LA-UR-24-25462

Approved for public release; distribution is unlimited.

Title: To Interoperability And Beyond: Interoperable Types Through the
Promises of C and C++ and ABI Abuse

Author(s): Solomon, Clell Jeffrey Jr.
Intended for: Non-conference technical exchange.
Issued: 2024-06-03

1% Los Alamos

1% Los Alamos NYSE

NATIONAL LABORATORY National Nuclear Security Administration

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

i% Los Alamos

NATIONAL LABORATORY

To Interoperability And Beyond
Interoperable Types Through the Promises of C and C++ and ABI Abuse

Clell J. (CJ) Solomon
13 June. 2024

13 June 2024

UNCLASSIFIED

Abstract

This presentation presents a technique that allows passing of Fortran nested-type
hierarchies interoperably to C++. The technique is motivated by the Eulerian
Application Project’s need to port code from Fortran to C++ to utilize the Kokkos
performance portability library. The resulting method allows hierarchies of types to
become interoperable while at the same time transforming Fortran array members of
the original Fortran type into Kokkos: : Views in the resulting C++ type.

Q UNCLASSIFIED 13 June 2024 | 2

UNCLASSIFIED

About Me and the Project

My Ph.D. was in Nuclear Engineering with a focus on variance reduction for computational
Monte Carlo particle transport methods. | am currently the project leader of LANLs Eulerian
Applications Project (EAP) where my technical focus is primarily on an unsplit
hydrodynamics scheme that we are working on GPU offloading. | have a strong interest in
software development and engineering, particularly in C++ where | enjoy leveraging template
meta programming for performance gains and easing implementation hurdles.

The EAP focuses on providing a cell-based adaptive mesh refinement (CAMR) Eulerian-hydrodynamics
simulation capability for high energy density (HED) physics simulations. The EAP code base consists
of a 30+ year old Fortran backbone, but has been modernized relying on features up to Fortran 2018.
We are currently working toward GPU acceleration of our algorithms via the Kokkos library.

() UNCLASSIFIED 13 June 2024 | 3

UNCLASSIFIED

Disclaimers

This presentation contains code of Fortran, C++, and Python flavors

The code presented is “slide-ware”details (hopefully not important ones) are
omitted and best practices not always employed for brevity

Some of the C++ examples (and even a Fortran one) uses templates
If part of the code is unclear to you, ask me to explain

UNCLASSIFIED 13 June 2024 | 4

UNCLASSIFIED

Outline

The Problem

C/Fortran Interoperability
Interoperable Array-In-A-Type Problem
Interoperable Types

Putting It Together

Questions

Q UNCLASSIFIED

13 June 2024 | 5

UNCLASSIFIED

Outline

The Problem

Q UNCLASSIFIED 13 June 2024 | 6

UNCLASSIFIED

Interoperability of Modern Fortran and C++ is Challenging

e The EAP code base makes heavy use of Fortran derived types

— Organize related data
— Pass data explicitly through API calls with managed intent rather than global use
statements

e Often derived types are nested within other derived types
e Many of these types have become “vocabulary types” of the code

— Types that are utilized throughout the code base and all developers should know about
them
— Common examples are the AMR mesh type mesh_t and its subcommponents:
® cells_t—holds cell counts, global indices, neighbor information, etc.
® levels_t—holds information about AMR levels, most importantly what is as the “top-level”,
i.e., active

e This presentation addresses how the EAP made such types more accessible in
C++

UNCLASSIFIED 13 June 2024 | 7

UNCLASSIFIED

Straw Man: Want to Use the Following in C++
type :: cells_t
integer, dimension(:), allocatable :: cell_address

end type

type :: levels_t

integer :: numtop
integer, dimension(:), allocatable :: 1ltop
end type

type :: mesh_t
type(cells_t) :: cells
type(levels_t) :: levels
end type

Q UNCLASSIFIED

13 June 2024 | 8

UNCLASSIFIED

Straw Man: Use Case As Follows

1 interface 1 extern "C" {
2 subroutine some_physics(mesh) bind(c) 2
3 type(interop_mesh_t) :: mesh 3 void some_physics(
4 end subroutine 4 in_t<interop_mesh_t> const& iomesh) {
5 end interface 5 auto mesh = map(iomesh, transform_fn{})
6 6
7 type(mesh_t) :: mesh 7 Kokkos: :parallel_for(/*...*/, [=](int i){
8 8 /% use mesh.cells and mesh.levels */
9 call some_physics(make_interoperable (mesh)) 9 19N

10}

11

12} // extern "C"

() UNCLASSIFIED 13 June 2024 | 9

UNCLASSIFIED

Goal: Provide Equivalent Structured Types in C++

Desire to “mirror” these vocabulary types to our C++

— Would be trivial if all data in the types were interoperable per iso_c_binding

— Of course they aren’t—consider
integer, dimension(:), allocatable :: cell_address

Once on the C++ side we want the underlying representation of arrays to be easily

changeable

— We are using Kokkos: : Views for now—easy interchange from host side versus device
side views

— We should not preclude (design out of) other possibilities in the future

Allow for selective interoperability

— Not all data in a Fortran derived type needs to be mirrored

¢ [f the data should be immutable, then make sure it is const-correct

Q UNCLASSIFIED 13 June 2024

10

UNCLASSIFIED

The Real Problems to Be Addressed

1. How do we represent array data interoperably?
2. How do we give staff the ability to quickly generate interoperable types that

— Are easy to change
— Maintain const-correctness/intent (in)-ness
— Allow simple transformations of the structures while maintaining structured order

Q UNCLASSIFIED 13 June 2024 | 11

UNCLASSIFIED

Outline

C/Fortran Interoperability

9 UNCLASSIFIED 13 June 2024 | 12

UNCLASSIFIED

What is C/Fortran Interoperabilty?

The ability to pass data objects from C to
Fortran and/or Fortran to C and maintain
the way in which they are interpreted

Essentially this requires that types, both

basic and derived, have the same binary
layout including padding and alignment *
requirements

6
Fortran does not require that the order of
elements in a derived type be the definition

order—free to optimize by rearrangement
9

C (and C++ by virtue of C compatiblity)
does require that the order of elements in
a derived type be the definition order

10

UNCLASSIFIED

struct s {
int i;
double d;
char c;

};

constexpr auto size_s =
sizeof(s); /* 24 bytes */

constexpr auto align_s =
alignof(s); /* 8 bytes */

13 June 2024

UNCLASSIFIED

This is ABI Compatibility!

¢ As software engineers we commonly deal with Application Programming
Interfaces (APIs)
— How we express interfaces to isolated components of code
— Function calls, class methods, overload sets, etc.
* The Application Binary Interface (ABI) is usually a job left to the compiler
— When a variable is passed to a function, how much stack space must be allotted?
— Is the variable passed by value or reference?
e Type systems are the programmer-facing ABI requirement
— If atype is passed, be it fundamental or derived, then if the same type is received there
should not be an ABI incompatibility

— Compilers can and do enforce this—cannot pass a real (real32) to a real(real64)
in Fortran

=

UNCLASSIFIED 13 June 2024 | 14

UNCLASSIFIED

With Fortran 2018 Arrays Are Interoperabile...

¢ _..when being passed to functions as deferred shape arrays
interface
subroutine my_c_function(a) bind(c)
real(c_double), dimension(:,:) :: a ! OK :-D
end subroutine
end interface
¢ NOT when members of a type
type, bind(c) :: my_type
2 real (c_double), dimension(:,:) :: a ! NOT OK :-(
3 end type
® On the C++-side we can receive the array as a CFI_cdesc_t
#include <ISO_Fortran_binding.h>
extern "C" {
void my_c_funtion(CFI_cdesc_t const& a) // <- Fortran %s pass—-by-reference, ABI :-0
{ /* Do stuff with a*/ }
}

Q UNCLASSIFIED 13 June 2024 | 15

[N

Yoo n oo -

UNCLASSIFIED

What is this CFI_cdesc_t?

¢ An implementation dependent representation of a Fortran array
e Afancy void*

* A dope vector:

In computer programming, a dope vector is a data structure used to hold infor-
mation about a data object, especially its memory layout.

—https://en.wikipedia.org/wiki/Dope_vector

UNCLASSIFIED 13 June 2024

https://en.wikipedia.org/wiki/Dope_vector

©o~TDU A WN -

UNCLASSIFIED

The GNU CFI_cdesc_t Implementation

/*
typ
{

¥
CFI

/*

CFI_dim_t. */
edef struct CFI_dim_t

CFI_index_t lower_bound;
CFI_index_t extent;
CFI_index_t sm;

_dim_t;

CFI_cdesc_t, C descriptors are cast to this structure
as follows:

CFI_CDESC_T(CFI_MAX_RANK) foo;

CFI_cdesc_t * bar = (CFI_cdesc_t *) &foo;

*/

typ
{

¥
CFI

edef struct CFI_cdesc_t

void *base_addr;

size_t elem_len;

int version;

CFI_rank_t rank;
CFI_attribute_t attribute;
CFI_type_t type;
CFI_dim_t dim[];

_cdesc_t;

UNCLASSIFIED

©oTDU ks WN -

/% CFI_CDESC_T with an ezplicit type. */
#define CFI_CDESC_TYPE_T(r, base_type) \
struct { \
base_type *base_addr; \
size_t elem_len; \
int version; \
CFI_rank_t rank; \
CFI_attribute_t attribute; \
CFI_type_t type; \
CFI_dim_t dim[r]; \
F
#define CFI_CDESC_T(r) CFI_CDESC_TYPE_T (r, wvoid)

13 June 2024 | 17

UNCLASSIFIED

Outline

Interoperable Array-In-A-Type Problem

Q UNCLASSIFIED 13 June 2024 | 18

UNCLASSIFIED

Want An Interoperable Array Representation that Can be
Stored in a Type

e Solution: Create our own version of a dope vector

¢ Flattens the implementation dependent bits to the common set of things we
want/need

e Removes superfluous (at least to us) information
¢ Maintains interoperability—what we’re after in the first place
¢ Drops knowledge of the data type being referenced but maintains rank knowledge

¢ Unfortunately, due to Fortran’s lack of templating capability this requires a fair
amount of code to be be consistently stamped out—we auto generate it with a
Python script

UNCLASSIFIED 13 June 2024 | 19

© 00 N O A W N

=R = e
W N = O

UNCLASSIFIED

EAP’s dope Types

* We generate a dope type for each rank, e.g.,:

. . 1 type, bind(c) :: dope2
tyse,e?zndizi o izz:oaddr 2 type(c_ptr) :: base_addr
vypetc_ptr) i - 3 integer(c_size_t) :: elem_len
integer(c_size_t) :: elem_len . .
integer(c int64 t) :: rank 4 integer(c_int64_t) :: rank
integer(c_int64_t) o e 5 integer(c_int64_t) :: type
end t ge - -t} i WP 6 type(dim_t), dimension(2) :: dim
P 7 end type
. 8
type, bind(c) :: dopel 9 type, bind(c) :: dope3
type(c_ptr) :: base_addr 10 type(c_ptr) :: base_addr
integer(c_size_t) :: elem_len ypetc_p o -
. - - 11 integer(c_size_t) :: elem_len
integer(c_int64_t) :: rank . X .
. . 12 integer(c_int64_t) :: rank
integer(c_int64_t) :: type 13 inte . o
. . . . ger(c_int64_t) :: type
type(dim_t), dimension(l) :: dim . . . oA
14 type(dim_t), dimension(3) :: dim
end type 15 end t
ype

UNCLASSIFIED 13 June 2024 | 20

UNCLASSIFIED

Quick Aside: If Only There Were More Compiler Uniformity

00 1 O Ul W N

* Fortran actually does have a minimal amount of type-templating capability—parametrized
types
type, bind(c) :: dope(R)

integer, dim :: R

type(c_ptr) :: base_addr

type(size_t) :: elem_len

type(c_int64_t) :: rank

type(c_int64_t) :: type

type(dim_t), dimension(R) :: dims
end type

¢ |ntel and GCC Fortran compilers allowed the above code, but IBM’s compiler doesn’t
allow interoperable types to be parametrized

¢ |f this would work it would drastically cut down on the amount of code that has to be
generated

UNCLASSIFIED 13 June 2024

21

UNCLASSIFIED

EAP’s make_dope Function

* A single overloaded make_dope function returns the appropriate dope type for arrays
* make_dope only copies meta-data for the array, not the array itself
e Restriction: arrays must contain interoperable data types

interface

1)]) 4 14 u 1 integer :: i

2 sub?outlne c_physics(int_data, real_data) 2 integer, dimenion(10) :: int_data

3 bind(c) . 3 real(real64), dimenion(10,10) :: real_data
4 type(dopel) :: int_data 4

5 type (dope?) i1 real_data 5 call c_physics(make_dope(int_data), &

6 end subroutine 6 make_dope (real_data))

7 end interface

() UNCLASSIFIED 13 June 2024 | 22

UNCLASSIFIED

Templated dope Types in C++

template<typename T, size_t R>

inherited data comes first then, if we .
. struct dope : detail::dope_base<T> {
are careful, we have the same required 10 struct dim t {

1 template<typename T>
¢ In C++ we can now have a templated 2 struct dope_base {
3 T* base_addr;
dope<T,R> 4 size_t elem_len;
¢ Because C++ guarantees the same 5 ptrdifftr
. . 6 ptrdiff_t t;
ordering requirement as C and that 7}
8
9

ABI |ay0ut 11 ptrdiff_t lower_bound;
. i . 12 ptrdiff_t extent;
® Adding the type and rank information 13 ptrdiff_t sm;
does not add to the actual size, but 1‘5* Lm + dim[a]
adds the ability to use this information 6 ¥ ’
in the C++ 17 template<typename T>

18 struct dope<T,0> : detail::dope_base<T> {};

()] UNCLASSIFIED 13 June 2024 | 23

UNCLASSIFIED
Turning dope<T,R>s into Kokkos: : ViewS
® Because the type and rank information is encoded in the dope<T,R>, it is possible to write

a generic function to convert any dope<T,R> t0 a Kokkos: : View
e Putting it all to together, from Fortran to Kokkos looks like the following:

Fortran C++
interface 1 extern "C" {
subroutine c_physics(int_data, real_data) & 2 void c_physics(dope<int,1> const& int_data
bind(c) 3 dope<double,2> const& real_data) {
type(dopel) :: int_data 4 auto int_view = to_kokkos_view(int_data);
type(dope2) :: real_data 5 auto real_view = to_kokkos_view(real_data);
end subroutine [
end interface 7 Kokkos: :parallel_for(/* ... */, [=](int i){
8 /% do things with views */
call c_physics(make_dope(int_data), & 9 B;
make_dope (real_data)) 10}

11} // extern "C"

() UNCLASSIFIED 13 June 2024 | 24

UNCLASSIFIED

Outline

Interoperable Types

Q UNCLASSIFIED 13 June 2024 | 25

=W N

UNCLASSIFIED

Our Previous Process For Building Interoperable Types was

Error Prone and Difficult to Change

e Consider
1 type :: levels_t
2 integer :: numtop
3 integer, dimension(:), allocatable :: ltop
4 end type
¢ First, manually construct the interoperable type
type :: interop_levels_t 1 struct interop_levels_t {
integer :: numtop 2 int numtop;
type(dopel) :: ltop 3 dope<int,1> ltop;
end type 4}
® Then, manually write a parallel class using Kokkos: : Views
1 class levels_t {
2 int numtop;
3 Kokkos: :View<integer*, Kokkos::HostSpace> :: ltop
4
5 levels_t(interop_levels_t const& iolevels) { /* details */ }
6

() UNCLASSIFIED

13 June 2024 | 26

UNCLASSIFIED

Problems with The Current Approach

¢ Tedious

All the interoperable Fortran and C++ types must be written by hand

All the parallel C++ types must be written by hand

If | want a representation that now has the views on the device | have to write that one
too

| need different versions depending on if the data is mutable or immutable

e Error Prone

— If the interoperable Fortran and C++ types aren’t kept in the same order, you have an
ABI incompatibility that can be difficult to track
— Oiriginal types could get out of sync with interoperable types

¢ Inconsistency across people doing porting work on how this is accomplished

UNCLASSIFIED 13 June 2024 | 27

UNCLASSIFIED

Automatic Generation of Interoperable Types

© 00 N O U e W N =

[N
[=}

EAP has written infrastructure where the interoperable types can be described with Python and the
interoperable Fortran type and C++ are automatically generated

use gentypes

class cells_t:
cell_address = gentypes.array(gentypes.integer, 1)
class levels_t:
numtop = gentypes.by_reference(gentypes.integer)
ltop = gentypes.array(gentypes.integer,1)
class mesh_t:
cells = cells_t
levels = levels_t

Interoperable Fortran and C++ types guaranteed to be generated consistently (avoids ABI issues)
All names enforced to match (compile error) original type and member names

Bonus: Use of these interoperable descriptors in Python allows for selective and consistent
inclusion/exclusion of members

UNCLASSIFIED 13 June 2024

28

UNCLASSIFIED

Problems with The Current Approach

¢ Tedious
— AlHthe-interoperable-Fortran-and-C++types-mustbe-written-by-hand (kind of—the
Python is a lot more compact)
— All the parallel C++ types must be written by hand

— If | want a representation that now has the views on the device | have to write that one
too

— | need different versions depending on if the data is mutable or immutable
e Error Prone

UNCLASSIFIED 13 June 2024 | 29

UNCLASSIFIED

How to Receive the Interoperable Type on the C++ Side?

B oW N e

Clearly, one wants something like
struct interop_levels_t {
dope<int,0> numtop;
dope<int,1> ltop;
};
Doing the above would make automatic conversion of dope<T,R>s to
Kokkos: : Views challenging

— No compile-time way to iterate the members of a struct (yet...maybe in C++26)

Could auto-generate it with more scripting, but C++ has a way to auto-generate
code: templating

Define our own structure type that provides for compile-time iteration over its
members

UNCLASSIFIED 13 June 2024 | 30

UNCLASSIFIED

Why Emphasize the Compile-Time lteration

® The types of things in C++ are merely compile time constructs the help enforce
ABI requirements

¢ [f one can iterate over the member types of a structure, then one can generate a
structure with equivalent member names but different member types WITHOUT
explicitly writing the type

1 struct levels_t {
int numtop; = 2 const int numtop;
dope<int,1> ltop; 3 Kokkos: :View<const int*> ltop;
s 1}
¢ One can also obtain and maintain const-correctness of data WITHOUT explicitly
writing more types

struct interop_levels_t {

S O

() UNCLASSIFIED 13 June 2024 | 31

UNCLASSIFIED

The EAP structure Type

BwWw NN

® The details of implementing the structure are beyond the scope of this

presentation
— 200 lines using moderately advanced C++ template and template meta programming
techniques)
At the end of the day it provides for the following use case
EAP_STRUCTURE_MEMBER (numtop)
EAP_STRUCTURE_MEMBER (1top)
using interop_levels_t = structure<numtop<int>,ltop<dope<int,1>>>;
which is equivalent in size, layout, and alignment (i.e., ABI compatible) with
struct interop_levels_t {
dope<int,0> numtop;
dope<int,1> :: ltop;
};

UNCLASSIFIED 13 June 2024

32

UNCLASSIFIED

An Entire structure Can Be Mapped Recursively

® structures can be mapped to structures of the same description (same member names) but with
different types

Consider the following:

class transform_fn {

template<typename T>
T operator() (T const& v) const { return v; }

template<typename T, size_t R>
auto operator() (dope<T,R> const& v) const { return to_kokkos_view(v); }
};
extern "C" {
void c_physics(interop_levels_t const& iolevs) {
auto levs = map(iolevs, transform_fn{}); // <- the types are converted
}
} // extern "C"
® The map function will take 1evs and build a new structure type where all the dope<T,R>s are
transformed to Kokkos: : Views and everything else is left alone

® The map function works recursively if there are structures within structures
‘5 UNCLASSIFIED 13 June 2024 | 33

© 0 N O U W N =

e e
N = O

UNCLASSIFIED

structures Can Be Immutable

There is a challenge solving the immutability problem

— In Fortran, an intent (in) array’s data is immutable

— In C++, a Kokkos: : View<double*> const’s data is mutable—it has reference
semantics

— A Kokkos: :View<double const*>’s data is immutable

Similarly dope<double const, 1> indicates a dope vector to immutable data
However, the auto-generation code for the types should not specify whether a type
is mutable or immutable because it may need to be one or the other depending on
context

Instead, provide an in_t<T> that, given a structure or dope<T,R>, returns a type

with data immutable versions
Example:

void some_physics(in_t<interop_mesh_t> const& iomesh {
auto mesh = map(iomesh, transform_fn{}); // <- resulting Kokkos::Views have immutable data

UNCLASSIFIED 13 June 2024

34

UNCLASSIFIED

Problems with The Current Approach

¢ Tedious
— Altthe-interoperableFortran-and-C++types-mustbe-writtenby-hand (kind of—the

Python is a lot more compact)

Q UNCLASSIFIED 13 June 2024 | 35

UNCLASSIFIED

Outline

Putting It Together

9 UNCLASSIFIED 13 June 2024 | 36

UNCLASSIFIED

An EAP Developer Want To Use

type :: cells_t
integer, dimension(:), allocatable
end type

type :: levels_t

integer :: numtop

integer, dimension(:), allocatable ::
end type

type :: mesh_t
type(cells_t) :: cells
type(levels_t) :: levels
end type

Q UNCLASSIFIED

cell_address

1ltop

13 June 2024 | 37

UNCLASSIFIED

They Write (Okay, Plus a Little CMake)

use gentypes

class cells_t:
cell_address = gentypes.array(gentypes.integer, 1)
class levels_t:
numtop = gentypes.by_reference(gentypes.integer)
ltop = gentypes.array(gentypes.integer,1)
class mesh_t:
cells = cells_t
levels = levels_t

‘to UNCLASSIFIED 13 June 2024 | 38

© 0 N O U W N

=
o

UNCLASSIFIED

They Use It

interface
subroutine some_physics(mesh) bind(c)

1 #include "interop_mesh_types.hh"
2
use interop_mesh_types 3 extern "C" {
type(interop_mesh_t) :: mesh 4
end subroutine 5 void some_physics(
end interface 6 in_t<interop_mesh_t> const& iomesh) {
7 auto mesh = map(iomesh, transform_fn{});
type(mesh_t) :: mesh 8
9 Kokkos: :parallel_for(/*...*/, [=]1(int i){

call some_physics(make_interoperable(mesh)) 10 /* use mesh.cells and mesh.levels */
11 b
12}
13

14 Y} // extern "C"

()] UNCLASSIFIED 13 June 2024 | 39

UNCLASSIFIED

Questions

UNCLASSIFIED 13 June 2024 | 40

	The Problem
	C/Fortran Interoperability
	Interoperable Array-In-A-Type Problem
	Interoperable Types
	Putting It Together
	Questions

