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We probe the bulk geometry of the Wegner Wilson Flow (WWF) in the context of many-body
localization, by addressing efficiency and bulk entanglement growth measures through approximat-
ing upper bounds on the boundary entanglement entropy. We connect these upper bounds to the
Fubini-Study metric and clarify how a central quantity, the information fluctuation complexity, dis-
tinguishes bulk unitary rotation from entanglement production. We also give a short new proof of the
small incremental entangling theorem in the absence of ancillas, achieving a dimension-independent,
universal factor of c = 2.

I. INTRODUCTION

Many-body localization (MBL) is centrally a failure to
thermalize [1–3]. At a phenomenological level, MBL is
described by an emergent, macroscopic set of quasilocal
integrals of motion, known colloquially as `-bits [2, 4, 5].
The emergence of these `-bits give rise to a myriad of
effects, including vanishing conductivity, logarithmic en-
tanglement growth, and area-law eigenstates [1, 6, 7].
Constructing `-bits from local operators via a diagonaliz-
ing unitary U establishes the stability of the MBL phase
and yields insight on the dynamics of local observables
[3, 8–16].

Considerable effort has been devoted in recent years to-
wards finding appropriate `-bit construction methodolo-
gies, including strong-disorder renormalization flows, per-
turbative constructions, and infinite-time averaged local
observables [2, 6, 8, 17]. One recent approach, the Weg-
ner Wilson flow (WWF), leverages a continuous renor-
malization flow that generally produces more quasilo-
cal `-bits [17, 18]. The WWF renormalization technique
has been successfully used to describe the flow of cou-
pling constants, local observables, and correlation lengths
across the MBL phase transition [18, 19]. As the WWF
can be applied to ergodic or non-ergodic Hamiltonians,
the breakdown of ergodicity upon entering the area-law,
MBL phase implies an efficient tensor network construc-
tion of both eigenstates and `-bits [20, 21]. We give a full
description of the WWF in Sec. IV, but fundamentally
the renormalization flow is quite simple: given a Hamilto-
nian H written in a basis {|φ0〉}, the equation of motion
reads

dH

dβ
= [η(β), H(β)], η(β) = [Hd(β), H(β)], (1)

where Hd is the diagonal part of the Hamiltonian in the
basis {|φ0〉}.

Following this intuition, recent works implemented ten-
sor network versions of the WWF [22, 23]. Apart from the
computational advantage, tensor networks offer a frame-
work for spacetime geometry to emerge from quantum
information [24]. Using this tensor network picture, we
envision a generic Hamiltonian H as describing boundary

degrees of freedom, while the unitary U that diagonal-
izes H represents the bulk. If H is expressed in some
product state orthonormal basis, then the bulk unitary
U effectively rotates the basis states into eigenstates of
H. Thus, U† disentangles eigenstates into product states;
the geometry of the bulk tensor network should then in-
form the eigenstate entanglement structure. Apart from
this tensor network description, the WWF has strong ties
to quantum geometry and geodesicity in the projective
Hilbert space [25, 26], as we later explore.

The idea that tensor networks describe a quantum-
informational bulk geometry is particularly relevant with
respect to the Ryu-Takayanagi (RT) conjecture, fre-
quently considered in the context of holographic ten-
sor networks and continuous multiscale renormalization
ansatzes (cMERAs) [27–32]. For such systems the bulk-
boundary (AdS/CFT) correspondence we broadly in-
voked above is rigorous: the boundary entanglement cor-
responds to the area of the RT surface in the bulk [29].
The AdS/CFT correspondence and RT conjecture are
foundational to the study of holographic quantum error
correction [27].

However, this connection between the bulk geometry
of U and the entanglement of the boundary eigenstates
is much less clear in a generic tensor network construc-
tion. A notion of a gravitational theory in the bulk is
not well-defined for area law states, though several re-
cent works investigated RT-esque surfaces in bulk tensor
networks that bound the boundary entanglement [33].
Minimal surfaces in the bulk have also been well-explored
in the context of random unitary circuits, wherein Haar
averaging and the Weingarten calculus affords a mapping
to statistical models of entanglement growth [34]. While
we non-rigorously use the terms “bulk” and “boundary”,
it is evident that a quantum geometrical picture for a
diagonalizing unitary U should shed insight on entangle-
ment growth for the eigenstates of H.

In this work, we formalize this intuition by examining
bulk measures derived from the WWF or any other con-
tinuously diagonalizing unitary U , with a focus on under-
standing entanglement growth via the WWF across the
many-body localized phase transition. In particular, our
objective is to identify bounds on the entanglement en-
tropy of boundary eigenstates via functionals of the bulk
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FIG. 1: Histogram and box plot of Ė(ρ) for a two-qubit
system, over 2× 106 realizations of pure states and
Hamiltonians H, ||H||∞ = 1. See main text for details
on the sampling. The vertical lines in the box plot
reflect interquartile ranges, while the mass of points
starting around .4 denote outliers. The red line
demarcates the bound defined in the main text.

unitary U . We begin by examining not a bulk geometry,
but rather a speed limit for the entanglement entropy.
We use the small incremental entangling (SIE) theorem
as a starting point to probe the entanglement structure
and efficiency of unitary flows. Along the way, we give a
simplified proof of the ancilla-free version of the SIE, and
achieve a tighter bound than the state of the art. Inspired
by the RT conjecture, which connects the boundary en-
tanglement with distances in the holographic bulk, we
demonstrate how the SIE theorem identifies computable
bulk metrics intimately tied to notions of efficiency and
quantum complexity.

We then apply the SIE theorem and our bulk met-
rics to the WWF in the context of an MBL system. We
show that the WWF is monotonically more efficient upon
entering the MBL phase, and that the boundary entan-
glement entropy monotonically decreases with efficiency.
What is more, we show that some bulk metrics, while
easily computable, fail to fully diagnose the flow entan-
glement dynamics. We identify a key quantity, the infor-
mation fluctuation complexity, as a source of this failure.

II. ENTANGLEMENT SPEED LIMITS

As noted above, the RT conjecture concerns bulk ge-
ometries specified by a renormalization flow; it states that
geodesics in the bulk theory directly relate to the bound-
ary entanglement [35]. Oftentimes, a unitary flow (e.g.,
Hamiltonian evolution) is parameterized as a function of
RG time. A natural route towards bounding entangle-
ment entropy in the spirit of RT is therefore to bound
the entropic speed limit. This prescription is central to
proving the stability of the area law for one-dimensional
systems [36], as well as the logarithmic light-cone and
entanglement spread in MBL systems [6].

The small incremental entangling theorem (SIE), first
posited by Kitaev [37], gives an upper bound on the en-
tanglement entropy rate of a pure state under unitary

evolution:

|Ė(ρ(t))| ≤ c||H(t)||∞ log dA, c ∈ O(1). (2)

Here E(ρ(t)) := S(ρA(t)) denotes the entanglement
entropy, || · ||∞ the operator norm, and dA the Hilbert
space dimension of subsystem HA. The operator H(t)
is the generator of unitary evolution. The most general
form of the SIE theorem involves ancillary qudits [36, 37],
which we do not consider here. Note that if we define
H := HA+HAc +H∂ then Eq. 2 depends only on the in-
teraction term H∂ , where we assume HA, HAc are Hamil-
tonian terms local to subsystem A and its complement.
However, as we detail below, in the context of the WWF
H∂(t) becomes increasingly difficult to extract from H(t).

Proving the general SIE theorem has a long history,
starting with Bravyi’s work [37] and culminating with
a proven bound c = 18 [36]. Since then, several works
established tighter bounds on c for the ancilla-assisted
case–as extensively detailed in Refs [38]–with numerical
work suggesting an optimal value c = 2 both with and
without ancillas. In the no-ancilla case, Bravyi’s original
proof yielded a c(d) bound with c(d)→ 1 as d→∞ [37].
More recently, a bound was given for no-ancilla SIE with
c = 4, independent of dimension d and valid for mixed
states [39]. We offer a short proof here for the no-ancilla
SIE that easily achieves a bound c = 2 valid for mixed
states.

We now detail our proof for no-ancilla SIE. Let ρ be
a normalized density matrix acting on a Hilbert space
H ∼= HA ⊗HAC . We take H to be time-independent for
the moment and assume dA ≤ dAC , where dA denotes
the Hilbert space dimension. The entanglement rate is
quickly derived as

|Ė(ρ(t))| = |Tr ρ(t)[H, log ρA(t)⊗ 1AC ]|. (3)

The Robertson-Schrodinger uncertainty relation then im-
plies

|Tr ρ(t)[H,Y (t)]| ≤ 2σH(t)σY (t), (4)

where Y (t) := log ρA(t) ⊗ 1AC . Here σ2
X = Tr ρ(t)X2 −

(Tr ρ(t)X)2 ≤ ||X||2∞ for Hermitian X, with || · ||∞ de-
noting the operator norm. The variance

σ2
Y (t) = TrA ρA(t) log2 ρA(t)− (TrA ρA(t) log ρA(t))2

(5)

is also known as the information fluctuation complexity
(IFC) for the probability distribution p, where p is the
spectrum of ρA [40]. We assume p has n ≤ dA non-zero
components, where dA denotes the Hilbert space dimen-

sion of A. Then σ2
Y ≤

∑n
i=1 pi log2 pi = M

(2)
n , the sec-

ond moment of the self-information log p. To bound the
IFC, we follow and considerably simplify an approach
first given in Ref. [41]. Using the normalization condition∑
i pi = 1, we define pn = 1 −∑n−1

i=1 pi. Simple calculus
yields

∂M
(2)
n

∂pi
= (ai − an)(ai + an − 2), (6)
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where ai := − log pi. Clearly maxima of M
(2)
n vanish for

each of the n−1 instances of Eq. 6. The solutions ai = an
for all i implies the trivial solution p = (1/n, . . . , 1/n).

In the case n = 2, we find p1 = 1
2

(
1 +
√

1− 4e−2
)

is
maximal. In this case one can easily check log 2 is an

upper bound for M
(2)
n .

Our goal now is to show the trivial solution is the only

maxima for M
(2)
n when n ≥ 3. We regard the set of vari-

ables p1, p2, r with pn = 1− p1− p2− r, r ∈ [0, 1). With-
out loss of generality, there are two cases to consider for
a non-trivial solution:

Case 1: p1 = pn, p2pn = e−2,

Case 2: p1pn = e−2, p2pn = e−2.

We utilize Gröbner bases to write Case 1 as the null space
of the following set of equations: {pn− p1, p2 + r+ 2pn−
1, 2p2n + (r− 1)pn + e−2}. A check of the discriminant of
the last polynomial yields (1− r)2 − 8e−2 < 0 for any r.
For Case 2 a Gröbner basis is {2p1 + r+pn−1, 2pn+ r+
pn−1, p2n+(r−1)pn+2e−2}, with the same discriminant
as before. Therefore, the uniform distribution is the only

maxima of M
(2)
n for n ≥ 3. For n ≥ 2 we then have

σ2
Y ≤ log2 n and a final bound

|Ė(ρ(t))| ≤ 2||H||∞ log dA. (7)

While the logarithmic dependence of Eq. 7 can be satu-
rated [37], most states have a slow entanglement spread
under the unitary evolution induced by a large ensem-
ble of Hamiltonians [39]. In Fig. 1, we depict a his-
togram of two million realizations of two-qubit Hamil-
tonians and pure states. The Hamiltonians are generated
by uniformly sampling eigenvalues from [−1, 1] and then
applying a Haar unitary. The pure states were gener-
ated by uniformly sampling a full rank Schmidt vector
p = (p1, 1 − p1). The interquartile range indicates most
quantum states will not saturate the SIE bound.

As noted above, the form of the SIE proven here uti-
lizes the full Hamiltonian H, more generally, the gener-
ator for unitary evolution. The operator norm ||H||∞ is

in general extensive, which would imply Ė scales linearly
with log |H|. This seems paradoxical, as the entanglement
entropy of A should not scale differently if |H| was, say,
doubled while |HA| remained fixed. However, it is only
H∂(t) which generates entanglement (we could always ex-
press ρ in the eigenbasis of HA, HAc , respectively), and
||H∂(t)||∞, assuming a local Hamiltonian, is intensive.

There are two reasons we focus on H instead of the
entanglement-generating term H∂ . The first is theoreti-
cal: as we detail below, the generator for unitary rota-
tions in the projective Hilbert space is H, not H∂ . As
our goal is to relate the quantum geometry induced by
the diagonalizing unitary U to entanglement bounds, the
full generator of unitary rotations is the relevant observ-
able. The second reason is practical. In the context of the
WWF it is η from Eq. 1, not H, that dictates the unitary
rotation. η∂(β) becomes more quasilocal as a function of

flow and therefore determining η∂ via a Pauli string de-
composition quickly becomes infeasible. We discuss the
issue of how ||η∂ || scales with ||η|| in more detail in Sec.
IV.

III. CONNECTING TO QUANTUM
INFORMATION GEOMETRY

We now use the SIE theorem in Eq. 2 as a bridge to
consider bulk geometry by identifying computable bulk
quantities and metrics related to the flow entanglement
entropy. The RT theorem indicates that minimal cuts in
the bulk should be proportional to the boundary entan-
glement; thus, making an identification with the flow en-
tanglement entropy helps preserve this correspondence.
As we show, these bulk metrics comprise two compo-
nents: a quantity related to distances in the projective
Hilbert space, and the information fluctuation complex-
ity (IFC), described above. Approximations to either of
these quantities yields a variety of bulk metrics: we find
that there is a trade-off between approximations which
hew closely to the entanglement flow, and those which
are easier to compute.

In this spirit we examine computable approximations
to the two quantities on the RHS of Eq. 4, which we write
as

E(ρ(t)) ≤ 2

∫ t

0

σH(t′)σY (t′)dt′ =: 2DRS (8)

for initial state ρ = |ψ〉 〈ψ|.
As noted above, σH is less than or equal to the opera-

tor norm ||H||∞, equivalent to the largest singular value
smax of H†H. Computing ||H||∞ amounts to determin-
ing the extremal values of the eigenspectrum of H, which
can be achieved via Lanczos or similar methods with com-
plexity that scales as O(|H|2ω), where ω is the sparsity
(average number of non-zero elements in a row) of H. In

contrast, the Frobenius norm ||H||F :=
√

TrH†H scales
as O(|H|3). As we describe below, ||H||F is closely re-
lated to metrics on the projective Hilbert space. Lever-
aging the fact that ||A||∞ ≤ ||A||F ≤

√
r||A||∞ for

any rank r operator A, we can approximately bound
σH by ||H||F /

√
d, where d := dAdAC = |H|. The term

||H||F /
√
d can be seen as the root-mean of the expecta-

tion value 〈ψ0|H†H|ψ0〉, where {|ψ0〉} is an orthonormal
basis for H chosen at the beginning of the flow.

If we now consider the average entanglement entropy
of an initial orthonormal basis {|ψ0〉} and make the re-

placement σH → ||H||F /
√
d, we get

〈E(ρ(t)〉 . 2√
d

∫ t

0

||H||FσY =: 2DXY , (9)

where 〈·〉 denotes averaging over the flowed states
{|ψ0(t)〉}.

Turning now to approximations for the information
fluctuation complexity (IFC), we can decompose σY (t)
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Bulk metric Approx. to σH Approx. to σY

DRS σH σY

DXY ||H||F /
√
d σY

DX ||H||F /
√
d 〈σY 〉

TABLE I: Approximations to each term in Eq. 4 for the
bulk metrics (DRS , DXY , DX)

into a running average and fluctuating component (with
respect to the time parameter t), σY (t) = σ̄Y + σ̃Y (t).
Assuming σ̃Y (t)� σY yields

〈E(ρ(t))〉 . 2 〈σ̄Y 〉√
d

∫ t

0

dt′||H(t′)||F = 2 〈σ̄Y 〉DX , (10)

where we have defined

DX(t) :=
1√
d

∫ t

0

dt′||H(t′)||F . (11)

We interpret DX , first suggested as a bulk metric in the
context of the WWF in Ref. [22], as quantifying the aver-
age strength of rotation induced by the unitary process,
integrated with respect to the flow. The term DX is, for
traceless H, the arc length of the unitary U under a stan-
dard bi-invariant Riemannian metric [42]. Different met-
ric choices that penalize many-qubit Hamiltonian opera-
tors give rise to a geometrical notion of quantum circuit
complexity [42, 43].

To summarize our analysis so far, we can place bounds
on the average entanglement entropy of initial orthonor-
mal states {|ψ0〉} evolving under a Hamiltonian (or gen-
erator of unitary rotation) H using Eq. 4. The terms in
Eq. 4 can be approximated by taking norms and func-
tionals of operators through the course of the unitary
flow. Cruder approximations, as we will see in Sec. IV,
lead to worse bounds on the entanglement entropy. Table
I depicts the approximations made to Eq. 4 for each bulk
measure.

In addition to contributing to the entanglement bounds
in Eq. 4, we can relate σH to the efficiency of the unitary
flow. Note that for pure state ρ = |ψ〉 〈ψ| the term σ2

H ≡
gtt is simply the diagonal part of the Fubini-Study metric,
gµν = <(Qµν) under unitary evolution U(t) where Qµν
is the quantum geometric tensor defined as

Qµν ≡ 〈∂µψ| (1− |ψ〉 〈ψ|) |∂νψ〉 , (12)

The imaginary part of Qµν is then proportional to the
Berry curvature [44]. Note that in general µ, ν denote pa-
rameters for the state ψ(t); in our case the only meaning-
ful parameter is the time (or RG flow parameter) t, thus
our restriction to the diagonal gtt. An arc-length in the
projective Hilbert space determined by a continuously-
parameterized unitary is defined (up to a universal con-

stant) by dFS(ψ(t)) :=
∫ t
0
dt′
√
gtt =

∫ t
0
dt′σH(t′). The

efficiency of U(t) with respect to flow state ψ(t) is char-
acterized by the ratio of the geodesic arc-length to the

arc-length taken by U [45]:

ε(ψ(t)) :=
cos−1 | 〈ψ(t)|ψ(0)|〉

dFS(ψ(t))
=

cos−1 | 〈ψ(t)|ψ(0)〉 |∫ t
0
dt′σH(t′)

.

(13)
Put more plainly, the efficiency ε of a continuous unitary
U(t) with respect to an initial state ψ(0) is the ratio of the
geodesic distance between (ψ(t), ψ(0)), and the distance
of the path from (ψ(t), ψ(0)) dictated by U .

Using Eq. 4 and the Fubini-Study definition of σH ,
we extract another upper bound on the entanglement
entropy of the boundary state ψ(t) via

E(ρ(t)) ≤ 2 cos−1 (| 〈ψ(t)|ψ(0)〉 |) ε(ψ(t))−1 log dA. (14)

That the entanglement entropy bound scales inversely
with the efficiency is consistent with shallow-depth local
quantum circuits obeying area-law entanglement.

Thus we see that two components comprise our en-
tanglement entropy bound in Eq. 4: a distance measure
in the projective Hilbert space, and a complexity mea-
sure (IFC) particular to the bipartition. While the IFC
is difficult to numerically obtain, the divergence between
entanglement growth and unitary rotation becomes man-
ifest, as we now explore in the context of MBL.

IV. WEGNER WILSON FLOW AND MBL

The entanglement analysis given above is applicable to
any continuous unitary flow; however, our interests lie in
one unitary particularly relevant to MBL and generating
`-bits: the Wegner Wilson flow. The WWF is fundamen-
tally a diagonalization protocol that continuously evolves
an orthonormal set of initial states into eigenstates of a
given Hamiltonian. For Hamiltonian H0 and initial basis
{ψ0}, the WWF is succinctly expressed by the differential
equation

dU(β)

dβ
= η(β)U(β), (15)

whereby we define H(β) = U(β)H0U
†(β) as the flow

Hamiltonian. The term η(β) = [Hd(β), H(β)] is the com-
mutator of the diagonal component (with respect to the
ψ0 basis) of the flow Hamiltonian, Hd(β), with H(β). We
define the variance of the WWF as V (β) = 〈V0(β)〉0 :=
〈(H(β)−Hd(β))2〉0, where 〈·〉0 denotes averaging over
{ψ0}, and V0(β) = 〈ψ0|(H(β)−Hd(β))2|ψ0〉. The WWF
ensures V (β)→ 0 monotonically; in particular, the decay
of off-diagonal elements ofH(β) scales exponentially with
[β] = energy−2 [25, 26]. Moreover, the WWF induces
a geodesic flow with respect to the Fubini-Study metric
given appropriate constraints on H0 and {ψ0} [25], which
motivated our discussion in Sec. III. Numerical studies
have demonstrated the WWF produces more quasilocal
integrals of motion in the MBL phase than other flow
equation methodologies [18, 46]. The WWF is also eas-
ier to implement, though it is susceptible to numerical
stiffness issues [46].
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FIG. 2: Average WWF arc-length dFS against DX for
L = 8. Colors denote varying disorder strengths; the red
diagonal line is a guide to the eye. (Left inset) Median
efficiency against disorder strength W for both L = 8
and L = 10. Shading denotes standard deviation
estimated via bootstrap sampling. (Right inset)
Average entanglement entropy against WWF efficiency
for L = 8, with color coding the same as the main plot.

As a testbed for our analytics, we consider the proto-
typical MBL Hamiltonian, the one-dimensional spin-1/2
Heisenberg model with on-site disorder and open bound-
ary conditions. The Hamiltonian is given by

H =
1

4

∑
i

σi · σi+1 +
hi
2
σzi , (16)

where hi ∈ [−W,W ] is sampled uniformly. A large body
of numerical and theoretical work has placed the MBL
transition in the thermodynamic limit at Wc ≈ 3.8 for
this model, though the dependence on system size has re-
cently come into question [1, 47, 48]. We perform WWF
in the zero magnetization sector and work within the
computational σz basis. We utilize the same numerical
procedure and tests for convergence outlined in previ-
ous works [18, 22]. We performed our analysis on L = 8
and L = 10 system sizes, and average within a disor-
der realization before averaging over realizations. Due to
calculating the IFC at each stage of the flow, we are rele-
gated to smaller system sizes. For the case of L = 10, we
choose to calculate the IFC at each flow step for only a
subset of flow states. However, the qualitative results of
our analytics given above is still clear.

0.0 0.5 1.0 1.5 2.0 2.5
E(ρ)

0

1

2

3

4

DRS

DRS

DX

DX

DXY

DXY

FIG. 3: The three bulk entanglement measures
(DRS , DXY , DX) against E(ρ). The dashed lines
denote L = 8, while the solid lines denote L = 10.

Fig. 2 depicts the median WWF efficiency (as defined
in Eq. 13) as a function of disorder, where we see a clear
monotonic climb towards unity upon entering the MBL
phase. This monotonicity is coincident with the increas-
ing quasilocality of the integrals of motion: in the infi-
nite disorder limit, the eigenstates are effectively prod-
uct states, and therefore the flow is essentially geodesic
with respect to the Fubini-Study metric. Fig. 2 also shows
dFS , the average WWF arc-length from initial to final
state, against DX , the root-mean WWF Fubini-Study
arc-length. By Jensen’s inequality,DX is larger than dFS ,
though this inequality becomes parametrically weaker
upon entering the MBL phase. Fig. 2 further depicts the
average entanglement entropy of the eigenstates against
the WWF efficiency. Consistent with our claim above,
a higher efficiency correlates with a lower entanglement
entropy.

The Fubini-Study metric is intimately tied to the di-
agonalization rate of the WWF. In particular, we have

gββ(ψ) = −1

2

dV0(β)

dβ
, (17)

where ψ is the flow state for initial state ψ0 [22]. As the
disorder terms hiσ

z
i are diagonal in the spin configura-

tion basis, and limβ→∞ V0(β) = 0, the energy functional∫
gββdβ ∝ V0(0) is independent of disorder strength or

realization for every flow state ψ. Our recasting of the
Fubini-Study metric then implies [22, 26]

DX =

∫
dβ

(
− 1

2d

dV (β)

dβ

)1/2

. (18)
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FIG. 4: (Top) Average (over flow states) IFC σ̄Y and
eigenstate entanglement entropy against disorder
strength W for L = 8 (left) and L = 10 (right). Shading
denotes standard deviation. (Bottom) Average IFC
against E(ρ) for L = 8 (left) and L = 10 (right). The
points represents values averaged within a disorder
realization, while the red line denotes the trend after
averaging over disorder realizations.

In Fig. 3, we depict DX against the average eigenstate
entanglement entropy E(ρ) (we suppress the averaging
notation for brevity), as well as DRS :=

∫
σησY , pro-

portional to the integral of Eq. 4. We note that DRS is
strongly linear throughout the phase diagram, in strong
contrast to DX . The nonlinearity in DX is most manifest
for small E(ρ) (large disorder strength W ), as in the in-
finite disorder limit both E(ρ) and DX should approach
zero.

The central difference between DX and DRS lies in
σY , the information fluctuation complexity (IFC). In Fig.
4, we depict the average IFC σ̄Y (recall this average
is over the flow trajectory, then over the set of eigen-
states) against disorder strength W . We simultaneously
plot E(ρ) against W , and note that E(ρ) decreases at a
faster rate than σ̄Y . The lower panels of Fig. 4, wherein
we plot σ̄Y against E(ρ), more clearly shows the discrep-
ancy. The consequence of this nonlinearity is that the
degree of rotation quantified by DX fails to linearly cor-
relate with the degree of entanglement growth as the sys-
tem enters the MBL phase. To phrase this differently, a
measure of unitary rotation is inequivalent to a measure
of entanglement growth.

This discrepancy is fundamentally tied to the distinc-

tion between η(β) and η∂(β), the terms in η that couples
the degrees of freedom across the bipartition. Early in the
flow, η∂ is well-approximated as a sum of local quadratic
and quartic terms [23, 26] and is therefore intensive, while
η is extensive; thus, the entanglement bound DX is poor
for small β. As the flow progress, η couples degrees of
freedom more and more distant from the bipartition cut,
such that ||η∂ ||∞ is well-approximated by ||η||∞. While
η∂ couples more nonlocal degrees of freedom late in the
flow, the strength of those couplings exponentially decay
with β, in correspondence to the decay of off-diagonal
elements of H.

It is interesting to note that, in the context of cMERAs,
the Fubini-Study/Bures metric serves as a suitable bulk
measure for the entanglement entropy, unlike the nonlin-
ear relation presented in Fig. 3. We suspect this differ-
ence stems from the cMERA hyperbolic geometry in the
thermodynamical limit, in which geodesics (minimal sur-
faces) are lines extending into the bulk, and the Fubini-
Study metric effectively measures the strength of disen-
tanglers [29, 30, 35]. In the present WWF context, the
unitary bulk represents an energy diagonalization flow, as
reflected in the energy functional V0(0) =

∫
dβgββ ; the

goal of the WWF is a projective Hilbert space trajectory
such that V (β) optimally decays. As demonstrated here,
that goal is generally at odds with a flow that optimally
generates entanglement. We leave open the question of
whether a more natural bulk metrical construction quan-
tifies the entanglement entropy generated by the WWF.

To briefly conclude, we investigated connections be-
tween the growth of entanglement entropy and quan-
tum geometrical metrics. By giving a new proof to the
small incremental entangling theorem, we established
how bounds on entanglement entropy scale with the effi-
ciency of the operators generating unitary evolution. Fo-
cusing on a prototypical MBL model, we numerically de-
termines the degradation of boundary entanglement en-
tropy bounds upon approximating key quantum informa-
tional functionals. We determined that the information
fluctuation complexity is a pivotal quantity delineating
unitary evolution from entanglement growth.
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