forests
101 (Fujii et al., 2020); thus, MnPs regulate litter decomposition rates and the extent to which litter
102 decays by controlling lignin oxidation.


103 Positive correlations between decomposition rate and Mn concentrations in leaf litter have
104 been observed across multiple tree species in forest-dominated ecosystems (Björn Berg et al.,
105 2015; B. Berg, Steffen, & McClaugherty, 2006; Davey et al., 2007), presumably because MnP
106 production and activity increase in response to high Mn²⁺ levels (Sun et al., 2019; Whalen, Smith,
107 Grandy, & Frey, 2018). Furthermore, experimental additions of aqueous Mn²⁺ to forest soils
108 stimulate soil respiration and CO₂ release (Li et al., 2021; Trum, Titeux, Cornelis, & Delvaux,
109 2011; Trum, Titeux, Ponette, & Berg, 2015). These effects may be attributed to Mn-promoted
110 lignin decomposition that increases lignin and thus litter C loss over long timescales (Huang et al.,
111 2023; Yi et al., 2023). However, the ecosystem-scale implications of these complex
112 biogeochemical interactions remain to be explored.

113 Many existing models assume that litter decomposition rate is a fixed function of lignin content
114 or lignin:nitrogen ratio and that SOM decomposition rate is influenced only by SOM quality and
115 (in some models) microbial biomass (Parton, 1998; Sulman et al., 2018). Emerging model
116 frameworks are beginning to include geochemical and redox interactions in wetland soils (Sulman
117 et al., 2022). However, observed impacts of Mn concentrations on both litter decomposition and
118 SOC turnover suggest that existing models may miss an important process by which both litter and
119 SOC decomposition in upland soils respond to geochemical factors. For example, the ratio of
120 Mn/lignin in litter is positively correlated with MnP activity and has been proposed as a cross-
121 biome metric of degradability (Fujii et al., 2020). The role of vegetation in redistributing Mn
122 through soil profiles (Herndon, Jin, Andrews, Eissenstat, & Brantley, 2015; Jobbágy & Jackson,
123 2004; Oh & Richter, 2005) further suggests that rates of lignin and SOC turnover could change
124 over decadal time scales as a consequence of changing Mn solubility in response to soil
125 acidification, moisture, or warming.

126 The objective of this study was to apply a model framework coupling Mn and C cycles to
127 understand the role of these interactions in driving SOC and litter C stocks. First, we modeled
128 interactions between plant-soil Mn cycling and soil C storage in a temperate forest (Figure 1).
129 Plant uptake of Mn and accumulation in foliage was dependent on Mn²⁺ solubility in soil, a
130 function of the dissolution of birnessite (Mn^{III/IV}-oxide), which depended on pH, soil redox status,
131 and the precipitation/dissolution rate constant k_m (see Eq. 1) which we used to broadly represent
132 the sensitivity of birnessite dissolution to inherent mineral properties (e.g., crystallinity) and to
133 undefined environmental factors. A Mn-dependent decomposition pathway was introduced by
134 using Mn concentrations in leaf litter to regulate the rate that lignin was oxidized to produce labile
135 dissolved organic matter (DOM). Subsequent DOM respiration and leaching influenced C
136 redistribution and net storage in organic and mineral horizons. We also tested the interaction of
137 soil hydrology with Mn redistribution and leaching losses by simulating periodic and depth-
138 dependent soil saturation representing a gradient from well to poorly drained soils. Second, we

139 explored how Mn cycling and coupled soil C storage respond to soil warming that is consistent
 140 with ongoing climate change. Finally, we examined how interactions between Mn and N addition
 141 influenced C storage under different warming scenarios through simulated N-inhibition of Mn-
 142 dependent oxidative enzymes (Moore et al., 2020; Whalen et al., 2018).

143 **2 Materials and Methods**

Figure 1. Conceptual model representing the simplified manganese (Mn) – carbon (C) cycling reaction network in a forest ecosystem. Arrows indicate the transformation of one species to another as mediated by reaction with other system components, represented by either intersecting arrows or as white circles over the arrow. Solid-phase species are shown as rectangles while aqueous and gaseous species are shown as blue circles. Abbreviations indicate dissolved organic matter (DOM), mineral-associated organic matter (MAOM), and Mn peroxidase (MnP). Reactions are not balanced. Image created with *BioRender.com*.

162

163 **2.1. Model description**

164 The model configuration represents a soil profile in a temperate forest consisting of a surface
 165 forest floor layer comprised of leaf litter and an organic horizon (0 – 5 cm with a bulk density of
 166 0.5 g cm⁻³) and four underlying mineral horizons (each 10 cm thick with a bulk density of 1.5 g
 167 cm⁻³), for a total profile depth of 45 cm including the forest floor layer. At time zero, the forest
 168 floor layer contains no Mn while the mineral horizons contain a uniform distribution of Mn (28
 169 mmol kg⁻¹) hosted in the mineral birnessite ($Mn^{III,IV}O_2$; average oxidation state = 3.7) and 0.3
 170 mmol kg⁻¹ exchangeable Mn²⁺. Soil properties, including total and exchangeable Mn
 171 concentrations, are based on values reported for the Susquehanna Shale Hills Critical Zone
 172 Observatory (SSHCZO), a temperate forested watershed in central Pennsylvania, U.S.A where Mn
 173 cycling through vegetation has been documented (Brantley et al., 2018; E. Herndon, C. E.
 174 Martínez, & S. Brantley, 2014; Herndon et al., 2015; Jin et al., 2010). Our initial soil Mn

175 concentration is intermediate between depth-averaged Mn concentrations in ridgeline mineral soils
 176 at this site ($41 \pm 4 \text{ mmol kg}^{-1}$; $n = 120$) and average Mn concentrations in A horizons of upland
 177 deciduous forests of the conterminous United States ($16 \pm 15 \text{ mmol kg}^{-1}$; $n = 777$) (D. B. Smith et
 178 al., 2013). Soil Mn at SSHCZO is dominated by Mn oxides such as birnessite (E. Herndon et al.,
 179 2014). Other solid phase Mn that may be present in the soil, such as Mn present in silicate minerals,
 180 is considered non-reactive over the time frame of the model.

181 The model was implemented in the reactive transport model PFLOTRAN (Hammond,
 182 Lichtner, & Mills, 2014) using a python driver via the Alquimia interface (Andre, Molins, Johnson,
 183 & Steefel, 2013). A simplified summary of the reaction network used in our simulations is shown
 184 in Figure 1, and reaction equations are provided in Table 1. Reactions in the model are assumed to
 185 occur in aqueous phase, except for cellulose and lignin depolymerization. Mn ions involved in
 186 reactions include divalent (Mn^{2+}) and trivalent (Mn^{3+}) species, with Mn^{3+} existing in either a meta-
 187 stable chelated state (formed in solution following Mn^{3+} production by the MnP enzyme) or quasi-
 188 instantaneously precipitating to birnessite. We consider only diffuseable Mn^{3+} bound to small
 189 organic molecules and do not include Mn^{3+} ions that complex with solid-phase organic matter
 190 (e.g., pyrophosphate-extractable Mn; (Jones et al., 2020; Possinger et al., 2022)). The availability
 191 of Mn^{3+} for aqueous reactions is calculated using transition state theory rate laws implemented in
 192 PFLOTRAN (Dwivedi, Arora, Steefel, Dafflon, & Versteeg, 2018) (Dwivedi et al., 2018; Lichtner
 193 et al., 2020 (Lichtner et al., 2015)) for kinetic precipitation/dissolution of birnessite, which is
 194 highly sensitive to pH due to the stoichiometry of the reaction:

$$195 \quad I_m = -k_m(1 - (K_m[\text{H}^+]^{-21}[\text{Mn}^{3+}]^7)^{1/7}) \quad (1)$$

196 where I_m is the precipitation/dissolution rate ($\text{mol m}^{-3} \text{ s}^{-1}$); k_m is the reaction rate constant (mol m^{-3}
 197 soil s^{-1}); and K_m is the equilibrium constant ($10^{-5.5}$). The actual Mn^{3+} concentration is very low
 198 (on the order of $10^{-15} \text{ mol L}^{-1}$) due to its high reactivity, but Mn^{3+} concentration does respond to
 199 removal via Mn^{3+} reduction or production via Mn^{2+} oxidation, connecting the
 200 precipitation/dissolution of birnessite to the associated Mn redox processes. We simulated a range
 201 of birnessite precipitation/dissolution rate constants (k_m) from 2.5×10^{-13} to $6.4 \times 10^{-11} \text{ mol m}^{-3} \text{ s}^{-1}$ to
 202 represent a gradient of mineral properties (e.g., crystallinity, surface area) and other environmental
 203 factors (e.g., microbial biomass) that potentially influence dissolution rates (Bandstra et al., 2011).
 204 The sign of Eq. 1 (indicating the direction of precipitation versus dissolution) and the actual
 205 reaction rate are sensitive to the ratio of proton concentration to Mn^{3+} concentration, making the
 206 actual precipitation/dissolution rate and direction sensitive to pH and Mn^{3+} concentration as well
 207 as the factors implicitly included in the rate constant.

208 Monod type reactions in the model can include multiple Monod and inhibition factors:

$$209 \quad R = V_{max} \prod_N \frac{c_{S_N}}{K_{S_N} + c_{S_N}} \prod_M \frac{K_{I_M}}{K_{I_M} + c_{I_M}} \quad (2)$$

210 where R is reaction rate (M s^{-1}), V_{max} is maximum reaction rate (M s^{-1}), N is the set of reactant
 211 species (including substrate and terminal electron acceptors), M is the set of inhibiting species, c_{S_N}
 212 is the concentration of the N th substrate, K_{S_N} is the half-saturation constant of the N th substrate,
 213 c_{I_M} is the concentration of the M th inhibiting species, and K_{I_M} is the inhibition constant of the M th
 214 inhibiting species.

215 Litter and soil organic matter in the model are represented as cellulose and lignin that are
216 degraded to form dissolved organic matter (DOM). Lignin, cellulose, and DOM are tracked on a
217 per unit C basis (Table 1). The combination of cellulose and lignin pools are interpreted as total
218 particulate organic matter (POM). Cellulose is depolymerized to DOM at a constant first-order
219 rate that is independent of Mn concentration. Depolymerization of lignin to DOM occurs via a Mn
220 peroxidase (MnP) enzymatic reaction. MnP in the model converts Mn^{2+} to Mn^{3+} , which is chelated
221 and then reacts directly with lignin to produce decomposable DOM. The rate of chelated Mn^{3+}
222 production, and thus the rate of MnP-mediated lignin depolymerization, increases with Mn^{2+}
223 concentration, representing the catalytic use of Mn^{2+} by MnP and increased fungal MnP production
224 with increasing Mn^{2+} (Björn Berg et al., 2015; Davey et al., 2007; Sun et al., 2019; Whalen et al.,
225 2018). The model also includes a slower Mn-independent lignin depolymerization pathway
226 representing alternative enzymatic pathways for lignin degradation, assumed to be about an order
227 of magnitude slower than Mn-dependent lignin degradation. In addition to reacting with lignin,
228 chelated Mn^{3+} can also decompose spontaneously via disproportionation to Mn^{2+} and oxidized
229 Mn^{4+} which immediately precipitates to birnessite, as has been proposed to occur upon cessation
230 of microbial Mn recycling (Keiluweit et al., 2015). Bacterial oxidation of Mn^{2+} by O_2 is also
231 included as a separate reaction (Tebo et al., 2004).

232 DOM oxidation by O_2 to CO_2 occurs under oxic conditions. DOM can also be oxidized to CO_2
233 via microbial Mn^{3+} reduction (occurring only under anoxic conditions) (Bandstra, Ross, Brantley,
234 & Burgos, 2011) or via abiotic Mn^{3+} reduction which can occur under anoxic or oxic conditions.
235 Because Mn^{3+} reduction consumes reactive Mn^{3+} ions that are near equilibrium with birnessite,
236 these Mn reduction reactions drive reductive dissolution of birnessite in the model. The rate of
237 birnessite dissolution increases with decreasing pH (which increases birnessite solubility and Mn^{3+}
238 ion availability), higher DOM concentration (which accelerates the rate of Mn^{3+} consumption via
239 the Mn reduction reaction, allowing additional birnessite dissolution to maintain equilibrium), and
240 lower oxygen concentration (because the Mn reduction reaction rate is inhibited by oxygen).

241 DOM can also be stabilized via sorption to mineral surfaces in mineral horizon layers to
242 become mineral-associated organic matter (MAOM). MAOM formation and desorption are
243 represented as saturating and first-order transformations, respectively, rather than explicitly
244 simulating mineral surface sorption interactions. Solutes in the model are transported downward
245 over time at a fixed flow rate ($10^{-7} \text{ cm s}^{-1}$). Layers under oxic conditions are assumed to be at
246 equilibrium with the atmosphere for both O_2 (20%) and CO_2 (400 ppm). Because gas transport is
247 assumed to be much slower under saturated conditions, low O_2 availability limits organic matter
248 decomposition under saturated conditions typical of more poorly drained soils.

249 Root uptake of Mn^{2+} occurs in each layer at a rate proportional to the root biomass profile,
250 which decreases exponentially with depth in the mineral layers (Fig. S6). Plant uptake of Mn is
251 strongly dependent on its concentration in soil solution (Kabata-Pendias & Pendias, 2001). The
252 forest floor layer, which represents the organic horizon and fresh leaf litter inputs, is assumed to
253 have low root biomass. Note that this approach may lead to underestimates of root Mn uptake from
254 organic layers which can have high concentrations of root biomass in the field. However, because

255 the forest floor layer was assumed to be oxic and soluble Mn could be leached downward, this
256 assumption did not substantially affect total root Mn uptake. Focusing on root Mn uptake from
257 deeper layers did allow the study to focus on vertical redistribution of Mn. Roots are assumed to
258 maintain charge balance by exuding protons in proportion to Mn²⁺ uptake (Haynes, 1990). At the
259 end of each simulated year, all Mn²⁺ taken up by roots over the year is deposited to the forest floor
260 along with a constant mass (0.163 kg C m⁻² year⁻¹) of litter C reported for a temperate forest (L.
261 A. Smith, Eissenstat, & Kaye, 2017). Thus, leaf litter Mn²⁺ concentrations change over time in
262 response to total root Mn²⁺ uptake.

263 The impact of N deposition on decomposition was modeled by including an inhibiting effect
264 of NH₄⁺ concentration on the MnP reaction (Eq. 1) with a half-saturation constant of 0.01 M.
265 Although our model uses direct inhibition to simulate the observed suppression of ligninolytic
266 enzyme activity by N enrichment, previous studies have proposed indirect mechanisms such as
267 changes to microbial community structure and function (Entwistle, Romanowicz, Argiroff, & Zak,
268 2019; Whalen et al., 2018). Different rates of N deposition were represented by adding NH₄⁺ to
269 the forest floor at a constant rate during each simulation. N deposition rates of 0 (no N deposition),
270 50, and 150 kg N ha⁻¹ y⁻¹ were simulated, based on the amounts applied by (Whalen et al., 2018).
271 Warming levels up to +5 °C were simulated by altering the rates of all microbial (Monod-type and
272 organic matter decomposition) reactions in the reaction network assuming a temperature
273 dependence with a Q₁₀ of 2.0 (meaning a doubling of reaction rates with every 10°C increase in
274 temperature). Affected reactions included lignin oxidation by MnP, Mn³⁺ reduction to Mn²⁺ (which
275 drove reductive dissolution of birnessite during anoxia), Mn²⁺ oxidation to Mn³⁺ by O₂, cellulose
276 decomposition, and DOM oxidation. Thus, rates of Mn-oxide dissolution and precipitation, Mn²⁺
277 oxidation by MnP, and C cycling were accelerated in warming scenarios. All N deposition and
278 warming simulations were conducted at initial soil pH levels of 4.0, 4.5, 5.0, 5.5, and 6.0 given
279 that Mn solubilization and redistribution were negligible above pH 6.

280

281 **2.2. Model parameterization**

282 The primary model parameters were rate constants and half-saturation constants for the
283 Monod-type reactions that formed the basis of the biogeochemical reaction network (Table 1). The
284 model was also sensitive to relative rates at which chelated Mn³⁺ either reacted with lignin or
285 underwent disproportionation and precipitated to birnessite. Where available, existing
286 measurements were used to inform model parameter values. However, direct observational
287 constraints on parameter values were highly limited due to the lack of direct observations of MnP
288 and other enzymatic rates across gradients of substrate availability. While some laboratory
289 measurements were available from previous studies involving microbial Mn oxidation and
290 reduction reactions, these measurements were generally conducted under highly controlled
291 laboratory conditions (Bandstra et al., 2011; Tebo et al., 2004) that were not immediately
292 comparable to field soil conditions. Thus, our approach for model parameterization primarily
293 relied on using inverse modeling to select a combination of parameter values that yielded
294 simulation results consistent with observed patterns of leaf Mn concentration (B. Berg et al., 2013;

295 E. M. Herndon et al., 2014), soil Mn concentrations (E. M. Herndon et al., 2014; Jin et al., 2010),
 296 and leaf mass loss over time (B. Berg et al., 2013; Davey et al., 2007). We conducted simulations
 297 across a range of values for key parameters including rate constants and half-saturation constants
 298 of lignin depolymerization, chelated Mn²⁺ disproportionation, and Mn reduction and oxidation
 299 (Table 1), and selected the combination of parameters that qualitatively matched the observed
 300 ranges of both leaf Mn concentrations and leaf mass loss (Fig. S2) as well as reasonable values of
 301 soil Mn concentration profiles in the context of the aforementioned references. This
 302 parameterization procedure was somewhat qualitative due to the multiple data types (listed above)
 303 that we used as a basis of comparison. A rigorous statistical comparison between measured and
 304 modeled data points was not possible because the model predicted both leaf Mn concentration and
 305 leaf mass loss based on a combination of environmental factors. As a result, there was not a one-
 306 to-one relationship between modeled and measured points in Fig. S2.

307

308 **2.3. Model simulations**

309 We conducted multiple simulations with a length of 80 years and a time step of six hours, testing
 310 different combinations of initial soil pH, birnessite precipitation/dissolution rate constants,
 311 warming levels, and N deposition rates. This set included 5 pH × 5 precipitation/dissolution rate
 312 constants × 3 N deposition rates × 3 warming levels, for a total of 225 simulations. We also
 313 conducted four additional simulations with different drainage time scales to represent a gradient
 314 of poorly to well-drained hydrological settings, using pH = 5.0 and the middle birnessite
 315 dissolution rate constant. Hydrology was simulated by assuming 50 precipitation events occurred
 316 per year (evenly distributed in time). Following each precipitation event, each soil layer was
 317 assumed to be saturated (limiting oxygen diffusion into the layer) for a length of time determined
 318 by the drainage time scale (ranging from 0.25 to 2 days) and depth:

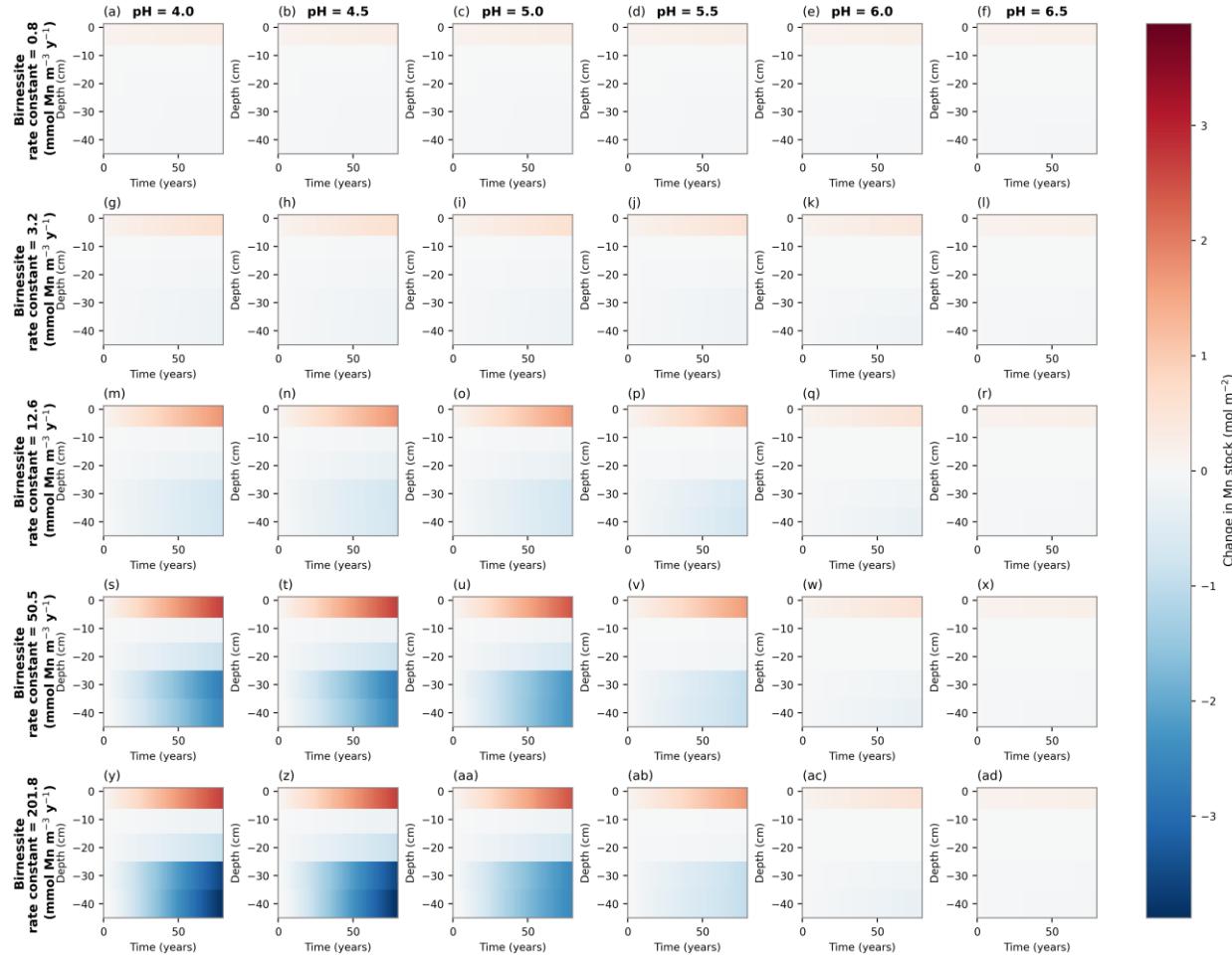
$$319 \quad t_{anox} = t_{drain} e^{\frac{z}{0.125}} \quad (3)$$

320 Where t_{anox} is the length of time the layer remains saturated, t_{drain} is the drainage time scale, and z
 321 is the depth of the middle of the layer. Figure S1 shows how these drainage time scales translated
 322 into the fraction of time that each layer was saturated as a function of depth and drainage time
 323 scale.

324

325 **2.4. Factors not addressed in the current model**

326 While our modeling approach incorporates key biogeochemical factors relevant to Mn-C
 327 interactions in soils, it does omit some important processes that should be considered when
 328 interpreting the results. First, the model uses a simple approach to the vegetation component,
 329 assuming that root uptake of Mn is controlled only by a static rooting depth distribution and that
 330 Mn taken up during the year is directly deposited into the forest floor with litterfall (Herndon et
 331 al., 2015). The model does not consider the effect of Mn availability on photosynthetic processes
 332 (Gonzalez & Lynch, 1997; St. Clair & Lynch, 2004), variations in leaf Mn content among tree
 333 species (Herndon et al., 2015; Kogelmann & Sharpe, 2006; St. Clair & Lynch, 2005) or sun versus
 334 shade leaves (McCain & Markley, 1989), or variations in leaf lignin content. Variations in

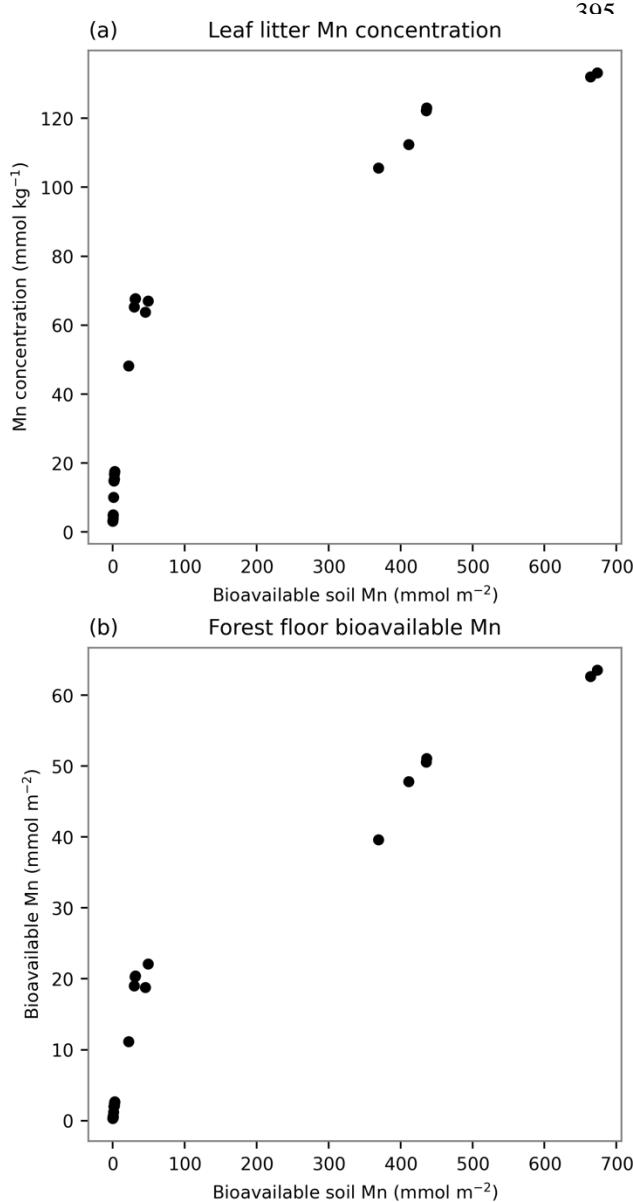

335 microbial communities or microbial physiology over space or time were also not included due to
336 lack of data available to constrain community composition and key microbial parameters such as
337 growth and mortality rates with respect to Mn-related microbial community function. Fixed model
338 parameters, such as the rate constant for Mn^{2+} oxidation by MnP and other microbial-mediated
339 reactions, or the partitioning of C between CO_2 and DOM, could in fact vary over time through
340 microbial community or physiological changes. The representation of soil organic matter was quite
341 simple, including only cellulose, lignin, DOM, and MAOM that formed and desorbed at fixed
342 rates. Variations in DOM composition and a more complex representation of POM could lead to
343 different results. Our model included a somewhat simple approach to litter decomposition focused
344 on MnP as well as a single Mn-independent lignin depolymerization process. However, other
345 biological processes including faunal decomposers such as earthworms could also act as a limit on
346 litter accumulation under low-Mn conditions, and abiotic processes such as fire or photooxidation
347 could facilitate lignin decomposition.

348

349 **3 Results and Discussion**350 **3.1. Enhanced biological Mn cycling decreases C storage**

351 Mn bioavailability and forest floor Mn stocks depended strongly on soil pH and birnessite k_m
352 and were highest in acidic soils where enhanced birnessite dissolution increased Mn availability
353 for root uptake (Figure 2, S3). Leaf litter Mn concentration and forest floor bioavailable Mn were
354 in turn strongly correlated with Mn bioavailability in the soil column (Figure 3). POM C stocks
355 ($kg\ C\ m^{-2}$) were inversely related to litter Mn concentrations and soil Mn bioavailability (Figure
356 3a), reflecting the role of Mn^{2+} concentration in MnP-mediated lignin depolymerization.
357 Specifically, faster and more complete lignin decomposition reduced POM C stocks from $1.55\ kg\ C\ m^{-2}$
358 where Mn bioavailability was low to $1.2\ kg\ C\ m^{-2}$ where Mn bioavailability was high, a 23%
359 reduction over 40 years (Figure 2a). The simulated ranges of leaf Mn concentrations and one-year
360 lignin mass loss, as well as the positive relationship between leaf Mn concentration and lignin
361 mass loss, were consistent with observations of one-year lignin decomposition across a range of
362 leaf litter Mn concentrations (Björn Berg et al., 2015) (Figure S2), although the model did not
363 reproduce the higher end of leaf Mn concentrations.

364

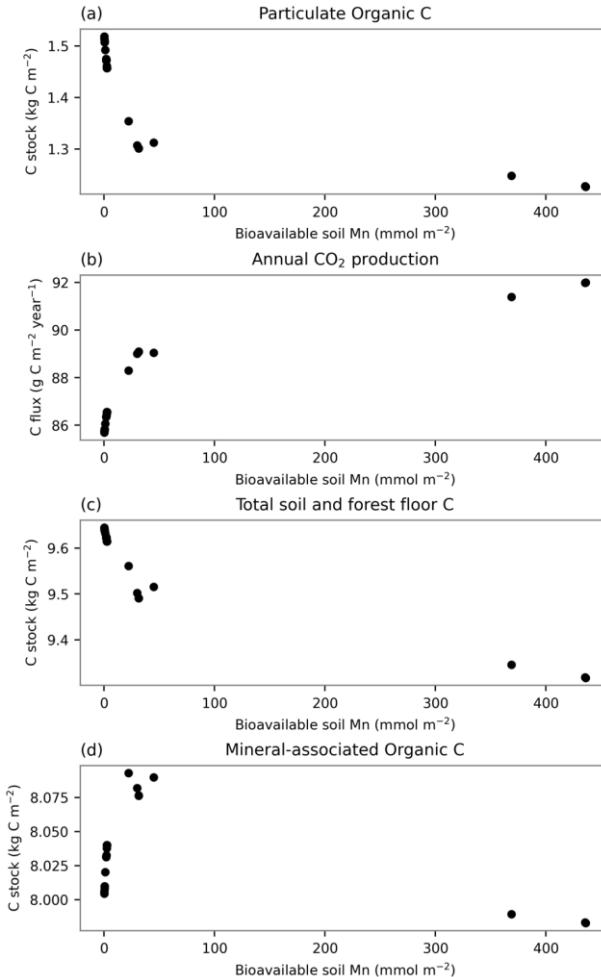

365
366 **Figure 2. Mn redistribution in the soil profile:** Redistribution of Mn across soil layers as a function of
367 time for five initial soil pH levels from 4.0 to 6.5 and five rate constants of birnessite dissolution. Soil layers
368 include the forest floor (0 – 5 cm) and four mineral layers (each 10 cm thick). The color gradient indicates
369 increases (red colors) or decreases (blue colors) in Mn stock (mol m^{-2}) in each layer relative to initial stocks.
370 More pronounced Mn redistribution from deep soil layers to the surface organic layer occurs at lower pH
371 and higher birnessite dissolution rate constant.
372

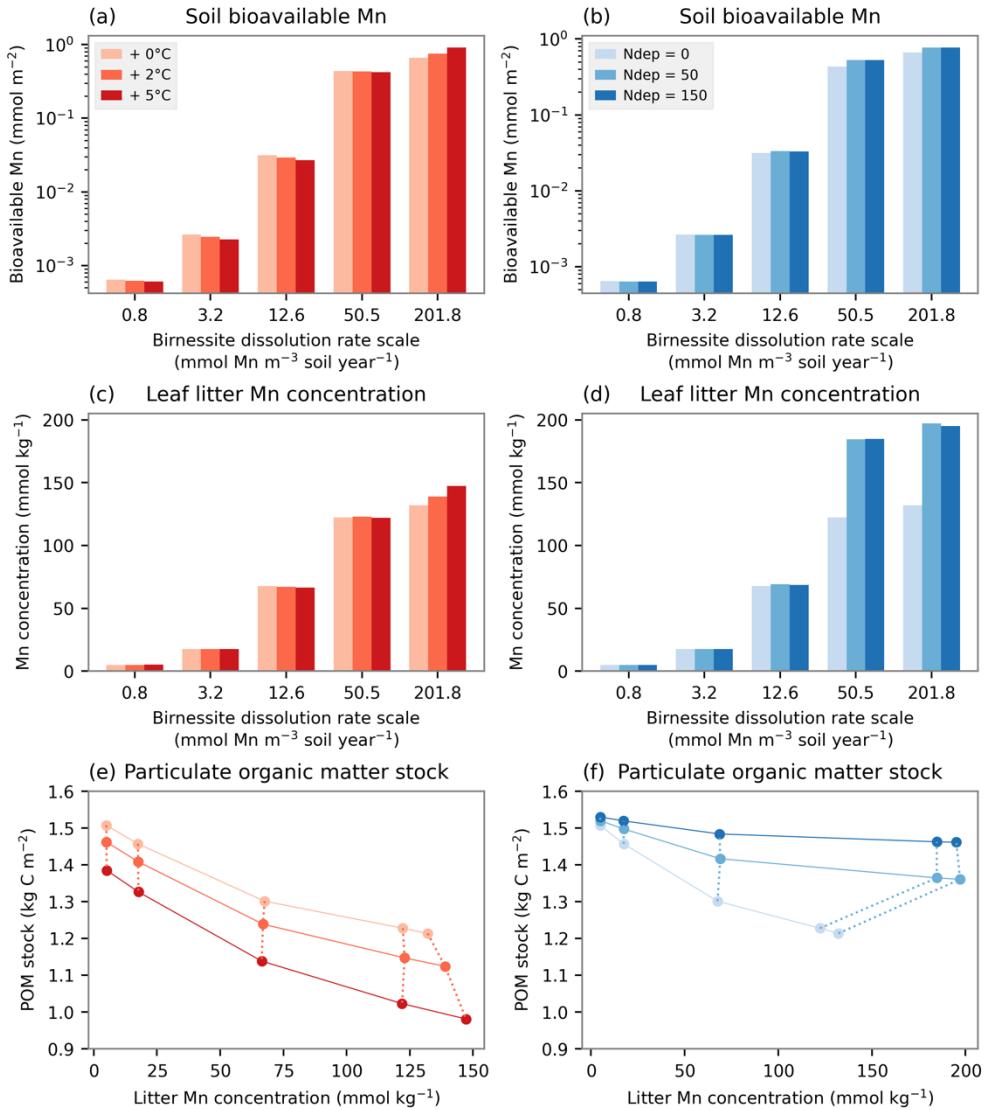
373 Mn-promoted depolymerization of lignin in the forest floor increased fluxes of DOM to
374 underlying mineral soil layers, but this effect was counteracted by increased Mn^{3+} reduction which
375 served as a sink for DOM. These combined effects drove an increase in total MAOM from very
376 low to moderate levels of bioavailable Mn, but a decrease in MAOM at the highest levels of Mn
377 bioavailability as more C was released as CO_2 (Figure 3d). Neupane et al. (2023) similarly reported
378 increased CO_2 production and C transfer from POM to MAOM stocks with Mn addition to
379 agricultural soils (Neupane, Herndon, Whitman, Faiia, & Jagadamma, 2023). Overall, total soil C
380 stocks, including the forest floor and mineral soil layers, decreased with higher bioavailable Mn
381 (Figure 4c), similar to patterns observed across multiple biomes (Kranabetter, 2019; Santos &
382 Herndon, 2023; Stendahl et al., 2017).

383 Modeled litter Mn concentrations were comparable to measured foliar Mn (~6 to 60 mmol kg⁻¹)
 384 in forests growing on acidic soils (pH 3.4 to 5.3) in the northeastern United States, where higher
 385 concentrations are observed for deciduous trees and at lower pH (Herndon et al., 2015; Kogelmann
 386 & Sharpe, 2006; Richardson, 2017; St. Clair & Lynch, 2005) (Figure S2). Simulated
 387 concentrations were higher than concentrations reported in the literature only for soils with both
 388 very low pH (< 4.5) and high rates of birnessite dissolution.

389 Total soil Mn was redistributed upward within the soil profile over time in our model due to
 390 plant uptake of Mn²⁺ from the subsurface and redeposition in litter on the soil surface (Figure 2),
 391 consistent with field observations (Herndon et al., 2015; Jobbágy & Jackson, 2004). Redistribution
 392 was most pronounced at low pH and more rapid mineral dissolution rates. Over 80 years, strongly
 393 acidic soils (pH ≤ 5) accumulated up to 3 mol m⁻² total Mn in the forest floor layer, while
 394 moderately acidic soils (pH > 5) accumulated < 1 mol m⁻². Deep mineral horizons showed

205 comparable Mn depletion. Mn that accumulated in the forest floor persisted as
 206 bioavailable exchangeable Mn²⁺ at low pH but was mostly converted to birnessite at higher
 207 pH (Figure S3). Poorly drained soils had higher vertical Mn redistribution than well-
 208 drained soils due to the enhancement of reductive dissolution of birnessite in
 209 subsurface soil layers that were exposed to longer periods of saturated conditions (Figure
 210 S4). Poorly drained soils and soils with higher birnessite dissolution k_m also had higher rates
 211 of Mn leaching out of the system (Figure S5). The rate of leaching was not enough to
 212 substantially deplete Mn stocks over the multidecadal time scale of our simulations but
 213 could contribute to Mn limitation over longer time scales. Redistribution of Mn²⁺ towards
 214 the soil surface may further facilitate Mn-promoted decomposition in surface soils
 (Jones et al., 2020).


Figure 3. High Mn in leaf litter and surface soils with increasing Mn solubility in the soil profile. Mn concentrations in leaf litter (a) and Mn bioavailability in the forest floor and (b) as a function of bioavailable soil Mn integrated across the entire soil profile.


424 **Figure 4. High Mn bioavailability leads to less**
 425 **C accumulation in litter and soils.** (a) POM C
 426 stocks (kg C m^{-2}) integrated across forest floor
 427 (5 cm) and mineral soil (40 cm) layers, (b)
 428 annual CO_2 production, and (c) total organic C
 429 (kg C m^{-2}) stocks contained in both forest floor
 430 and mineral soil across a range of bioavailable
 431 soil Mn that varies with soil pH and birnessite
 432 dissolution rate.

433
 434 **3.2. Mn availability modulates effects of soil**
 435 **warming on decomposition**

436 Soil warming is expected to decrease soil C
 437 stocks by increasing rates of microbial
 438 decomposition of organic matter, but warming
 439 responses can be complicated by biological,
 440 chemical, and physical factors controlling
 441 organic matter chemistry and availability
 442 (Conant et al., 2011). Increasing temperatures
 443 have the added effect of accelerating mineral
 444 dissolution and precipitation reactions. Our
 445 model simulated warming by increasing the
 446 reaction rates of all microbially-mediated
 447 reactions using a Q_{10} temperature sensitivity function.

448 Warming reduced POM C stocks due to higher decomposition rates, but the strength of the
 449 warming effect was moderated by Mn bioavailability (Figure 5). At higher levels of underlying
 450 Mn bioavailability (faster birnessite k_m), warming increased soil bioavailable Mn and leaf litter
 451 Mn concentration (Figure 5a,c). However, at lower levels of underlying Mn bioavailability,
 452 warming decreased soil bioavailable Mn and leaf litter Mn concentrations. This led to differential
 453 effects of warming on soil carbon loss depending on soil Mn availability. The warming response
 454 was strongest at higher levels of soil Mn availability, as warming further enhanced Mn availability
 455 and drove faster decomposition (Figure 5e). By contrast, the warming impact on C stocks was
 456 weaker at lower levels of Mn availability, with Mn limitation of MnP-mediated lignin
 457 decomposition leading to less overall C loss. This suggests that warming effects on litter
 458 decomposition could be sensitive to soil Mn availability.

Figure 5. N deposition and warming effects on coupled C-Mn cycling. Simulations with initial soil pH of 4.5 are shown across a range of birnessite k_m . All values are after 40 years of simulated time. (a): Soil bioavailable Mn stock as a function of birnessite dissolution k_m and warming treatment. (b): Soil bioavailable Mn as a function of birnessite dissolution k_m and N deposition treatment. (c,d): Leaf litter Mn as a function of birnessite dissolution k_m and warming or N deposition. (e,f): Soil POM C stocks as a function of litter Mn concentration and warming or N deposition. Solid lines connect simulations with the same warming or N deposition treatment, and dashed lines connect simulations with the same birnessite dissolution k_m .

3.3. N enrichment limits Mn-dependent lignin decomposition

Chronic N deposition to soils can increase litter C stocks by downregulating ligninolytic enzyme production (Chen et al., 2018; Entwistle et al., 2019; Frey et al., 2014; Zak et al., 2019). Although most studies do not differentiate between specific ligninolytic enzymes, MnP has been implicated as the most ubiquitous and important enzyme involved in this process (Entwistle et al.,

476 2019). We tested interactive effects of Mn and N on lignin degradation and consequent C storage
477 in the forest floor. Soil Mn bioavailability interacted with different levels of N deposition to control
478 lignin degradation rates (Figure 5b,d,f). Higher rates of N deposition suppressed MnP activity, as
479 simulated based on previous observations (Moore et al., 2020; Whalen et al., 2018). As a result, N
480 deposition increased C stocks and weakened the dependence of C stocks on Mn bioavailability
481 (Figure 5f).

482 Thus, model results indicate that the negative impact of N addition on MnP activity could limit
483 degradation of lignin compounds and result in C accumulation. Paradoxically, N additions have
484 also been shown to acidify soils and increase Mn uptake (Hou et al., 2021; Tian et al., 2016).
485 Although the acidifying effect of N additions was not included in our model simulations, simulated
486 N deposition did increase soil bioavailable Mn (Figure 5b) and leaf litter Mn concentrations
487 (Figure 5d), most likely because N inhibited MnP-driven Mn oxidation in surface soil layers.
488 Although not included in our model, excess Mn uptake in response to N addition can impair rates
489 of photosynthesis and decrease biomass in sensitive species, ultimately shifting the quantity and
490 composition of litter C inputs to soils (Tian et al., 2016). These counteractive effects may be
491 limited to certain systems, as soils experiencing high levels of N addition do not necessarily
492 experience concurrent decreases in soil pH (Zak et al., 2019). However, these complex Mn-N-C
493 interactions are important to decipher given widespread N deposition derived from combustion
494 and fertilization (Hou et al., 2021; Tian et al., 2016; Zak et al., 2019).
495

496 **4 Conclusions**

497 Our simulations demonstrate that interactions between C cycling and micronutrients, which
498 are not included in ecosystem-scale C cycle models, may have an underappreciated but critically
499 important role in regulating C storage and partitioning, particularly by regulating microbial
500 decomposition of organic matter. Lignin oxidation is a rate-limiting step in decomposition models,
501 which parameterize litter decomposition using lignin content (Parton, 1998; Zaehele et al., 2014).
502 Because litter decomposition rates control both the buildup of organic C stocks in the forest floor
503 and the transfer of DOM into underlying mineral soil via leaching, the high sensitivity of lignin
504 oxidation to Mn availability represents an important control on both surface and subsurface soil C
505 cycling that is omitted in most models. Our simulations suggest that such models may
506 underestimate the variability of litter decomposition rates across sites with different Mn
507 availabilities, with important consequences for model simulations of soil C stocks. The key role
508 of Mn availability in lignin oxidation suggests that efforts to increase ecosystem C sequestration
509 by selectively cultivating or engineering high lignin plant tissues (Garten, Wullschleger, &
510 Classen, 2011; Hancock et al., 2007; Post et al., 2004) may need to take local geochemical factors
511 into account as the efficiency of C sequestration in lignin-rich biomaterials could depend on soil
512 Mn availability.

513 In addition, we find that previously documented interactions between N deposition and MnP
514 activity (Whalen et al., 2018) could have consequences for ecosystem-scale C cycling that models

515 lacking these biogeochemical interactions will not be able to reproduce. Legacy N accumulation
516 and ongoing deposition could increase C stocks by hindering lignin oxidation, while mitigation of
517 atmospheric N deposition could have the opposite effect. Counteracting effects of Mn and N could
518 create heterogeneous responses of litter decomposition to individual factors across ecosystems
519 with different N and Mn availabilities, raising the difficulty of predicting litter decomposition rates
520 across geographical areas.

521 Our simulations also suggest that Mn availability could moderate the response of organic C
522 stocks to warming via feedback to Mn uptake that depends on soil Mn bioavailability.
523 Conventional C cycle models assume that decomposition rates are determined by organic matter
524 properties and climatic factors rather than geochemical factors, and thus would overestimate the
525 increase in decomposition rates and consequent decline in soil C stocks in systems with low Mn
526 availability. Warming studies have previously documented reduction in the impact of warming on
527 soil respiration over time (Melillo et al., 2017; Romero-Olivares, Allison, & Treseder, 2017) which
528 has been attributed to microbial physiological or community adaptation (Bradford, Watts, &
529 Davies, 2010; Luo et al., 2014) or to depletion of labile C (Hartley, Heinemeyer, & Ineson, 2007;
530 Kirschbaum, 2004). Our simulations suggest that depletion of Mn or other geochemical cofactors
531 critical to decomposition could also explain reduction in warming responses over time and should
532 be considered when interpreting warming impacts on decomposition and when simulating soil C
533 responses to warming temperatures.

534 Although our model demonstrates the high sensitivity of C cycling to Mn cycling over decadal
535 time scales, key model parameters, e.g., rates of Mn^{2+} oxidation by MnP in environmental systems,
536 have not been well constrained. Furthermore, stimulatory effects of Mn on litter decomposition
537 may be absent or difficult to identify across ecosystems owing to factors other than redox and pH
538 that limit Mn bioavailability and/or influence litter decomposition (Kranabetter, Philpott, & Dunn,
539 2021; Li et al., 2021; Trum et al., 2011). For example, Mn accelerates transformation of litter and
540 POM C but may not ultimately affect C storage because decomposed C is then retained in more
541 stable pools (Possinger et al., 2022), possibly explaining negative correlations between soil Mn
542 and soil C decomposition (Huang et al., 2023). In addition, soils that are highly weathered may
543 contain crystalline Mn oxides that are poorly soluble, as simulated in this study by varying
544 birnessite dissolution rates, or may become Mn depleted due to leaching of Mn from the soil over
545 time (Kranabetter et al., 2021). Also, lignin peroxidase rather than MnP may dominate
546 decomposition in organic soil layers that underlie litter (Fujii et al., 2020; Fujii, Uemura,
547 Hayakawa, Funakawa, & Kosaki, 2013). Thus, the stimulatory effects of Mn on decomposition
548 may not always translate to decreases in soil C storage. Measurements and experiments to improve
549 constraints on ecosystem Mn cycling across gradients of climate and soil types could yield
550 important insights for C cycle responses to climate change. This model structure can be used to
551 couple micronutrient cycling with C and N dynamics to explore complex ecosystem response to
552 warming climate.

554 **Acknowledgments**

555 This work was sponsored by the Laboratory Directed Research and Development Program of Oak
556 Ridge National Laboratory, managed by UT-Battelle, LCC for the US Department of Energy under
557 contract DE-AC05-00OR22725, and was in part supported by a grant from the National Science
558 Foundation Geobiology and Low-temperature Geochemistry program (EAR-1749849). This
559 research used resources of the Compute and Data Environment for Science (CADES) at the Oak
560 Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department
561 of Energy under Contract No. DE-AC05-00OR22725. The Alquimia biogeochemistry API and
562 wrapper library was originally developed as part of the DOE ASCEM project and is an
563 interoperable component of the Department of Energy's IDEAS-Watersheds (<https://ideas-productivity.org/>) software productivity project. BNS and EMH were also supported by the U.S.
564 Department of Energy Office of Science Early Career Research program as part of research in
565 Earth System Model Development within the Earth and Environmental Systems Modeling
566 Program (BNS) and through Environmental Systems Science (EMH) within the Biological and
567 Environmental Research program.
568

569

570 **Open Research**

571 Full model output will be made publicly available with an attached DOI through the ORNL
572 Constellation repository (<https://doi.ccs.ornl.gov/>). Model output and code are currently posted at
573 https://www.dropbox.com/scl/fi/ijbd0vt5c514k77bchu1o/Mn_output_2024-03-03_00.nc?rlkey=d4ozm516z6l6c6nqgqfrd2o4l&dl=0.
574

575

576

577

578 Table 1. Reactions and rate constants included within the model reaction network. Multiple rate constants are shown for Birnessite precipitation-
 579 dissolution because multiple values were used in different simulations.
 580

Reaction	Stoichiometry	Rate law	Rate constant
Cellulose depolymerization	Cellulose → DOM	First order rate	0.004 d ⁻¹
Lignin depolymerization	Lignin → DOM	First order rate	0.00034 d ⁻¹
Mn ²⁺ oxidation by MnP	Mn ²⁺ + H ⁺ → Mn ³⁺ (chelate)	Monod dependence on Mn ²⁺ (k=0.1 mM)	1.7x10 ⁻⁴ mol L ⁻¹ d ⁻¹
Mn-dependent lignin depolymerization	Lignin + Mn ³⁺ (chelate) → DOM + Mn ²⁺ + H ⁺	First order rate	0.002 d ⁻¹
Chelated Mn ³⁺ disproportionation	2 Mn ³⁺ (chelate) + 0.5 H ₂ O → Mn ²⁺ + Mn ³⁺ + 0.25 O ₂ + H ⁺	First order rate	0.01 d ⁻¹
Bacterial Mn ²⁺ oxidation	Mn ²⁺ + H ⁺ + 0.25 O ₂ → Mn ³⁺ + 0.5 H ₂ O	Monod dependence on O ₂ (k=0.1 mM)	8.6x10 ⁻⁷ mol L ⁻¹ d ⁻¹
Microbial Mn reduction	DOM + 4 Mn ³⁺ → CO ₂ + 4 Mn ²⁺ + 4 H ⁺	Monod reaction, inhibited by O ₂	4.3x10 ⁻⁶ mol L ⁻¹ d ⁻¹
Aerobic DOM oxidation	DOM + O ₂ → CO ₂	Monod dependence on O ₂ (k=0.1 mM)	8.6x10 ⁻³ mol L ⁻¹ d ⁻¹
Abiotic Mn reduction	DOM + 4 Mn ³⁺ + 2 H ₂ O → CO ₂ + 4 Mn ²⁺ + 4 H ⁺	Aqueous complexing reaction, can happen under oxic conditions	8.6x10 ³⁴ (mol L ⁻¹) ⁻⁴
Birnessite precipitation-dissolution	7 Mn ³⁺ + 1.25 O ₂ + 15.5 H ₂ O ↔ (Mn ³⁺) ₂ (Mn ⁴⁺) ₅ O ₁₃ * 5 H ₂ O + 21 H ⁺	PFLOTRAN uses transition state theory ¹	(2.16, 8.64, 34.6, 138, 553) × 10 ⁻⁶ mol Mn m ⁻³ soil d ⁻¹
DOM sorption	DOM ↔ DOM _S	$\frac{d}{dt}(\text{DOM}_S) = k_1 * S_{\text{max}} \frac{\text{DOM}}{k_S + \text{DOM}} - k_2(\text{DOM}_S)$ $k_S = 1 \text{ M}$ $S_{\text{max}} = 0.83 \text{ mmol C cm}^{-3} \text{ (mineral layers)}$	$k_1: 8.6 \times 10^{-6} \text{ mol L}^{-1} \text{ d}^{-1}$ $(S_{\text{max}} [\text{mol C cm}^{-3}])^{-1}$ $k_2: 8.6 \times 10^{-6} \text{ d}^{-1}$
Root Mn ²⁺ uptake	Mn ²⁺ → Mn(uptake) + 2 H ⁺	Monod dependence on Mn ²⁺ (k=0.1 μM), scaled by root biomass	1.7x10 ⁻⁷ mol L ⁻¹ d ⁻¹ (mmol root biomass C cm ⁻³ soil) ⁻¹

581 ¹Dwivedi, D., Arora, B., Steefel, C. I., Dafflon, B., & Versteeg, R. (2018). Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor. *Water*
 582 *Resources Research*, 54(1), 205–222. <https://doi.org/10.1002/2017WR022346>

583 **References**

584 Andre, B., Molins, S., Johnson, J., & Steefel, C. (2013). *Alquimia*. Berkeley, CA: Lawrence Berkeley National
585 Laboratory.

586 Bandstra, J. Z., Ross, D. E., Brantley, S. L., & Burgos, W. D. (2011). Compendium and synthesis of bacterial
587 manganese reduction rates. *Geochimica et Cosmochimica Acta*, 75(2), 337-351.
588 doi:10.1016/j.gca.2010.04.069

589 Berg, B., Erhagen, B., Johansson, M.-B., Nilsson, M., Stendahl, J., Trum, F., & Vesterdal, L. (2015). Manganese in
590 the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems – A review.
591 *Forest Ecology and Management*, 358, 248-260. doi:10.1016/j.foreco.2015.09.021

592 Berg, B., Erhagen, B., Johansson, M. B., Vesterdal, L., Faituri, M., Sanborn, P., & Nilsson, M. (2013). Manganese
593 dynamics in decomposing needle and leaf litter—a synthesis. *Canadian Journal of Forest Research*,
594 43(12), 1127-1136.

595 Berg, B., Steffen, K. T., & McClaugherty, C. (2006). Litter decomposition rate is dependent on litter Mn
596 concentrations. *Biogeochemistry*, 82(1), 29-39. doi:10.1007/s10533-006-9050-6

597 Bradford, M. A., Watts, B. W., & Davies, C. A. (2010). Thermal adaptation of heterotrophic soil respiration in
598 laboratory microcosms. *Global Change Biology*, 16(5), 1576-1588. doi:<https://doi.org/10.1111/j.1365-2486.2009.02040.x>

599 Brantley, S. L., White, T., West, N., Williams, J. Z., Forsythe, B., Shapich, D., . . . Gu, X. (2018). Susquehanna
600 Shale Hills Critical Zone Observatory: Shale Hills in the Context of Shaver's Creek Watershed. *Vadose
601 Zone Journal*, 17(1). doi:10.2136/vzj2018.04.0092

602 Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Function of nutrients: micronutrients. In
603 *Marschner's mineral nutrition of higher plants* (pp. 191-248): Elsevier.

604 Chen, J., Luo, Y., van Groenigen, K. J., Hungate, B. A., Cao, J., Zhou, X., & Wang, R. W. (2018). A keystone
605 microbial enzyme for nitrogen control of soil carbon storage. *Sci Adv*, 4(8), eaal1689.
606 doi:10.1126/sciadv.aal1689

607 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., . . . Jones, C. (2013). *Carbon and other
608 biogeochemical cycles. Climate change 2013: the physical science basis. Contribution of Working Group I
609 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*. Retrieved from

610 Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., . . . Bradford, M. A. (2011).
611 Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way
612 forward. *Global Change Biology*, 17(11), 3392-3404. doi:<https://doi.org/10.1111/j.1365-2486.2011.02496.x>

613 Davey, M. P., Berg, B., Emmett, B. A., & Rowland, P. (2007). Decomposition of oak leaf litter is related to initial
614 litter Mn concentrations. *Canadian Journal of Botany*, 85(1), 16-24. doi:10.1139/b06-150

615 Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M., . . . Boeckx, P. (2015). Soil carbon
616 storage controlled by interactions between geochemistry and climate. *Nature Geoscience*, 8(10), 780-783.
617 doi:10.1038/ngeo2516

618 Dwivedi, D., Arora, B., Steefel, C. I., Dafflon, B., & Versteeg, R. (2018). Hot spots and hot moments of nitrogen in
619 a riparian corridor. *Water Resources Research*, 54(1), 205-222.

620 Entwistle, E. M., Romanowicz, K. J., Argiroff, W. A., & Zak, D. (2019). Anthropogenic N Deposition Alters the
621 Composition of Expressed Class II Fungal Peroxidases. *Appl Environ Microbiol*, 84, e02816-02817.
622 doi:doi.org/10.1128/AEM.02816-17

623 Fernando, D. R., & Lynch, J. P. (2015). Manganese phytotoxicity: new light on an old problem. *Annals of botany*,
624 116(3), 313-319.

625 Frey, S. D., Ollinger, S., Nadelhoffer, K., Bowden, R., Brzostek, E., Burton, A., . . . Wickings, K. (2014). Chronic
626 nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. *Biogeochemistry*,
627 121(2), 305-316. doi:10.1007/s10533-014-0004-0

628 Fujii, K., Nakada, Y., Umezawa, K., Yoshida, M., Shibata, M., Hayakawa, C., . . . Hangs, R. (2020). A comparison
629 of lignin-degrading enzyme activities in forest floor layers across a global climatic gradient. *Soil Ecology
Letters*, 2(4), 281-294. doi:10.1007/s42832-020-0042-6

630 Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S., & Kosaki, T. (2013). Environmental control of lignin
631 peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. *Soil Biology
and Biochemistry*, 57, 109-115. doi:10.1016/j.soilbio.2012.07.007

632 Garten, C. T., Wullschleger, S. D., & Classen, A. T. (2011). Review and model-based analysis of factors influencing
633 soil carbon sequestration under hybrid poplar. *Biomass and Bioenergy*, 35(1), 214-226.
634 doi:10.1016/j.biombioe.2010.08.013

639 Gonzalez, A., & Lynch, J. P. (1997). Effects of manganese toxicity on leaf CO₂ assimilation of contrasting common
640 bean genotypes. *Physiologia Plantarum*, 101(4), 872-880. doi:10.1111/j.1399-3054.1997.tb01076.x

641 Haaf, D., Six, J., & Doetterl, S. (2021). Global patterns of geo-ecological controls on the response of soil respiration
642 to warming. *Nature Climate Change*. doi:10.1038/s41558-021-01068-9

643 Hammond, G. E., Lichtner, P. C., & Mills, R. T. (2014). Evaluating the performance of parallel subsurface
644 simulators: An illustrative example with PFLOTRAN. *Water Resources Research*, 50(1), 208-228.
645 doi:<https://doi.org/10.1002/2012WR013483>

646 Hancock, J. E., Loya, W. M., Giardina, C. P., Li, L., Chiang, V. L., & Pregitzer, K. S. (2007). Plant growth, biomass
647 partitioning and soil carbon formation in response to altered lignin biosynthesis in *Populus tremuloides*.
648 *New Phytol*, 173(4), 732-742. doi:10.1111/j.1469-8137.2006.01965.x

649 Hartley, I. P., Heinemeyer, A., & Ineson, P. (2007). Effects of three years of soil warming and shading on the rate of
650 soil respiration: substrate availability and not thermal acclimation mediates observed response. *Global
651 Change Biology*, 13(8), 1761-1770. doi:<https://doi.org/10.1111/j.1365-2486.2007.01373.x>

652 Hatakka, A., Lundell, T., Hofrichter, M., & Maijala, P. (2003). Manganese peroxidase and its role in the degradation
653 of wood lignin. In *Applications of enzymes to lignocellulosics*, American Chemical Society, 230-243.

654 Haynes, R. (1990). Active ion uptake and maintenance of cation-anion balance: A critical examination of their role
655 in regulating rhizosphere pH. *Plant and Soil*, 126(2), 247-264.

656 Herndon, E., Martínez, C. E., & Brantley, S. (2014). Spectroscopic (XANES/XRF) characterization of contaminant
657 manganese cycling in a temperate watershed. *Biogeochemistry*, 121(3), 505-517. doi:10.1007/s10533-014-
658 0018-7

659 Herndon, E. M., Jin, L., Andrews, D. M., Eissenstat, D. M., & Brantley, S. L. (2015). Importance of vegetation for
660 manganese cycling in temperate forested watersheds. *Global Biogeochemical Cycles*, 29(2), 160-174.
661 doi:10.1002/2014gb004858

662 Herndon, E. M., Martínez, C. E., & Brantley, S. L. (2014). Spectroscopic (XANES/XRF) characterization of
663 contaminant manganese cycling in a temperate watershed. *Biogeochemistry*, 121(3), 505-517.
664 doi:10.1007/s10533-014-0018-7

665 Hofrichter, M. (2002). Review: lignin conversion by manganese peroxidase (MnP). *Enzyme and Microbial
666 Technology*, 30(4), 454-466. doi:10.1016/s0141-0229(01)00528-2

667 Hou, S. L., Hattenschwiler, S., Yang, J. J., Sistla, S., Wei, H. W., Zhang, Z. W., . . . Han, X. G. (2021). Increasing
668 rates of long-term nitrogen deposition consistently increased litter decomposition in a semi-arid grassland.
669 *New Phytol*, 229(1), 296-307. doi:10.1111/nph.16854

670 Huang, W., Yu, W., Yi, B., Raman, E., Yang, J., Hammel, K. E., . . . Hall, S. J. (2023). Contrasting geochemical and
671 fungal controls on decomposition of lignin and soil carbon at continental scale. *Nat Commun*, 14(1), 2227.
672 doi:10.1038/s41467-023-37862-6

673 Jin, L., Ravella, R., Ketchum, B., Bierman, P. R., Heaney, P., White, T., & Brantley, S. L. (2010). Mineral
674 weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone
675 Observatory. *Geochimica et Cosmochimica Acta*, 74(13), 3669-3691. doi:10.1016/j.gca.2010.03.036

676 Jobbágy, E. J., & Jackson, R. B. (2004). The uplift of soil nutrients by plants: biogeochemical consequences across
677 scales. *Ecology*, 85(9), 2380-2389.

678 Jones, M. E., LaCroix, R. E., Zeigler, J., Ying, S. C., Nico, P. S., & Keiluweit, M. (2020). Enzymes, Manganese, or
679 Iron? Drivers of Oxidative Organic Matter Decomposition in Soils. *Environ Sci Technol*, 54(21), 14114-
680 14123. doi:10.1021/acs.est.0c04212

681 Kabata-Pendias, A., & Pendias, H. (2001). *Trace elements in soils and plants* (3rd edition ed.): CRC Press.

682 Keiluweit, M., Nico, P., Harmon, M. E., Mao, J., Pett-Ridge, J., & Kleber, M. (2015). Long-term litter
683 decomposition controlled by manganese redox cycling. *Proc Natl Acad Sci U S A*, 112(38), E5253-5260.
684 doi:10.1073/pnas.1508945112

685 Kellner, H., Luis, P., Pecyna, M. J., Barbi, F., Kapturska, D., Krüger, D., . . . Hofrichter, M. (2014). Widespread
686 occurrence of expressed fungal secretory peroxidases in forest soils. *PLoS One*, 9, e95557.

687 Kirschbaum, M. U. F. (2004). Soil respiration under prolonged soil warming: are rate reductions caused by
688 acclimation or substrate loss? *Global Change Biology*, 10(11), 1870-1877.
689 doi:<https://doi.org/10.1111/j.1365-2486.2004.00852.x>

690 Kogelmann, W. J., & Sharpe, W. E. (2006). Soil acidity and manganese in declining and nondeclining sugar maple
691 stands in Pennsylvania. *J Environ Qual*, 35(2), 433-441. doi:10.2134/jeq2004.0347

692 Kramer, M. G., & Chadwick, O. A. (2018). Climate-driven thresholds in reactive mineral retention of soil carbon at
693 the global scale. *Nature Climate Change*, 8(12), 1104-1108. doi:10.1038/s41558-018-0341-4

694 Kranabetter, J. M. (2019). Increasing soil carbon content with declining soil manganese in temperate rainforests: is
695 there a link to fungal Mn? *Soil Biology and Biochemistry*, 128, 179-181. doi:10.1016/j.soilbio.2018.11.001

696 Kranabetter, J. M., Philpott, T. J., & Dunn, D. E. (2021). Manganese limitations and the enhanced soil carbon
697 sequestration of temperate rainforests. *Biogeochemistry*, 156(2), 195-209. doi:10.1007/s10533-021-00840-
698 5

699 Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., . . . Kögel-Knabner, I. (2020).
700 Persistence of soil organic carbon caused by functional complexity. *Nature Geoscience*, 13(8), 529-534.
701 doi:10.1038/s41561-020-0612-3

702 Li, H., Santos, F., Butler, K., & Herndon, E. (2021). A Critical Review on the Multiple Roles of Manganese in
703 Stabilizing and Destabilizing Soil Organic Matter. *Environ Sci Technol*, 55(18), 12136-12152.
704 doi:10.1021/acs.est.1c00299

705 Lichtner, P. C., Hammond, G. E., Lu, C., Karra, S., Bisht, G., Andre, B., . . . Kumar, J. (2015). *PFLOTRAN user*
706 *manual: A massively parallel reactive flow and transport model for describing surface and subsurface*
707 *processes*. Retrieved from

708 Luo, C., Rodriguez-R, L. M., Johnston, E. R., Wu, L., Cheng, L., Xue, K., . . . Konstantinidis, K. T. (2014). Soil
709 Microbial Community Responses to a Decade of Warming as Revealed by Comparative Metagenomics.
710 *Applied and Environmental Microbiology*, 80(5), 1777. doi:10.1128/AEM.03712-13

711 McCain, D. C., & Markley, J. L. (1989). More manganese accumulates in maple sun leaves than in shade leaves.
712 *Plant Physiology*, 90(4), 1417-1421.

713 Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., . . . Grandy, A. S.
714 (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming
715 world. *Science*, 358(6359), 101-105.

716 Moore, J. A. M., Anthony, M. A., Pec, G. J., Trocha, L. K., Trzebny, A., Geyer, K. M., . . . Frey, S. D. (2020).
717 Fungal community structure and function shifts with atmospheric nitrogen deposition. *Glob Chang Biol*.
718 doi:10.1111/gcb.15444

719 Morgenstern, I., Klopman, S., & Hibbett, D. S. (2008). Molecular evolution and diversity of lignin degrading heme
720 peroxidases in the Agaricomycetes. *J Mol Evol*, 66(3), 243-257. doi:10.1007/s00239-008-9079-3

721 Neupane, A., Herndon, E. M., Whitman, T., Faiia, A. M., & Jagadamma, S. (2023). Manganese effects on plant
722 residue decomposition and carbon distribution in soil fractions depend on soil nitrogen availability. *Soil*
723 *Biology and Biochemistry*, 178. doi:10.1016/j.soilbio.2023.108964

724 Oh, N.-H., & Richter, D. D. (2005). Elemental translocation and loss from three highly weathered soil–bedrock
725 profiles in the southeastern United States. *Geoderma*, 126(1-2), 5-25.

726 Parton, W. J., Hartman, M., Ojima, D., & Schimel, D. . (1998). DAYCENT and its land surface submodel:
727 description and testing. . *Global and Planetary Change*, 19(1-4), 35-48. doi:[https://doi.org/10.1016/S0921-8181\(98\)00040-X](https://doi.org/10.1016/S0921-8181(98)00040-X)

728 Possinger, A. R., Heckman, K. A., Bowman, M. M., Gallo, A. C., Hatten, J. A., Matosziuk, L. M., . . . Strahm, B. D.
729 (2022). Lignin and fungal abundance modify manganese effects on soil organic carbon persistence at the
730 continental scale. *Geoderma*, 425. doi:10.1016/j.geoderma.2022.116070

731 Post, W. M., Izaurrealde, R. C., Jastrow, J. D., McCarl, B. A., Amonette, J. E., Bailey, V. L., . . . Zhou, J. (2004).
732 Enhancement of Carbon Sequestration in US Soils. *BioScience*, 54(10), 895-908.

733 Remucal, C. K., & Ginder-Vogel, M. (2014). A critical review of the reactivity of manganese oxides with organic
734 contaminants. *Environ Sci Process Impacts*, 16(6), 1247-1266. doi:10.1039/c3em00703k

735 Ricciuto, D., Sargsyan, K., & Thornton, P. (2018). The Impact of Parametric Uncertainties on Biogeochemistry in
736 the E3SM Land Model. *Journal of Advances in Modeling Earth Systems*, 10(2), 297-319.
737 doi:<https://doi.org/10.1002/2017MS000962>

738 Richardson, J. B. (2017). Manganese and Mn/Ca ratios in soil and vegetation in forests across the northeastern US:
739 Insights on spatial Mn enrichment. *Sci Total Environ*, 581-582, 612-620.
740 doi:10.1016/j.scitotenv.2016.12.170

741 Romero-Olivares, A. L., Allison, S. D., & Treseder, K. K. (2017). Soil microbes and their response to experimental
742 warming over time: A meta-analysis of field studies. *Soil Biology and Biochemistry*, 107, 32-40.
743 doi:<https://doi.org/10.1016/j.soilbio.2016.12.026>

744 Santos, F., & Herndon, E. (2023). Plant-Soil Relationships Influence Observed Trends Between Manganese and
745 Carbon Across Biomes. *Global Biogeochemical Cycles*, 37(1). doi:10.1029/2022gb007412

746 Smith, D. B., Cannon, W. F., Woodruff, L. G., Solano, F., Kilburn, J. E., & Fey, D. L. (2013). *Geochemical and*
747 *mineralogical data for soils of the conterminous United States* (2327-638X). Retrieved from

748

749 Smith, L. A., Eissenstat, D. M., & Kaye, M. W. (2017). Variability in aboveground carbon driven by slope aspect
750 and curvature in an eastern deciduous forest, USA. *Canadian Journal of Forest Research*, 47(2), 149-158.
751 doi:10.1139/cjfr-2016-0147

752 St. Clair, S. B., & Lynch, J. P. (2004). Photosynthetic and antioxidant enzyme responses of sugar maple and red
753 maple seedlings to excess manganese in contrasting light environments. *Functional Plant Biology*, 31(10).
754 doi:10.1071/fp04049

755 St. Clair, S. B., & Lynch, J. P. (2005). Element accumulation patterns of deciduous and evergreen tree seedlings on
756 acid soils: implications for sensitivity to manganese toxicity. *Tree Physiology*, 25, 85-92.

757 Stendahl, J., Berg, B., & Lindahl, B. D. (2017). Manganese availability is negatively associated with carbon storage
758 in northern coniferous forest humus layers. *Sci Rep*, 7(1), 15487. doi:10.1038/s41598-017-15801-y

759 Stone, A. T., & Morgan, J. J. (1984). Reduction and Dissolution of Manganese(III) and Manganese(IV) Oxides by
760 Organics: 2. Survey of the Reactivity of Organics. *Environ Sci Technol*, 18, 617-624.

761 Sulman, B. N., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin, S., Georgiou, K., . . . Classen, A. T. (2018).
762 Multiple models and experiments underscore large uncertainty in soil carbon dynamics. *Biogeochemistry*,
763 141(2), 109-123. doi:10.1007/s10533-018-0509-z

764 Sun, T., Cui, Y., Berg, B., Zhang, Q., Dong, L., Wu, Z., & Zhang, L. (2019). A test of manganese effects on
765 decomposition in forest and cropland sites. *Soil Biology and Biochemistry*, 129, 178-183.
766 doi:10.1016/j.soilbio.2018.11.018

767 Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., . . . Webb, S. M. (2004). Biogenic
768 Manganese Oxides: Properties and Mechanisms of Formation. *Annual Review of Earth and Planetary
769 Sciences*, 32(1), 287-328. doi:10.1146/annurev.earth.32.101802.120213

770 Tian, Q., Liu, N., Bai, W., Li, L., Chen, J., Reich, P. B., . . . Zhang, W.-H. (2016). A novel soil manganese
771 mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. *Ecology*,
772 97(1), 65-74.

773 Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., & Allison, S.
774 D. (2013). Causes of variation in soil carbon simulations from CMIP5 Earth system models and
775 comparison with observations. *Biogeosciences*, 10(3), 1717-1736. doi:10.5194/bg-10-1717-2013

776 Trum, F., Titeux, H., Cornelis, J.-T., & Delvaux, B. (2011). Effects of manganese addition on carbon release from
777 forest floor horizons. *Canadian Journal of Forest Research*, 41(3), 643-648. doi:10.1139/x10-224

778 Trum, F., Titeux, H., Ponette, Q., & Berg, B. (2015). Influence of manganese on decomposition of common beech
779 (*Fagus sylvatica* L.) leaf litter during field incubation. *Biogeochemistry*, 125(3), 349-358.
780 doi:10.1007/s10533-015-0129-9

781 Whalen, E. D., Smith, R. G., Grandy, A. S., & Frey, S. D. (2018). Manganese limitation as a mechanism for reduced
782 decomposition in soils under atmospheric nitrogen deposition. *Soil Biology and Biochemistry*, 127, 252-
783 263. doi:10.1016/j.soilbio.2018.09.025

784 Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O., He, Y., . . . Xu, X. (2015). Explicitly
785 representing soil microbial processes in Earth system models. *Global Biogeochemical Cycles*, 29(10),
786 1782-1800. doi:<https://doi.org/10.1002/2015GB005188>

787 Yi, B., Lu, C., Huang, W., Yu, W., Yang, J., Howe, A., . . . Hall, S. J. (2023). Resolving the influence of lignin on
788 soil organic matter decomposition with mechanistic models and continental-scale data. *Glob Chang Biol*,
789 29(20), 5968-5980. doi:10.1111/gcb.16875

790 Zehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., . . . Norby, R. J. (2014).
791 Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-
792 Air CO₂ Enrichment studies. *New Phytologist*, 202(3), 803-822. doi:<https://doi.org/10.1111/nph.12697>

793 Zak, D., Argiroff, W. A., Freedman, Z. B., Upchurch, R. A., Entwistle, E. M., & Romanowicz, K. J. (2019).
794 Anthropogenic N deposition, fungal gene expression, and an increasing soil carbon sink in the Northern
795 Hemisphere. *Ecology*, 100(10), e02804.

796