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Abstract—The exponential electrification of transportation has
contributed to highly intermittent load variations in the distribu-
tion grid. This uncertainty has raised challenges for distribution
system operation and control. Accurate nodal voltage estimation
is highly essential for the safe and reliable operation of the
grid. Graph convolutional networks have been used in machine-
learning-based models for power grid applications like voltage
estimation for their ability to capture the network topology of the
grid. This paper presents a multi-edge graph convolutional layer
that considers resistance and reactance as edge attributes. Then,
this layer is used to create a multi-edge graph convolutional
network-based surrogate model for estimating voltage in the
distribution network with highly uncertain electric vehicle (EV)
loads. Results indicate improved performance of the multi-edge
graph convolutional network model when compared to a standard
graph convolutional network model.

Index Terms—graph convolutional networks, electric vehicles,
voltage prediction, smart grids, multi-edge graph convolutional
networks

I. INTRODUCTION

Electric vehicles (EVs) offer an interesting solution to
reduce the dependency of the transportation sector on fossil
fuels. However, the integration of EVs into existing power
grids poses challenges such as increased electricity demand
and voltage fluctuations. While some EV loads, like fleet
depot charging stations, may be less uncertain, others asso-
ciated with public charging infrastructure and highway fast
charging stations may be highly uncertain. This uncertainty
has raised concerns for short- and long-term load forecasting
and voltage estimation in power distribution networks. Over
time, the United States power distribution grids have evolved
to integrate various smart grid technologies that leverage real-
time data and advanced analytics to optimize grid performance
and ensure reliable and efficient power delivery. Systems
like the Advanced Distribution Management System (ADMS),
Distributed Energy Resource Management Systems (DERMS),
Fault Location Isolation and Service Restoration (FLISR), and
Volt/VAR Optimization (VVO) have been crucial in managing
the increasing complexity of the grid. These systems rely
on accurate voltage estimation using conventional methods or
data-based state estimation methods. All these systems have
led to increased data collection from the grid. This data could
be extremely valuable to train machine learning (ML) models.

A. Literature Review

In recent years, power systems research has witnessed an
interest in ML-based approaches for voltage estimation in
power distribution networks. Traditional distribution system
state estimation (DSSE) methods have been employed to esti-
mate voltage using measurements collected by the sensors at
different nodes in the power distribution network [1]. However,
with the increase of highly uncertain loads like EVs, there is a
need for adaptive voltage estimation techniques. The integra-
tion of ML-based techniques presents a promising solution to
address this need [2]. Leveraging neural networks, can enhance
voltage estimation accuracy by considering complex relation-
ships between input variables and voltage levels in the active
distribution network and accommodating reverse power flows
due to distributed energy resources (DERs) [3]. Moreover,
a continuously evolving grid with increasing smart devices
requires real-time monitoring and control capabilities powered
by ML-based voltage estimation methods [4]. Graph Neural
Networks, such as Graph Convolutional Networks (GCN) can
be employed in several applications in power systems such as
fault scenario application, time-series prediction, power flow
calculation, and data generation [5]. GCNs can capture the
topology of the power distribution network, allowing for more
accurate voltage estimation by considering spatial relationships
between different buses and nodes.

B. Motivation and Contributions

With increased EV adoption, it is essential to optimize the
charging of EV loads for stable and reliable operation of the
grid. With the development of ML technology, deep reinforce-
ment learning algorithm has shown promise in the energy
management strategy (EMS) of EVs [6]. Estimation of steady
state parameters of the distribution network is a key step to
learning in ML based-optimization algorithms [7]. Zhao et al.
in [8] presents the use of GCN as a surrogate model for voltage
estimation in a federated learning framework to implement
optimal VVO control for DERs. GCNs when combined with
federated architecture are perfect for the implementation of
edge-intelligence-based distributed control systems that can
continuously learn from real-time decision-making. Such an
adaptive system could be highly efficient in dealing with EV
load-induced uncertainty. However, conventional GCN fails
to capture edge-related attributes in the power distribution



Fig. 1. Modified IEEE 33-node Distribution Network

network. Zhou et al. in [9] introduces the co-embedding
of edges and nodes with deep graph convolutional neural
networks to consider multiple edge attributes simultaneously.
Such an approach, called Multi-Edge GCN (ME-GCN) can
overcome the drawbacks of GCN. The contributions of this
paper are listed below:

• The paper introduces a novel Multi-Edge GCN model
customized for power systems. This model accepts the
resistance and reactance of the distribution network as
edge attributes.

• The proposed ME-GCN model is then compared with the
traditional GCN model with a distribution network data
with highly uncertain EV loads.

II. PROBLEM STATEMENT

A distribution system operator (DSO) has to be prepared to
deal with the uncertainty on the grid due to the integration of
renewable energy sources and electric vehicles. EV charging
loads can range from 3 kW - 4.5 MW in terms of power
and 20 kWh - 1 MWh in terms of energy demand. Each EV
load’s demand curve is highly customer specific. Since most
EV customers have an incentive in managing the charging
to reduce the peak load drawn from the grid, EV charging
data will be recorded by charging management systems. With
increasing uncertainty, DSOs have to increase regulation and
capacity reserves to ensure grid security and reliability for
the customers. Moreover, with an ever-increasing number of
EVs on the grid, it would be unwise to not use the available
data to mitigate the impact of uncertainty. Therefore, it is

essential to explore and integrate advanced ML algorithms
for power transmission and distribution systems. GCN-based
surrogate models have been applied to estimate voltage in the
distribution networks. With the ability to consider the topology
of the distribution network during the model training, GCN
has been explored for different applications on the power grid.
This paper evaluates the performance of such a GCN model
in a distribution network with highly erratic EV loads. Then,
this model presents a novel ME-GCN layer with the ability to
accept network parameters like resistance and reactance. Then,
the introduced layer is utilized to build a surrogate model
for the same application, for which the standard GCN-based
surrogate model was used. The performances of both surrogate
models are compared and analyzed.

III. MODELING

A. Data Generation Model for EVCS Load

To evaluate the performance of the GCN model used in this
paper for voltage estimation in a distribution network, a high-
uncertainty dataset was generated For dataset generation, the
EV charging station (EVCS) load was generated by several
realistic assumptions. The rate of vehicle arrivals at the EVCS
was modeled based on the time of day, leveraging a Poisson
distribution to capture the stochastic nature of vehicle arrivals.
While a higher arrival rate was selected during morning and
evening commutes to account for peak hours, the arrival
rates selected for off-peak and late-night hours were different.
This model shows the variation of the rate of arrival of
EVs to EVCS, reflecting real-world charging demand patterns
[10]. The initial state of charge (SOC) for each vehicle was
generated by using a normal distribution centered around 30%
with a standard deviation of 10%. Furthermore, an inverted
logistic function was used to model the dependency of the
charging power of a battery on SOC [11]. The generated EVCS
loads are shown in the Fig.2. Finally, these EV loads were
assigned to the selected EVCS locations in the case.

B. Background: Fundamentals of GCNs

1) Mathematical Representation of GCN Layer: GCNs
have become a notable deep learning approach in the field
of graph-structured data. The GCN acquires a robust repre-
sentation of the graph by exploiting the local neighborhood

Fig. 2. Generated EVCS Load Profile



Fig. 3. Standard GCN Layer

information of nodes. The underlying concept of GCN is to
combine neighboring nodes in order to capture both local and
global graph structures [12]. Equation (1) presents the primary
operation in a GCN layer.

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1)

where the matrix of node features at layer l is represented by
H(l), the adjacency matrix with added self-loops is represented
by Ã , the diagonal node degree matrix is represented by D̃,
the weight matrix at layer l is represented by W (l), and σ is
the activation function.

2) Message Passing in GCN Layer: The operation of a
standard GCN layer for estimating voltage at a node utilizing
both reactive and active power injection is shown in Fig. 3.
From the perspective of node 1, the procedure commences by
performing a linear transformation on the input features P1

and Q1. In the ensuing stages, the transformed characteristics
P ′
1 and Q′

1 are disseminated to all adjacent nodes 0, 2, 3, and
4 by applying the adjacency matrix. In this phase, as shown in
Figure. 3, Node 1 gathers transformed input features like P ′

3

and Q′
3 from its neighboring nodes, thereby capturing the local

graph topology. The node aggregates the data from all adjacent
nodes. The data collected from the surrounding nodes, when
paired with the modified data from node 1, is processed by a
non-linear activation function, such as Rectified Linear Unit
(ReLU), in order to capture intricate connections and patterns.
By employing an additional transformation, the features that
have been generated are utilized to make predictions for the
voltage at node 1.

C. Proposed Method: Multi-Edge GCNs

In the proposed novel Multi-Edge GCN (ME-GCN) model,
multiple edge attributes have been integrated into the layer.
This allows the model to capture complex relationships be-
tween the training data and the edge attributes. The layer
performs separate transformations for node and edge attributes,
followed by a gating mechanism that combines these trans-
formed features. The output is then passed through a non-

Fig. 4. Message Passing in the ME-GCN Layer

linear activation function like ”Leaky RELU” to produce the
final output.

1) Mathematical Representation of ME-GCN: The mathe-
matical representation of the ME-GCN model is given (2).

H(l+1) = σ(CustomAggr(Concat(H(l), E),W (l))) (2)

where H(l) represents the matrix of node features at layer
l, E is the matrix of edge attributes associated with each
edge in the graph, W (l) is the weight matrix at layer l,
which transforms the concatenated features, and σ is the
activation function (e.g., LeakyReLU). CustomAggr denotes
the custom aggregation function, typically a summation over
the node’s neighborhood after applying a transformation.
Concat(H(l), E) signifies the concatenation of node features
with corresponding edge attributes

2) Message Passing in ME-GCN Layer: The message pass-
ing of ME-GCN layer is shown in the Fig 4. When compared
to a standard GCN layer, ME-GCN layers can accept more
than one edge feature of the network. Resistance and reactance
serve as edge attributes for the ME-GCN model presented
in this paper. For a given node i, the ME-GCN layer starts
with a linear transformation of the input features. Similar
to a standard GCN layer, these transformed features are
propagated to all adjacent nodes utilizing the adjacency matrix.
However, the ME-GCN model incorporates edge attributes like
resistance and reactance. For node 1, the edge attributes of all
neighboring nodes are considered by the node.

The node i then concatenates these transformed features
and edge attributes and disseminates them to the adjacent
nodes based on the adjacency matrix. Similarly, node 1 would
receive such features from all the neighboring nodes 0, 2,
3, and 4. Then, node 1 aggregates these node and edge
attributes from neighboring nodes, which is then processed
through a non-linear activation like ReLU . This step helps
in capturing complex interactions and patterns in the data,
considering both the node attributes and the characteristics of
the connections between them. Finally, similar to a standard



GCN, an additional transformation is applied to these features
to predict the nodal voltage.

3) Model Data of ME-GCN: The input features considered
for the surrogate model for voltage estimation are nodal
active power injection P and reactive power injection Q. The
nature and dimension of the input feature matrix X , and
adjacency matrix A are presented in [8]. The magnitudes of
the resistance matrix and reactance matrix were extracted from
the impedance matrix [13]. Within the model, each snapshot
of power flow is represented as a graph with the topology A
and with edge attributes R and X . Zero-mean normalization
was done on input features and target values of voltage. The
custom ME-GCN layer developed in this paper is presented
as algorithm 1. The ME-GCN model used for the surrogate
model is presented in algorithm 2. The hyper-parameters of
the surrogate model is presented in the table. I. The training
loop used for training both models is shown in algorithm 3.

Algorithm 1 Custom ME-GCN Convolutional Layer
Input: in channels, out channels
Output: output

Initialisation :
1: Initialize linear transformation lin with input dimension

in channels + 2
Propagation Process

2: for each edge in edge index do
3: concatenated ← concat(xj , edge weight)
4: output ← lin(concatenated)
5: end for
6: return output

Algorithm 2 ME-GCN Model Architecture
Input: data
Output: estimated voltage magnitude

Initialisation :
1: Extract x, edge index, edge weight from data

Model Layers
2: x← LeakyReLU(conv1(x, edge index, edge weight))
3: x← Dropout(x)
4: x← LeakyReLU(conv2(x, edge index, edge weight))
5: x← Dropout(x)
6: x← conv3(x, edge index, edge weight)
7: return x.squeeze()

TABLE I
HYPERPARAMETERS FOR GCN AND ME-GCN

Hyperparameters Data
Maximum Epoch 100

hidden dimension 1 128
hidden dimension 2 32

learning rate 0.01
batch size 1024

beta 0.01

Algorithm 3 Training Loop for ME-GCN Model
Input: num epochs, patience, train loader, val loader
Output: best model

Initialisation :
1: Initialize best val loss and patience counter

Training Process
2: for epoch = 1 to num epochs do
3: total loss ← 0
4: for each batch in train loader do
5: Perform forward pass and loss computation
6: Perform backpropagation and optimizer step
7: total loss += current batch loss
8: end for
9: Compute average training loss

10: Evaluate on validation set
11: if validation loss ¡ best val loss then
12: Update best val loss and reset patience counter
13: else
14: Increment patience counter
15: if patience counter ≥ patience then
16: Trigger early stopping
17: break
18: end if
19: end if
20: end for
21: return best model

IV. RESULTS AND ANALYSIS

The proposed local voltage estimation model for the ADN is
tested using the modified IEEE 33-node distribution system in
this section. The proposed method was implemented in Visual
Studio Code using PyTorch. The numerical experiments were
conducted on a computer with an Apple M2 Pro processor
and 32 GB of RAM.

A. Case Description

A modified IEEE 33-node network shown in Figure 1 was
employed to generate the data for training the model. For
the generation of the dataset, the highly uncertain EV load
was considered in the IEEE-33 network. The IEEE-33 node
network was imported using the matpower module. EVCS
load was generated based on the EV load data generation
model presented in Section III-A. Then, the pypower module
in Python was used to generate the power flow results of
the model. The hyperparameters of the GCN and ME-GCN
models are provided in Table I. The training data generated
was for a 3-minute granularity for one year. The generated
data was split into testing, training, and validation in the
percentages of 70, 15, and 15, respectively. The training loss
curve and validation loss curve of the ME-GCN model are
shown in Fig. 5.

1) Performance Evaluation Metrics: Several performance
metrics were employed to evaluate the accuracy and relia-
bility of the models being compared. The Mean Absolute
Error (MAE) reveals the average magnitude of errors in the
prediction. Lower values of MAE indicate a closer alignment



Fig. 5. Training and Validation Loss Curve for ME-GCN Model

with the observed data. While Mean Squared Error (MSE)
highlights large errors by squaring deviations, Root Mean
Squared Error (RMSE) shows errors in the magnitude of the
target variable, presenting the average extent of errors. The
coefficient of determination, or R-squared metric, quantifies
the percentage of output variance explained by the model’s
input variables. A higher value of explained variance denotes
a model’s enhanced explanatory power. Explained variance
measures the proportion of the dataset’s total variance that
is captured by the model. The Mean Absolute Percentage
Error (MAPE) is useful for assessing the relative accuracy of
the model using a percentage-based value of error magnitude.
These metrics together provide a complete evaluation of the
model. The value of training loss and validation loss is
decreasing as the number of epochs increases. There are a
few spikes in the validation loss at epochs 7, 23, 51, 72, 80,
and 93. However, since the training loss and the validation
loss are reducing until the final epoch, the model is learning
as the number of epochs increases.

B. Comparison of Performance metrics of GCN and ME-GCN
Models

MAE, MSE, RMSE, R-squared, explained variance, and
MAPE were used to evaluate and compare the performance
of GCN and ME-GCN models. Table II shows the values
of the performance indicators of both models. The ME-GCN
model achieves significantly lower MAE, MSE, and RMSE
values. This proves that the ME-GCN model predicts values
that are much closer to the actual values. Moreover, the ME-
GCN model exhibits higher R-squared and explained variance
values, indicating its ability to capture the variance in the data.
Collectively, these metrics indicate the enhanced ability of the
ME-GCN model to capture the dataset’s underlying structure.

Figure 6 shows the scatter plot of predicted values to actual
values from the GCN model. The plot for the GCN model
shows that the points are around the 45-degree line from the
origin, which shows that it does a good job at predicting
the voltage values. However, there are some points that are
scattered away from the diagonal line. On the other hand, the
scatter plot of actual and predicted values for the ME-GCN
model shown in Fig. 7 indicates a better distribution of the
data points. The variance of the predicted value from the actual

TABLE II
COMPARISON OF PERFORMANCE METRICS

Performance Metrics ME-GCN GCN
MAE 1.90e-04 3.60e-04
MSE 7.99e-08 2.74e-07

RMSE 2.82e-04 5.23e-04
R-squared 0.9934 0.9775

Explained Variance 0.9934 0.9776
MAPE 0.0200 0.0362

Fig. 6. Actual vs Predicted Voltage for GCN Model

value is highly reduced for the ME-GCN model. Similarly, the
error distribution of the predicted voltage values from the GCN
model is presented in Fig. 8. The error ranges from negative
0.0025 to positive 0.0025 p.u voltage. Whereas the range of
the ME-GCN model’s error distribution illustrated in Fig.9 is
in the range of negative 0.001 to positive 0.001 p.u. voltage.

Fig. 7. Actual vs Predicted Voltage for ME-GCN Model



Fig. 8. Error Distribution for GCN Model

Fig. 9. Error Distribution for ME-GCN Model

V. CONCLUSION

An ever-evolving power grid with rapid digitization of the
grid has created challenges and opportunities to the grid
operation. The advancement in machine-learning-based tech-
niques can help capture the complex relationships between
known and unknown parameters of the grid. In this paper, an
ME-GCN layer customized for the power grid is presented.
The layer is then used to build an ME-GCN-based surrogate
model for voltage estimation for a distribution network for
highly uncertain EV loads. Moreover, a comparative study
demonstrates higher accuracy of the ME-GCN model com-
pared to a standard GCN-based surrogate model under the
system with high EV charging loads using the same dataset.
[8] have demonstrated the ability of GCN to leverage the grid’s
topology for accurate voltage estimation. Multi-Edge GCN
further enhances the capability of GCN by integrating edge
attributes. The proposed ME-GCN model is an effective neural
network model to represent the static power grid operation in
ML-based surrogate models designed for grid applications.
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