
LA-UR-24-25462
Approved for public release; distribution is unlimited.

Title: To Interoperability And Beyond: Interoperable Types Through the
Promises of C and C++ and ABI Abuse

Author(s): Solomon, Clell Jeffrey Jr.

Intended for: Non-conference technical exchange.

Issued: 2024-06-03

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

UNCLASSIFIED

To Interoperability And Beyond
Interoperable Types Through the Promises of C and C++ and ABI Abuse

Clell J. (CJ) Solomon
13 June. 2024

UNCLASSIFIED 13 June 2024

UNCLASSIFIED

Abstract

This presentation presents a technique that allows passing of Fortran nested-type
hierarchies interoperably to C++. The technique is motivated by the Eulerian
Application Project’s need to port code from Fortran to C++ to utilize the Kokkos
performance portability library. The resulting method allows hierarchies of types to
become interoperable while at the same time transforming Fortran array members of
the original Fortran type into Kokkos::Views in the resulting C++ type.

UNCLASSIFIED 13 June 2024 | 2

UNCLASSIFIED

About Me and the Project

My Ph.D. was in Nuclear Engineering with a focus on variance reduction for computational
Monte Carlo particle transport methods. I am currently the project leader of LANL’s Eulerian
Applications Project (EAP) where my technical focus is primarily on an unsplit
hydrodynamics scheme that we are working on GPU offloading. I have a strong interest in
software development and engineering, particularly in C++ where I enjoy leveraging template
meta programming for performance gains and easing implementation hurdles.

The EAP focuses on providing a cell-based adaptive mesh refinement (CAMR) Eulerian-hydrodynamics
simulation capability for high energy density (HED) physics simulations. The EAP code base consists
of a 30+ year old Fortran backbone, but has been modernized relying on features up to Fortran 2018.
We are currently working toward GPU acceleration of our algorithms via the Kokkos library.

UNCLASSIFIED 13 June 2024 | 3

UNCLASSIFIED

Disclaimers

• This presentation contains code of Fortran, C++, and Python flavors
• The code presented is “slide-ware”–details (hopefully not important ones) are

omitted and best practices not always employed for brevity
• Some of the C++ examples (and even a Fortran one) uses templates
• If part of the code is unclear to you, ask me to explain

UNCLASSIFIED 13 June 2024 | 4

UNCLASSIFIED

Outline

The Problem

C/Fortran Interoperability

Interoperable Array-In-A-Type Problem

Interoperable Types

Putting It Together

Questions

UNCLASSIFIED 13 June 2024 | 5

UNCLASSIFIED

Outline

The Problem

C/Fortran Interoperability

Interoperable Array-In-A-Type Problem

Interoperable Types

Putting It Together

Questions

UNCLASSIFIED 13 June 2024 | 6

UNCLASSIFIED

Interoperability of Modern Fortran and C++ is Challenging

• The EAP code base makes heavy use of Fortran derived types
– Organize related data
– Pass data explicitly through API calls with managed intent rather than global use

statements
• Often derived types are nested within other derived types
• Many of these types have become “vocabulary types” of the code

– Types that are utilized throughout the code base and all developers should know about
them

– Common examples are the AMR mesh type mesh_t and its subcommponents:
• cells_t—holds cell counts, global indices, neighbor information, etc.
• levels_t—holds information about AMR levels, most importantly what is as the “top-level”,

i.e., active

• This presentation addresses how the EAP made such types more accessible in
C++

UNCLASSIFIED 13 June 2024 | 7

UNCLASSIFIED

Straw Man: Want to Use the Following in C++

1 type :: cells_t

2 integer, dimension(:), allocatable :: cell_address

3 end type

4

5 type :: levels_t

6 integer :: numtop

7 integer, dimension(:), allocatable :: ltop

8 end type

9

10 type :: mesh_t

11 type(cells_t) :: cells

12 type(levels_t) :: levels

13 end type

UNCLASSIFIED 13 June 2024 | 8

UNCLASSIFIED

Straw Man: Use Case As Follows

1 interface

2 subroutine some_physics(mesh) bind(c)

3 type(interop_mesh_t) :: mesh

4 end subroutine

5 end interface

6

7 type(mesh_t) :: mesh

8

9 call some_physics(make_interoperable(mesh))

1 extern "C" {

2

3 void some_physics(

4 in_t<interop_mesh_t> const& iomesh) {

5 auto mesh = map(iomesh, transform_fn{})

6

7 Kokkos::parallel_for(/*...*/ , [=](int i){

8 /* use mesh.cells and mesh.levels */

9 });

10 }

11

12 } // extern "C"

UNCLASSIFIED 13 June 2024 | 9

UNCLASSIFIED

Goal: Provide Equivalent Structured Types in C++

• Desire to “mirror” these vocabulary types to our C++
– Would be trivial if all data in the types were interoperable per iso_c_binding
– Of course they aren’t—consider

integer, dimension(:), allocatable :: cell_address

• Once on the C++ side we want the underlying representation of arrays to be easily
changeable
– We are using Kokkos::Views for now—easy interchange from host side versus device

side views
– We should not preclude (design out of) other possibilities in the future

• Allow for selective interoperability
– Not all data in a Fortran derived type needs to be mirrored

• If the data should be immutable, then make sure it is const-correct

UNCLASSIFIED 13 June 2024 | 10

UNCLASSIFIED

The Real Problems to Be Addressed

1. How do we represent array data interoperably?
2. How do we give staff the ability to quickly generate interoperable types that

– Are easy to change
– Maintain const-correctness/intent(in)-ness
– Allow simple transformations of the structures while maintaining structured order

The remainder of this talk will address how the EAP codes are solving these problems.

UNCLASSIFIED 13 June 2024 | 11

UNCLASSIFIED

Outline

The Problem

C/Fortran Interoperability

Interoperable Array-In-A-Type Problem

Interoperable Types

Putting It Together

Questions

UNCLASSIFIED 13 June 2024 | 12

UNCLASSIFIED

What is C/Fortran Interoperabilty?

• The ability to pass data objects from C to
Fortran and/or Fortran to C and maintain
the way in which they are interpreted

• Essentially this requires that types, both
basic and derived, have the same binary
layout including padding and alignment
requirements

• Fortran does not require that the order of
elements in a derived type be the definition
order–free to optimize by rearrangement

• C (and C++ by virtue of C compatiblity)
does require that the order of elements in
a derived type be the definition order

1 struct s {

2 int i;

3 double d;

4 char c;

5 };

6

7 constexpr auto size_s =

8 sizeof(s); /* 24 bytes */

9 constexpr auto align_s =

10 alignof(s); /* 8 bytes */

UNCLASSIFIED 13 June 2024 | 13

UNCLASSIFIED

This is ABI Compatibility!
• As software engineers we commonly deal with Application Programming

Interfaces (APIs)
– How we express interfaces to isolated components of code
– Function calls, class methods, overload sets, etc.

• The Application Binary Interface (ABI) is usually a job left to the compiler
– When a variable is passed to a function, how much stack space must be allotted?
– Is the variable passed by value or reference?

• Type systems are the programmer-facing ABI requirement
– If a type is passed, be it fundamental or derived, then if the same type is received there

should not be an ABI incompatibility
– Compilers can and do enforce this—cannot pass a real(real32) to a real(real64)

in Fortran

When we jump a language barrier there is only so much a compiler can do to help
us—they cannot type check in this instance!

UNCLASSIFIED 13 June 2024 | 14

UNCLASSIFIED

With Fortran 2018 Arrays Are Interoperable...
• ...when being passed to functions as deferred shape arrays

1 interface

2 subroutine my_c_function(a) bind(c)

3 real(c_double), dimension(:,:) :: a ! OK :-D

4 end subroutine

5 end interface

• NOT when members of a type
1 type, bind(c) :: my_type

2 real(c_double), dimension(:,:) :: a ! NOT OK :-(

3 end type

• On the C++-side we can receive the array as a CFI_cdesc_t

1 #include <ISO_Fortran_binding.h>

2 extern "C" {

3 void my_c_funtion(CFI_cdesc_t const& a) // <- Fortran is pass-by-reference, ABI :-O

4 { /* Do stuff with a*/ }

5 }
UNCLASSIFIED 13 June 2024 | 15

UNCLASSIFIED

What is this CFI_cdesc_t?

• An implementation dependent representation of a Fortran array
• A fancy void*

• A dope vector:

In computer programming, a dope vector is a data structure used to hold infor-
mation about a data object, especially its memory layout.

– https://en.wikipedia.org/wiki/Dope_vector

UNCLASSIFIED 13 June 2024 | 16

https://en.wikipedia.org/wiki/Dope_vector

UNCLASSIFIED

The GNU CFI_cdesc_t Implementation

1 /* CFI_dim_t. */

2 typedef struct CFI_dim_t

3 {

4 CFI_index_t lower_bound;

5 CFI_index_t extent;

6 CFI_index_t sm;

7 }

8 CFI_dim_t;

9
10 /* CFI_cdesc_t, C descriptors are cast to this structure

11 as follows:

12 CFI_CDESC_T(CFI_MAX_RANK) foo;

13 CFI_cdesc_t * bar = (CFI_cdesc_t *) &foo;

14 */

15 typedef struct CFI_cdesc_t

16 {

17 void *base_addr;

18 size_t elem_len;

19 int version;

20 CFI_rank_t rank;

21 CFI_attribute_t attribute;

22 CFI_type_t type;

23 CFI_dim_t dim[];

24 }

25 CFI_cdesc_t;

1 /* CFI_CDESC_T with an explicit type. */

2 #define CFI_CDESC_TYPE_T(r, base_type) \

3 struct { \

4 base_type *base_addr; \

5 size_t elem_len; \

6 int version; \

7 CFI_rank_t rank; \

8 CFI_attribute_t attribute; \

9 CFI_type_t type; \

10 CFI_dim_t dim[r]; \

11 }

12 #define CFI_CDESC_T(r) CFI_CDESC_TYPE_T (r, void)

UNCLASSIFIED 13 June 2024 | 17

UNCLASSIFIED

Outline

The Problem

C/Fortran Interoperability

Interoperable Array-In-A-Type Problem

Interoperable Types

Putting It Together

Questions

UNCLASSIFIED 13 June 2024 | 18

UNCLASSIFIED

Want An Interoperable Array Representation that Can be
Stored in a Type

• Solution: Create our own version of a dope vector
• Flattens the implementation dependent bits to the common set of things we

want/need
• Removes superfluous (at least to us) information
• Maintains interoperability—what we’re after in the first place
• Drops knowledge of the data type being referenced but maintains rank knowledge
• Unfortunately, due to Fortran’s lack of templating capability this requires a fair

amount of code to be be consistently stamped out—we auto generate it with a
Python script

UNCLASSIFIED 13 June 2024 | 19

UNCLASSIFIED

EAP’s dope Types

• We generate a dope type for each rank, e.g.,:

1 type, bind(c) :: dope0

2 type(c_ptr) :: base_addr

3 integer(c_size_t) :: elem_len

4 integer(c_int64_t) :: rank

5 integer(c_int64_t) :: type

6 end type

7

8 type, bind(c) :: dope1

9 type(c_ptr) :: base_addr

10 integer(c_size_t) :: elem_len

11 integer(c_int64_t) :: rank

12 integer(c_int64_t) :: type

13 type(dim_t), dimension(1) :: dim

14 end type

1 type, bind(c) :: dope2

2 type(c_ptr) :: base_addr

3 integer(c_size_t) :: elem_len

4 integer(c_int64_t) :: rank

5 integer(c_int64_t) :: type

6 type(dim_t), dimension(2) :: dim

7 end type

8

9 type, bind(c) :: dope3

10 type(c_ptr) :: base_addr

11 integer(c_size_t) :: elem_len

12 integer(c_int64_t) :: rank

13 integer(c_int64_t) :: type

14 type(dim_t), dimension(3) :: dim

15 end type

UNCLASSIFIED 13 June 2024 | 20

UNCLASSIFIED

Quick Aside: If Only There Were More Compiler Uniformity

• Fortran actually does have a minimal amount of type-templating capability—parametrized
types

1 type, bind(c) :: dope(R)

2 integer, dim :: R

3 type(c_ptr) :: base_addr

4 type(size_t) :: elem_len

5 type(c_int64_t) :: rank

6 type(c_int64_t) :: type

7 type(dim_t), dimension(R) :: dims

8 end type

• Intel and GCC Fortran compilers allowed the above code, but IBM’s compiler doesn’t
allow interoperable types to be parametrized

• If this would work it would drastically cut down on the amount of code that has to be
generated

UNCLASSIFIED 13 June 2024 | 21

UNCLASSIFIED

EAP’s make_dope Function

• A single overloaded make_dope function returns the appropriate dope type for arrays
• make_dope only copies meta-data for the array, not the array itself
• Restriction: arrays must contain interoperable data types

1 interface

2 subroutine c_physics(int_data, real_data) &

3 bind(c)

4 type(dope1) :: int_data

5 type(dope2) :: real_data

6 end subroutine

7 end interface

1 integer :: i

2 integer, dimenion(10) :: int_data

3 real(real64), dimenion(10,10) :: real_data

4

5 call c_physics(make_dope(int_data), &

6 make_dope(real_data))

Importantly, the dope types can be stored in other interoperable types!!!

UNCLASSIFIED 13 June 2024 | 22

UNCLASSIFIED

Templated dope Types in C++

• In C++ we can now have a templated
dope<T,R>

• Because C++ guarantees the same
ordering requirement as C and that
inherited data comes first then, if we
are careful, we have the same required
ABI layout

• Adding the type and rank information
does not add to the actual size, but
adds the ability to use this information
in the C++

1 template<typename T>

2 struct dope_base {

3 T* base_addr;

4 size_t elem_len;

5 ptrdiff_t r;

6 ptrdiff_t t;

7 };

8 template<typename T, size_t R>

9 struct dope : detail::dope_base<T> {

10 struct dim_t {

11 ptrdiff_t lower_bound;

12 ptrdiff_t extent;

13 ptrdiff_t sm;

14 };

15 dim_t dim[R];

16 };

17 template<typename T>

18 struct dope<T,0> : detail::dope_base<T> {};

UNCLASSIFIED 13 June 2024 | 23

UNCLASSIFIED

Turning dope<T,R>s into Kokkos::Views

• Because the type and rank information is encoded in the dope<T,R>, it is possible to write
a generic function to convert any dope<T,R> to a Kokkos::View

• Putting it all to together, from Fortran to Kokkos looks like the following:

Fortran

1 interface

2 subroutine c_physics(int_data, real_data) &

3 bind(c)

4 type(dope1) :: int_data

5 type(dope2) :: real_data

6 end subroutine

7 end interface

8

9 call c_physics(make_dope(int_data), &

10 make_dope(real_data))

C++

1 extern "C" {

2 void c_physics(dope<int,1> const& int_data

3 dope<double,2> const& real_data) {

4 auto int_view = to_kokkos_view(int_data);

5 auto real_view = to_kokkos_view(real_data);

6

7 Kokkos::parallel_for(/* ... */ , [=](int i){

8 /* do things with views */

9 });

10 }

11 } // extern "C"

UNCLASSIFIED 13 June 2024 | 24

UNCLASSIFIED

Outline

The Problem

C/Fortran Interoperability

Interoperable Array-In-A-Type Problem

Interoperable Types

Putting It Together

Questions

UNCLASSIFIED 13 June 2024 | 25

UNCLASSIFIED

Our Previous Process For Building Interoperable Types was
Error Prone and Difficult to Change

• Consider
1 type :: levels_t

2 integer :: numtop

3 integer, dimension(:), allocatable :: ltop

4 end type

• First, manually construct the interoperable type
1 type :: interop_levels_t

2 integer :: numtop

3 type(dope1) :: ltop

4 end type

1 struct interop_levels_t {

2 int numtop;

3 dope<int,1> ltop;

4 };

• Then, manually write a parallel class using Kokkos::Views
1 class levels_t {

2 int numtop;

3 Kokkos::View<integer*, Kokkos::HostSpace> :: ltop

4

5 levels_t(interop_levels_t const& iolevels) { /* details */ }

6 }

UNCLASSIFIED 13 June 2024 | 26

UNCLASSIFIED

Problems with The Current Approach

• Tedious
– All the interoperable Fortran and C++ types must be written by hand
– All the parallel C++ types must be written by hand
– If I want a representation that now has the views on the device I have to write that one

too
– I need different versions depending on if the data is mutable or immutable

• Error Prone
– If the interoperable Fortran and C++ types aren’t kept in the same order, you have an

ABI incompatibility that can be difficult to track
– Original types could get out of sync with interoperable types

• Inconsistency across people doing porting work on how this is accomplished

UNCLASSIFIED 13 June 2024 | 27

UNCLASSIFIED

Automatic Generation of Interoperable Types

• EAP has written infrastructure where the interoperable types can be described with Python and the
interoperable Fortran type and C++ are automatically generated

1 use gentypes

2

3 class cells_t:

4 cell_address = gentypes.array(gentypes.integer, 1)

5 class levels_t:

6 numtop = gentypes.by_reference(gentypes.integer)

7 ltop = gentypes.array(gentypes.integer,1)

8 class mesh_t:

9 cells = cells_t

10 levels = levels_t

• Interoperable Fortran and C++ types guaranteed to be generated consistently (avoids ABI issues)
• All names enforced to match (compile error) original type and member names
• Bonus: Use of these interoperable descriptors in Python allows for selective and consistent

inclusion/exclusion of members

UNCLASSIFIED 13 June 2024 | 28

UNCLASSIFIED

Problems with The Current Approach

• Tedious
– All the interoperable Fortran and C++ types must be written by hand (kind of—the

Python is a lot more compact)
– All the parallel C++ types must be written by hand
– If I want a representation that now has the views on the device I have to write that one

too
– I need different versions depending on if the data is mutable or immutable

• Error Prone
– If the interoperable Fortran and C++ types aren’t kept in the same order, you have an

ABI incompatibility that can be difficult to track
– Original types could get out of sync with interoperable types

• Inconsistency across people doing porting work on how this is accomplished

UNCLASSIFIED 13 June 2024 | 29

UNCLASSIFIED

How to Receive the Interoperable Type on the C++ Side?

• Clearly, one wants something like
1 struct interop_levels_t {

2 dope<int,0> numtop;

3 dope<int,1> ltop;

4 };

• Doing the above would make automatic conversion of dope<T,R>s to
Kokkos::Views challenging
– No compile-time way to iterate the members of a struct (yet...maybe in C++26)

• Could auto-generate it with more scripting, but C++ has a way to auto-generate
code: templating

• Define our own structure type that provides for compile-time iteration over its
members

UNCLASSIFIED 13 June 2024 | 30

UNCLASSIFIED

Why Emphasize the Compile-Time Iteration

• The types of things in C++ are merely compile time constructs the help enforce
ABI requirements

• If one can iterate over the member types of a structure, then one can generate a
structure with equivalent member names but different member types WITHOUT
explicitly writing the type

1 struct interop_levels_t {

2 int numtop;

3 dope<int,1> ltop;

4 };

⇒
1 struct levels_t {

2 const int numtop;

3 Kokkos::View<const int*> ltop;

4 };
• One can also obtain and maintain const-correctness of data WITHOUT explicitly

writing more types

UNCLASSIFIED 13 June 2024 | 31

UNCLASSIFIED

The EAP structure Type

• The details of implementing the structure are beyond the scope of this
presentation
– 200 lines using moderately advanced C++ template and template meta programming

techniques)
• At the end of the day it provides for the following use case

1 EAP_STRUCTURE_MEMBER(numtop)

2 EAP_STRUCTURE_MEMBER(ltop)

3 using interop_levels_t = structure<numtop<int>,ltop<dope<int,1>>>;

which is equivalent in size, layout, and alignment (i.e., ABI compatible) with
1 struct interop_levels_t {

2 dope<int,0> numtop;

3 dope<int,1> :: ltop;

4 };

UNCLASSIFIED 13 June 2024 | 32

UNCLASSIFIED

An Entire structure Can Be Mapped Recursively
• structures can be mapped to structures of the same description (same member names) but with

different types
• Consider the following:

1 class transform_fn {

2 template<typename T>

3 T operator()(T const& v) const { return v; }

4

5 template<typename T, size_t R>

6 auto operator()(dope<T,R> const& v) const { return to_kokkos_view(v); }

7 };

8 extern "C" {

9 void c_physics(interop_levels_t const& iolevs) {

10 auto levs = map(iolevs, transform_fn{}); // <- the types are converted

11 }

12 } // extern "C"

• The map function will take levs and build a new structure type where all the dope<T,R>s are
transformed to Kokkos::Views and everything else is left alone

• The map function works recursively if there are structures within structures
UNCLASSIFIED 13 June 2024 | 33

UNCLASSIFIED

structures Can Be Immutable
• There is a challenge solving the immutability problem

– In Fortran, an intent(in) array’s data is immutable
– In C++, a Kokkos::View<double*> const’s data is mutable–it has reference

semantics
– A Kokkos::View<double const*>’s data is immutable

• Similarly dope<double const, 1> indicates a dope vector to immutable data
• However, the auto-generation code for the types should not specify whether a type

is mutable or immutable because it may need to be one or the other depending on
context

• Instead, provide an in_t<T> that, given a structure or dope<T,R>, returns a type
with data immutable versions

• Example:
1 void some_physics(in_t<interop_mesh_t> const& iomesh {

2 auto mesh = map(iomesh, transform_fn{}); // <- resulting Kokkos::Views have immutable data

3 }
UNCLASSIFIED 13 June 2024 | 34

UNCLASSIFIED

Problems with The Current Approach

• Tedious
– All the interoperable Fortran and C++ types must be written by hand (kind of—the

Python is a lot more compact)
– All the parallel C++ types must be written by hand
– If I want a representation that now has the views on the device I have to write that one

too
– I need different versions depending on if the data is mutable or immutable

• Error Prone
– If the interoperable Fortran and C++ types aren’t kept in the same order, you have an

ABI incompatibility that can be difficult to track
– Original types could get out of sync with interoperable types—compile-time error

• Inconsistency across people doing porting work on how this is accomplished

UNCLASSIFIED 13 June 2024 | 35

UNCLASSIFIED

Outline

The Problem

C/Fortran Interoperability

Interoperable Array-In-A-Type Problem

Interoperable Types

Putting It Together

Questions

UNCLASSIFIED 13 June 2024 | 36

UNCLASSIFIED

An EAP Developer Want To Use

1 type :: cells_t

2 integer, dimension(:), allocatable :: cell_address

3 end type

4

5 type :: levels_t

6 integer :: numtop

7 integer, dimension(:), allocatable :: ltop

8 end type

9

10 type :: mesh_t

11 type(cells_t) :: cells

12 type(levels_t) :: levels

13 end type

UNCLASSIFIED 13 June 2024 | 37

UNCLASSIFIED

They Write (Okay, Plus a Little CMake)

1 use gentypes

2

3 class cells_t:

4 cell_address = gentypes.array(gentypes.integer, 1)

5 class levels_t:

6 numtop = gentypes.by_reference(gentypes.integer)

7 ltop = gentypes.array(gentypes.integer,1)

8 class mesh_t:

9 cells = cells_t

10 levels = levels_t

From this, interoperable types are generated for them as part of the build.

UNCLASSIFIED 13 June 2024 | 38

UNCLASSIFIED

They Use It

1 interface

2 subroutine some_physics(mesh) bind(c)

3 use interop_mesh_types

4 type(interop_mesh_t) :: mesh

5 end subroutine

6 end interface

7

8 type(mesh_t) :: mesh

9

10 call some_physics(make_interoperable(mesh))

1 #include "interop_mesh_types.hh"

2

3 extern "C" {

4

5 void some_physics(

6 in_t<interop_mesh_t> const& iomesh) {

7 auto mesh = map(iomesh, transform_fn{});

8

9 Kokkos::parallel_for(/*...*/ , [=](int i){

10 /* use mesh.cells and mesh.levels */

11 });

12 }

13

14 } // extern "C"

UNCLASSIFIED 13 June 2024 | 39

UNCLASSIFIED

Questions

UNCLASSIFIED 13 June 2024 | 40

	The Problem
	C/Fortran Interoperability
	Interoperable Array-In-A-Type Problem
	Interoperable Types
	Putting It Together
	Questions

