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Abstract This paper presents an immersed, isogeo-
metric finite element framework to predict the response
of multi-material, multi-physics problems with complex
geometries using locally refined discretizations. To cir-
cumvent the need to generate conformal meshes, this
work uses an eXtended Finite Element Method (XFEM)
to discretize the governing equations on non-conforming,
embedding meshes. A flexible approach to create trun-
cated hierarchical B-splines discretizations is presented.
This approach enables the refinement of each state vari-
able field individually to meet field-specific accuracy re-
quirements. To obtain an immersed geometry represen-
tation that is consistent across all hierarchically refined
B-spline discretizations, the geometry is immersed into
a single mesh, the XFEM background mesh, which is
constructed from the union of all hierarchical B-spline
meshes. An extraction operator is introduced to repre-
sent the truncated hierarchical B-spline bases in terms
of Lagrange shape functions on the XFEM background
mesh without loss of accuracy. The truncated hierar-
chical B-spline bases are enriched using a generalized
Heaviside enrichment strategy to accommodate small
geometric features and multi-material problems. The
governing equations are augmented by a formulation
of the face-oriented ghost stabilization enhanced for lo-
cally refined B-spline bases. We present examples for
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two- and three-dimensional linear elastic and thermo-
elastic problems. The numerical results validate the ac-
curacy of our framework. The results also demonstrate
the applicability of the proposed framework to large,
geometrically complex problems.

Keywords Immersed Finite Element Method,
eXtended Isogeometric Analysis, Multi-material Prob-
lems, Multi-physics Problems, Truncated Hierarchical
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1 Introduction

Finite element analysis is frequently used to predict
the response of systems described by partial differential
equations defined over a spatial domain. In classical fi-
nite element methods, the domain is discretized using
a single mesh that conforms to the external boundaries
and internal material interfaces. For problems with com-
plex shapes and multiple material phases, the construc-
tion of this conformal mesh is often a major bottle-
neck in the analysis process, see Bazilevs et al. (2010).
Conformal mesh generation may also hamper the au-
tomation of the finite element analysis for problems
with changing geometry as encountered in, for exam-
ple, phase-change problems with dynamically evolving
interfaces or shape and topology optimization.

The state variable fields may exhibit large spatial
gradients at boundaries and material interfaces, as well
as in the vicinity of small geometric features. To resolve
these spatial gradients, a sufficiently fine discretization
is needed. While uniformly fine discretization may yield
an accurate approximation, the associated computa-
tional cost may exceed practical limits. A locally re-
fined mesh balances discretization needs and computa-
tional cost. However, generating locally refined meshes
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for standard finite element methods further increases
the complexity of mesh generation.

Many engineering and science applications involve
multiple, often coupled state variable fields. For such
problems, each field may require differently refined dis-
cretizations. For example, consider the two-material,
thermo-elastic problem of a circle embedded in a rectan-
gular plate shown in Fig. 1a. We assume that the circle
is made of a material with a finite coefficient of thermal
expansion (CTE), while the plate’s CTE is zero. The
plate is subject to a spatially varying heat flux along
its right edge and clamped at its left edge. The heat
flux increases the temperature in the system, causing
the circle to expand which generates stresses in both
the plate and circle due to the CTE mismatch. To pre-
dict the stress field at the material interface with high
accuracy, accurate approximations of both the temper-
ature and displacement fields are required. The contour
of the norm of the diffusive flux is shown in Fig. 1b and
the contour of the Von Mises stress field in Fig. lc.
The regions with large spatial gradients differ between
the displacement and the temperature field. Separately
adapting the discretizations associated with each field
enables a sufficient resulution of each field while mini-
mizing the overall computational cost. An example of
such discretizations for the temperature and displace-
ment fields is depicted in Fig. 2a and 2b, respectively.

Lagrange polynomials are the standard choice for
basis functions in finite elements. The element-local na-
ture of this class of basis functions and their interpola-
tory property facilitate a convenient and efficient imple-
mentation and enforcement of Dirichlet boundary and
interface conditions. However, Lagrange basis functions
limit the inter-element continuity to C°, irrespective of
the polynomial order of the approximation within the
element. The lack of higher-order inter-element conti-
nuity affects the efficiency of Lagrange bases, measured
by the number of degrees of freedom needed to achieve
a desired accuracy; see for example Evans et al. (2009).

In this work, we propose a computational framework
that addresses the issues encountered with standard fi-
nite element approaches as outlined above. This frame-
work synthesizes the following concepts which will be
further discussed in detail below. An immersed finite
element approach is adopted to eliminate the need for
conformal mesh generation. Higher order B-spline ba-
sis functions are used to increase the discretization ef-
ficiency over Lagrange bases. For each state variable, a
truncated hierarchically refined B-spline basis is gener-
ated to meet field-specific accuracy requirements.

Immersed Boundary Methods (IBMs) have gained
in popularity in recent years, see Babuska and Melenk
(1997); Peskin (2002); Mittal and Taccarino (2005). The

general idea of these methods is to immerse the geome-
try of the physical domain into a computational domain
with a much simpler geometry. Thus, the geometries of
the physical and computational domains are decoupled.
The geometric simplicity of the computational domain
allows for the convenient generation of IBM background
meshes, such as tensor grids. The geometry is immersed
into the IBM background mesh, which simplifies the
discretization of the state variable fields.

In this work, we focus on finite element formulations
of IBMs. Immersed Finite Element Methods (IFEMs),
also referred to as geometrically unfitted or embed-
ded domain finite element methods, include the Fi-
nite Cell Method , see Parvizian et al. (2007); Diister
et al. (2008); Schillinger and Ruess (2015), the CutFEM
(Remacle et al. (2012)), the Generalized Finite Element
Method (GFEM) (Duarte et al. (2000); Strouboulis et al.

(2000)), and the eXtended Finite Element Method (XFEM),

see Belytschko and Black (1999); Belytschko et al. (2009).
In this paper, we consider specifically the latter ap-
proach. The XFEM augments the standard finite el-
ement basis with additional basis functions to repre-
sent discontinuities of the state variable field within
an XFEM background element that is intersected by a
boundary or an interface. The augmented finite element
basis satisfies the partition of unity (PU) property. In
this work, we adopt a Heaviside enrichment strategy for
its flexibility in modeling interface and boundary condi-
tions of multi-material problems with complex geome-
tries, see Noél et al. (2022).

Traditionally, Heaviside enriched XFEM approaches
discretize state variable fields by Lagrange basis func-
tions which are defined on the XFEM background mesh.
In this paper, we adopt higher order B-splines for dis-
cretizing state variable fields. The advantages of B-
splines basis functions for finite element methods have
been demonstrated in the context of Isogeometric Anal-
ysis (IGA), see Hughes et al. (2005). While IGA was
originally developed to eliminate the discrepancy be-
tween CAD geometry representation and finite element
analysis, Evans et al. (2009) showed that B-spline ba-
sis functions in general improve accuracy, robustness,
and computational efficiency. In this work, we further
utilize the refineability property of B-splines, see Garau
and Vézquez (2018).

B-spline basis functions were studied with IFEMs by
Schillinger et al. (2012); Schillinger and Rank (2011);
Schillinger and Ruess (2015); Verhoosel et al. (2015);
Elfverson et al. (2018); Divi et al. (2020); Noél et al.
(2020). Nguyen (2012) introduced B-spline approxima-
tions to the XFEM and coined the term X-IGA. These
works demonstrated that integrating higher order B-
splines discretizations into IFEM approaches yields im-
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(a) Thermo-elastic multi-material problem
subject to a spatially varying heat load

(b) Norm of the diffusive flux vector

(¢) Von Mises stress field

Fig. 1: Illustration of an example thermo-elastic problem
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(a) Locally refined mesh for the tem-
perature field

(b) Locally refined mesh for the dis-
placement field

Fig. 2: Example of locally refined discretizations for the thermo-elastic problem depicted in Fig. 1a

proved accuracy and computational efficiency compared
to the use of Lagrange basis functions.

The ability to locally refine B-splines enables the
convenient construction of locally refined approxima-
tion spaces, see Giannelli et al. (2012); Buffa and Gi-
annelli (2017); Bracco et al. (2019). While standard hi-
erarchical B-spline bases do not fulfill the PU property,
truncating the bases restores the PU property Giannelli
et al. (2012). Truncated Hierarchical B-spline (THB)
basis functions form a sparse, strongly stable basis Gi-
annelli et al. (2012) and are employed in this work.

This paper contributes to the work on IFEMs as fol-
lows. We introduce a versatile discretization approach
based on THBs defined on locally refined tensor meshes.
Each state variable can be discretized individually by
choosing the polynomial order and the local refinement
independently from the discretization of other fields.
This approach leads to an explicit control over the ac-
curacy of the field approximations and the computa-
tional cost of the analysis. Computationally efficient al-
gorithms and data structures are introduced to enable
the application of this discretization approach to large-
scale problems in two and three dimensions using paral-
lel computing. To integrate the locally refined B-spline
discretization approach into the XFEM, a single union
mesh is generated from the individual B-spline meshes.
Fig. 3 shows the union mesh generated for the two
locally refined meshes presented in Fig. 2. The union
mesh serves as the XFEM background mesh in which
the geometry is immersed. To increase the geometry

resolution, the XFEM background mesh can be addi-
tionally refined. We introduce an exact extraction op-
erator that expresses THBs in terms of Lagrange basis
functions over each element of the XFEM background
mesh.

The enrichment strategy of Makhija and Maute (2014);
Villanueva and Maute (2014); Noél et al. (2022) is gen-
eralized to enrich the locally refined THB basis func-
tions considering their support for a given intersection
geometry. The XFEM problem is augmented by an X-
IGA formulation of the face-oriented ghost stabilization
from Noél et al. (2022). The governing equations are in-
tegrated by standard quadrature rules on a geometry-
conforming integration mesh that is constructed by cut-
ting XFEM background elements that are intersected
by the external boundaries or internal material inter-
faces. Boundary and interface conditions are enforced
weakly by Nitsche’s method. We illustrate the main
characteristics and features of the proposed XFEM frame-
work by numerical examples considering linear elas-
tic and thermo-elastic problems. We study the conver-
gence of geometric and state variable discretization er-
rors with uniform and local mesh refinement for differ-
ent B-spline orders. To demonstrate the applicability
of our XFEM framework to complex multi-material,
multi-physics problems, we apply our XFEM frame-
work to the thermo-elastic analysis of a 3D polycrys-
talline micro-structure.

This paper is organized as follows: Section 2 out-
lines the Heaviside-enriched XFEM framework. Section
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Fig. 3: Union of the locally refined meshes depicted in Figures 2a and 2b

3 recalls the fundamentals of hierarchical B-splines as
well as their truncation to restore the PU property. Sec-
tion 4 details the meshing algorithms and data struc-
tures. Sections 5 summarizes the governing equations,
Nitsche’s formulation, and face-oriented ghost stabi-
lization for linear thermo-elasticity. Numerical two and
three dimensional examples are presented in Section 6.
The main findings are summarized in Section 7, to-
gether with recommendations for future work.

2 The eXtended Finite Element Method

In this work, we adopt the XFEM to perform analysis
on non-conforming background meshes. We follow the
basic concepts of a generalized Heaviside enrichment
strategy, introduced by Terada et al. (2003). In this
section, the basic concepts of the XFEM as relevant for
this work are briefly described.

We start from a non-conforming finite element ap-
proximation space with THB basis functions {B; }?:1
that are defined on a locally refined discretization. To
approximate the state variable fields in different ma-
terial phases, each basis function is enriched. The en-
richment of a particular basis function depends on the
number of topologically disconnected regions of all ma-
terial phases in the support of this basis function. The
approach is illustrated in Fig. 4 for a configuration with
two material phases, 2' and £22. The support of the
basis function B is depicted by the dashed red line.
It spans three topologically disconnected regions, each
occupied by one of the two material phases. Therefore,
the basis function is enriched three times.

This approach is applicable to any number of mate-
rial phases, intersection configurations, and basis func-
tion support. To define the enriched basis, we introduce
the indicator function wf. This function is equal to 1 for
points located within the portion of the support of the
4*1 basis function corresponding to the enrichment level
¢ and equal to zero elsewhere. The enriched basis then is

simply {ijf :je{l,...,n} and £ € {1,.. .,Lj}} where

L; is the maximum number of enrichment levels for ba-
sis function B;. Since the original THB basis satisfies
the PU principle, so does the enriched THB basis.

The enriched finite element approximation of a vector-
valued state variable u"(x) can be written in terms of
the enriched THB basis as follows:

n

L;
u"(x) =) Vi(x) Bj(x)cj | (1)

j=1 \I=

where cg is the coefficient associated to the ;" origi-
nal THB basis function and the j* enrichment level.
The indicator function ’z,/}f enforces that only one set of
enriched basis functions is used to describe the state
variable at each point in the domain. A more detailed
description of the enrichment strategy can be found in
Noél et al. (2022).

The Heaviside enriched XFEM formulation outlined
above enables the modeling of C~! intra-element dis-
continuities of state variables within a non-conforming
background element. Essential boundary conditions can
be enforced weakly by, for example, Nitsche’s method
(Nitsche (1971); Burman (2012)) or the stabilized La-

grange multiplier method (Gerstenberger and Wall (2008)).

Immersing geometry into the XFEM background
mesh can result in basis functions with small support
within the geometric domain, leading to poorly condi-
tioned systems of discretized governing equations. Var-
ious strategies to mitigate this issue have been studied
in the literature, such as the face-oriented ghost stabi-
lization (Burman (2010); Burman and Hansbo (2014);
Noél et al. (2022)), basis function removal (Embar et al.
(2010); Elfverson et al. (2018)), and pre-conditioning
(Lang et al. (2014); de Prenter et al. (2017)). In this
work, we extend the face-oriented ghost stabilization
to hierarchically refined B-spline discretizations; as fur-
ther described in Subsection 5.2.

3 Hierarchical B-splines

This section focuses on hierarchical B-splines for a lo-
cally refined discretization of state variable fields. First,
the basic concepts of B-splines in one and multiple di-
mensions are recalled. Then the B-spline refinement and
the construction of non-truncated (HB) and truncated
hierarchical B-spline (THB) bases are described.
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Fig. 4: Basis function enrichment for a two-material problem

3.1 B-spline Basis Functions

In 1D, we define a knot vector = = {£1,82, ..., Entpt1ts
for which £ € Rand & < & < -+ < &qpt1- A uni-
variate B-spline basis function N;,(§) of degree p is
constructed recursively starting from the piecewise con-

stant basis function:

1, if & <& <&y,
0, otherwise,

Noole) = { )

and using the Cox de Boor recursion formula (de Boor
(1972)) for higher degrees, p > 0:

=&

Nip(¢) iy — &

Ni,p—l (5)
3)

Sitpr1 — &

+
Sitpt1 — &ig1

Ni+1,p71(£)'

To guarantee a CP~! continuity over the entire compu-
tational domain, none of the interior knots should be
repeated. The corresponding B-spline basis exhibits a
CP~! continuity at every knot in the interior of the do-
main, while it is C*° continuous in between the knots.
A knot span is defined as the half open interval [¢;, & 41)
and a B-spline element is defined as a non-empty knot
span.

In 2D and 3D, tensor-product B-spline basis func-
tions B; (&) are constructed by applying the tensor-
product operation to univariate B-spline basis functions
in each parametric direction. Denoting the parametric
space dimension as dp, a tensor-product B-spline ba-
sis is constructed starting from d, knot vectors =™ =
&, &5, &0 1, w1} With pp, being the polynomial
degree and n,, the number of basis functions in the
parametric direction m = 1,...,d,. A tensor-product
B-spline basis function is generated from d, univariate
B-spline basis functions N/ | (™) in each parametric
direction m as follows:

Bip(&) = [ NI% . (6™, (4)

where the position in the tensor-product structure is
given by the index vector i = {i1,...,iq4,}, and the vec-
tor p = {p1,...,pa,} defines the polynomial degree in
each direction. Similarly to the univariate case, an ele-
ment is defined as the tensor-product of d, non-empty
knot spans. Additionally, a B-spline space V is defined
as the span of B-spline basis functions.

3.2 B-spline Refinement

Hierarchical refinement of uniform B-splines is achieved
by subdivision. A univariate B-spline basis function is
expressed as a linear combination of p + 2 contracted,
translated, and scaled copies of itself:

p+1

N© =27y (”j 1)Np<2s i), 5)
=0

where the binomial coefficient is defined as:

p+1\ (p+ 1)
( j >_J'!(p+1—j)!' (6)

Fig. 5 shows the refinement of a quadratic univariate
B-spline basis function obtained by subdivision.

The subdivision in Eq. (4) for a univariate B-spline
basis can be extended to tensor-product B-spline basis
functions B,, as follows, see Schillinger et al. (2012):

d
o)~ 3 (T2 (") a6 ).
(7)

where the index vector j = {i1,...,4q,} collects the
positions in the tensor-product structure.
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Fig. 5: Subdivision of a quadratic B-spline basis func-
tion (black) into p + 2 contracted B-spline basis func-
tions (blue) of half the knot span width

3.3 Hierarchical B-splines

To define a hierarchical mesh of depth n, a sequence of
subdomains 2! is introduced:

Qn—lggn—2g._.g90:(27 (8)

where each subdomain 2! is a refined sub-region of
=1, Consequently, {2 is equal to the union of all the
subdomains £2'.

To build a hierarchical B-spline basis, a sequence of
tensor-product B-spline spaces is introduced:

VWevtcyicvic.. .. (9)

Each B-spline space V' has a corresponding basis B! and
a corresponding mesh K! of tensor-product elements.
A hierarchical B-spline basis H is constructed re-
cursively based on the sequence of B-spline bases B
that span the domains £2‘. In an initial step, the ba-
sis functions defined on the coarsest level, [ = 0, are
collected and assigned to H. The hierarchical B-spline
basis H!*1! is constructed by taking the union of all ba-
sis functions B in H! whose support is not fully enclosed

02D

Fig. 6: Hierarchically refined mesh

in 2'*1 and all basis functions B in B! whose support
lies in 2*1. The recursive algorithm reads (Garau and
Véazquez (2018)):
HY =B
HA = {BecH | supp(B) € N} U
{B € B | supp(B) C 2},
forl=0,...,n—2,

(10)

where the index [ denotes the level of refinement. Basis
functions collected in H, where H := H"~ !, are called
active, while basis functions in B! not present in # are
said to be inactive.

Associated with a hierarchical B-spline basis is a
hierarchically refined mesh

Ki=U"J{KeK:KeQ and K ¢ 2'"} (11)

wherein 2™ is taken to be the empty set. An exam-
ple of a hierarchically refined mesh associated with a
two-dimensional hierarchical B-spline basis is displayed
in Figure 6. A hierarchical B-spline basis is smooth
over each element of its associated hierarchically refined
mesh.

A hierarchical B-spline basis H is illustrated for a
one-dimensional example in Fig. 7. The top row shows a
one-dimensional hierarchically refined mesh. Below the
mesh, the basis functions for three refinement levels are
shown. Following the recursion rule of Eq. (10), a B-
spline basis H is created through an initialization step
with all bases in the subdomain £2° refined to a level
I = 0. All bases in the subdomain 2+ with higher re-
finement level [ 41 are added recursively, while existing
basis functions of level [ fully enclosed in 2! are dis-
carded. The active B-spline basis functions H are shown
in black, while the inactive B-spline basis functions are
shown in gray.

Hanging nodes are a byproduct of h-refinement in
hierarchical refined meshes and are naturally handled
by the B-spline bases. In contrast, hanging nodes in
classic finite elements require extra treatments, such as
the introduction of multi-point constraints.

3.4 Truncated B-splines

By construction, the hierarchical B-spline basis pre-
sented above does not fulfill the PU property. The trun-
cated hierarchical B-spline basis constitutes an alterna-
tive to the hierarchical B-spline basis that does satisfy
the PU property. Truncation also reduces the number
of overlapping functions on adjacent hierarchical levels,
see Giannelli et al. (2012). Considering a basis function
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Fig. 7: One-dimensional hierarchical B-spline basis at-
tained using three levels of refinement

B!, part of B' and defined on the domain 2, its rep-
resentation in terms of the finer basis of level [ + 1 is
given as:

B'= > i (B) B, (12)

Bl+lg Bi+1

where cg’lil is the coefficient associated to a basis func-

tion B!t1.

The truncation of this basis function B, whose sup-
port overlaps with the support of finer basis functions
Bt part of B! and defined on ') is attained
as follows (Giannelli et al. (2012); Garau and Vazquez
(2018)):

trunc! (B! = Z ML, (BY) B,
BH—I c BH—I7
supp(BHl) Z N1
! I+1 l I+1
=B - Z L, (BY B

supp(B!+1)C 2!+

(13)

Following the creation of a hierarchical B-spline ba-
sis H, a THB basis T is constructed recursively by con-
sidering the truncation in Eq. (13), see Giannelli et al.
(2012); Garau and Véazquez (2018):

T =B
T =: {trunc!T}(B) | B in T! Asupp(B) € 2+1}
U{B e B | supp(B) € 27},
forl=0,...,n—2.
(14)

The truncated basis 7 spans the same space as the
non-truncated basis H and it admits a strong stability
property (Giannelli et al. (2014)). Moreover, the smaller
support results in a reduction in the number of nonzero
basis functions per element and consequently a sparser
system of linear equations in a finite element analysis.

The effect of the truncation is illustrated in Fig. 8. A
univariate truncated and non-truncated basis 7 and H
are juxtaposed. The first and second levels correspond
to £2° and £2' respectively, while the bottom level rep-
resents the combination of the functions on these two
levels. The comparison shows the reduced support of
the truncated B-spline basis functions.

4 Implementation Details

This section details the implementation of the THB dis-
cretization described above. A computationally efficient
approach is introduced to represent hierarchically re-
fined meshes via a poly-tree data structure. Local mesh
refinement strategies are outlined. A methodology for
expressing THB basis functions associated with mul-
tiple, differently refined meshes in terms of Lagrange
shape functions over each element in a union back-
ground mesh is presented.

4.1 Poly-tree Data Structure for Hierarchically
Refined B-spline Discretizations

The generation of a large hierarchical refined mesh can
be expensive due to the high memory consumption, es-
pecially when creating all possible elements for each
refinement level. The cost is compounded when creat-
ing multiple, differently refined hierarchical meshes. In
this paper, we present a computationally and memory
efficient approach to build differently refined meshes.
We first construct a Poly-Tree (PT) data structure,
i.e., a quadtree in 2D and an octree in 3D. The PT
data structure represents a set of hierarchically refined
meshes. The tree depth corresponds to a refinement
level [ with the base level, 0, representing a coarse uni-
form tensor mesh. The nodes of this PT data structure
are labeled PT cells and used to construct discretiza-
tions of state variable fields. Note that the PT cells are
not associated with any specific set of basis functions.
PT cells with higher refinement levels [ > 0 are cre-
ated recursively. Starting from level 0, the PT cells are
recursively subdivided into 4 and 8 PT cells in 2D and
3D, respectively. Considering a PT cell at a refinement
level [, the PT cell at refinement level [ — 1 from which
the PT cell is created is referred to as its parent. The
PT cells at refinement level [+ 1 created by subdivision
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Fig. 8: Comparison of univariate HB-spline (left) and THB-spline basis functions (right)

of a PT cell at level [ are called its children. The PT
cells are only created once and only as needed.

To efficiently represent multiple, differently refined
meshes with the same PT data structure, we introduce
the concept of PT cell activation states. Each PT cell
has multiple activation states which are represented by
Activation Indices (AI). Possible activation states for
a particular Al are either active, refined, or inactive.
Active PT cells for a specific Al have refined parent
PT cells and inactive children PT cells.

Although PT cells are only constructed once, the
activation state concept allows for the creation of multi-
ple, differently refined meshes. A single activation state
can be stored as a binary number with only two bits.
Thus, the activation states for all Als of a PT cell are
stored in 2 - #Als bits. An illustration of a single quad-
tree data structure with two Als is presented in Fig. 9.
The coloring of the PT cells indicates the activation
state for a specific Al. For a particular AI, PT cells in
blue, red, and white are active, refined, and inactive,
respectively. Blue framed PT cells on the zero level il-
lustrate the resulting mesh of active PT cells on a given
Al This enables the efficient construction of differently
refined hierarchical B-spline discretizations based on a
single PT data structure and a set of Als. To see this,
let {2 be the union of active and refined cells associated
with level [ and AT I. Then, we can create a hierarchi-
cal B-spline basis H; and a corresponding hierarchically
refined mesh Ky for Al I from the sequence

Qptcoptc. oy =0 (15)

The resulting hierarchically refined mesh K is precisely
the set of active PT cells for AT I.

In our PT data structure, we only store PT cells
that are either active or refined for at least one AT I.
The element edge length h%Tcele for parametric direc-

tion m and on the coarsest level 0 is computed based
on the given mesh size and the number of coarsest ele-
ments in each dimension, both of them are predefined
by the user. The size of mesh elements corresponding
to PT cells on levels [ > 0 may be computed based
on the coarsest element edge length and the refinement
level via h’lPTceHs,m =270 RO o1 - Basis functions are
assigned to mesh elements based on a pre-defined el-
emental basis function ordering. The elemental basis
function ordering in this work follows the Exodus II
standard (Shemon and Attaway (2014)).

4.2 Local Refinement Strategies

To generate a PT data structure that supports different
hierarchically refined meshes, the PT is recursively re-
fined for each AI and corresponding refinement criteria.
The refinement procedure is described in Algorithm 1.
For a specific Al, active PT cells are flagged for refine-
ment based on chosen refinement criteria. Adjacent PT
cells can also be flagged for refinement to increase the
size of the refined region. Moreover, additional active
PT cells for the current AI may be flagged considering
mesh regularity requirements as discussed in Subsec-
tion 4.2.1. In case the PT data structure is generated in
parallel using a domain decomposition strategy, flagged
PT cells are communicated across adjacent subdomains
to guarantee consistent refinement. Refinement is then
performed by creating new children PT cells through
subdividing all flagged PT cells unless the children PT
cells do already exist. New PT cells are initialized with
an inactive activation state for all Als. For the Al cur-
rently considered for refinement, the activation state of
the children PT cells is set to active while the parent
PT cell is set to refined.
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Activation Index 1

Activation Index 2

Fig. 9: One hierarchical refined quad-tree data structure with two sets of Als

Algorithm 1 Refinement algorithm

1: for Activation Index (Als) do

2: Flag PT cells based on refinement criteria for Al
3: Collect flagged PT cells into queue for refinement
4 while changes in refinement queue do

5: for all PT cells in queue for refinement do

6: Apply refinement buffer Algorithm 2

7 Collect flagged PT cells in queue for refinement
8 end for

9 end while

10: Communicate refinement queue

11: if Refined children PT cell does not exist then
12: Create refined children PT cells

13: Initialize new PT cells as inactive for all Als
14: end if

15: Flag children PT cells as active for Al
16: Flag parent PT cell as refined for Al
17: end for

4.2.1 Mesh Regularity Requirements

For construction of THB bases as discussed in Sec-
tion 3, mesh regularity requirements need to be con-
sidered when constructing the PT data structure. The
difference in refinement level between adjacent PT cells
in the refined PT is limited to one. Furthermore, all
active neighbor PT cells inside a so-called buffer zone
of an active PT cell on level [ must be of level greater
or equal I — 1, see Eq. (14).

The buffer range d, . . for a particular active PT
cells is calculated by multiplying the PT cells size with
a user-defined buffer parameter byufer, i.€., d{auﬁenm =
bbuffer hlPTceHs’m. When creating a B-spline basis, the

width of the buffer zone in parametric direction m must
be larger than or equal to the width of the basis function
supports in parametric dimension m. In this work each
state variable field is interpolated with an individual
interpolation order p. To satisfy the mesh regularity
requirement for all interpolation functions, the buffer
parameter must be chosen as bpuffer = Pmax; Where prax
is the maximal polynomial degree of all used bases.

The refinement procedure for enforcing a buffer zone
is summarized in Algorithm 2. The algorithm is applied
to each PT cell initially flagged for refinement in Step 2
of Algorithm 1 and starts by determining its parent PT
cell. The refinement status of the parent’s neighbors,
i.e., cells within the buffer range of the considered par-
ent, are checked. If these neighbors are neither refined
nor flagged for refinement, the distance d,,, between the
centers of the considered PT cell and its neighbor’s chil-
dren cells is calculated. This operation is trivial even if
these neighboring children cells do not exist due to the
PT data structure information. If any distance d,, is
smaller than the buffer range d! .. ., the particular
neighbor cell is flagged for refinement. The algorithm is
then applied recursively to all newly flagged neighbor
cells, until no further cells are flagged for refinement.
An efficient access to hierarchical mesh information,
such as neighborhood relationships, is provided by the
PT data structure discussed in Subsection 4.4. A visual
representation of Algorithm 2 is provided in Fig. 10 for
bputter = 1. PT cells with a green fill are cells flagged
for refinement while PT cells with a green pattern fill
are neighboring PT cells of the parent cell.
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neighbor BEs
of parent BE

neighbors in buffer
range flagged

o ] -

T‘*
!

for refinement

Fig. 10: Visualization of refinement buffer Algorithm 2

Algorithm 2 Refinement buffer algorithm

: PT cell flagged for refinement in Algorithm 1

Get parent

Get parent’s neighbors in buffer range d! ..

if neighbor is active and not flagged for refinement then
Calculate distance dms, considered cell and neighbors

non-existing children PT cells

6: if dm < dpuffer then

7 Flag neighbor for refinement

8: Apply refinement buffer Algorithm 2 for neighbor
9: end if

10: end if

4.3 Union Background Mesh and Extraction Operators

The framework presented above allows for a different
hierarchically refined B-spline discretization for each
state variable field. These discretizations are defined on
locally refined background meshes that are not aligned
with the external boundaries and material interfaces.
To simplify the finite element formation and assem-
bly process, a union! background mesh Cynion is con-
structed from the hierarchically refined meshes for each
state variable field as follows:

Kunion := {K : K € K1 for some I and there is no

K' € Ky for J # I such that K' C K}.

(16)

That is, an element of a hierarchically refined mesh for
one of the state variable fields is an element of the union
background mesh if it contains no finer element belong-
ing to a hierarchically refined mesh for one of the other
state variable fields. An example of a union background
mesh is displayed in Fig. 3. The union background mesh
is specially defined so that the hierarchical B-spline ba-
sis functions associated with each state variable field

1 Note that the union background mesh is not attained via
a set union of the separate hierarchically refined meshes. In-
stead, elements in this set union that fully contain smaller
elements in the set union do not belong to the union back-
ground mesh.

are smooth over each element of the union background
mesh. The union background mesh can be conveniently
created via the PT data structure by combining all Als
used to generate THB background meshes. In particu-
lar, a PT cell corresponds to an element of the union
background mesh if it is active for at least one acti-
vation index and active or inactive for all other acti-
vation indices. The union background mesh serves as
the XFEM background mesh in which the geometry
is immersed. Intersected XFEM background elements
of the union background mesh are cut to generate a
body-fitted integration mesh. Each THB discretization
is enriched separately considering the B-spline interpo-
lation and the immersed geometry represented on the
union background mesh. For details on the enrichment
strategy, the reader is referred to Noél et al. (2022). To
increase the geometry resolution, the union mesh can
be further refined, either locally or globally.

To facilitate operations performed on the union back-
ground mesh and on the integration mesh in the XFEM
analysis, the THB basis functions for each locally re-
fined background mesh are represented in terms of La-
grange shape functions on each element of the union
background mesh via Lagrange extraction, see Schillinger
et al. (2016); D’Angella et al. (2018). Namely, the THB
basis functions for a locally refined background mesh
can be represented element-wise in terms of Lagrange
shape functions as

€) = Br(&;) N ( Z N7 (8) (17)

where By is the k" THB basis function, {N]»L}j are

the Lagrange shape functions over the element, {& j}j
are the locations at which the Lagrange shape functions
{NjL}j are interpolatory, and T4 . = Bi(€;). We refer
to T" as a Lagrange extraction operator. The Lagrange
shape functions over each element can in turn be rep-
resented in terms of Lagrange shape functions over a
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child element as

ZNL (&,)NE(€ ZThNL (18)

where {Nf} are the Lagrange shape functions over
1

the child element, él are the locations at which the La-
grange shape functions {NZ.L}_

= NjL (€,). We refer to T" as an h-refinement ex-

traction operator. It follows that the THB basis func-
tions can be expressed in terms of the Lagrange shape
functions over the child element as

9=ZmM@ (19)

are interpolatory, and

where
Tiw =) TiT) (20)
J

is a Lagrange extraction operator that can be computed
using the aforementioned Lagrange and h-refinement
extraction operators. This process can be repeated to
represent THB basis functions in terms of Lagrange
shape functions and easily computable Lagrange ex-
traction operators over descendent elements of the child
element as well, thus enabling us to represent the THB
basis functions for each state variable field in terms
of Lagrange shape functions and Lagrange extraction
operators over each element of the union background
mesh. The extraction process from a quadratic B-spline
basis to a quadratic, once refined Lagrange basis is illus-
trated in Fig. 11. Our framework limits the background
element refinement to a factor of two, as presented in
Subsection 4.2.1. This consequently limits the number
of h-refinement extraction matrices to four in 2D and
eight in 3D. These matrices can be precomputed and
efficiently selected exploiting the PT data structure.

4.4 Background Mesh Data Structure

In this subsection, we discuss computational aspects of
the PT data structure for storing and managing hier-
archically refined meshes. This data structure aims at
improving the overall computational efficiency and min-
imizes inter-process communication for parallel com-
putations. The presented implementation is limited to
quadtrees in 2D and octrees in 3D, which is sufficient
for IFEMs.

Given the dimensions of the computational domain
and the number of elements in each spatial direction,
the base level 0 of the PT data structure is generated.
Adopting a domain decomposition approach, the PT

=

| " / \Th
S

[=)

Fig. 11: Tllustration of the extraction process

cells are grouped into subdomains. The mesh is hierar-
chically refined, and the union mesh is created in paral-
lel on each processor. To facilitate the refinement pro-
cess and the construction of the Lagrange extraction
operators, we create overlapping subdomains to build
an efficient PT data structure in parallel. In many cases
a decomposition strategy assigning approximately the
same number of PT cells to each subdomain is suffi-
cient. However, as refinement can lead to a significant
imbalance in number of PT cells across subdomains, it
may be beneficial to choose a decomposition strategy
that accounts for refinement.

At the coarsest level, 0, a unique PT cell ID can be
calculated based on the global PT cell location as illus-
trated in the uppermost graphic of Fig. 13. With the
ID of the parent PT cell at refinement level 0 and the
position in the PT structure, unique IDs of refined PT
cells can be determined directly, without inter-process
communication and building local-to-global ID maps.
The positions of the PT structure for a two dimensional
twice refined PT cells are illustrated in Fig. 12.

Furthermore, the subdomain-local PT data struc-
ture allows for efficient access to cell neighborhood and

hierarchy relationships. The PT data structure also speeds

up the construction of extraction operators and may
be used for the identification of basis functions. Basis
functions can be uniquely identified by utilizing the PT
structure in combination with the elemental Exodus 11
basis function index.

To reduce the communication across subdomains,
an aura of PT cells is constructed around the set of PT
cells owned by a specific processor, leading to overlap-
ping subdomains. The width of the aura is chosen to
be bpuser PT cells on the coarsest refinement level with
bpufier defined as described in Subsection 4.2.1.
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Level: 2

Level: 1

Level: 0

Fig. 12: A coarse two dimensional PT cell refined
through recursive subdivision and resulting quadtree
data structure

The PT cells in an aura are needed to define all
THB basis functions that are nonzero over non-aura ele-
ments. Therefore, most computations can be performed
on a subdomain level, interlaced with only a few inter-
subdomain communications. This includes mesh refine-
ment along the processor boundaries, the construction
of Lagrange extraction operators, and the evaluation
of face-oriented ghost stabilization residuals and Jaco-
bians, see Section 5. To illustrate the parallel concept,
Fig. 13 presents a global two dimensional domain of
size 2 X 4 elements in blue. PT cells in red indicate
aura cells. The global domain is decomposed into two
processor local subdomains. Unique global PT cell IDs
are calculated based on IDs of the coarsest refinement
level. Red striped PT cells are aura cells shared with
the neighboring processor. Blue striped PT cells are
cells of the inverse aura. The green cells are flagged for
refinement. Parallel consistent refinement is guaranteed
through communication of the flagged PT cell IDs on
aura and inverse aura.

5 Thermo-Elastic Model

The XIGA framework presented above is applicable to a
broad range of physical problems that are described by
partial differential equations. In this paper, we demon-
strate the functionality of the developed framework with
static elastic and thermo-elastic problems. The elastic
model assumes infinitesimal strains and a linear elas-
tic, isotropic material response. The thermal model ac-
counts for linear diffusive heat transfer. The structural

1912021 (22]23(24

131141516 | 17 | 18

oj4fo|3
o|1[o]2

12134 ]5]|6

local subdomain local subdomain
processor 1 processor 11

10| 11 | 12

19120121 |22 21 122]23 |24
131141 15| 16 15116 | 17 | 18
9|3|9‘4 communicate 9|3|9‘4
7 8 9[2J9]1 10 flagged  [9]2[9]1 10 | 11} 12
elements
1123 ] 4 3141516

refine refine

Fig. 13: Parallel local refinement of a global 2 x 4 do-
main

response depends on the temperature field through in-
elastic, isotropic thermal expansion. In this section, we
present the variational form of the stabilized governing
equations of the thermo-elastic model.

5.1 Governing Equations

The weak form of the residual is decomposed into the
following four contributions:

R=RT+RY+ RN +R% =0, (21)

where RT and RY combine the volumetric contribu-
tions and contributions of Neumann boundary condi-
tions to the thermal and structural residuals, respec-
tively. The contributions of Nitsche’s formulation for
Dirichlet boundary conditions are collected in RN and
the contributions of the face-oriented ghost stabiliza-
tion in RC.
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In the absence of body loads, the thermal and struc-
tural residual, RT and RY, are defined over all material

domains 2™ with m =1,..., N, as follows:
N
RT =) V(STF;VTdQ—/ 6T qn dI,
=1 2™ Ifr
(22)
and
N'IYL
RY = Z/ 5Eu:0'd(27/ ou-fy dl,  (23)
m=17 2™ i,

where T and 6T are the temperature trial and test
function, respectively. The isotropic thermal conductiv-
ity tensor is denoted by k. A heat flux gy is applied at
the boundaries Iy . The displacement trial and test
functions are denoted by u and du, respectively. Trac-
tion forces, f, are applied on the boundaries I'y’, . The
Cauchy stress tensor is denoted by o = D e, where D
is the isotropic constitutive tensor and e, is the total
infinitesimal strain tensor with €, = €, — . The me-
chanical strain €, is computed by €, = % (Vu + VuT).
The thermal strain is denoted by er = a(T —Ty)I
where « is the CTE and Tj is the reference tempera-
ture.

To weakly enforce Dirichlet boundary and inter-
face conditions, we use an unsymmetric formulation
of Nitsche’s method. The associated residual, RN, is
decomposed into boundary and interface terms, sepa-
rately for the thermal and elastic subproblems as fol-
lows:

N N,D N,D N,I N,I
R =Rpy™+Ry" +Ry™ +Ry, (24)
where the thermal and elastic contributions from Dirich-
let boundary conditions are denoted by Ry” and RN-P,
respectively. The thermal and elastic contributions from
interface conditions are R};{’I and RN, respectively.

These Dirichlet boundary residual contributions are de-
fined as follows:

N,
RYP = 21 ~ [;p2 0T (& VT) -np dI’
+ [ppr(k VOT) -np (T —Tp) dI’
NB

+ 3 A5 Jppr 6T (T —Tp) df,
e=1 ¢

(25)
and
Ny,
R = 55— [ busow) nr dr

+ [rpuo(éu) np - (u—up) dI’ (26)

NE
+ Z’YEM fFD,u 511'(11—11D) drl.
e=1 ¢

The temperature T is prescribed on the boundary
I'PT and the displacement up is prescribed on 1P,
The vector nr denotes the outward pointing normal on
the boundary. The summations over all NZ elements in
the union background mesh in Eqgs. (25) and (26) pe-
nalize constraint violations along the boundaries I'p 1
and I'; , within the elements of the union background
mesh. We henceforth refer to the elements of the union
background mesh as background elements. The penalty
parameters v, r and 7f, , depend on the size of the
background element, hf , and are defined as follows:

E

K
DT =CDTIE and Yp.u =cCpu
e

where k is the isotropic material conductive and F is
the Young’s modulus of the linear elastic material. The
parameters cp,r > 0 and cp,, > 0 control the accuracy
of enforcing the Dirichlet boundary conditions.

Continuity of temperature and displacement fields
and balance of heat flux and traction must be satis-
fied at all interfaces I'™™ = 2™ N 2™ # (). Nitsche’s
method for the thermal and structural interface condi-
tions yields the following residual contributions:

N7
RN = F;n ; ~ [ 6T ] {5 VT} -y AT

+ [pod{k VOT} -1y [T] dI°
+ir Jpma [6T] [T] d,

B

RY = 55 50 = [rmn[6u] - {o ()} 1y dI
I'm.ne=1
+ [y (W)} ny - [u] ar (29

+’Y?,u fI—‘gn,n [[611]] * [[u]]df,

where the jump operator is defined as [-] = (-)™ — ()"
The numerical interface flux and traction are defined
by the averaging operator as {-} = w™(-)"™ 4+ w"™(-)",
where w™ and w™ are weights. The vector n,, ,, denotes
the normal vector on the interface pointing from phase
m to phase n. The accuracy of enforcing the interface
condition is controlled by the penalty terms with 7
and 77, being the elemental penalty factors.

We follow the work of Annavarapu et al. (2012) and
define weights for the numerical heat flux as follows:

meas(.Qm)/rcm

wh =

T meas(£27)/k™+meas(27) /K" (30)
wh — meas(2")/k"

T meas(27)/k™+meas(27) /K™
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and for the numerical traction as follows:

w™ = meas(2")/E™
w T meas(2™m)/E™+meas(2")/E"’ (31)
w” meas(2")/E"

u — ‘meas(£27)/E™ tmeas(£27)/E"

where meas(£2"%) is the surface in 2D or the volume in
3D of the domain occupied by the phase k& within the
background element. The elemental penalty factors in
Egs. (28) and (29) are defined by:

e _9 meas(I"™™)
Y = 4 CLT meas(2™)/k™+meas(2") /K™

(32)

e _ 9 meas(I"™")
Vi = % CLu Teas(s2m)/E™ tmeas({27)/E™ )

where the operator meas(I"™"™) measures the length in
2D or the area in 3D of the interface within the back-
ground element. The parameters c; 7 > 0 and ¢y, > 0
control the accuracy of enforcing the interface condi-
tions.

5.2 Face-oriented ghost stabilization

The utilized immersed method may suffer from numer-
ical instabilities caused by basis functions with small
support within the geometric domain. This may occur
when an interface moves close to the boundary of the
support of a basis function. Such configurations may
result in ill-conditioning of the system of linear equa-
tions as well as imprecise spatial gradients of the state
variable field, see de Prenter et al. (2017). Recent works
have proposed a variety of strategies to mitigate the is-
sues arising from basis function with a small support.
Most notable strategies are the basis function removal
as presented by Elfverson et al. (2018), the concept of
web-splines as presented by Hollig et al. (2001) and
Marussig and Hughes (2018), or face-oriented ghost sta-
bilization introduced by Burman and Hansbo (2014).

This work adopts the face-oriented ghost stabiliza-
tion approach presented by Burman and Hansbo (2014)
and adapted by Noél et al. (2022) to fit the basis func-
tion enrichment strategy described in Section 2.

Let £2 be a material subdomain phase m and Km
the set of background elements that have a non-empty
intersection with 2™

Kom :={K € Kuynion : KNO2™ £ 0}. (33)

We define F), as the set of interior facets of Kom, i.e.,
the facets F' shared between two background elements
Q0 and Q77 of Kgm. Let I’ be the union of all
material interfaces and geometric boundaries, here de-
fined as material interfaces between void and non-void
regions. The set of ghost facets for phase m is:

qhost

m {Fe mo QA £ or 27 mr;ﬁ@}.

fl/ 02 fl/ 0?

}'{host

g

( ]:gl (-

hast

Fig. 14: Set of ghost facets F! ghost and F? Jhost used for
the face-oriented ghost stablhzatlon for a two-material
problem

(34)

Consider a ghost facet F™ shared between two adja-
cent background elements 27" and 27~. The nor-
mal to the facet is np and is chosen as np = nf” A
—n’7’". The material layout subdivides the element
27" into Ni"" connected subdomains 277" with i =
L,...,Npt and the element 27" into Np°~
nected subdomains 2" with j =1,..., N,

We define ug’f as the polynomial extension of the
field u\Q;L,iJr to all of R and let uf~

extension of the field u|Q7Fn,_7 to all of R9.
J

con-

be the polynomial

Additionally, our formulation requires that: \8()2? N
00| #0, and the ghost stabilization is only applied
between u'y F *and u i j_ when the boundaries of Q}"ﬁ'

and 277 3()?1+ and 942,77, respectively, meet along
a portlon of the facet F' with a non-zero measure, e.g.,
the boundaries meet along more than a point in two
dimensions and along more than a line in three dimen-
sions.

With the above terminology defined, the contribu-
tion of the ghost stabilization for the displacement field
to the residual equations is:

L+
N, Ng'

DY

=1 ,_7}"7'1.
[ nopulfozular ] .

m=1FeFm™

ghost

(35)

where the set I}T—L’i is defined as:

Ti = {k e {1...NZ""} |00 0 o] # 0},
(36)

the jump operator [-] is defined as:

[0l = (Ohufs” — by ). (37)
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and

[P 6u] = (agaugf - agau;;) : (38)
where 9% (-) is the k" order normal derivative operator
k() = V*(.) - np where V*(-) is the k*" order spa-
tial gradient. The parameter p is the polynomial order
of the approximation, i.e., the THB discretization. It
should be noted that only the p** contribution is non-
trivial for the THB discretization used in this work. The
ghost penalty parameter is denoted v& and is defined as
a multiple of the Young’s modulus E of the considered
material.

The ghost penalization for the temperature field is
defined similarly as:

Ny, Nt
R = mzz:l FEF ., ;::1 ‘7%:1 (39)
Jp7® nFozTl 07T ar |
where the jump operator is defined as:
[056T] = (50T7;" — o80T ), (40)
and
[02T] = (94T — uTh ). (41)

The ghost penalty parameters, 78 and &, are defined
as multiples of the Young’s modulus £ and the conduc-
tivity x of the considered material, respectively. The pa-
rameter k is defined as k = 2(p—1)+1 and enables con-
trol over the influence of the ghost penalty term. Due
to the application of C?~! continuous THB bases, only
jumps in gradients of order p must be penalized. Further
details on how to choose the ghost penalty term can be
found in Burman and Hansbo (2014). In this work we
commonly choose a penalty parameter vg = 0.001.

6 Numerical Examples

In this section, we present 2D and 3D examples which
illustrate the basic concepts and computational perfor-
mance of the proposed discretization framework. Canon-
ical examples show that our approach yields optimal
convergence rates for linear, quadratic, and cubic B-
spline approximations. An example with a stress sin-
gularity illustrates the computational advantages of lo-
cally refined discretizations. Finally, the analysis of a
polycrystalline micro-structure demonstrates the appli-
cability of our framework to complex multi-material
problems.

To quantify the accuracy of the XFEM analyses, we
define the error of a generic vector state variable field
v in the L? norm and H' semi-norm as:

N7YL
v = v"||2 = Z/ lv — v de, (42)
m=1 QWL
and
N,
V=V =Y / Vv — Vvh| de2, (43)
m=1 "

where v” is the approximate field and v is the reference
solution which is either the analytical solution if avail-
able or a solution computed on a sufficiently refined
discretization.

The systems of discretized governing equations are
solved by the direct solver PARDISO for 2D problems,
see Kourounis et al. (2018). A Generalized Minimal
Residual (GMRES) method in combination with a dual
threshold incomplete LU factorization with a degree of
fill of 5.0 is used for 3D problems, see Saad (2003). The
GMRES iterations are terminated if a relative drop of
10719 of the normalized linear residual is achieved. All
geometric and material parameters are given with each
example in self-consistent units unless stated otherwise.

In the following subsections, we first present ex-
amples of single- and multi-material problems consid-
ering either a thermal or mechanical response. These
examples characterize the fundamental features of the
proposed analysis framework within single-physics set-
tings. The last two examples consider coupled thermo-
elastic single- and multi-material problems.

6.1 Two-Material Elastic Bar

This example studies the convergence rates of the pro-
posed immersed B-spline discretization framework. We
consider the 3D bar shown in Fig. 15. The bar has the
dimension 1.0 x 0.5 x 0.5. The left face of the bar is
clamped, and the bar experiences a body load in axial
direction b, = 222. The bar is composed of two linear
elastic, isotropic materials, separated by an interface
which is inclined against the x-axis. To facilitate com-
parison against an analytical solution, both materials
are assigned the same properties: a Young’s modulus
E = 1.0 and a Poisson’s ratio ¥ = 0.0. Note that this
setup allows for a 1D analytical model. The analytical
displacement in x-direction is:

L

u(z) = GEA (4L%z — 2*),

(44)
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Fig. 15: Three dimensional bar problem: problem setup (left); contours of displacement magnitude evaluated on

coarsest discretization (right)

where L = 1.0 is the bar length and A = 0.25 the cross-
sectional area.

To study the influence of the intersection configura-
tion on the finite element solution with B-spline back-
ground mesh refinement, we rotate the interface in ten
steps between 7 and 5 degrees. For each orientation,
we increase the number of background mesh elements
from 8 x4 x4 to 128 x 64 x 64 B-spline elements through
uniform mesh refinement. We repeat this study for lin-
ear, quadratic, and cubic B-spline discretizations.

In Fig. 16, we plot the mean error for all intersec-
tion configurations and for each approximation order
over the B-spline element edge length as described in
Eqgs.(42) and (43). The error bars represent the stan-
dard deviation for all intersection configurations per
order and mesh refinement. For each B-spline order,
we visualize the convergence rate by the triangles in-
serted in Fig. 16. The numerical results show that the
convergence rates of the L? error norm agree with the
theoretical, optimal convergence rates of p + 1, where
p is the polynomial B-spline order. Similarly, the theo-
retical, optimal convergence rate of p, as determined by
Evans et al. (2009); Remacle et al. (2012), is achieved
in the H' semi-norm for linear, quadratic, and cubic
discretizations. Our results suggest that the proposed
immersed finite element approach recovers optimal con-
vergence rates for sufficiently smooth state variable fields
with uniform mesh refinement.

6.2 Single-Material Thermal Diffusion Problem

Analysis problems often include regions where the state
variable fields exhibit large spatial gradients. To re-
duce the local and global approximation errors, a fine
discretization is needed in these regions. The follow-
ing thermal diffusion example demonstrates the ability

of the proposed immersed finite element framework to
construct and locally refine discretizations.

We solve a thermal diffusion problem as described
in Eq. (22) in an L-shaped domain, assuming a single-
material with an isotropic conductivity k = 1, see Fig 17.
For this problem, the exact solution in polar coordi-
nates is given as (D’Angella et al. (2016)):

2, 2
T(r,0) = r3sm(§0) (45)
The exact solution is enforced weakly to the entire bound-
ary of the physical domain. The origin of the coordinate
system is located at the reentrant corner. Note that the
spatial gradients increase for » — 0 and are infinite at
r=20.

Using the proposed analysis framework, the physical
domain is immersed into a rectangular computational
domain as shown in Fig. 17. We compare the conver-
gence rates for uniform h-refinement and for local h-
refinement around the reentrant corner.

The coarsest THB background mesh has 6 x 6 ele-
ments. Sequences of THB discretizations are constructed
by uniform or local refinement with up to 6 refine-
ment levels, see Section 4. The offset A between the
computational and physical domains is chosen as A =
—0.127. This offset guarantees that the L-shaped do-
main boundary does not align with the THB back-
ground mesh for any mesh refinement configuration.

For different B-spline order and mesh refinements,
we plot the error in the L? norm versus the number of
Degrees Of Freedom (DOFs) in Fig. 18. Less DOF's are
required to meet a specific error requirement for local
refinement when compared to uniform refinement. This
suggests that local refinement may lead to a significant
reduction in computational cost. Due to the singularity
at the reentrant corner, optimal convergence rates with
mesh refinement cannot be recovered. Moreover, this
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Fig. 16: Convergence rates in the L? error norm and
H' semi-norm for the presented two-material bar prob-
lem

example demonstrates that the proposed framework al-
lows for combining local h-refinement with higher or-
der B-spline discretizations. For example, using cubic
B-spline and local refinement leads to the lowest error
for any number of DOFs. We do not present H'! semi-
norm error plots as they are not meaningful due to the
singularity at the reentrant corner.

6.3 Polycrystalline Micro-structure

The proposed analysis framework is suited to model
complex multi-material problems. While the previous
examples established accuracy for single-material prob-
lems, this example demonstrates the multi-material ca-
pabilities of our approach and studies the computa-
tional cost associated with the generation of THB and
union background meshes.

r'y

1.24+ A
1.0

1.2 — A

1.0

A
Y

Temperature

I 1.26

— 0.84

[ 0.42
0.0

Fig. 17: Single-material thermal diffusion problem: L-
shaped domain immersed into a rectangular computa-
tional domain (top); locally refined B-Spline discretiza-
tion around the reentrant corner and temperature field
(bottom)

We consider a representative volume element of a
polycrystalline micro-structure and analyze its struc-
tural response. The edge length of the volume element
is 150 pm. The grain geometries as well as the grain ma-
terial are defined through a 3D image file with 149 x
149 x 149 voxels; see, for example, Rodgers (2015). The
voxels define 471 individual grains. To demonstrate the
multi-material capabilities, unique material properties
are assigned to each grain. The Young’s modulus F
varies in the range of [50 - 10% ... 500 - 103]MPa and
the Poisson ratio v in a range of [0.25...0.35].

From the 3D image, we generate a level-set field for
each phase such that the grain geometries are repre-
sented by the zero isocontours of the level-set fields. The
grain geometries are immersed into a cubic domain, as
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Fig. 19: Locally refined XFEM analysis model of a
polycrystalline micro-structure

illustrated in Fig. 19. Note that the voxel-based grain
shapes could be preprocessed to obtain smoother grain
interfaces. However, this option is not utilized here to
demonstrate the ability of the proposed analysis frame-
work to operate directly on complex non-smooth voxel-
based geometries.

The mechanical behavior of the polycrystalline micro-
structure is modeled by linear elasticity with an isotropic
material behavior. Perfect bonding is assumed at the
grain interfaces. To demonstrate the ability of perform-
ing an XFEM analysis for this micro-structure, we ap-
ply a pressure load of F' =-4.0 MPa on the z = 0 face
and a zero-displacement Dirichlet boundary condition
on the opposite face. The initial uniform B-spline back-

ground mesh has 32 x 32 x 32 elements. In addition, two
local refinement steps are performed at all grain bound-
aries. The displacement magnitude and Von Mises stress
contours are shown in Fig. 20.

6.3.1 Scalability study

The PT data structure and domain decomposition strat-
egy presented in Subsection 4.4 enable an efficient, par-
allel implementation of the proposed discretization frame-
work. With the polycrystalline example, we study the
overall performance and parallel scalability of this im-
plementation.

For the scalability study, we start with 200 x 200 x
200 PT cells at refinement level 0 and refine locally
twice around the grain boundaries. For the demonstra-
tion of the scalability, we purposefully exploit a finer
mesh than as in the previous analysis to guarantee a
large ratio of interior to aura PT cells on each proces-
sor local subdomain for a large processor count. A small
ratio of interior to aura elements negatively impacts the
scalability due to increased inter-processor communica-
tion.

The resulting THB and union background meshes
have each a total of 105, 558, 692 elements. The creation
of the PT data structure and the derived discretiza-
tions can be subdivided into five distinct steps, see also
Subsection 4. These steps include the refinement of the
PT cells, the construction of the THB and union back-
ground meshes, the construction of the extraction op-
erators, and the construction of facets needed for ghost
stabilization.

To characterize the scalability of our implementa-
tion, we generate the THB and union background meshes
in parallel, varying the number of subdomains from 4
to 160. Fig. 21 shows the execution time for the mesh
generation only, i.e., the time needed for XFEM anal-
yses is omitted. The computations are preformed on
four Intel Xeon Platinum 8160 ”Skylake” nodes with 24
cores each, distributing the subdomains equally across
all cores.

Mostly linear scaling with the processor count is ob-
served for the refinement operation and the construc-
tion of the projection operators. Such behavior is ex-
pected as these steps do not need any inter-process com-
munication. The construction of THB and union back-
ground meshes, as well as the construction of facets,
show a linear scaling for a low processor count. They
start to plateau with a high processor count, as these
steps require communication of IDs in the aura. The
aura size is based on refinement level [0 and the buffer
size as outlined in Section 4.4. Increasing the processor
count while keeping the total domain size constant in-
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Fig. 20: XFEM analysis of polycrystalline micro-structure: Displacement magnitude contours (left); Von Mises
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Fig. 21: Scalability study with processor count of the
hierarchical meshing library, using 200 x 200 x 200 PT
cells at refinement level 0 and two refinement steps at
grain boundaries

creases the ratio of aura PT cells to interior cells. This
consequently increases communication and affects scal-
ability.

The scalability study demonstrates that a mesh with
over 10% elements can be generated on just four nodes
with a total of 96 processors in less than 50 seconds.
Furthermore, when creating a higher order discretiza-
tions, the computational time for the refinement of the
background meshes and the construction of faces stays
the same as neither are affected by the interpolation
order. The construction of the discretizations, as well
as the calculation of the extraction operators, needs
slightly more memory and computational time as the
support of higher order basis functions is increased.

6.4 Thermo-elastic Plate with Elliptic Hole

This example considers a single-material but multi-field
configuration. We study the problem of a thermo-elastic
plate with an elliptical inclusion under in-plane tension
due to a thermal load as illustrated in Fig. 22. By ex-
ploiting symmetry, we only model a quarter of the do-
main. The setup consists of a solid, two-dimensional,
square domain with a length of L = 2.0 and an el-
liptical inclusion at the origin with a semi-major axis
of A = 0.8136 and a semi-minor axis of B = 0.5753.
These values for the semi-axes are chosen such that the
immersed interface does not align with the THB back-
ground mesh for all refinement levels. The temperature
field is due to a uniform heat flux ¢ = 10.0 applied along
the elliptical hole and a prescribed temperature 7' = 1.0
at the right domain boundary. The matrial conductiv-
ity is kK = 1.0. The structural response is described by
a linear thermo-elastic model and an isotropic consti-
tutive behavior, with a Young’s modulus £ = 1.0, a
Poisson’s ratio v = 0.3, and a coefficient of thermal ex-
pansion @ = 1.0. The reference temperature is set to
Ty = 0.0.

To study the convergence rate of the XFEM solu-
tion with mesh refinement, we evaluate the thermal and
structural response on a series of B-spline discretiza-
tions. Starting from the coarsest THB background mesh
with 10 x 10 elements, uniformly refined B-spline dis-
cretizations with 20 x 20, 40 x 40, 80 x 80, 160 x 160
and 320 x 320 elements are considered. The geometry
of the elliptical inclusion is defined by an analytical
level set function. A reference solution is computed nu-
merically by calculating both fields on a uniformly re-
fined B-spline mesh that is 7 times refined, 1280 x 1280
compared to the coarsest background mesh. Numerical
studies lead by the authors have shown that the com-
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Fig. 22: Thermo-elastic plate with elliptic hole under thermal load: problem setup (left); temperature contours
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putation of the reference solution on a finer mesh does
not noticeably improve the quality of the error compu-
tation.

For all B-spline discretizations, the union background
mesh is 7 times uniformly refined relative to the coars-
est background mesh. This eliminates the geometrical
error between the coarse and the reference solution.
Moreover, it simplifies the integration of the L? and
H* errors as both the coarse and the reference solutions
are represented on equally refined XFEM background
meshes.

To illustrate the interdependence of discretization
errors in multi-physics problems, we vary the refine-
ment for the temperature discretization while the dis-
placement field is always evaluated on the finest B-
spline discretization, i.e., 320 x 320 elements. The con-
tours of the absolute errors of the temperature and dis-
placement fields are visualized in Fig. 23 for the case
where the temperature field is discretized by linear B-
splines on a 20 x 20 element mesh. This coarse tempera-
ture field discretization leads to errors in the interior of
the elements. Therefore, the error visualization presents
the characteristic tiled error patterns.

The L? and H' semi-norm errors of the temperature
and the displacement fields are presented in Fig. 24.
First, we consider the error of the temperature field.

The convergence of the L? error norm for linear, quadratic,

and cubic B-spline discretizations shows optimal con-
vergence rate of p + 1. For the H' semi-norm, we ob-
serve optimal convergence rates of p. As expected, using
a higher-order basis functions results in smaller errors
for the temperature field.

Next, we consider the error of the displacement field,
which is evaluated with linear, quadratic, and cubic ba-
sis functions and depends on the temperature field that
is discretized by either linear, quadratic, and cubic B-
splines. The errors of the displacement field in the L?
norm and H' semi-norm are presented in Fig. 24. The
convergence rate of the error with mesh refinement in

the L? norm is independent of the order of the displace-
ment field basis functions and instead only depends on
the order of the temperature field. Since the displace-
ment field is discretized on a much finer mesh than the
thermal field, the error of the displacement field is dom-
inated by the error of the thermal field. The same ob-
servation can be made for the convergence rate in the
H' semi-norm.

To gain further insight, we refine simultaneously the
thermal and displacement fields with a specific differ-
ence in refinement level between both fields. The THB
background element edge lengths of the thermal and
displacement fields are denoted by H and h, respec-
tively. The study is performed for a maximal difference
in element size of H = 4h. This study is performed for
linear, quadratic, and cubic interpolation orders for the
thermal and the displacement fields. The setup of the
thermal problem is identical the one presented above,
see Fig. 24. The convergence rate of the displacement
field with mesh refinement in the L? and H' semi-norm
is presented in Fig. 25. We observe that the absolute er-
ror and convergence rate of the displacement problem
only shows minimal differences when choosing an up to
two times coarser thermal field than the displacement
field.

Lastly, we present a convergence study where we al-
low for a difference in polynomial order. The thermal
and displacement field are refined simultaneously such
that both fields are on the same refinement level, i.e.,
H = h. Results are presented for a polynomial order of
the displacement field py for py = pr and py = pr+1,
where pr is the order of the thermal field. The con-
vergence rates with mesh refinement of the displace-
ment field in the L? and H' semi-norm are presented
in Fig. 26. We observe that choosing the thermal field
one polynomial order lower than the displacement field
results in the same convergence rate of the displacement
field in the H' semi-norm. For this particular problem,
theoretical results are not available for the rate of the
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Fig. 23: Visualization of absolute error of temperature (left) and displacement field (right)
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convergence for the displacement field in the L? norm,
as the well-known Aubin-Nitsche technique cannot be
applied in the thermo-elastic setting.

This example illustrates that for multi-physics prob-
lems, the discretization of individual fields needs to
be performed in concert. The proposed discretization
framework provides an efficient and flexible tool to se-
lect the interpolation order and mesh refinement level
for individual fields to obtain a numerical solution that
meets accuracy requirements with minimal computa-
tional costs, i.e., with minimal number of DOFs.

6.5 Thermo-elastic Multi-material Problem

This final example studies a multi-material, multi-physics
configuration. For such problems, areas with large spa-
tial gradients can vary based on the type of physics

and material. Differently locally refined discretizations
for each field reduce the computational cost while si-
multaneously enabling for an accurate evaluation of the
physical responses. To demonstrate this aspect, we con-
sider the two-material, thermo-elastic problem of an ex-
panding circle embedded in a non-expanding plate, as
presented in the introduction in Fig. la. The circular
inclusion is occupied by a material A and the plate by a
material B. The temperature field is due to a spatially
varying heat load of ¢ = 100.0 - sin(10.0 - ) + 110.0 ap-
plied along the left domain boundary and a prescribed
temperature T = 0.0 at the right domain boundary.
The conductivities of materials A and B are identical
and are k4 = kg = 1.0. The structural response of both
materials is described by a linear thermo-elastic model
and an isotropic, constitutive behavior, with Young’s
moduli F4 = Eg = 1.0, Poisson’s ratios v4 = vg = 0.3
and coefficients of thermal expansion oy = 1.0 - 107°
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and o = 10.0- 1072, The reference temperature is set
to Ty = 0.0. Perfect bonding is assumed at the interface
between the two materials ™5,

An XFEM analysis is performed to approximate the
stress field at the material interface with high accuracy.
We compare the temperature, displacement, Von Mises
stress, and heat flux using uniformly and locally refined
B-spline discretizations. A quadratic polynomial order
is used for the temperature and displacement fields. The
coarsest THB background mesh has 20 x 10 elements.
For the uniform refinement case, the discretizations of
the temperature and displacement fields are three times
uniformly refined. In the local refinement case, the dis-
cretization for the temperature field is three times lo-
cally refined at the left domain boundary to accurately

represent the spatially varying load. In contrast, the
discretization of the displacement field is three times
locally refined around the circular material interface.
The obtained heat flux and stress distributions are pre-
sented in in Fig. 27 and show that the temperature
and displacement fields exhibit large spatial gradients
in these regions.

The number of DOFs resulting from the uniformly
and locally refined THB background meshes are pre-
sented in Table 1. The locally refined discretization of
the thermal field reduces the number of DOFs by a fac-
tor of ~ 17 when compared to the uniform discretiza-
tion. When locally refining the displacement field, the
number of DOFs is ~ 4.6 times smaller compared to the
linear system associated with a uniform discretization.
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Table 1: Comparison of the number of DOFs for tem-
perature and displacement field for and locally uni-
formly refined discretizations

Table 2: Comparison of error of the stress field at the
interface I'*Z in the L? error norm for different refine-
ment configurations

Local Refinement Uniform Refinement

13992
27981

#DOFSremp 818
#DOFSDiSp 6020

To accurately represent the geometry, the union back-
ground mesh is four times uniformly refined, irrespec-
tive of the B-spline discretizations of the temperature
and displacement fields.

The displacement and temperature fields, as well as
the Von Mises stress and the heat flux magnitude con-
tours, are shown in Fig. 27. Qualitatively, the resulting
fields for uniform and local refinement are equivalent.

The following four locally refined configurations are
examined: (a) refinement for both the structural and
thermal field at 1'% and at the Neumann boundary
I'N; (b) refinement of the structural field at I'# and
refinement of the thermal field at I'V; (c) refinement of
the structural field at I"Z; and (d) refinement of the
thermal field at I'V. In all cases the union background
mesh is chosen to be uniformly refined.

Table 2 presents the L? error norm of the Von-Mises
stress at the material interface I'4F for different local
refinement configurations together with the size of the
linear system. Local refinement for the first two Con-
figurations, (a) and (b), yields the smallest error in the
L? error norm. However, Configuration (b) results in a
significant reduction of the computational cost as mea-
sured by the number of DOFs.

In addition, Configuration (c) yields a similar small
error as Configuration (a) and (b). This behavior might
be unexpected but can be explained with the fine uni-
form refinement of the union background mesh which
allows for an accurate integration of the spatial varying
load even with a coarse thermal discretization. Con-
figuration (d) results in the highest error as only the
thermal field is locally refined at the Neumann bound-
ary.

7 Conclusion

This paper presents an immersed isogeometric finite el-
ement analysis framework with local mesh refinement
based on a Heaviside enriched XFEM. Hierarchical, lo-
cally refined discretizations allow for refinement of the
finite element approximations in regions of interest, bal-
ancing accuracy and computational cost. THB func-
tions are utilized as they provide an elegant way to

Local Refinement L? error # DOFs
norm

(a) Both fields at I'*5 and I'V 1.2023e-6 10626

(b) Disp at I'*B and Temp at I'N 2.8881e-6 6838

(c) Disp at ['4B 2.8913e-6 5764

(d) Temp at I'N 3.8764e-4 2126

construct suitable, locally refined discretization spaces.
Moreover, B-spline basis functions are an appealing choice
over Lagrange basis functions because of their higher
inter-element continuity and their increased computa-
tional efficiency. In multi-material, multi-physics prob-
lems, the resolution requirements may be different for
individual state variable fields. The proposed frame-
work allows for separate discretizations with different
polynomial orders for each physical field. Furthermore,
each discretization can be refined individually, both glob-
ally and locally, to meet field-specific accuracy require-
ments. In contrast to using the same polynomial order
and refinement for all state variable fields, the proposed
framework may lower significantly the computational
cost. In this paper, THB background meshes are refined
based on geometric refinement indicators. However, the
framework permits any refinement indicators and can
be used for adaptive mesh refinement strategies.

A PT data structure and mesh generation algorithms
are presented for the efficient construction of differently
refined meshes, both in terms of run time performance
and memory needs. The concept of PT cell activation
states enables using the same data structure to con-
struct a set of different hierarchically refined THB back-
ground meshes. Using the PT data structure and the
activation state concept, a union background mesh is
constructed such that elements of the union background
mesh are at the highest (or higher) refinement level
of all corresponding elements of the THB background
meshes. The union mesh supports the discretizations of
all THB background meshes.

The union background mesh serves as the XFEM
background mesh in which the geometry is immersed.
In this paper, the geometry is represented by level set
functions, and intersected elements are cut recursively
by the zero isocontours of the level set fields. This pro-
cess yields a single integration mesh which is aligned
with the boundaries and interfaces defined by the level
set functions. In this paper, the weak form of the gov-
erning equations is integrated by standard quadrature
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Fig. 27: Comparison of XFEM analysis results for locally and uniformly refined discretizations

rules on the integration mesh. However, other quadra-
ture schemes can be applied, such as the ones proposed
by Thiagarajan and Shapiro (2016) and Gunderman
et al. (2021). The B-spline basis functions are enriched
using the generalized Heaviside enrichment strategy of
Noél et al. (2022). To facilitate operations performed
on the union background mesh and on the integration
mesh in the XFEM analysis, the THB basis functions
are represented by Lagrange basis functions defined on
the union background mesh via extraction operators.
The union background mesh supports extraction oper-
ators for each THB discretization.

Numerical examples suggest that the proposed im-
mersed isogeometric finite element framework gener-
ates discretizations that converge at theoretical, opti-
mal convergence rates with mesh refinement. The ap-
plication of our framework to a multi-material poly-
crystalline micro-structure shows that it is well suited
to discretize complex multi-material problems in 3D. A

scalability study demonstrates that the proposed im-
plementation scales with an increasing number of pro-
cessors. The coupled thermo-elastic examples highlight
the benefits of tailoring the discretization of individ-
ual state variable fields to their field-specific accuracy
requirements.

Future work will focus on extending the proposed
framework to utilize additional refinement criteria such
as finite element error estimators. Moreover, more com-
plex physics for which local mesh refinement is crucial,
such as fluid flow at high Reynolds numbers, will be
addressed.
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