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Executive Summary 
The secure integration and management of distributed energy resources (DER) and 
power aggregators in the electric grid requires secure communications and a 
physics-aware Command and Control (C2) strategy.  A Blockchain (BC)-based 
overlay network was developed to provide a security layer for the existing power grid 
network that mitigates risks in current and legacy network and C2 protocols. By 
integrating a Model-Assisted Machine Learning (MAML) framework with a Secure 
Blockchain Overlay Network (SBON) a defense-in-depth strategy was achieved. 
 
In our approach, the MAML framework leveraged a smart contract framework to 
gather network data and learn the dynamics of DER to develop detection strategies 
for attacks targeting sensors and actuators used by DER. 
 
The MAML framework learned dynamical systems models for individual DERs to 
detect sensor attacks. For DER we utilized a Digital Twin (DT) to accelerate the 
learning process for a model resistant to stealthy attacks. The project created DT for 
PV inverters and BESS. The DTs were coupled with a model-assisted, data-driven 
learning of DER behavior. Specifically, we evaluated architectures for model-based 
learning with model-free fine-tuning.  Additionally, differential privacy techniques 
were used to obfuscate data, while still allowing the computation of attack detection 
results based on obfuscated data. 
 
The SBON developed leverages a private permissioned blockchain network 
orchestrated with the Hyperledger Fabric framework.  To connect the cyber world, 
which orchestrates the blockchain fabric, and the physical world where the power 
network resides, we developed a system implementation to enable the secure 
interaction of the physical world and the abstracted blockchain. 
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2. Background 
Model-based attack detection for cyber-physical systems (CPS) [3] has been used to 
protect numerous energy-related systems, e.g., [4]. Model-based approaches, 
however, are limited by modeling uncertainty (i.e., unmodeled dynamics) and 
measurement noise, both of which an attacker can exploit to remain undetected [1]. 
Recently, learning-based approaches have been proposed to minimize modeling 
uncertainty [5] and have found some success in applications related to power 
regulation [6] and security [7]. Learning-based approaches, however, can be slow to 
converge; require substantial interactions (measurements) with the environment; 
may not observe relevant dynamics during offline training; during online learning are 
vulnerable to attacker poisoning; or may introduce system brittleness as an artifact 
of the learning process [8]. To address these limitations, we explored a model-
assisted, learning-based [9] attack detection approach. While maintaining the 
capabilities of a traditional model-based approaches, our approach can identify 
evasive attackers, and localize impacted DER more quickly than traditional model-
based or existing learning approaches. 
 
Deployment of a Secure Blockchain Overlay Network (SBON) as an overlay network 
on the existing distribution network has the potential to address long-standing 
challenges of poor/absent authentication, encryption, and identity management for 
power systems. To date, blockchain (BC) has been applied for transactive energy 
exchange, but not as an interoperable and unified control framework by utilities or 
grid operators [10]. A blockchain-based approach has advantages over other 
industry initiatives that attempt to provide these benefits, such as Open Field 
Message Bus [11], due to greater security provided by nearly a decade of secure 
reference implementation development and code auditing of blockchain protocols. 
The conventional 51% attacks on Blockchain networks [12] do not apply to the 
proposed BC/SBON architecture due to the use of Practical Byzantine Fault 
Tolerance, a permissioned consensus algorithm that relies on cryptographic identity 
to verify transactions [13]. By implementing the SBON in a trusted hardware module 
we can also achieve secure off chain execution. 
 
While secure multiparty computation (SMC) techniques have been explored for other 
applications (e.g., financial trading), the aggregator-level attack detection problem 
presents unique challenges. The large amount of data and the non-linear operations 
makes it inefficient to use SMC. On the other hand, existing differential-privacy 
based data release methods are applicable to answering statistical queries, but here 
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the accuracy of the attack detection depends on the accurate release of individual 
DER’s data records, which is at odds with privacy. Our proposed privacy-preserving 
synthetic data release algorithms achieved high accuracy while preserving the 
privacy of individual users by leveraging the unique characteristics of the grid 
network topology graph to anonymize the data exchanged with and between 
aggregators.  
 
While the use of blockchain in energy is relatively well studied, much of the existing 
work focuses on supporting energy trading [14], and little consideration has been 
given on leveraging it for resiliency in power network. Besides scalability, the 
seemingly conflicting properties between the closed on-chain system of blockchain 
in the cyber world and the need to interact with the physical world in CPS resiliency 
is also a challenge. To bridge this gap, we build on top of existing work [2] both in 
theoretical construction and system implementation to enable composition of on-
chain and off-chain functions. 

 
3. Project Objectives 

Two key technologies to achieve cyber-resilience for power systems were 
developed: a BC-enabled secure communication and management architecture and 
a MAML framework for attack detection and response. These two security enablers 
could be deployed to DER and leveraged at the distribution/transmission grid level to 
ensure grid network resiliency (protect, detect, and respond) against sophisticated-
tier threats involving compromised DER and aggregators. 
 
The threat model considered assumed DER compromise at the local device level 
(sensors, device firmware), plus global aggregator level (DER controllers, actuators, 
DER management systems (DERMS)), and utility level (compromised aggregators, 
DERMS, subregions, and microgrids). Local and global attacks were considered, 
including false data injection, spoofing, and privilege escalation to achieve one or 
more of the following cyber-physical effects: (1) sub-synchronous resonance, (2) 
amplification of weak grid conditions, (3) load shedding, and (4) inter-area 
oscillations. 
 
At the level of individual DER the MAML could be used to detect sensor attacks and 
determine the proper response to potentially malicious C2 signals (i.e., whether an 
actuator attack is underway that would negatively impact the grid). As individual 
DER may not be able to detect all sensor/actuator attacks, and DER themselves 
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may be compromised, the MAML detection framework would also be used by 
aggregators/utility operators. As these actors have more computational resources 
and have access to sensor data from multiple DER (i.e., a system view), they have 
the ability to execute more complex algorithms that leverage a larger set of data to 
determine which DER are compromised and how to respond (e.g., isolate affected 
DER or island distribution networks) without jeopardizing grid operations. 
 
In our MAML framework, attack detection at both local and aggregator levels 
assumed the collection and sharing of electric usage data from individual DERs and 
aggregators. However, this raised privacy concerns.  A DER may not want to let 
nearby DERs know about its electric usage, and an aggregator may not want to 
share all its data with another aggregator since they may belong to mutually 
untrusted companies/organizations. We proved techniques to enable joint detection 
among untrusted parties without compromising the privacy of users.  
 
Several components of a Secure Blockchain Overlay Network (SBON) were 
developed to address cybersecurity vulnerabilities arising from vulnerable, 
heterogeneous, and non-interoperable command-and-control (C2) protocols used by 
DER, aggregators, and utility and operator distribution systems. The SBON allows 
for secure configuration of a peer-to-peer ledger protocol with smart contract support 
(e.g., a private permissioned blockchain using the Ethereum blockchain protocol).  
 

3.1 Task Summaries 

3.1.1 Task 1.0: Digital Twin Development 
Digital twin (DT) required for model-based detection to be built. The Twins can be 
used at the edge or at the Utility level. DT will be transferred to prime in an 
executable format with the appropriate interfaces to receive inputs and publish 
estimates. 
 
3.1.2 Task 2.0: Learning Framework for Sensor Attack Detection 
Designing and developing the MAML framework, including integration of DT, to 
enable detection of attacks against DER sensors by comparing agent-predicted 
behavior to observed behavior. Initial experimental validation of approach conducted 
on existing inverter and BESS designed by partner and with final validation 
performed on utility-grade DER. 
 
3.1.3 Task 3.0: Grid Modeling 
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Reference load, voltage and frequency profiles of the utility partner(s)’ service-area 
grid to be determined. 
 
3.1.4 Task 4.0: BC Framework (BCF) Development 
R&D of a private permissioned peer-to-peer ledger and smart contract framework 
(‘BCF’). The BCF to provide protection (secure communications, identity 
management, secure updates, network segmentation), and enable automated 
detection and response using a smart contract framework. BCF will act as an 
overlay to the existing power grid network (e.g., DNP3/IP and SCADA) to provide a 
unified and interoperable secure architecture for utility integration and management 
of aggregators and DER. 
 
3.1.5 Task 5.0: Enabling Physical World Access from Blockchain 
New theory and implementation to enable smart contracts to execute off-chain 
functions in individual DER, using the notion of local consensus, in which smart 
contract functions are off-loaded to nodes with trusted modules who can attest to 
interested parties the trusted execution of commands. 
 

3.2 Go/No-Go Decision Points and Milestones 
PV Inverter Digital Twin model accuracy; BESS Digital Twin model accuracy; PV 
Inverter MAML accuracy; BESS MAML accuracy; Transmission network model(s) 
accuracy; Distribution network model(s) accuracy; Local (DER) level attack 
detection; Global (aggregator or utility) level attack detection. 

 
4. Project Results and Discussion 

4.1 Digital Twin Development (Task 1) 

4.1.1 Develop Digital Twin (DT) for PV Inverter (Subtask 1.1) 
Outcome: DT that describes the behavior of a PV inverter in the field.  A General 
Electric LV5 inverter (1,500 VDC, 4 MW input capacity), connected to a 115 kV 
transmission network via a substation, served as the DT target. 
 

4.1.1.1 PV System Description 
The PV inverter system assumed in Figure 1 was composed of solar PV panels, 
dc/dc conversion with Maximum Power Point Tracking (MPPT) capability, inverter, 
grid connection and plant controller.   
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Figure 1. PV system 

The PV system captured the following scenarios:  

• Provide as much power as possible based on PV capacity under specific 
irradiance (MPPT function).  

• Provide fixed power to the grid when power command is lower than the 
PV capacity (Curtailment/Reserve function).  

• Provide commanded reactive power to the grid.  

Measured variables and their locations are shown in the figure Figure 2 and Table 1 
below. 

 
Figure 2. PVI system measurements 

Table 1. Measurement signals in PV system 

Measured variables  Description  
Vdc [V]  Measured dc bus voltage  
Idc [A]  Measured dc bus current  
Pref [kW]  Reference power  
Pout [kW]  Inverter output active power  
fout [Hz]  System frequency  
Qref  [kVar]  Reference reactive power  
Qout  [kVar]  Inverter output reactive power  
Vwu [V]  Line-to-line WU voltage  
Vvw [V]  Line-to-line VW voltage  
Vuv [V]   Line-to-line UV voltage   
Iu [A]  Phase U current  
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Iv [A]  Phase V current  
Iw [A]   Phase W current   

 

4.1.1.2 PV DT Model Results 
An experimentally verified PV DT model under Python platform has been delivered. 
The model can capture both MPPT and curtailment modes.  
 
Table 2 shows the accuracy of the PV DT model in Python platform compared to 
Matlab under curtailment mode. 

Table 2. PV DT Model Accuracy Comparison in Python and Matlab Platforms under Curtailment Mode 

Vdc  0.00094%  Idc  -0.1019%  Pout  -0.075%  
fout  0%  Vuv  -0.00005%  Iu  -0.1113%  

 

Table 3 shows the accuracy of the PV DT model in Python platform compared to 
Matlab under MPPT mode.  

 
Table 3. Model Accuracy Comparison in Python and Matlab Platforms under MPPT Model 

Vdc  -0.0027%  Idc  0.3756%  Pout  0.3518%  
fout  0%  Vuv  -0.00002%  Iu  0.2835%  

  

4.1.1.3 PV Data Summary  
The PV data consists of 10 datasets as described in Table 4. The PV system is 
tested in both MPPT and curtailment/reserve modes with both the steady state and 
transient behavior recorded. Cases are selected in the report to demonstrate the 
capability of the PV system. 
 

Table 4. PV Dataset List 

Test name  Category  Scenarios  Sampling 
time (ms)  

Time 
duration  

(s)  
M_Curtail_P_100 kW  PV Reserve  Morning. PV curtailment with output 

power at 100 kW.  
10  25  

M_Curtail_P_50 kW  PV Reserve  Morning. PV curtailment with output 
power at 50 kW.  

10  30  

A_Curtail_P_100 kW  PV Reserve  Afternoon. PV curtailment with output 
power at 100 kW.  

10  35  
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A_Curtail_P_50 kW  PV Reserve  Afternoon. PV curtailment with output 
power at 50 kW.  

10  20  

EA_MPPT  MPPT  MPPT. Early Afternoon  10  25  
LA_MPPT  MPPT  MPPT. Late Afternoon  10  45  

M_Curtail_P_100_50 kW  PV reserve step 
change  

Morning. PV curtailment.  
Transient behavior with Pref from 100 to 
50kW.  

10  15  

A_Curtail_P_100_50 kW  PV reserve step 
change  

Afternoon. PV curtailment. Transient 
behavior with Pref from 100 to 50kW.  

10  15  

EA_MPPT_ Curtail w. 
P_100 kW  

MPPT to 
reserve  

Early Afternoon. MPPT to curtailment 
with output power at 100kW.  

10  22  

LA_MPPT_Curtail w. 
P_100 kW  

MPPT to 
reserve  

Late Afternoon. MPPT to curtailment 
with output power at 50kW.  

10  25  

 
Test result: PV operates at MPPT mode  
The MPPT data for the panels operating in the early afternoon is shown in Figure 3. 
Bus voltage, current, and power during MPPT. In this case, the system is operating 
to generate the maximum available power for the operating conditions.  

 

Figure 3. Bus voltage, current, and power during MPPT 

Test Result: Mode transition from MPPT to curtailment  
The transition from MPPT to curtailment is shown in Figure 4. Bus voltage, current, 
and power during mode transition. Curtailment with Pref = 100 kW. The test is done 
in early afternoon. Before the mode transition event, the system is operating to 
generate the maximum available power for the operating conditions.  

 

Figure 4. Bus voltage, current, and power during mode transition. Curtailment with Pref = 100 kW 

Figure 5 shows another mode transition test done in late afternoon.  
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Figure 5. Bus voltage, current, and power during mode transition. Curtailment with Pref = 50 kW 

 

4.1.2 Develop DT for BESS (Subtask 1.2) 
Outcome: DT that describes the behavior of a BESS inverter in the field.  A General 
Electric Renewable Energy Reservoir (4 MWh, lithium ion), connected to a 115 kV 
transmission network via a substation, served as the DT target. 
 

4.1.2.1 BESS System Description 
The BESS system is composed of battery racks, dc/dc conversion, an inverter, grid 
connection and plant controller, as depicted in Figure 6.   

 
Figure 6. The BESS System 

The BESS system captures the following scenarios:  
• Discharge the battery to export power to the grid.  
• Charge the battery by power injected from the grid.  
• Deliver commanded reactive power to the grid.  
 
Measured variables and their locations are shown in Table 5 and Figure 7. 
 

Table 5. Measurement signals in BESS system 

Measured Variables [unit]  Description  
SOC [%]  State of charge  
Status_bat [-]  Battery status  
Vbat [V]  Measured battery voltage  
Ibat [A]  Measured battery current  
Pref [kW]  Reference power  
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Pout [kW]  Inverter output active power  
fout [Hz]  System frequency  
Qref  [kVar]  Reference reactive power  
Qout  [kVar]  Inverter output reactive power  
Vwu [V]  Line-to-line WU voltage  
Vvw [V]  Line-to-line VW voltage  
Vuv [V]   Line-to-line UV voltage   
Iu [A]  Phase U current  
Iv [A]  Phase V current  
Iw [A]   Phase W current   

 

 
Figure 7. BESS System Measurements 

 

4.1.2.2 BESS DT Model Results  

Both steady state and transient behaviors and charging and discharging operations 
were simulated in the BESS DT model and compared against test data. 
 
Steady State Test Comparison  
Comparisons between the test data and DT model are provided in the following 
tables. As depicted in the table, errors of all simulation output parameters are less 
than 3%, besides the battery current. 

Table 6. Test and model comparison for case with +600 kW active power and 0 kVAR reactive power 

Inputs       

Reference Power [kW]  +600   +600  N/A  
Outputs       

Pout [kW]  +600  +600  0%  
SOC [%]  34.125  34.125  0.00%  
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Status_bat [-]  -1  -1  0.00%  
Ibat [A]  620  635.62  -2.52%  
Vbat [V]  958.2  952.8  0.56%  
fout [Hz]  59.998  60.06  -0.10%  
Vuv [V]  491.2  492.15  -0.19%  
Vvw [V]  491.2  492.15  -0.19%  
Vwu [V]  491.2  492.15  -0.19%  
Iu [A]  705.45  702.25  0.45%  
Iv [A]  705.45  702.25  0.45%  
Iw [A]  705.45  702.25  0.45%  

 
Table 7. Test and model comparison for case with -600 kW active power and 0 kVAR reactive power 

Inputs       

Reference Power [kW]  -600   -600  N/A  
Outputs       

Pout [kW]  -600  -600  0.00%  
SOC [%]  36.075  36.075  0.00%  
Status_bat [-]  1  1  0.00%  
Ibat [A]  -587.5  -603.1  2.66%  
Vbat [V]  979.6  963.1  1.68%  
fout [Hz]  60.002  60.025  -0.04%  
Vuv [V]  487.0  488.41  -0.29%  
Vvw [V]  487.0  488.41  -0.29%  
Vwu [V]  487.0  488.41  -0.29%  
Iu [A]  708.95  708.15  0.11%  
Iv [A]  708.95  708.15  0.11%  
Iw [A]  708.95  708.15  0.11%  

 
Transient Test Comparison 
To ensure the DT model accurately captured the dynamic behavior of the physical 
BESS, model outputs were compared to test data.  The normalized root mean 
squared error was used for model validation. 
 

 
Figure 8. Test and DT model result comparison for case with 0 kW to 200 kW active power step 
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4.1.2.3 BESS Data Summary 

The BESS data consists of 3 main categories with total of 27 datasets as described 
in Table 8, Table 9, and Table 10. The BESS system captured the following 
scenarios:  
• Active power step tests, with different combinations of initial and target power 

reference. Reactive power reference is set to be 0 kVar for all cases.  
• VAR step tests, with different combinations of initial and target reactive power 

reference, hold and set back to the initial. Power reference is set to be 0 kW or 
400 kW.  

• Volts tests, with 100% initial grid voltage to a lower target grid voltage, hold and 
set back to the initial. Power reference is set to be 0 kW or 400 kW.  

  
Three cases were selected to demonstrate the capability of the BESS system; 
specifically, battery charging, battery discharging, and reactive power step test, as 
detailed below.  

Table 8. BESS Dataset List - Active Power Step Test 

Test name  Scenarios  Sampling Time (ms)  Time  
Duration (s)  

P_+7_+224kW  Qref = 0 kVar. Set Pref from 7 kW to 224 kW  10  40  
P_+224_+441kW  Qref = 0 kVar. Set Pref from 224 kW to 441 kW  10  40  
P_+441_+657kW  Qref = 0 kVar. Set Pref from 441 kW to 657 kW  10  40  
P_+658_+855kW  Qref = 0 kVar. Set Pref from 658 kW to 855 kW  10  40  
P_-858_-642kW  Qref = 0 kVar. Set Pref from -858 kW to -642 kW  10  40  
P_-641_-426kW  Qref = 0 kVar. Set Pref from -641 kW to -426 kW  10  40  
P_-426_-210kW  Qref = 0 kVar. Set Pref from -426 kW to -210 kW  10  40  
P_+200_+400kW  Qref = 0 kVar. Set Pref from 200 kW to 400 kW  10  40  
P_+400_+600kW  Qref = 0 kVar. Set Pref from 400 kW to 600 kW  10  40  
P_+600_+800kW  Qref = 0 kVar. Set Pref from 600 kW to 800 kW  10  40  
P_+800_-800kW  Qref = 0 kVar. Set Pref from 800 kW to -800 kW  10  40  
P_-800_-600kW  Qref = 0 kVar. Set Pref from -800 kW to -600 kW  10  40  
P_-600_-400kW  Qref = 0 kVar. Set Pref from -600 kW to -400 kW  10  40  
P_-400_-200kW  Qref = 0 kVar. Set Pref from -400 kW to -200 kW  10  40  

  

Table 9. BESS Dataset List - VAR Step Test 

Test name  Scenarios  Sampling 
Time (ms)  

Time  
Duration (s)  

VAR_0kW_0_-300_0kVar  Pref = 0 kW. Set Qref from 0 kVar to 300 
kVar, hold for a few seconds, then -300 kVar 
to 0 kVar  

10  105  



DE-EE0009338  

Virginia Tech 

 

Page 17 of 45 

 

VAR_0kW_0_-600_0kVar  Pref = 0 kW. Set Qref from 0 kVar to 600 
kVar, hold for a few seconds, then -600 kVar 
to 0 kVar  

10  105  

VAR_0kW_0_-800_0kVar  Pref = 0 kW. Set Qref from 0 kVar to 800 
kVar, hold for a few seconds, then -800 kVar 
to 0 kVar  

10  105  

VAR_0kW_0_-1200_0kVar  Pref = 0 kW. Set Qref from 0 kVar to 1200 
kVar, hold for a few seconds, then -1200 
kVar to 0 kVar  

10  105  

VAR_0kW_0_+900_0kVar  Pref = 0 kW. Set Qref from 0 kVar to +900 
kVar, hold for a few seconds, then +900 
kVar to 0 kVar  

10  66  

VAR_400kW_0_-800_0kVar  Pref = 400 kW. Set Qref from 0 kVar to -800 
kVar, hold for a few seconds, then -800 kVar 
to 0 kVar  

10  110  

VAR_400kW_0_-1200_0kVar  Pref = 400 kW. Set Qref from 0 kVar to -
1200 kVar, hold for a few seconds, then -
1200 kVar to 0 kVar  

10  110  

VAR_400kW_0_+600_0kVar  Pref = 400 kW. Set Qref from 0 kVar to 
+600 kVar, hold for a few seconds, then 
+600 kVar to 0 kVar  

10  110  

VAR_400kW_0_+800_0kVar  Pref = 400 kW. Set Qref from 0 kVar to 
+800 kVar, hold for a few seconds, then 
+800 kVar to 0 kVar  

10  90  

VAR_400kW_0_+1200_0kVar  Pref = 400 kW. Set Qref from 0 kVar to 
+1200 kVar, hold for a few seconds, then 
+1200 kVar to 0 kVar  

10  100  

 
Table 10. BESS Dataset List - Volts Test 

Test name  Scenarios  Sampling 
Time (ms)  

Time  
Duration 
(s)  

Volts_0kW_Vgrid_100_95_100  Pref = 0 kW. Set the grid voltage from 100% to 95%, 
hold for a few seconds, then from 95% to 100%  

10  105  

Volts_0kW_Vgrid_100_90_100  Pref = 0 kW. Set the grid voltage from 100% to 90%, 
hold for a few seconds, then from 90% to 100%  

10  105  

Volts_400kW_Vgrid_100_90_100  Pref = 400 kW. Set the grid voltage from 100% to 
90%, hold for a few seconds, then from 90% to 100%  

10  105  

  

Test Result: Battery Charging 
One battery charging sample from the scenarios listed in Table 8 as test P_-426_-
210kW is shown in Figure 9. This sample datasets start with Pref from -426 kW to -
210 kW, with Qref set to be 0 kVar. The transition of events was observed around 17 
seconds. 
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Figure 9. Battery Power (Ref vs. Output), Voltage, and State of Charge (SOC) in Charging Test 

 

Test Result: Battery Discharging 
One battery discharging sample from the scenarios listed in Table 8 as test 
P_+600_+800kW is shown in Figure 10. This sample datasets start with Pref from 
600 kW to 800 kW, with Qref set to be 0 kVar. The transition of events was observed 
around 22 seconds. 

 
Figure 10. Battery Power (Ref vs. Output), Voltage, and State of Charge (SOC) in Discharging Test 

  

Test Result: Reactive Power Step Test  
One reactive power step test sample from the scenarios listed in Table 9. BESS 
Dataset List - VAR Step Test as test VAR_0kW_0_-300_0kVar is shown in Figure 
11. This sample datasets start with Qref from 0 kVar to -300 kVar, hold for a few 
seconds, then -300 kVar to 0 kVar, with Qref set to be 0 kVar. The transitions of 
events were observed around 30 and 60 seconds respectively. 
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Figure 11. Reactive Power (Ref vs. Output) in Reactive Power Step Test 

 

4.1.3 Milestones Completed 

• PV Inverter historical datasets: >20 historical field or laboratory 
datasets suitable for training and validation obtained. 

• PV Inverter Digital Twin model accuracy: ≥90% prediction accuracy 
during steady-state and transient operation. Residuals have 
approximate mean = 0 with white noise distribution. 

• BESS historical datasets: >20 historical field or laboratory datasets 
suitable for training and validation obtained. 

• BESS Digital Twin model accuracy: ≥90% prediction accuracy during 
steady-state and transient operation. Residuals have approximate 
mean = 0 with white noise distribution. 
 

4.2 Learning Framework for Sensor Attack Detection (Task 2) 

Model & Simulator Selection (Subtask 2.1) 
Outcome: Models of existing PV inverter. Reduced order models and higher fidelity 
models were provided. A 1 kVA, grid connected three-phase inverter with a phase-
lock-loop and a closed-loop controller served as the model target. The inverter was 
grid connected and provided voltage and frequency regulation; it also supports 
active and reactive power feeding to the grid.  
 
For the complete inverter model, each component in the 1 kVA inverter was 
modeled as an averaged state-space model:  
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• grid-connected three-phase inverter operated under sine-triangle pulse-width-
modulation (PWM) and both ABC and d-q reference frames 

• grid-connected three-phase inverter operated under d-q reference frame 
• phase-locked loop (PLL) 
• ILd and ILq reference generation for a grid-connected three-phase inverter 

operated under the d-q reference frame 

PLECS simulations were developed to simulate each system. A comparison 
between the PLECS simulation results and the state-space demonstrated the 
accuracy of the models 
. 
4.2.1.1 Complete inverter model 
With the models developed for each component in the system, the complete inverter 
model with closed-loop control was developed.  

 𝑥̇ = 𝐴𝑥 + 𝑅(𝑥, 𝑢). (15) 

In (15), 𝑥 is the inverter state-space variable matrix given by 
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. (16) 

The state-space system matrix A can be derived as: 
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… 

 

The R(x, u) term captures nonlinearities and time-varying components in the inverter 
system that cannot be described by the linear system matrix A.  
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. (17) 

To validate the derived inverter model, a simulation of the state-space model for an 
inverter with 10 kW real power and 2 kVar reactive power was conducted, (Figure 
12, output grid current waveforms).  Deviation between model and PLECS 
simulation (experimentally validated) were negligible. 
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Figure 12. The three-phase grid current for an inverter with 240 V 3-phase grid, 1000 V dc input voltage, 10 kW real power, and 
2 kVar reactive power operation using the derived complete inverter state-space model.  Each color represents a different phase; 

model output plotted over PLECS output (no observable difference). 

Further it can be seen from Figure 13 (output grid current waveforms) that the 
derived model represents the step response of the inverter system with closed-loop 
control accurately as the deviation between the model and PLECS simulation 
(experimentally validated) were negligible. 

 

Figure 13. The three-phase grid current for an inverter with 240 V 3-phase grid and 1000 V dc input voltage to have a step 
change in real power from 10 kW to 15 kW and reactive power from 2 kVar to 5 kVar using the derived complete inverter state-

space model. Each color represents a different phase; model output plotted over PLECS output (no observable difference). 

4.2.1.2 Summary 
The team developed the averaged state-space-based models for PV and BESS 
inverters with closed-loop control in the d-q frame. A comparison between model-
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based simulation results and actual PLECS switching circuit simulation results was 
done to validate the derived models.  

 

4.2.2 Learning in Simulation (Subtask 2.2) 
Outcome: A framework for a Model-assisted Deep Reinforcement Learning agent 
validated using the simulation setup. 

 
4.2.2.1 Evaluation of State-of-the-Art ML Architectures 
Modern ML architectures were tuned to establish baseline performance; specifically, 
we: 

• Identified the reinforcement learning algorithms that are applicable to be used for 
continuous action space. 

• Compared the performance of the identified methods with the Twin-Delayed 
DDPG implementation. 

• When state space cannot be controlled, improved the performance of the 
machine learning (ML) agent that is used to predict the next state of the plant 
with higher accuracy compared to the digital twin.  

o Optimized the current FNN architecture parameters 
o Optimized the other hyperparameters 

• Implemented a recurrent neural network (RNN) architecture and compared the 
performance to the FNN. 

Deep Deterministic Policy Gradient 
The system model for Model-Assisted Machine Learning (MAML) is shown in Figure 
14. The digital twin replicates the functionality of the real plant with a linear model. 
We started with the case that we can control the state space. Later, we switched to 
the case that we cannot control the state space and we perform the prediction only. 
We used the DDPG (Deep Deterministic Policy Gradient) algorithm; a model-free 
off-policy algorithm that can learn continuous actions by integrating DPG 
(Deterministic Policy Gradient) and DQN (Deep Q-Network) policies.  
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Figure 14. Model-Assisted Machine Learning (MAML) system 

 

Although we observed that DDPG achieved good learning performance, it is known 
to be brittle with respect to the choices of hyperparameters. To address this issue, 
Twin Delayed DDPG (TD3) was utilized. TD3 was found to increase the reward 
beyond the performance of DDPG; however, it was found to converge more slowly. 
  
Soft Actor Critic 
For the case when we could not control the state space, we switched to the 
prediction problem. A predictor network with a feedforward neural network (FNN) 
architecture that takes the current state information from linear and non-linear 
models and try to predict the next state of the Real System.  
 
Below are the performance results with different number of layers and neurons in 
each layer, while the loss between the digital twin (black box model) and the true 
model is 0.154. Two layers with 512 neurons at each layer provides the minimum 
loss between the predictor and the true model. 

# layers & neurons Loss between the predictor and the true model 
512,512 0.015 
128,128 0.018 
32,32 0.023 
8,8 0.027 
4,4 0.035 
512 0.023 
128 0.024 
32 0.026 
8 0.036 
4 0.042 

 
Next, we measured the run time for various number of layers and neurons. The 
change in the inference time is negligible with increasing number of layers and 

 
Figure 15. Average reward vs. number of episodes for 

DDPG model 
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neurons. On the other hand, Stage 1 training takes significantly longer time with 
increasing number of layers and neurons. 

 Run time (sec) 
# layers & neurons Stage 1 training Stage 2 training Inference 

4 6.59 1.07 0.19 
512,512 25.93 2.42 0.20 

 
4.2.2.2 Novel MAML Architectures 
 

 
Figure 16. Structure of traditional ML approaches 

We modified the structure of the traditional predictor approach (Figure 16) to follow 
(Figure 17). Specifically, we slice the original state space of the prediction window into 
multiple intervals to lower the complexity of learning; each agent being responsible for 
only predicting the behavior at its interval.  

 
Figure 17. Structure of model-assisted, machine learning (MAML) approach 

 
For the simplicity of evaluation, we used the OpenAI gym simulator for the physical 
plant to be predicted. OpenAI gym is a simulation environment that is widely used 
among researchers. Three predictor agents were used for each plant, each being 
assigned to different intervals of the plant’s relevant state variable(s). 
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Plant Prediction 
Intervals 

Observation 
Space 

(dimensions) 

Action Space Goal Failure Condition(s) 

Cart Pole Horizontal 
position 
[-5, -2), 

[-2,2), [2,5] 

4 Push cart left/right Minimize deviation 
(cart at position zero; 
pole orthogonal to x-

axis) 

Pole angle greater 
than +/- 12°; cart 

outside of viewport 

Lunar 
Lander 

Vertical position  
[10, 6), [6,3), [3,0] 

8 Nothing; fire 
left/right orientation 

engine; fire main 
engine 

Minimize deviation 
(lander at position 

0,0) 

Crash, outside of 
viewport, no 
movement 

Rotating 
triple-mass-
spring 

Motor one angles 
[−∞,0.5), [0.5,3), 

[3,∞] 

6 Stepper motor 
positions (2) 

Masses at rest (no 
rotation and constant 

separation) 

Collision and/or 
rotation of masses 

 
Of the multiple plants we evaluated (Figure 18), the results from the rotating triple-
mass-spring were representative. The control task to be solved involves stabilizing 
freely moving connected masses using a stepper motor.   

 

 
In simulation, the average accuracy of a traditional ML predictor was above 95% 
(average absolute accuracy for each state), proving that the ML predictor 

Figure 18. Plants their state variables, and control inputs evaluated using MAML framework. (top left) cart pole, (top right) 
lunar lander, and (bottom) rotating triple-mass-spring. Images courtesy of Aleksandar Haber, Pau Labarta Bajo, and the Model 
predictive control python toolbox. 



DE-EE0009338  

Virginia Tech 

 

Page 28 of 45 

 

outperforms the black box model (digital twin). However, even when increasing the 
number of samples, the performance of MAML did not surpass that of the traditional 
ML algorithm. We speculate that the reason the MAML approach did not outperform 
the baseline was due to lack of complexity in the simulated plant behavior. 

4.2.3 Milestones Completed 

• Models of existing PV inverter completed. 
• Models of existing BESS completed. 
• PV Inverter MAML accuracy: ≥95% prediction accuracy during steady-

state and transient operation. Residuals had approximate mean = 0 
with white noise distribution. 

• BESS MAML accuracy: ≥95% prediction accuracy during steady-state 
and transient operation. Residuals had approximate mean = 0 with 
white noise distribution. 
 

4.3 Grid Modeling (Task 3) 
Task interrupted. 
 
4.4 BC Framework (BCF) Development (Task 4) 

4.4.1 Security architecture (Subtask 4.1) 
Outcome: A BCF that incorporates authentication, encryption, identity management, 
access control, and message confidentiality and integrity enforcement mechanisms. 
 

4.4.1.1 Overview 
We investigated and selected a solution for a private permissioned peer-to-peer 
ledger and smart contract framework (‘BCF’). We looked for a distributed ledger 
technology that could provide secure communications, identity management, secure 
updates, network segmentation, and enable automated detection and response 
using a smart contract framework.  
 
Being a private network, the BCF should offer access control mechanisms and 
segmented communications channels that allow for communication within a subset 
of nodes. As a result of a common framework for communication and control, the 
SBON also serves as a platform for integration and interoperable control of 
heterogeneous DERs and power systems. The proposed architecture encompasses: 
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1. Security: authentication, encryption, identity management, access control, and 
message confidentiality and integrity enforcement mechanisms  

2. Communications: secure and resilient network orchestration in a peer-to-peer 
ledger architecture with transactions regulated by smart contracts. 

3. Privacy-preserving data sharing: protected transactions, with validation and 
verification performed by BC peers, and possibility to collaborate without sharing 
all raw data. 

The implementation of ML-based attack detection at both local and aggregator levels 
raises privacy concerns. We enabled private channels among trusted partners and 
provided an environment for collaborative and distributed learning without the need 
to share the raw data among peers. 
 
4.4.1.2 Approach 
In a heterogeneous environment, where peers need to collaborate to achieve a 
common objective of increasing resilience to malicious attacks, while also protecting 
their own data and interests, it is natural to seek some structure to guide the 
interactions among peers. The choice of a ledger to keep track of interactions and 
contracts to regulate such interactions seems natural in this case. The 
implementation of such ledger in a distributed manner, using blockchain to validate 
transactions across distributed nodes, provides inherent data protection resulting 
from a combination of immutability and transparency. Nodes need not share all their 
raw data in order to collaborate, satisfying the requirement for data privacy 
protection.  
 
We evaluated1 the use of a distributed ledger technology to increase security and 
resiliency of power systems (outlined below). We created an architecture that 
accommodates heterogeneous entities, including distributed energy resources 
(DERs), aggregators, and utility and operator distribution systems that may belong to 
different organizations (Figure 19). We implemented a private permissioned 
distributed ledger solution based on Hyperledger Fabric, which provides a flexible 
framework to manage the interactions of such entities.  

 

1 Validation was performed through comparison of logged data, program output, and expected results 
(including hashes of messages, consensus outcomes, etc.).  Due to space limitations such data are 
excluded from the present report though the evaluation procedure itself is described in detail, below. 
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Figure 19. Proposed architecture: aggregators are connected to the BC and guide actuation through smart contracts. DERs are 
connected to aggregators and also submit sensing measurements to the Trusted Execution Environment. Sensor data is stored in 
the cloud. 

 
We decided to focus our efforts on Hyperledger Fabric, the most popular DLT 
framework project in the Hyperledger Foundation. Fabric provides a modular 
architecture for the development of applications, suitable for application in large 
scale. The ledger comprises two parts, the world state database, where the current 
state of the ledger is stored, and the blockchain part, where the records of all 
transactions are kept.  
 
The ledger state is (by default) stored as key-value pairs (e.g., {DER1: value}) and 
the blockchain keeps track of all the transactions that caused changes to the state. A 
transaction can be initiated by any peer in the network, but only fully endorsed 
transactions (approved by sufficient number of endorser nodes) will actually change 
the world state. The world state can be re-generated from the blockchain at any 
time, but it provides a faster and more convenient way to store and query the 
information in the ledger. Fabric offers some flexibility with the choice of database to 
store the state, allowing for more complex queries by departing from the default key-
value storage to a document object storage allowing data to be stored in JSON 
format. As a result, queries can be formulated using values of the data, instead of 
simple queries based on the keys. We illustrate the ledger components in Figure 20. 
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In Hyperledger Fabric, the recommended consensus protocol is Raft (as of version 
1.4.1), a permissioned voting-based mechanism where a leader is elected among 
ordering nodes to perform ordering [24]. The algorithm is fast, and finality is 
achieved in a matter of seconds. Raft provides crash fault tolerance, operating under 
node loss as long as there is majority quorum. In a production network, it is 
recommended that nodes are spread across different locations to increase 
resiliency. Fabric offers Crash Fault Tolerance (CFT), that is the ability to continue to 
operate and reach consensus even if a node is compromised or disconnected. 
Fabric does not offer native Byzantine Fault Tolerance (BFT), which is the ability to 
reach consensus when a faulty node is still connected and participating in 
transactions (a Byzantine node may be a malfunctioning node or a malicious node). 
The lack of BFT support is a limitation to be mitigated with the use of external 
libraries. Raft is not BFT, but its design was a step towards implementing BFT for 
Fabric. 
 
4.4.1.3 Evaluation 
Our initial implementation and testing focused on Fabric, setting up and deploying 
the test network as described in the Fabric Tutorials [25] using the Fabric Gateway 
to coordinate the actions by clients to submit transactions and query the ledger 
state. The default configuration of the test network includes two peer organizations, 
labeled as Org1 and Org2, with one peer per organization to validate transactions, 
and an additional organization to maintain the Raft ordering service, which decides 
on the order of the transactions based on a deterministic consensus algorithm and 
submits them to the blocks. The blocks are distributed to the “peer” nodes, 
representing DERs and aggregators, and then added to the ledger. 
 
 

Figure 20. Ledger comprises blockchain and state database. 
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We used a script to generate the test network as described in Fabric Tutorials [25]. 
The test network had two organizations, Org1 and Org2, and an additional 
organization to maintain the ordering of service. We added peers and ordering 
nodes to the network as needed to represent the entities in the scenarios of interest.  
Peers in the network were able to validate transactions, and ordering nodes reached 
consensus on the order of transactions and submitted them to the blocks. The 
blocks were distributed to peers and then added to the ledger. 
 
One important and attractive feature of Fabric is the flexibility to develop a network 
of networks with a certain degree of trust, in which organizations may be supported 
by a private channel to communicate and perform transactions, where such 
transactions are “invisible” to the rest of the network. Channel layers of 
communication are exclusive to invited members who are authenticated and 
authorized to transact on the channel and are defined by member organizations, 
anchor peers per member that serve as endpoints for discovery and communication, 
a shared ledger distinct to each channel, chaincode application(s), and the ordering 
service node(s). Orderers play an important role as they enforce basic access 
control for the channel.  
 
The first block on the chain, called the genesis block, stores configuration 
information about the channel policies, members, and anchor peers. In our test 
network, we created a new channel called 'mychannel' and joined each peer in Org1 
and Org2. 
 
Smart contracts that contain the business logic to interact with the channel ledger 
are deployed in packages referred to as chaincode. We installed the chaincode on 
the peers of each organization and then deployed it to the channel so that it could 
endorse transactions and interact with the ledger. We experimented with asset-
transfer-basic chaincode example already provided with the distribution, which was 
successful based on logs and program output. 
 
After the network was setup as indicated, we then created a test harness to assess 
the various transactional operations for placement, observation, and confirmation on 
the blockchain. In particular, we created an initial data schema to include a unique 
asset ID, owner information, and integral data to simulate generic sensor 
measurement data. We then populated the ledger and subsequently modified the 
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data and observed the transactions through various types of successful queries on 
the submitting node. We confirmed these transactions through more queries, this 
time on a different node. 
 
We then successfully verified the adaptability of our test network by adding a new 
node, joining that peer to the existing channel that we created earlier, and then 
installing the chaincode. We validated its association with the channel using an 
appropriate query from the node itself, where, again log files and output were used 
for confirmation. 
 
Finally, we added functionality to the data schema itself by including a verifiable 
hash value of the randomly-generated measurement sensor data for a randomly-
generated DER owner. These values were verified using the md5sum tool. 
 

4.4.2 Communications architecture (Subtask 4.2) 
Outcome: Developed methods for secure and resilient network orchestration, identity 
management, and security automation using a peer-to-peer ledger architecture and 
smart contract framework. 
 
The architecture illustrated in Figure 19 achieves the objectives of both Subtasks 4.1 
and 4.2.  The solution tools are open-source, and support the necessary 
customization for data management, actuation control, and interactions among the 
enterprises in a regulated manner that keeps records of every transaction. The initial 
implementation has tremendous potential to attend the needs of power grid 
application, as well as many other applications that include distributed data 
collection and even distributed learning. 
 
 
4.4.3 Privacy-Preserving attack detection R&D (Subtask 4.3) 
Outcome: Developed algorithms using homomorphic encryption to enable privacy-
preserving collaborative attack detection for local and global levels.  
 

We assumed some producers (a minority) were controlled by an attacker; thus, 
these producers are malicious and inject power which is not consistent with the 
promised one. We illustrate the system model with attack in Figure 21. Furthermore, 
if producers are required to report some measurements/data to the aggregator (to 
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monitor producers’ measurements), the malicious producers may intelligently report 
bad data to avoid being detected. 

 
Figure 21. System Model 

4.4.3.1 In the non-private attack detection algorithm [26], the aggregator needs 
the information of estimated and sensed states for t = 0, 1, 2, …  to iteratively 
compute w(t) and r(t), respectively. If r(t) = 0 for all t, then there is no attack; 
otherwise, an exists attack. For the privacy-preserving attack detection and 
identification we protected the privacy of producers’ state and measurement (w(t) 
and y(t)), but still enabled the aggregator to correctly compute detection results. 
 
Security and Privacy Analysis: 
Integrity. The linearity of the (non-private) detection and identification algorithms 
guarantees the computation of the private algorithms can be done locally. Thus, 
malicious producers cannot modify honest producers’ shares. Also, robust 
reconstruction guarantees the malicious minority cannot change the final detection 
and identification results by submitting malicious/ wrong shares. 
 
Privacy. Following the perfect secrecy of Shamir’s secret sharing, the private 
algorithm leaks nothing except what can be learned from the final results. Then, we 
analyzed what can be learned from the final results. We considered the following 
cases. 
 
Case 1. No measurement noise. r(t)→0 for t→∞   If and only if there is no attack, 
which indicates that an  honest producer’s measurement is independent of the 
released result I( r(t) < δ) for a large enough t. Thus, there is no privacy leakage for 
honest producers. 
 
Case 2. The measurement noise is independent of measurement y(t) for t = 0, 1,... 
Then, due to the linearity of r(t), we can represent the residual in this case by r˜(t)  =  
r(t) + N (0, σ^2), where an honest producer’s measurement is in dependent of both 
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I(|r(t)| < δ) (for a large enough t) and N (0, σ^2), and thus in dependent of the 
released result I(|r˜(t)| < δ). Therefore, there is no privacy leakage for honest 
producers. 
 
An IEEE 14 bus system was used for evaluation with the following values. 

 
 
Gaussian noise was added in x(t) and y(t) as state and measurement noise. Figure 
22 and Figure 23 show the results of state x(t), estimated state w(t), measurement 
y(t), and detection residual r(t). When there is no attack, the detection residual r(t) = 
0 (ignoring the random perturbation of state/measurement). When there exist attacks 
(either to x or y), the detection residual r(t) becomes non-zero after the attack start. 
 

 

 
Figure 22. Attack Detection/Identification in IEEE 14 Bus (when true attack set K∗ = {0}) 

 
Figure 22 and Figure 23 show the state change (i.e., x(t)), detection result (i.e., r(t)), 
and identification results (i.e., rK(t) for K = {0} or {2}) under two different attacks (K∗ 
= {0} or {2}). The results are consistent with the theorem. Recall that the 
identification residual rK(t) = 0 if and only if the true attack set is covered by the 
assumed attack set, i.e., K∗ ⊆ K. Thus, our experimental results show that the 
privacy-preserving version can obtain the same result as the non-private one 
(ignoring negligible errors due to field conversion). 
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Figure 23. Attack Detection/Identification in IEEE 14 Bus. 

4.4.4 Milestones Completed 

• Functional security and communications architecture specified. 
• Communications restrictions/availability for trusted and untrusted 

nodes. 
• For local (DER) level false-data injection attack detection: detection 

accuracy, privacy (confidentiality), and computation efficiency (run 
time). 

• For global (aggregator or utility) level attack detection: 
detection accuracy, privacy level (privacy budget), and computation 
efficiency in terms of run time. 
 

4.5 Enabling Physical World Access from Blockchain (Task 5) 

4.5.1 Theoretical Foundations (Subtask 5.1) 
Outcome: Developed the theoretical foundation for off-chain execution. 
 

4.5.1.1 Motivation 
The security of Blockchain relies on the honest majority, yet, for public blockchain, 
this makes the assumption that all the participants are rational. More efficient 
consensus mechanisms to achieve consensus in private/semi-public setting are 
available. However, regardless of the consensus mechanisms the challenge of 
limited on-chain computational capability remains a challenge.  
 
4.5.1.2 Approach 
We address this problem using off-chain execution. Based on our preliminary 
survey, there are three types of off-chain execution mechanisms. The first type of 
off-chain execution directly leverages the trusted execution environment (TEE) at a 
single node in the network. For example, in towncrier [15], Zhang et al. proposed to 
use Intel SGX enclave as a trusted entity for external data feed, it essentially 
executes the data retrieval process via a single trusted node. One limitation of this 
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approach is that centralization is re-introduced into a supposedly decentralized 
system. The second approach, on the other hand, leverages a network of computing 
nodes equipped with Intel SGX trusted execution environment. In Ekiden [16], 
similar to one on-chain computing, a computation is replicated among many nodes 
in the blockchain network, and the compute node will reach consensus among all 
the computation results on which one to commit to as a network. However, due to 
the replication of the computation, there is still non-trivial overhead for decentralized 
security.  
 
Furthermore, in order to obtain a reasonable degree of decentralization, it is 
important that the quorum has a non-trivial number of participating parties. From the 
execution time perspective, if all the nodes are well connected, then latency may still 
be manageable, and this response time is important for the context we are studying. 
The last approach proposed in PrivacyGuard [17] aims to combine remote 
attestation and smart contracts to achieve off-chain execution.  
 
When the computation takes place off-chain, several challenges occur. First, the 
correctness of the contract execution can no longer be guaranteed by the blockchain 
consensus. To this end, they propose ``local consensus'' for the contracting parties 
to establish trust on the off-chain computation via remote attestations. The main 
intuition is that remote attestation allows a prover to attest its system state to a 
remote verifier. If all of the parties involved in a smart contract perform remote 
attestation on the secure enclave and can verify the system states of the execution 
environment, then it is sufficient to trust the outcome from that enclave. This 
approach makes the assumption that the trusted execution environment is free of 
vulnerability, this may not be correct all the time. Furthermore, the latency from the 
remote attestation may be non-trivial. It is important to take these factors into 
consideration in the design of off-chain execution. 
 
Build on top of this systemization effort, we have further developed the universal 
compossibility for TEE-based off-chain execution to set the foundation for the off-
chain execution in the proposed power-grid blockchain. In an off-chain execution, a 
smart contract’s execution is split into control and computation, where the 
computation actually takes place off-chain, several challenges occur.  
 
First, the correctness of the contract execution could no longer be guaranteed by 
blockchain consensus. To this end, we propose “local consensus” for the contracting 
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parties to establish trust on the off-chain computation via remote attestations. 
Second, the execution of contract is no longer atomic when the computation part is 
executed off-chain. We design a multi-step commitment protocol to ensure that 
result release and data transaction remain an atomic operation, where if the 
computation results were tampered with, the data transaction would abort gracefully.  
 
We implemented a prototype of off-chain execution using Intel SGX as the TEE 
technology and Ethereum as the smart contract platform. We chose these two 
technologies for implementation due to their wide adoption. Our design generally 
applies to other types of trusted execution environments and blockchain smart 
contract platforms. The platform fulfills the goal of user-defined data usage control at 
reasonable costs and we show that it is feasible to perform complex data operations 
with security and privacy protection as specified by the data contract. 
 
4.5.1.3 Summary 
The BCF detailed above necessitates a Trusted execution environment (TEE) 
executing on a limited resource embedded system (e.g., a microcontroller) to 
provide cost-effective, local protection for DERs.  We systemized existing methods 
for off-chain execution understanding the limitations and trade-offs of such systems. 
Research then focused on generating the proof for TEE-based off-chain execution 
under the universal compossibility framework. The main accomplishment lies in a 
non-trivial proof, which provided a sound theoretical basis for the utilization of TEE-
secured DER as the foundation of a resilient grid.  
 

4.5.2 Trusted Modules for Embedded Processors (Subtask 5.2) 
Outcome: We leveraged Root-of-trust for low-cost microcontrollers (MCU) to provide 
protection for manufacturers seeking to safeguard their valuable machine learning 
models against intellectual property (IP) theft. 
 

4.5.2.1 Motivation 
With recent advances in deep learning (DL) [18], there is a growing need to deploy 
the machine learning (ML) models on smart microcontrollers (MCUs) at the Edge for 
communication efficiency and privacy protection. This deployment paradigm on 
MCUs is often referred to as tiny machine learning (TinyML) [19].  
 
4.5.2.2 Approach 
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We proposed Secure TinyML (STML) to protect model IP on MCUs under an 
untrusted software stack based on commercial off-the-shelf hardware. There were 
two main challenges:  

• Constrained Memory. TEE utilizes isolation to safeguard memory contents, but it 
can lead to memory scarcity for DL inference execution in the secure world and 
other tasks in the normal world due to the limited available memory resources.  

• Co-Optimization. The memory swapping during world switches of TrustZone and 
the use of cryptographic operations for swapped data protection significantly 
increase the runtime latency of DL execution.  

System Design 
STML protects the IP of TinyML models using a system and algorithm co-design 
approach. As shown in Figure 24, STML consists of an offline optimization engine 
and a runtime IP protection mechanism. The offline optimization engine outputs a 
resource allocation strategy to minimize the TinyML task execution delay. 
 

 

Figure 24. STML System Design 

Evaluation 
To evaluate the performance of STML on a range of TinyML tasks using various 
trained models, we evaluated it with models from MLPerf Tiny Benchmark [21] and 
MicroNets [22]. The benchmark TinyML tasks include keyword spotting (KWS), 
anomaly detection (AD), visual wake words detection (VWW), and image 
classification (IC). Table 11 shows measurement data of the used models when all 
system resources are available on the MCU. We ensured our algorithm-level model 
optimization adhered to the performance requirements and quality targets specified 
by MLPerf Tiny Benchmark.  
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A TinyML task runs in the secure world, while other tasks including LED Toggling, 
Logging, and AudioSampling, are executed in the normal world. The metadata of 
these tasks is illustrated in Table 12. Note that the flash size of AudioSample 
includes both the code size in the internal flash memory the data size in the SD card. 
Similar to tasks in widely-used cyber-physical systems like ArduPilot [23], these 
normal world tasks have higher execution priorities, as they are responsible for 
critical operations.  

Table 11. Metadata of TinyML Benchmark Models 

Task Model Flash (KiB) RAM (KiB) Latency (ms) Metric 
Keyword Spotting DS-CNN 144.80 31.25 81.29 90% (Top-1) 

MicroNet-KWS(S) 192.55 70.14 233.05 
Anomaly Detection Deep AutoEncoder 328.96 10.57 7.64 0.85 (AUC) 

MicroNet-AD(S) 327.64 120.14 445.66 
Visual Wake Words MobileNetV1 0.25x 420.07 108.82 256.68 80% (Top-1) 

MicroNet-VWW(S) 363.60 77.71 146.01 
Image Classification ResNet-8 187.04 62.32 373.33 85% (Top-1) 

 

Table 12. Metadata of Tasks in the Normal World 

Task Flash (KB) SRAM (KB) Frequency (Hz) Priority 
LED Toggle 56.90 25.14 50 2 

Logging 89.70 41.34 20 3 
AudioSample 170.94 114.35 10 1 

 

4.5.2.3 Summary 
We introduced STML, a TinyML model IP protection system for MCUs utilizing ARM 
TrustZone. We proposed a memory swapping scheme to address the limited 
memory issue and minimize I/O and inference latency through system and algorithm 
level optimization. Our approach effectively balances memory usage, latency, 
security, and accuracy, resulting in a 40% reduction in runtime overhead compared 
to non-optimized solutions. Although initially designed for systems with predictable 
workloads, STML can be adapted to other systems by adjusting the DL execution 
latency modeling to accommodate their specific characteristics.  

 

4.5.3 Milestones Completed 

• Security modeling was validated based on the percentage of security 
requirements proved using the security mechanism.  
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• The performance of the trusted module was found to be more efficient 
in terms of energy, memory, throughput (e.g., latency) overhead 
compared to the state of the art. 
 

5. Significant Accomplishments and Conclusions: Accurate Digital Twins (DTs) 
and model-assisted machine learning (MAML) approaches critical for cyber-attack 
detection for PV Inverter and BESS developed and verified.  The PV Inverter and 
BESS DTs had ≥90% prediction accuracy during steady-state and transient 
operation and were each based on >20 historical field datasets suitable for training.  
The MAML approaches achieved ≥95% prediction accuracy during steady-state and 
transient operation of non-linear physics-based models, including PV Inverter and 
BESS models.  For local, DER-level attack detection, the privacy-preserving attack 
detector was found to have <5% accuracy degradation compared with the no privacy 
case; formal privacy guarantees were provided and reasonable run time of <60s for 
local level detection were achieved. 
 
Specifications for both functional security and communication architectures for the 
BCF were completed.  The specifications incorporated authentication, encryption, 
and message confidentiality and integrity enforcement mechanisms in BCF, as well 
as secure and resilient network orchestration, using a peer-to-peer ledger 
architecture and smart contract framework.  To connect the cyber world that is 
orchestrated by the blockchain fabric and the physical world in which the power 
network resides, a trusted machine learning framework was implemented and 
benchmarked as a trusted module for resource-constrained systems.  A 
performance degradation of <10% was observed compared to the processing 
without trusted module on average.  By implementing the MAML approaches using 
this framework, individual DER can now securely attest to performing attack 
detection as an off-chain function, thus proving the use of smart contracts for 
command and control (C2) of DER . 
 

6. Path Forward 
Two avenues of future research and development are suggested based upon project 
outcomes:  

1. To protect legacy DER the MAML and BC technologies can be integrated into 
a modular, plug-and-play security module. The module would need to employ 
a networking interface to receive sensor/status data from, and transmit C2 
signals to, DER. Interfacing with the aggregator/utility equipment could be 
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accomplished using, for example, IEC 61850 to the applicable IEEE 1547-
2018 protocol. 

2. The SBON can be extended to secure information exchanges (data and C2) 
between utility distribution controllers, energy aggregators, and DER.  Least 
privilege-based network segmentation for communications between utilities 
and DER controllers could be achieved using a PKI tailored to provide role-
based access control to restricted and securely segmented communications 
channels within the SBON. Providing a unified and interoperable control 
interface could be accomplished using a standardized data model based on 
multiple standardized DER and grid control frameworks to allow for low-cost, 
low-effort integration and interoperable control of heterogeneous DER and 
power systems.  

7. Products  
Jinwen Wang, Yuhao Wu, Han Liu, Bo Yuan, Roger D. Chamberlain, and Ning 
Zhang, “IP Protection in TinyML,” in Proc. of 60th ACM/IEEE Design Automation 
Conference (DAC), July 2023. 
 

8. Project Team and Roles  
(e.g., DOE personnel, students, collaborating organizations). 

Name Institution Role Contribution 
Adams, Stephen VT Investigator Blockchain 
Chen, Zhe GER Investigator Digital Twins 
Erpek, Tugba VT Investigator MAML 
Florez, Orlando VT Program Manager Budgets & Schedule 
Gerdes, Ryan M. VT Principal Investigator MAML 
Giani, Annarita GER Investigator Digital Twins and 

Blockchain 
Gu, Patrick VT Student MAML 
Gu, Xiaolan UA Student Privacy-preserving 

Attack Detection 
Heaslip, Kevin VT Investigator Integration & 

Coordination 
Li, Ming UA Investigator Privacy-preserving 

Attack Detection 
Morales-Rodriguez, Marissa DOE Technology Manager Supervisory 
Sagduyu, Yalin VT Investigator MAML 
Salasoo, Lembit GER Program Manager Digital Twins 
Skinner, Tucker USU Student PV Inverter Models 
Wang, Chun-Tao VT Student MAML 
Wang, Hongjie USU Investigator PV Inverter Models 
Wang, Jinwen WUSTL Student Off-chain Execution 
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Zhang, Ning WUSTL Investigator Blockchain & Off-
chain Execution 
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