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Executive Summary

The secure integration and management of distributed energy resources (DER) and
power aggregators in the electric grid requires secure communications and a
physics-aware Command and Control (C2) strategy. A Blockchain (BC)-based
overlay network was developed to provide a security layer for the existing power grid
network that mitigates risks in current and legacy network and C2 protocols. By
integrating a Model-Assisted Machine Learning (MAML) framework with a Secure
Blockchain Overlay Network (SBON) a defense-in-depth strategy was achieved.

In our approach, the MAML framework leveraged a smart contract framework to
gather network data and learn the dynamics of DER to develop detection strategies
for attacks targeting sensors and actuators used by DER.

The MAML framework learned dynamical systems models for individual DERs to
detect sensor attacks. For DER we utilized a Digital Twin (DT) to accelerate the
learning process for a model resistant to stealthy attacks. The project created DT for
PV inverters and BESS. The DTs were coupled with a model-assisted, data-driven
learning of DER behavior. Specifically, we evaluated architectures for model-based
learning with model-free fine-tuning. Additionally, differential privacy techniques
were used to obfuscate data, while still allowing the computation of attack detection
results based on obfuscated data.

The SBON developed leverages a private permissioned blockchain network
orchestrated with the Hyperledger Fabric framework. To connect the cyber world,
which orchestrates the blockchain fabric, and the physical world where the power
network resides, we developed a system implementation to enable the secure
interaction of the physical world and the abstracted blockchain.
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2. Background
Model-based attack detection for cyber-physical systems (CPS) [3] has been used to
protect numerous energy-related systems, e.g., [4]. Model-based approaches,
however, are limited by modeling uncertainty (i.e., unmodeled dynamics) and
measurement noise, both of which an attacker can exploit to remain undetected [1].
Recently, learning-based approaches have been proposed to minimize modeling
uncertainty [5] and have found some success in applications related to power
regulation [6] and security [7]. Learning-based approaches, however, can be slow to
converge; require substantial interactions (measurements) with the environment;
may not observe relevant dynamics during offline training; during online learning are
vulnerable to attacker poisoning; or may introduce system brittleness as an artifact
of the learning process [8]. To address these limitations, we explored a model-
assisted, learning-based [9] attack detection approach. While maintaining the
capabilities of a traditional model-based approaches, our approach can identify
evasive attackers, and localize impacted DER more quickly than traditional model-
based or existing learning approaches.

Deployment of a Secure Blockchain Overlay Network (SBON) as an overlay network
on the existing distribution network has the potential to address long-standing
challenges of poor/absent authentication, encryption, and identity management for
power systems. To date, blockchain (BC) has been applied for transactive energy
exchange, but not as an interoperable and unified control framework by utilities or
grid operators [10]. A blockchain-based approach has advantages over other
industry initiatives that attempt to provide these benefits, such as Open Field
Message Bus [11], due to greater security provided by nearly a decade of secure
reference implementation development and code auditing of blockchain protocols.
The conventional 51% attacks on Blockchain networks [12] do not apply to the
proposed BC/SBON architecture due to the use of Practical Byzantine Fault
Tolerance, a permissioned consensus algorithm that relies on cryptographic identity
to verify transactions [13]. By implementing the SBON in a trusted hardware module
we can also achieve secure off chain execution.

While secure multiparty computation (SMC) techniques have been explored for other
applications (e.g., financial trading), the aggregator-level attack detection problem
presents unique challenges. The large amount of data and the non-linear operations
makes it inefficient to use SMC. On the other hand, existing differential-privacy
based data release methods are applicable to answering statistical queries, but here
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the accuracy of the attack detection depends on the accurate release of individual
DER’s data records, which is at odds with privacy. Our proposed privacy-preserving
synthetic data release algorithms achieved high accuracy while preserving the
privacy of individual users by leveraging the unique characteristics of the grid
network topology graph to anonymize the data exchanged with and between
aggregators.

While the use of blockchain in energy is relatively well studied, much of the existing
work focuses on supporting energy trading [14], and little consideration has been
given on leveraging it for resiliency in power network. Besides scalability, the
seemingly conflicting properties between the closed on-chain system of blockchain
in the cyber world and the need to interact with the physical world in CPS resiliency
is also a challenge. To bridge this gap, we build on top of existing work [2] both in
theoretical construction and system implementation to enable composition of on-
chain and off-chain functions.

. Project Objectives

Two key technologies to achieve cyber-resilience for power systems were
developed: a BC-enabled secure communication and management architecture and
a MAML framework for attack detection and response. These two security enablers
could be deployed to DER and leveraged at the distribution/transmission grid level to
ensure grid network resiliency (protect, detect, and respond) against sophisticated-
tier threats involving compromised DER and aggregators.

The threat model considered assumed DER compromise at the local device level
(sensors, device firmware), plus global aggregator level (DER controllers, actuators,
DER management systems (DERMS)), and utility level (compromised aggregators,
DERMS, subregions, and microgrids). Local and global attacks were considered,
including false data injection, spoofing, and privilege escalation to achieve one or
more of the following cyber-physical effects: (1) sub-synchronous resonance, (2)
amplification of weak grid conditions, (3) load shedding, and (4) inter-area
oscillations.

At the level of individual DER the MAML could be used to detect sensor attacks and
determine the proper response to potentially malicious C2 signals (i.e., whether an
actuator attack is underway that would negatively impact the grid). As individual
DER may not be able to detect all sensor/actuator attacks, and DER themselves
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may be compromised, the MAML detection framework would also be used by
aggregators/utility operators. As these actors have more computational resources
and have access to sensor data from multiple DER (i.e., a system view), they have
the ability to execute more complex algorithms that leverage a larger set of data to
determine which DER are compromised and how to respond (e.g., isolate affected
DER or island distribution networks) without jeopardizing grid operations.

In our MAML framework, attack detection at both local and aggregator levels
assumed the collection and sharing of electric usage data from individual DERs and
aggregators. However, this raised privacy concerns. A DER may not want to let
nearby DERs know about its electric usage, and an aggregator may not want to
share all its data with another aggregator since they may belong to mutually
untrusted companies/organizations. We proved techniques to enable joint detection
among untrusted parties without compromising the privacy of users.

Several components of a Secure Blockchain Overlay Network (SBON) were
developed to address cybersecurity vulnerabilities arising from vulnerable,
heterogeneous, and non-interoperable command-and-control (C2) protocols used by
DER, aggregators, and utility and operator distribution systems. The SBON allows
for secure configuration of a peer-to-peer ledger protocol with smart contract support
(e.g., a private permissioned blockchain using the Ethereum blockchain protocol).

3.1 Task Summaries

3.11 Task 1.0: Digital Twin Development

Digital twin (DT) required for model-based detection to be built. The Twins can be
used at the edge or at the Utility level. DT will be transferred to prime in an
executable format with the appropriate interfaces to receive inputs and publish
estimates.

3.1.2 Task 2.0: Learning Framework for Sensor Attack Detection

Designing and developing the MAML framework, including integration of DT, to
enable detection of attacks against DER sensors by comparing agent-predicted
behavior to observed behavior. Initial experimental validation of approach conducted
on existing inverter and BESS designed by partner and with final validation
performed on utility-grade DER.

3.1.3 Task 3.0: Grid Modeling
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Reference load, voltage and frequency profiles of the utility partner(s)’ service-area
grid to be determined.

314 Task 4.0: BC Framework (BCF) Development

R&D of a private permissioned peer-to-peer ledger and smart contract framework
(‘BCF’). The BCF to provide protection (secure communications, identity
management, secure updates, network segmentation), and enable automated
detection and response using a smart contract framework. BCF will act as an
overlay to the existing power grid network (e.g., DNP3/IP and SCADA) to provide a
unified and interoperable secure architecture for utility integration and management
of aggregators and DER.

3.1.5 Task 5.0: Enabling Physical World Access from Blockchain

New theory and implementation to enable smart contracts to execute off-chain
functions in individual DER, using the notion of local consensus, in which smart
contract functions are off-loaded to nodes with trusted modules who can attest to
interested parties the trusted execution of commands.

3.2Go/No-Go Decision Points and Milestones

PV Inverter Digital Twin model accuracy; BESS Digital Twin model accuracy; PV
Inverter MAML accuracy; BESS MAML accuracy; Transmission network model(s)
accuracy; Distribution network model(s) accuracy; Local (DER) level attack
detection; Global (aggregator or utility) level attack detection.

. Project Results and Discussion
4.1Digital Twin Development (Task 1)

411 Develop Digital Twin (DT) for PV Inverter (Subtask 1.1)

Outcome: DT that describes the behavior of a PV inverter in the field. A General
Electric LVS inverter (1,500 VDC, 4 MW input capacity), connected to a 115 kV
transmission network via a substation, served as the DT target.

41.1.1 PV System Description

The PV inverter system assumed in Figure 1 was composed of solar PV panels,
dc/dc conversion with Maximum Power Point Tracking (MPPT) capability, inverter,
grid connection and plant controller.
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Figure 1. PV system

The PV system captured the following scenarios:

. Provide as much power as possible based on PV capacity under specific
irradiance (MPPT function).

. Provide fixed power to the grid when power command is lower than the
PV capacity (Curtailment/Reserve function).

. Provide commanded reactive power to the grid.

Measured variables and their locations are shown in the figure Figure 2 and Table 1

below.
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Figure 2. PVI system measurements
Table 1. Measurement signals in PV system

Measured variables Description \

Vac [V] Measured dc bus voltage

Lac [A] Measured dc bus current
Pref [kKW] Reference power

Pout [kW] Inverter output active power
fout [Hz] System frequency

Qrer [kVar] Reference reactive power
Qout [kVar] Inverter output reactive power
Vwu [V] Line-to-line WU voltage
Vi [V] Line-to-line VW voltage
Vu [V] Line-to-line UV voltage

L, [A] Phase U current
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Iy [A] Phase V current
Iy [A] Phase W current

41.1.2 PV DT Model Results
An experimentally verified PV DT model under Python platform has been delivered.
The model can capture both MPPT and curtailment modes.

Table 2 shows the accuracy of the PV DT model in Python platform compared to
Matlab under curtailment mode.

Table 2. PV DT Model Accuracy Comparison in Python and Matlab Platforms under Curtailment Mode

Vdec 0.00094% Idc -0.1019%  Pout -0.075%
fout 0% Vuv | -0.00005% @ Iu -0.1113%

Table 3 shows the accuracy of the PV DT model in Python platform compared to
Matlab under MPPT mode.

Table 3. Model Accuracy Comparison in Python and Matlab Platforms under MPPT Model

Vdec -0.0027% Idc 0.3756% Pout 0.3518%
fout 0% Vuv | -0.00002% @ Iu 0.2835%

41.1.3 PV Data Summary

The PV data consists of 10 datasets as described in Table 4. The PV system is
tested in both MPPT and curtailment/reserve modes with both the steady state and
transient behavior recorded. Cases are selected in the report to demonstrate the
capability of the PV system.

Table 4. PV Dataset List

Test name Category Scenarios Sampling
time (ms) duration
(s)
M_Curtail P_100 kW PV Reserve Morning. PV curtailment with output 10 25
power at 100 kW.
M_Curtail P_50 kW PV Reserve Morning. PV curtailment with output 10 30
power at 50 kW.
A_Curtail_P_100 kW PV Reserve Afternoon. PV curtailment with output 10 35

power at 100 kW.
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A_Curtail P_50 kW PV Reserve Afternoon. PV curtailment with output 10 20
power at 50 kW.
EA_MPPT MPPT MPPT. Early Afternoon 10 25
LA_MPPT MPPT MPPT. Late Afternoon 10 45
M_Curtail P_100_S0 kW | PV reserve step | Morning. PV curtailment. 10 15
change Transient behavior with Pref from 100 to
50kW.
A_Curtail P_100_50 kW PV reserve step | Afternoon. PV curtailment. Transient 10 15
change behavior with Pref from 100 to S0kW.
EA_MPPT _ Curtail w. MPPT to Early Afternoon. MPPT to curtailment 10 22
P_100 kW reserve with output power at 100kW.
LA_MPPT_Curtail w. MPPT to Late Afternoon. MPPT to curtailment 10 25
P_100 kW reserve with output power at S0kW.

Test result: PV operates at MPPT mode

The MPPT data for the panels operating in the early afternoon is shown in Figure 3.
Bus voltage, current, and power during MPPT. In this case, the system is operating
to generate the maximum available power for the operating conditions.

Vdc Idc Pout
1210 90 108.5
108
= 1205 = 89.5 =
= = . . : = 107.5
B 1200 s e S a0 ASBIIIENaEiEiR s B 5 107
= £ . £y =
2 1195 S sss OB T S g 1065
106
1190 88 105.5
5 10 15 20 2D B 10 15 20 25 5 10 15 20 25

Time [s] Time [s] Time [s]

Figure 3. Bus voltage, current, and power during MPPT

Test Result: Mode transition from MPPT to curtailment

The transition from MPPT to curtailment is shown in Figure 4. Bus voltage, current,
and power during mode transition. Curtailment with Pref = 100 kW. The test is done
in early afternoon. Before the mode transition event, the system is operating to
generate the maximum available power for the operating conditions.

Vdc Idc Pout

1450 100 110

1400
- = 90 = 105
=.1350 = 2
% 1300 5§ 80 g 100
g 1250 3 70 & o5

1200

1150 60 %0

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Time [s] Time [s] Time [s]

Figure 4. Bus voltage, current, and power during mode transition. Curtailment with Pref = 100 kW

Figure 5 shows another mode transition test done in late afternoon.
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current, and power during mode transition. Curtailment with Pref = 50 kW

41.2 Develop DT for BESS (Subtask 1.2)
Outcome: DT that describes the behavior of a BESS inverter in the field. A General

Electric Renewable Energy Reservoir (4 MWh, lithium ion), connected to a 115 kV
transmission network via a substation, served as the DT target.

41.21 BESS System Description

The BESS system is composed of battery racks, dc/dc conversion, an inverter, grid
connection and plant controller, as depicted in Figure 6.

e M M.
E E E DC/DC (H DC/AC

Figure 6. The BESS System

The BESS system captures the following scenarios:
- Discharge the battery to export power to the grid.
« Charge the battery by power injected from the grid.

« Deliver commanded

reactive power to the grid.

Measured variables and their locations are shown in Table 5 and Figure 7.

Table 5. Measurement signals in BESS system

Measured Variables [unit] Description

SOC [%] State of charge
Status_bat [-] Battery status

Vbat [V] Measured battery voltage
lpat [A] Measured battery current
Pres [kW] Reference power
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Pout [kW] Inverter output active power
fout [HZ] System frequency
Qres [kVar] Reference reactive power
Qout [kVar] Inverter output reactive power
Vuu [V] Line-to-line WU voltage
Viw [V] Line-to-line VW voltage
Vuw [V] Line-to-line UV voltage
lu [A] Phase U current
Iv [A] Phase V current
lw [A] Phase W current
Config: scaling
Config: scaling Config: Z Config: Z Config: V.f
i '\Y """""""""""""
P AN
- __'_.II  gas | Power POI Power Grid £
SO 1] !!E Conversion meter — : impedance =
| ——— =1 ] Transformer
| Battery
I Controller
I
e o - ]L _________________________
Ibat' Vbat Pref' QrEf Poutv Qout ’ fout
soc Vi Vow s Vi

[ A

Figure 7. BESS System Measurements

41.2.2 BESS DT Model Results

Both steady state and transient behaviors and charging and discharging operations
were simulated in the BESS DT model and compared against test data.

Steady State Test Comparison

Comparisons between the test data and DT model are provided in the following
tables. As depicted in the table, errors of all simulation output parameters are less
than 3%, besides the battery current.

Table 6. Test and model comparison for case with +600 kW active power and 0 kVAR reactive power

Reference Power [kW] = +600 +600 N/A

Pout [kW] +600 +600 0%
SOC [%] 34.125 | 34.125 | 0.00%
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Status_bat [-] -1 -1 0.00%
Ibat [A] 620 635.62 | -2.52%
Vbat [V] 9582 | 952.8 | 0.56%
fout [Hz] 59.998 | 60.06 | -0.10%
Vuyv [V] 491.2 | 492.15 | -0.19%
Vvw [V] 491.2 | 492.15 | -0.19%
Vwu [V] 491.2 | 492.15  -0.19%
Tu [A] 705.45 | 702.25 | 0.45%
Iv [A] 705.45 | 702.25 | 0.45%
Iw [A] 705.45 | 702.25 | 0.45%

Table 7. Test and model comparison for case with -600 kW active power and 0 kVAR reactive power

Reference Power [KW] -600 -600 N/A

Pout [kW] -600 -600 0.00%
SOC [%l] 36.075 | 36.075 | 0.00%
Status_bat [-] 1 1 0.00%
Ibat [A] -587.5 | -603.1 | 2.66%
Vbat [V] 979.6 = 963.1 | 1.68%
fout [Hz] 60.002 | 60.025 | -0.04%
Vuyv [V] 487.0 | 488.41 -0.29%
Vvw [V] 487.0 | 488.41 | -0.29%
Vwu [V] 487.0 | 488.41 @ -0.29%
Tu [A] 708.95 | 708.15 @ 0.11%
Iv [A] 708.95 | 708.15 | 0.11%
Iw [A] 708.95 | 708.15 @ 0.11%

Transient Test Comparison

To ensure the DT model accurately captured the dynamic behavior of the physical
BESS, model outputs were compared to test data. The normalized root mean
squared error was used for model validation.

Active Power 3ph Vac 3ph lac

®  TestVuv
®  Testh
530 ® Testvww 8 Tadin

Testhw
DTMode! Vuy DTModel lu

_“Kﬁ ~—— DTModel Vvw 558 DiMcdeli P

510 DTMode! Vwu DTModel w ‘{ G

@ TestPout
DTModel Pout 460

Pref 470 - f

50
59 450 (
1

gl "
18 19 2 21 22 23 24 25 26 18 19 2 21 22 23 24 25 26 18 1.9 2 2 22 23 24 25 26
Time [s] Time [s] Time [s]

Figure 8. Test and DT model result comparison for case with 0 kW to 200 kW active power step
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41.2.3 BESS Data Summary

The BESS data consists of 3 main categories with total of 27 datasets as described
in Table 8, Table 9, and Table 10. The BESS system captured the following
scenarios:

« Active power step tests, with different combinations of initial and target power
reference. Reactive power reference is set to be 0 kVar for all cases.

« VAR step tests, with different combinations of initial and target reactive power
reference, hold and set back to the initial. Power reference is set to be 0 kW or
400 kW.

« Volts tests, with 100% initial grid voltage to a lower target grid voltage, hold and
set back to the initial. Power reference is set to be 0 kW or 400 kW.

Three cases were selected to demonstrate the capability of the BESS system;
specifically, battery charging, battery discharging, and reactive power step test, as
detailed below.

Table 8. BESS Dataset List - Active Power Step Test

Test name Scenarios Sampling Time (ms) Time
Duration (s)
P_+7 +224kW | Qref=0kVar. Set Pref from 7 kW to 224 kW 10 40
P_+224 +441kW | Qref =0 kVar. Set Pref from 224 kW to 441 kW 10 40
P_+441 +657kW | Qref = 0 kVar. Set Pref from 441 kW to 657 kW 10 40
P_+658 +855kW | Qref =0 kVar. Set Pref from 658 kW to 855 kW 10 40
P_-858 -642kW | Qref= 0 kVar. Set Pref from -858 kW to -642 kW 10 40
P_-641_-426kW | Qref= 0 kVar. Set Pref from -641 kW to -426 kW 10 40
P_-426_-210kW | Qref= 0 kVar. Set Pref from -426 kW to -210 kW 10 40
P_+200_+400kW | Qref =0 kVar. Set Pref from 200 kW to 400 kW 10 40
P_+400_+600kW  Qref= 0 kVar. Set Pref from 400 kW to 600 kW 10 40
P_+600_+800kW | Qref =0 kVar. Set Pref from 600 kW to 800 kW 10 40
P_+800_-800kW = Qref =0 kVar. Set Pref from 800 kW to -800 kW 10 40
P_-800_-600kW | Qref=0 kVar. Set Pref from -800 kW to -600 kW 10 40
P_-600_-400kW | Qref= 0 kVar. Set Pref from -600 kW to -400 kW 10 40
P_-400_-200kW | Qref= 0 kVar. Set Pref from -400 kW to -200 kW 10 40

Table 9. BESS Dataset List - VAR Step Test

Test name Scenarios Sampling Time
Time (ms) Duration (s)
VAR 0kW_0 -300 OkVar Pref =0 kW. Set Qref from 0 kVar to 300 10 105
kVar, hold for a few seconds, then -300 kVar
to 0 kVar
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VAR_0kW_0_-600_OkVar Pref =0 kW. Set Qref from 0 kVar to 600 10 105
kVar, hold for a few seconds, then -600 kVar
to 0 kVar
VAR _0kW_0_-800_OkVar Pref = 0 kW. Set Qref from 0 kVar to 800 10 105
kVar, hold for a few seconds, then -800 kVar
to 0 kVar
VAR _0kW_0_-1200_0kVar Pref =0 kW. Set Qref from 0 kVar to 1200 10 105
kVar, hold for a few seconds, then -1200
kVar to 0 kVar
VAR_0KkW_0_+900_OkVar Pref =0 kW. Set Qref from 0 kVar to +900 10 66
kVar, hold for a few seconds, then +900
kVar to 0 kVar
VAR_400kW_0_-800_OkVar Pref =400 kW. Set Qref from 0 kVar to -800 10 110
kVar, hold for a few seconds, then -800 kVar
to 0 kVar
VAR 400kW_0 -1200_OkVar Pref =400 kW. Set Qref from 0 kVar to - 10 110
1200 kVar, hold for a few seconds, then -
1200 kVar to 0 kVar
VAR 400kW_0 +600_OkVar Pref =400 kW. Set Qref from 0 kVar to 10 110
+600 kVar, hold for a few seconds, then
+600 kVar to 0 kVar
VAR _400kW_0_+800_OkVar Pref =400 kW. Set Qref from 0 kVar to 10 90
+800 kVar, hold for a few seconds, then
+800 kVar to 0 kVar
VAR _400kW_0_+1200_OkVar Pref =400 kW. Set Qref from 0 kVar to 10 100
+1200 kVar, hold for a few seconds, then
+1200 kVar to 0 kVar

Table 10. BESS Dataset List - Volts Test

Test name Scenarios Sampling Time
Time (ms) Duration
(s)

Volts 0kW_Vgrid 100 95 100 Pref = 0 kW. Set the grid voltage from 100% to 95%, 10 105
hold for a few seconds, then from 95% to 100%

Volts 0kW_Vgrid_100_90_100 Pref =0 kW. Set the grid voltage from 100% to 90%, 10 105
hold for a few seconds, then from 90% to 100%

Volts 400kW_Vgrid 100 90 100 Pref =400 kW. Set the grid voltage from 100% to 10 105

90%, hold for a few seconds, then from 90% to 100%

Test Result: Battery Charging

One battery charging sample from the scenarios listed in Table 8 as test P_-426_-
210kW is shown in Figure 9. This sample datasets start with Pref from -426 kW to -
210 kW, with Qref set to be 0 kVar. The transition of events was observed around 17
seconds.
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Figure 9. Battery Power (Ref'vs. Output), Voltage, and State of Charge (SOC) in Charging Test

Test Result: Battery Discharging
One battery discharging sample from the scenarios listed in Table 8 as test
P_+600_+800kW is shown in Figure 10. This sample datasets start with Pref from

600 kW to 800 kW, with Qref set to be 0 kVar. The transition of events was observed
around 22 seconds.

Active Power Vbat SoC
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ag_c 800 By < 958 329 o
- 2 956 ¢ CESIMEMIIATNNe] X328
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2 00 e —— 952 326
5
< 950 325

500 0 10 20 30 40 0 10 20 30 40

& 49 20 =0 40 Time [s] Time [s]

Time [s]

Figure 10. Battery Power (Ref vs. Output), Voltage, and State of Charge (SOC) in Discharging Test

Test Result: Reactive Power Step Test

One reactive power step test sample from the scenarios listed in Table 9. BESS
Dataset List - VAR Step Test as test VAR_OkW_0_-300_0kVar is shown in Figure
11. This sample datasets start with Qref from 0 kVar to -300 kVar, hold for a few
seconds, then -300 kVar to 0 kVar, with Qref set to be 0 kVar. The transitions of
events were observed around 30 and 60 seconds respectively.
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Figure 11. Reactive Power (Ref vs. Output) in Reactive Power Step Test

41.3 Milestones Completed

e PV Inverter historical datasets: >20 historical field or laboratory
datasets suitable for training and validation obtained.

e PV Inverter Digital Twin model accuracy: =90% prediction accuracy
during steady-state and transient operation. Residuals have
approximate mean = 0 with white noise distribution.

e BESS historical datasets: >20 historical field or laboratory datasets
suitable for training and validation obtained.

e BESS Digital Twin model accuracy: 290% prediction accuracy during
steady-state and transient operation. Residuals have approximate
mean = 0 with white noise distribution.

4.2 earning Framework for Sensor Attack Detection (Task 2)

Model & Simulator Selection (Subtask 2.1)

Outcome: Models of existing PV inverter. Reduced order models and higher fidelity
models were provided. A 1 kVA, grid connected three-phase inverter with a phase-
lock-loop and a closed-loop controller served as the model target. The inverter was
grid connected and provided voltage and frequency regulation; it also supports
active and reactive power feeding to the grid.

For the complete inverter model, each component in the 1 kVA inverter was

modeled as an averaged state-space model:
Page 19 of 45



DE-EE0009338

Virginia Tech

e grid-connected three-phase inverter operated under sine-triangle pulse-width-
modulation (PWM) and both ABC and d-q reference frames

e grid-connected three-phase inverter operated under d-q reference frame

e phase-locked loop (PLL)

e |4 and I q reference generation for a grid-connected three-phase inverter
operated under the d-q reference frame

PLECS simulations were developed to simulate each system. A comparison
between the PLECS simulation results and the state-space demonstrated the
accuracy of the models

4211 Complete inverter model

With the models developed for each component in the system, the complete inverter
model with closed-loop control was developed.

x = Ax + R(x, u). (15)

In (15), x is the inverter state-space variable matrix given by
-9 -
Q)PLL
iLa
ilq
43La

q3Lq

err
dra
err

CILq
x=\|iq | (16)

lod
oq

i
[ iy

The state-space system matrix A can be derived as:
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The R(x, u) term captures nonlinearities and time-varying components in the inverter
system that cannot be described by the linear system matrix A.
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(17)

To validate the derived inverter model, a simulation of the state-space model for an
inverter with 10 kW real power and 2 kVar reactive power was conducted, (Figure
12, output grid current waveforms). Deviation between model and PLECS
simulation (experimentally validated) were negligible.
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Figure 12. The three-phase grid current for an inverter with 240 V 3-phase grid, 1000 V dc input voltage, 10 kW real power, and
2 kVar reactive power operation using the derived complete inverter state-space model. Each color represents a different phase;
model output plotted over PLECS output (no observable difference).

Further it can be seen from Figure 13 (output grid current waveforms) that the
derived model represents the step response of the inverter system with closed-loop

control accurately as the deviation between the model and PLECS simulation
(experimentally validated) were negligible.

40 T

30

-20

-30

\

0.08 0.09 0.1

v
-40 L . . . . .

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 13. The three-phase grid current for an inverter with 240 V 3-phase grid and 1000 V dc input voltage to have a step
change in real power from 10 kW to 15 kW and reactive power from 2 kVar to 5 kVar using the derived complete inverter state-
space model. Each color represents a different phase; model output plotted over PLECS output (no observable difference).

4.21.2 Summary

The team developed the averaged state-space-based models for PV and BESS
inverters with closed-loop control in the d-q frame. A comparison between model-
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based simulation results and actual PLECS switching circuit simulation results was
done to validate the derived models.

422 Learning in Simulation (Subtask 2.2)
Outcome: A framework for a Model-assisted Deep Reinforcement Learning agent
validated using the simulation setup.

4.2.21 Evaluation of State-of-the-Art ML Architectures
Modern ML architectures were tuned to establish baseline performance; specifically,
we:

¢ Identified the reinforcement learning algorithms that are applicable to be used for
continuous action space.
e Compared the performance of the identified methods with the Twin-Delayed
DDPG implementation.
¢ When state space cannot be controlled, improved the performance of the
machine learning (ML) agent that is used to predict the next state of the plant
with higher accuracy compared to the digital twin.
o Optimized the current FNN architecture parameters
o Optimized the other hyperparameters
e Implemented a recurrent neural network (RNN) architecture and compared the
performance to the FNN.

Deep Deterministic Policy Gradient

The system model for Model-Assisted Machine Learning (MAML) is shown in Figure
14. The digital twin replicates the functionality of the real plant with a linear model.
We started with the case that we can control the state space. Later, we switched to
the case that we cannot control the state space and we perform the prediction only.
We used the DDPG (Deep Deterministic Policy Gradient) algorithm; a model-free
off-policy algorithm that can learn continuous actions by integrating DPG
(Deterministic Policy Gradient) and DQN (Deep Q-Network) policies.
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Figure 15. Average reward vs. number of episodes for
DDPG model

Figure 14. Model-Assisted Machine Learning (MAML) system

Although we observed that DDPG achieved good learning performance, it is known
to be brittle with respect to the choices of hyperparameters. To address this issue,
Twin Delayed DDPG (TD3) was utilized. TD3 was found to increase the reward
beyond the performance of DDPG; however, it was found to converge more slowly.

Soft Actor Critic

For the case when we could not control the state space, we switched to the
prediction problem. A predictor network with a feedforward neural network (FNN)
architecture that takes the current state information from linear and non-linear
models and try to predict the next state of the Real System.

Below are the performance results with different number of layers and neurons in
each layer, while the loss between the digital twin (black box model) and the true
model is 0.154. Two layers with 512 neurons at each layer provides the minimum
loss between the predictor and the true model.

# layers & neurons Loss between the predictor and the true model

512,512 0.015
128,128 0.018
32,32 0.023
8,8 0.027
4,4 0.035
512 0.023
128 0.024
32 0.026
8 0.036
4 0.042

Next, we measured the run time for various number of layers and neurons. The
change in the inference time is negligible with increasing number of layers and
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neurons. On the other hand, Stage 1 training takes significantly longer time with
increasing number of layers and neurons.

Run time (sec)

# layers & neurons | Stage 1 training | Stage 2 training | Inference
4 6.59 1.07 0.19
512,512 25.93 242 0.20

4.2.2.2 Novel MAML Architectures

controller

control

stato signal state action pairs ———— predictor

response

train

plant

Figure 16. Structure of traditional ML approaches

We modified the structure of the traditional predictor approach (Figure 16) to follow
(Figure 17). Specifically, we slice the original state space of the prediction window into
multiple intervals to lower the complexity of learning; each agent being responsible for
only predicting the behavior at its interval.

Stage | Stage Il

Black-box Model Real World Plant

Figure 17. Structure of model-assisted, machine learning (MAML) approach

For the simplicity of evaluation, we used the OpenAl gym simulator for the physical
plant to be predicted. OpenAl gym is a simulation environment that is widely used
among researchers. Three predictor agents were used for each plant, each being
assigned to different intervals of the plant’s relevant state variable(s).
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Prediction Observation Action Space Failure Condition(s)

Intervals Space
(dimensions)

Cart Pole Horizontal Push cart left/right Minimize deviation Pole angle greater
position (cart at position zero; than +/- 12°; cart
[-5,-2), pole orthogonal to x- outside of viewport

[-2,2), [2,5] axis)
Lunar Vertical position 8 Nothing; fire Minimize deviation Crash, outside of
Lander [10, 6), [6,3), [3,0] left/right orientation (lander at position viewport, no
engine; fire main 0,0) movement
engine

Rotating Motor one angles 6 Stepper motor Masses at rest (no Collision and/or

triple-mass- [-0,0.5), [0.5,3), positions (2) rotation and constant rotation of masses

spring [3,00] separation)

Of the multiple plants we evaluated (Figure 18), the results from the rotating triple-
mass-spring were representative. The control task to be solved involves stabilizing
freely moving connected masses using a stepper motor.

action 1 (push right) g action 0 (push left)
— =

T

Figure 18. Plants their state variables, and control inputs evaluated using MAML framework. (top left) cart pole, (top right)
lunar lander, and (bottom) rotating triple-mass-spring. Images courtesy of Aleksandar Haber, Pau Labarta Bajo, and the Model
predictive control python toolbox.

In simulation, the average accuracy of a traditional ML predictor was above 95%
(average absolute accuracy for each state), proving that the ML predictor
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outperforms the black box model (digital twin). However, even when increasing the
number of samples, the performance of MAML did not surpass that of the traditional
ML algorithm. We speculate that the reason the MAML approach did not outperform
the baseline was due to lack of complexity in the simulated plant behavior.

4.2.3 Milestones Completed

e Models of existing PV inverter completed.

e Models of existing BESS completed.

e PV Inverter MAML accuracy: 295% prediction accuracy during steady-
state and transient operation. Residuals had approximate mean = 0
with white noise distribution.

e BESS MAML accuracy:295% prediction accuracy during steady-state
and transient operation. Residuals had approximate mean = 0 with
white noise distribution.

4.3 Grid Modeling (Task 3)
Task interrupted.

4.4BC Framework (BCF) Development (Task 4)

441 Security architecture (Subtask 4.1)
Outcome: A BCF that incorporates authentication, encryption, identity management,
access control, and message confidentiality and integrity enforcement mechanisms.

4411 Overview

We investigated and selected a solution for a private permissioned peer-to-peer
ledger and smart contract framework (‘BCF’). We looked for a distributed ledger
technology that could provide secure communications, identity management, secure
updates, network segmentation, and enable automated detection and response
using a smart contract framework.

Being a private network, the BCF should offer access control mechanisms and
segmented communications channels that allow for communication within a subset
of nodes. As a result of a common framework for communication and control, the
SBON also serves as a platform for integration and interoperable control of
heterogeneous DERs and power systems. The proposed architecture encompasses:
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1. Security: authentication, encryption, identity management, access control, and
message confidentiality and integrity enforcement mechanisms

2. Communications: secure and resilient network orchestration in a peer-to-peer
ledger architecture with transactions regulated by smart contracts.

3. Privacy-preserving data sharing: protected transactions, with validation and
verification performed by BC peers, and possibility to collaborate without sharing
all raw data.

The implementation of ML-based attack detection at both local and aggregator levels
raises privacy concerns. We enabled private channels among trusted partners and

provided an environment for collaborative and distributed learning without the need
to share the raw data among peers.

44.1.2 Approach

In a heterogeneous environment, where peers need to collaborate to achieve a
common objective of increasing resilience to malicious attacks, while also protecting
their own data and interests, it is natural to seek some structure to guide the
interactions among peers. The choice of a ledger to keep track of interactions and
contracts to regulate such interactions seems natural in this case. The
implementation of such ledger in a distributed manner, using blockchain to validate
transactions across distributed nodes, provides inherent data protection resulting
from a combination of immutability and transparency. Nodes need not share all their
raw data in order to collaborate, satisfying the requirement for data privacy
protection.

We evaluated' the use of a distributed ledger technology to increase security and
resiliency of power systems (outlined below). We created an architecture that
accommodates heterogeneous entities, including distributed energy resources
(DERS), aggregators, and utility and operator distribution systems that may belong to
different organizations (Figure 19). We implemented a private permissioned
distributed ledger solution based on Hyperledger Fabric, which provides a flexible
framework to manage the interactions of such entities.

! Validation was performed through comparison of logged data, program output, and expected results
(including hashes of messages, consensus outcomes, etc.). Due to space limitations such data are
excluded from the present report though the evaluation procedure itself is described in detail, below.
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Figure 19. Proposed architecture: aggregators are connected to the BC and guide actuation through smart contracts. DERs are

connected to aggregators and also submit sensing measurements to the Trusted Execution Environment. Sensor data is stored in
the cloud.

We decided to focus our efforts on Hyperledger Fabric, the most popular DLT
framework project in the Hyperledger Foundation. Fabric provides a modular
architecture for the development of applications, suitable for application in large
scale. The ledger comprises two parts, the world state database, where the current
state of the ledger is stored, and the blockchain part, where the records of all
transactions are kept.

The ledger state is (by default) stored as key-value pairs (e.g., {DER1: value}) and
the blockchain keeps track of all the transactions that caused changes to the state. A
transaction can be initiated by any peer in the network, but only fully endorsed
transactions (approved by sufficient number of endorser nodes) will actually change
the world state. The world state can be re-generated from the blockchain at any
time, but it provides a faster and more convenient way to store and query the
information in the ledger. Fabric offers some flexibility with the choice of database to
store the state, allowing for more complex queries by departing from the default key-
value storage to a document object storage allowing data to be stored in JSON
format. As a result, queries can be formulated using values of the data, instead of
simple queries based on the keys. We illustrate the ledger components in Figure 20.
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{DER1: value1, version 0}
{DERZ2: value2, version 0}
{DERS3: value3, version 0}
{DER4: value4, version 0}

Blockchain

[1] (2]

Figure 20. Ledger comprises blockchain and state database.

Database
World State

Le?ger

In Hyperledger Fabric, the recommended consensus protocol is Raft (as of version
1.4.1), a permissioned voting-based mechanism where a leader is elected among
ordering nodes to perform ordering [24]. The algorithm is fast, and finality is
achieved in a matter of seconds. Raft provides crash fault tolerance, operating under
node loss as long as there is majority quorum. In a production network, it is
recommended that nodes are spread across different locations to increase
resiliency. Fabric offers Crash Fault Tolerance (CFT), that is the ability to continue to
operate and reach consensus even if a node is compromised or disconnected.
Fabric does not offer native Byzantine Fault Tolerance (BFT), which is the ability to
reach consensus when a faulty node is still connected and participating in
transactions (a Byzantine node may be a malfunctioning node or a malicious node).
The lack of BFT support is a limitation to be mitigated with the use of external
libraries. Raft is not BFT, but its design was a step towards implementing BFT for
Fabric.

44.1.3 Evaluation

Our initial implementation and testing focused on Fabric, setting up and deploying
the test network as described in the Fabric Tutorials [25] using the Fabric Gateway
to coordinate the actions by clients to submit transactions and query the ledger
state. The default configuration of the test network includes two peer organizations,
labeled as Org1 and Org2, with one peer per organization to validate transactions,
and an additional organization to maintain the Raft ordering service, which decides
on the order of the transactions based on a deterministic consensus algorithm and
submits them to the blocks. The blocks are distributed to the “peer” nodes,
representing DERs and aggregators, and then added to the ledger.
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We used a script to generate the test network as described in Fabric Tutorials [25].
The test network had two organizations, Org1 and Org2, and an additional
organization to maintain the ordering of service. We added peers and ordering
nodes to the network as needed to represent the entities in the scenarios of interest.
Peers in the network were able to validate transactions, and ordering nodes reached
consensus on the order of transactions and submitted them to the blocks. The
blocks were distributed to peers and then added to the ledger.

One important and attractive feature of Fabric is the flexibility to develop a network
of networks with a certain degree of trust, in which organizations may be supported
by a private channel to communicate and perform transactions, where such
transactions are “invisible” to the rest of the network. Channel layers of
communication are exclusive to invited members who are authenticated and
authorized to transact on the channel and are defined by member organizations,
anchor peers per member that serve as endpoints for discovery and communication,
a shared ledger distinct to each channel, chaincode application(s), and the ordering
service node(s). Orderers play an important role as they enforce basic access
control for the channel.

The first block on the chain, called the genesis block, stores configuration
information about the channel policies, members, and anchor peers. In our test
network, we created a new channel called 'mychannel' and joined each peer in Org1
and Org2.

Smart contracts that contain the business logic to interact with the channel ledger
are deployed in packages referred to as chaincode. We installed the chaincode on
the peers of each organization and then deployed it to the channel so that it could
endorse transactions and interact with the ledger. We experimented with asset-
transfer-basic chaincode example already provided with the distribution, which was
successful based on logs and program output.

After the network was setup as indicated, we then created a test harness to assess
the various transactional operations for placement, observation, and confirmation on
the blockchain. In particular, we created an initial data schema to include a unique
asset ID, owner information, and integral data to simulate generic sensor
measurement data. We then populated the ledger and subsequently modified the
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data and observed the transactions through various types of successful queries on
the submitting node. We confirmed these transactions through more queries, this
time on a different node.

We then successfully verified the adaptability of our test network by adding a new
node, joining that peer to the existing channel that we created earlier, and then
installing the chaincode. We validated its association with the channel using an
appropriate query from the node itself, where, again log files and output were used
for confirmation.

Finally, we added functionality to the data schema itself by including a verifiable
hash value of the randomly-generated measurement sensor data for a randomly-
generated DER owner. These values were verified using the md5sum tool.

442 Communications architecture (Subtask 4.2)

Outcome: Developed methods for secure and resilient network orchestration, identity
management, and security automation using a peer-to-peer ledger architecture and
smart contract framework.

The architecture illustrated in Figure 19 achieves the objectives of both Subtasks 4.1
and 4.2. The solution tools are open-source, and support the necessary
customization for data management, actuation control, and interactions among the
enterprises in a regulated manner that keeps records of every transaction. The initial
implementation has tremendous potential to attend the needs of power grid
application, as well as many other applications that include distributed data
collection and even distributed learning.

443 Privacy-Preserving attack detection R&D (Subtask 4.3)
Outcome: Developed algorithms using homomorphic encryption to enable privacy-
preserving collaborative attack detection for local and global levels.

We assumed some producers (a minority) were controlled by an attacker; thus,
these producers are malicious and inject power which is not consistent with the
promised one. We illustrate the system model with attack in Figure 21. Furthermore,
if producers are required to report some measurements/data to the aggregator (to
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monitor producers’ measurements), the malicious producers may intelligently report
bad data to avoid being detected.

Promise 10 kW 20 kW 15 kW
Producer 1 Producer2 Producer3

l | l

Aggregator

4.4.3.1 Inthe non-private attack detection algorithm [26], the aggregator needs
the information of estimated and sensed states fort =0, 1, 2, ... to iteratively
compute w(t) and r(t), respectively. If r(t) = O for all t, then there is no attack;
otherwise, an exists attack. For the privacy-preserving attack detection and
identification we protected the privacy of producers’ state and measurement (w(f)
and y(t)), but still enabled the aggregator to correctly compute detection results.

l Expect 45 kKW

Figure 21. System Model

Security and Privacy Analysis:

Integrity. The linearity of the (non-private) detection and identification algorithms
guarantees the computation of the private algorithms can be done locally. Thus,
malicious producers cannot modify honest producers’ shares. Also, robust
reconstruction guarantees the malicious minority cannot change the final detection
and identification results by submitting malicious/ wrong shares.

Privacy. Following the perfect secrecy of Shamir’s secret sharing, the private
algorithm leaks nothing except what can be learned from the final results. Then, we
analyzed what can be learned from the final results. We considered the following
cases.

Case 1. No measurement noise. r(t)—0 for t—« If and only if there is no attack,
which indicates that an honest producer’s measurement is independent of the
released result I( r(t) < ) for a large enough t. Thus, there is no privacy leakage for
honest producers.

Case 2. The measurement noise is independent of measurement y(t) fort = 0, 1,...

Then, due to the linearity of r(t), we can represent the residual in this case by r’(t) =

r(t) + N (0, 0”2), where an honest producer’'s measurement is in dependent of both
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I(Jr(t)] < d) (for a large enough t) and N (0, 0*2), and thus in dependent of the
released result [(|r'(t)| < &). Therefore, there is no privacy leakage for honest
producers.

An |IEEE 14 bus system was used for evaluation with the following values.

—152 —-32703 0 9256.18 - -- 1
1 0 0 0 1
A=1| o 256.18 —1.52 —509.68 --- , CO=
| 19x19 1 19x19

Gaussian noise was added in x(t) and y(t) as state and measurement noise. Figure
22 and Figure 23 show the results of state x(t), estimated state w(t), measurement
y(t), and detection residual r(t). When there is no attack, the detection residual r(t) =
0 (ignoring the random perturbation of state/measurement). When there exist attacks
(either to x or y), the detection residual r(t) becomes non-zero after the attack start.
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Figure 22. Attack Detection/Identification in IEEE 14 Bus (when true attack set K« = {0})

Figure 22 and Figure 23 show the state change (i.e., x(t)), detection result (i.e., r(t)),
and identification results (i.e., r«(t) for K = {0} or {2}) under two different attacks (K*
= {0} or {2}). The results are consistent with the theorem. Recall that the
identification residual rk(t) = 0 if and only if the true attack set is covered by the
assumed attack set, i.e., K* € K. Thus, our experimental results show that the
privacy-preserving version can obtain the same result as the non-private one
(ignoring negligible errors due to field conversion).
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Figure 23. Attack Detection/Identification in IEEE 14 Bus.

4.4.4 Milestones Completed

e Functional security and communications architecture specified.

e Communications restrictions/availability for trusted and untrusted
nodes.

e Forlocal (DER) level false-data injection attack detection: detection
accuracy, privacy (confidentiality), and computation efficiency (run
time).

e For global (aggregator or utility) level attack detection:
detection accuracy, privacy level (privacy budget), and computation
efficiency in terms of run time.

4.5Enabling Physical World Access from Blockchain (Task 5)

451 Theoretical Foundations (Subtask 5.1)
Outcome: Developed the theoretical foundation for off-chain execution.

4.51.1 Motivation

The security of Blockchain relies on the honest majority, yet, for public blockchain,
this makes the assumption that all the participants are rational. More efficient
consensus mechanisms to achieve consensus in private/semi-public setting are
available. However, regardless of the consensus mechanisms the challenge of
limited on-chain computational capability remains a challenge.

4.51.2 Approach

We address this problem using off-chain execution. Based on our preliminary
survey, there are three types of off-chain execution mechanisms. The first type of
off-chain execution directly leverages the trusted execution environment (TEE) at a
single node in the network. For example, in towncrier [15], Zhang et al. proposed to
use Intel SGX enclave as a trusted entity for external data feed, it essentially
executes the data retrieval process via a single trusted node. One limitation of this

Page 36 of 45



DE-EE0009338

Virginia Tech

approach is that centralization is re-introduced into a supposedly decentralized
system. The second approach, on the other hand, leverages a network of computing
nodes equipped with Intel SGX trusted execution environment. In Ekiden [16],
similar to one on-chain computing, a computation is replicated among many nodes
in the blockchain network, and the compute node will reach consensus among all
the computation results on which one to commit to as a network. However, due to
the replication of the computation, there is still non-trivial overhead for decentralized
security.

Furthermore, in order to obtain a reasonable degree of decentralization, it is
important that the quorum has a non-trivial number of participating parties. From the
execution time perspective, if all the nodes are well connected, then latency may still
be manageable, and this response time is important for the context we are studying.
The last approach proposed in PrivacyGuard [17] aims to combine remote
attestation and smart contracts to achieve off-chain execution.

When the computation takes place off-chain, several challenges occur. First, the
correctness of the contract execution can no longer be guaranteed by the blockchain
consensus. To this end, they propose "'local consensus" for the contracting parties
to establish trust on the off-chain computation via remote attestations. The main
intuition is that remote attestation allows a prover to attest its system state to a
remote verifier. If all of the parties involved in a smart contract perform remote
attestation on the secure enclave and can verify the system states of the execution
environment, then it is sufficient to trust the outcome from that enclave. This
approach makes the assumption that the trusted execution environment is free of
vulnerability, this may not be correct all the time. Furthermore, the latency from the
remote attestation may be non-trivial. It is important to take these factors into
consideration in the design of off-chain execution.

Build on top of this systemization effort, we have further developed the universal
compossibility for TEE-based off-chain execution to set the foundation for the off-
chain execution in the proposed power-grid blockchain. In an off-chain execution, a
smart contract’s execution is split into control and computation, where the
computation actually takes place off-chain, several challenges occur.

First, the correctness of the contract execution could no longer be guaranteed by
blockchain consensus. To this end, we propose “local consensus” for the contracting
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parties to establish trust on the off-chain computation via remote attestations.
Second, the execution of contract is no longer atomic when the computation part is
executed off-chain. We design a multi-step commitment protocol to ensure that
result release and data transaction remain an atomic operation, where if the
computation results were tampered with, the data transaction would abort gracefully.

We implemented a prototype of off-chain execution using Intel SGX as the TEE
technology and Ethereum as the smart contract platform. We chose these two
technologies for implementation due to their wide adoption. Our design generally
applies to other types of trusted execution environments and blockchain smart
contract platforms. The platform fulfills the goal of user-defined data usage control at
reasonable costs and we show that it is feasible to perform complex data operations
with security and privacy protection as specified by the data contract.

4.51.3 Summary

The BCF detailed above necessitates a Trusted execution environment (TEE)
executing on a limited resource embedded system (e.g., a microcontroller) to
provide cost-effective, local protection for DERs. We systemized existing methods
for off-chain execution understanding the limitations and trade-offs of such systems.
Research then focused on generating the proof for TEE-based off-chain execution
under the universal compossibility framework. The main accomplishment lies in a
non-trivial proof, which provided a sound theoretical basis for the utilization of TEE-
secured DER as the foundation of a resilient grid.

45.2 Trusted Modules for Embedded Processors (Subtask 5.2)

Outcome: We leveraged Root-of-trust for low-cost microcontrollers (MCU) to provide
protection for manufacturers seeking to safeguard their valuable machine learning
models against intellectual property (IP) theft.

4.5.2.1 Motivation

With recent advances in deep learning (DL) [18], there is a growing need to deploy
the machine learning (ML) models on smart microcontrollers (MCUs) at the Edge for
communication efficiency and privacy protection. This deployment paradigm on
MCUs is often referred to as tiny machine learning (TinyML) [19].

4.5.2.2 Approach
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We proposed Secure TinyML (STML) to protect model IP on MCUs under an
untrusted software stack based on commercial off-the-shelf hardware. There were

two main challenges:
e Constrained Memory. TEE utilizes isolation to safeguard memory contents, but it

can lead to memory scarcity for DL inference execution in the secure world and
other tasks in the normal world due to the limited available memory resources.

e Co-Optimization. The memory swapping during world switches of TrustZone and
the use of cryptographic operations for swapped data protection significantly
increase the runtime latency of DL execution.

System Design

STML protects the IP of TinyML models using a system and algorithm co-design
approach. As shown in Figure 24, STML consists of an offline optimization engine
and a runtime IP protection mechanism. The offline optimization engine outputs a
resource allocation strategy to minimize the TinyML task execution delay.

Runtime IP Protection

Offline Optimization Engine

lm Flash Layout Optimization NW g.g «»
5°¥ ~Neural
I (%) System Profiling Statistics| sw iR -Nef\l:/?rk

| Param Load & Decrypt |
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Figure 24. STML System Design

Evaluation
To evaluate the performance of STML on a range of TinyML tasks using various

trained models, we evaluated it with models from MLPerf Tiny Benchmark [21] and
MicroNets [22]. The benchmark TinyML tasks include keyword spotting (KWS),
anomaly detection (AD), visual wake words detection (VWW), and image
classification (IC). Table 11 shows measurement data of the used models when all
system resources are available on the MCU. We ensured our algorithm-level model
optimization adhered to the performance requirements and quality targets specified

by MLPerf Tiny Benchmark.
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A TinyML task runs in the secure world, while other tasks including LED Toggling,
Logging, and AudioSampling, are executed in the normal world. The metadata of
these tasks is illustrated in Table 12. Note that the flash size of AudioSample
includes both the code size in the internal flash memory the data size in the SD card.
Similar to tasks in widely-used cyber-physical systems like ArduPilot [23], these
normal world tasks have higher execution priorities, as they are responsible for
critical operations.

Table 11. Metadata of TinyML Benchmark Models

Task Model Flash (KiB) RAM (KiB) Latency (ms) Metric

Keyword Spotting DS-CNN 144.80 31.25 81.29 90% (Top-1)
MicroNet-KWS(S) 192.55 70.14 233.05

Anomaly Detection | Deep AutoEncoder 328.96 10.57 7.64 0.85 (AUC)
MicroNet-AD(S) 327.64 120.14 445.66

Visual Wake Words | MobileNetV1 0.25x 420.07 108.82 256.68 80% (Top-1)
MicroNet-VWW(S) 363.60 77.71 146.01

Image Classification ResNet-8 187.04 62.32 373.33 85% (Top-1)

Table 12. Metadata of Tasks in the Normal World

Task Flash (KB) SRAM (KB) Frequency (Hz) Priority |
LED Toggle 56.90 25.14 50 2
Logging 89.70 41.34 20 3
AudioSample 170.94 114.35 10 1

4.5.2.3 Summary

We introduced STML, a TinyML model IP protection system for MCUs utilizing ARM
TrustZone. We proposed a memory swapping scheme to address the limited
memory issue and minimize /O and inference latency through system and algorithm
level optimization. Our approach effectively balances memory usage, latency,
security, and accuracy, resulting in a 40% reduction in runtime overhead compared
to non-optimized solutions. Although initially designed for systems with predictable
workloads, STML can be adapted to other systems by adjusting the DL execution
latency modeling to accommodate their specific characteristics.

4.5.3 Milestones Completed

e Security modeling was validated based on the percentage of security
requirements proved using the security mechanism.
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e The performance of the trusted module was found to be more efficient
in terms of energy, memory, throughput (e.g., latency) overhead
compared to the state of the art.

5. Significant Accomplishments and Conclusions: Accurate Digital Twins (DTs)
and model-assisted machine learning (MAML) approaches critical for cyber-attack
detection for PV Inverter and BESS developed and verified. The PV Inverter and
BESS DTs had 290% prediction accuracy during steady-state and transient
operation and were each based on >20 historical field datasets suitable for training.
The MAML approaches achieved 295% prediction accuracy during steady-state and
transient operation of non-linear physics-based models, including PV Inverter and
BESS models. For local, DER-level attack detection, the privacy-preserving attack
detector was found to have <5% accuracy degradation compared with the no privacy
case; formal privacy guarantees were provided and reasonable run time of <60s for
local level detection were achieved.

Specifications for both functional security and communication architectures for the
BCF were completed. The specifications incorporated authentication, encryption,
and message confidentiality and integrity enforcement mechanisms in BCF, as well
as secure and resilient network orchestration, using a peer-to-peer ledger
architecture and smart contract framework. To connect the cyber world that is
orchestrated by the blockchain fabric and the physical world in which the power
network resides, a trusted machine learning framework was implemented and
benchmarked as a trusted module for resource-constrained systems. A
performance degradation of <10% was observed compared to the processing
without trusted module on average. By implementing the MAML approaches using
this framework, individual DER can now securely attest to performing attack
detection as an off-chain function, thus proving the use of smart contracts for
command and control (C2) of DER .

6. Path Forward
Two avenues of future research and development are suggested based upon project
outcomes:
1. To protect legacy DER the MAML and BC technologies can be integrated into
a modular, plug-and-play security module. The module would need to employ
a networking interface to receive sensor/status data from, and transmit C2
signals to, DER. Interfacing with the aggregator/utility equipment could be
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accomplished using, for example, IEC 61850 to the applicable IEEE 1547-
2018 protocol.

2. The SBON can be extended to secure information exchanges (data and C2)
between utility distribution controllers, energy aggregators, and DER. Least
privilege-based network segmentation for communications between utilities
and DER controllers could be achieved using a PKI tailored to provide role-
based access control to restricted and securely segmented communications
channels within the SBON. Providing a unified and interoperable control
interface could be accomplished using a standardized data model based on
multiple standardized DER and grid control frameworks to allow for low-cost,
low-effort integration and interoperable control of heterogeneous DER and
power systems.

7. Products
Jinwen Wang, Yuhao Wu, Han Liu, Bo Yuan, Roger D. Chamberlain, and Ning
Zhang, “IP Protection in TinyML,” in Proc. of 60th ACM/IEEE Design Automation
Conference (DAC), July 2023.

8. Project Team and Roles
(e.g., DOE personnel, students, collaborating organizations).

Institution Contribution

Adams, Stephen VT Investigator Blockchain

Chen, Zhe GER Investigator Digital Twins

Erpek, Tugba VT Investigator MAML

Florez, Orlando VT Program Manager Budgets & Schedule

Gerdes, Ryan M. VT Principal Investigator MAML

Giani, Annarita GER Investigator Digital Twins and
Blockchain

Gu, Patrick VT Student MAML

Gu, Xiaolan UA Student Privacy-preserving
Attack Detection

Heaslip, Kevin VT Investigator Integration &
Coordination

Li, Ming UA Investigator Privacy-preserving
Attack Detection

Morales-Rodriguez, Marissa | DOE Technology Manager Supervisory

Sagduyu, Yalin VT Investigator MAML

Salasoo, Lembit GER Program Manager Digital Twins

Skinner, Tucker usu Student PV Inverter Models

Wang, Chun-Tao VT Student MAML

Wang, Hongjie usu Investigator PV Inverter Models

Wang, Jinwen WUSTL Student Off-chain Execution
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Zhang, Ning

WUSTL

Investigator

Blockchain & Off-
chain Execution
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