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Structural Loading and Power Performance 

Nhu Nguyen, Jacob Davis, Nathan Tom, Krish Thiagarajan 

• Closed-form equations are developed for an OSWEC’s pitch-pitch and surge-

pitch added mass, radiation damping, and excitation forces/torques, which can 

be used to determine the system’s response amplitude operator (RAO) and 

foundation loads. 

• The proposed model is benchmarked against numerical simulations using 

WAMIT and WEC-Sim; excellent agreement is found. 

 

• The flat plate assumption, inherent to the theoretical model, was examined 

through comparison with numerical solutions over a range of plate thickness.  

 

• A case study demonstrates the ability of the analytical model to quickly (less 

than one second per frequency) sweep over a domain of OSWEC dimensions, 

illustrating the model’s utility in the early phases of design. 
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Abstract 

This study presents theoretical formulations to evaluate the fundamental parameters and 

performance characteristics of a bottom-raised oscillating surge wave energy converter (OSWEC) 

device. Employing a flat plate assumption and potential flow formulation in elliptical coordinates, 

closed-form equations for the added mass, radiation damping, and excitation forces/torques in the 

relevant pitch-pitch and surge-pitch directions of motion are developed and used to calculate the 

system's response amplitude operator and the forces and moments acting on the foundation. The 

model is benchmarked against numerical simulations using WAMIT and WEC-Sim, showcasing 

excellent agreement. The sensitivity of plate thickness on the analytical hydrodynamic solutions is 

investigated over several thickness-to-width ratios ranging from 1:80 to 1:10. The results show 

that as the thickness of the benchmark OSWEC increases the deviation of the analytical 

hydrodynamic coefficients from the numerical solutions grows from 3% to 25%. Differences in the 

excitation forces and torques, however, are contained within 12%. While the flat plate assumption 

is a limitation of the proposed analytical model, the error is within a reasonable margin for use in 

the design space exploration phase before a higher-fidelity (and thus more computationally 

expensive) model is employed. A parametric study demonstrates the ability of the analytical model 
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to quickly sweep over a domain of OSWEC dimensions, illustrating the analytical model’s utility 

in the early phases of design. 
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1. Introduction

In light of detrimental environmental issues, including acid rain and global warming, the

transition from traditional energy sources, such as petroleum and coal, is urgent and necessary. In 

addition to wind and solar energy, wave energy converters (WECs) have long been considered a 

competitive candidate in capturing and converting energy from surface waves into usable 

electricity (Ross, 1995). With an estimated 30,000 trillion watt-hours per year in untapped wave 

energy available worldwide (Folley and Whittaker, 2009), research interests in this area have been 

growing significantly in recent years. Real-world projects have been proposed for both near-shore 

and offshore applications (Malali and Marchand, 2020). WEC systems have also been examined 

at the utility scale and as an auxiliary power supply to other structures in remote locations such 

as marine aquaculture and remotely operated underwater vehicles (Foteinis and Tsoutsos, 2017). 

Depending on the application, as well as the environmental conditions at the site, a wide variety 

of working principles have been explored. Two of the most popular principles include the point 

absorber (a floating disk that extracts energy mostly from heave motions, e.g., Coe et al., 2019) 

and the oscillating wave surge converter (a bottom-hinged, buoyant flap that harvests energy from 

the orbital motions of waves, e.g., Yu et al., 2014 and Choiniere et al., 2022).    

Despite widespread effort, the development of wave energy extraction remains mostly 

confined to the research and development stage, with only a few systems having been installed in 

real site conditions (Malali and Marchand, 2020). These include the Power Buoy by Ocean Power 

Technologies Inc. deployed in Hawaii (Ocean Power Technologies, 2020), the Pelamis at 

Agučadoura Wave Park, Portugal (Drew et al., 2009), the Oyster at Orkney, Scotland (Cameron 

et al., 2010), and the WaveRoller at Peniche, Portugal (Kasanen, 2015). To the authors’ 

knowledge, no commercial wave energy converter has been installed. Presently, the wave energy 
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development community has identified high structural costs as the primary driver of a WEC 

prototype’s levelized cost of energy (LCOE), which could ultimately determine the economic 

viability as well as commercial realization of such a device (Jenne et al., 2015).    

Reducing the cost of wave energy converter technology is essential for its advancement. 

Optimizing structural design was identified as one of the four most promising pathways in the 

development of WECs, as it can account for up to a 31% reduction in average lifetime costs (Ochs 

and Bull, 2013). The work presented here is part of a joint project between the Ocean Resources 

and Renewable Energy group at the University of Massachusetts Amherst and the National 

Renewable Energy Laboratory, which aims to optimize the structural cost and power production 

of a bottom-raised oscillating surge wave energy converter (OSWEC). One of the important 

advantages of a bottom-raised OSWEC (compared to bottom-fixed) is that the system can be 

placed further offshore without having to uniformly increase the device dimensions, which can 

lessen the associated costs of the support structures in the vertical direction. For this project, the 

ability to predict these parameters quickly and accurately is essential in achieving the objectives.  

Various methods, including analytical, semi-numerical, and numerical models, were explored 

to assess the structural loads on the OSWEC and its foundation in response to a range of wave 

conditions. Among these approaches, theoretical models prevailed due to their simple setup and 

quick computation time. This approach, however, is limited to simple geometries (e.g., circular or 

elliptical cylinders, Zheng and Zhang, 2016; Chatjigeorgiou and Katsardi, 2018). In the WEC 

application, one of the notable studies employing this approach is from Michele et al. (2016).  The 

authors solve the radiation and scattering potentials for bottom-fixed OSWEC systems using 

angular and radial Mathieu functions. The potential flow problem is transformed into the elliptical 

coordinates, in which the thickness of the device can be set equal to zero, allowing the problem to 
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be solved with a closed-form solution. The hydrodynamic coefficients predicted by their model 

(added mass and radiation damping) compare well with experimental data. 

For semi-numerical techniques, Renzi and Dias’s series of papers have proposed using Green’s 

integral theorem along with a hyper-singular integral in the potential flow equation to predict the 

hydrodynamics of a single OSWEC with negligible thickness (Renzi and Dias, 2012, 2013a, 

2013b). The method has been applied to study OSWEC performance in both the open ocean and 

in a channel. Michele et al. (2015) later extended the integral approach to study the motions of an 

array of devices with finite thickness. Employing a different approach, Noad and Porter (2015) 

introduced Fourier transforms and Galerkin expansion methods to study the behaviors of both 

surface-piercing and fully submerged OSWECs. The results from these models compare favorably 

with experimental data. Semi-numerical techniques, however, have not been widely adopted by 

the community due to the unavailability of ready-to-use tools and/or the requirement for extensive 

numerical programming. The computational time is typically 1 to 2 orders of magnitude larger 

than that of analytical solutions. 

The third approach is numerical methods, which are generally not limited to certain geometric 

features and are thus employed more widely to research WEC system motions. Within this 

approach, the boundary element method (BEM) is popular due to its relatively quick computational 

speed compared to other methods such as computational fluid dynamics (CFD). Many studies have 

employed this technique to investigate OSWEC performance (e.g., van Rij et al., 2019; Schmitt 

and Elsaesser, 2015; Trueworthy and DuPont, 2020). Notable BEM software employed in WEC 

design includes Capytaine, Nemoh, and WAMIT. While the first two programs are freely 

distributed, open-source, and written in Python and FORTRAN, respectively, the latter is 

commercial and requires a license to use. The common objective of these programs is to 
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numerically obtain the velocity potential solutions of the potential flow boundary-value problem 

in the frequency domain. They differ in their approach, however, with some utilizing Green’s 

theorem to directly solve for the velocity potential and others employing the source formulation, 

in which the velocity potential is expressed as a distribution of source functions. Both methods 

involve finding the solutions to the integral of the Green’s function and/or its derivatives 

numerically. To expand the use of the hydrodynamic solutions beyond frequency analysis, WEC-

Sim (Wave Energy Converter SIMulator) is often employed to simulate the WEC systems in the 

time domain, where they can be coupled with controls, power take-off systems, and other external 

bodies and forces (Yu et al., 2020). Similar to the semi-numerical technique, numerical modeling 

also requires significant user and computational efforts, which can inhibit the fine-scale 

parametrization of objective dimensions.  

The initial sizing of a wave energy converter is an iterative process that relies on knowledge 

of the relevant hydrodynamic coefficients for a wide range of geometric parameters. For this 

reason, analytical models are often the most effective and least time-consuming approach. In the 

current study, a theoretical formulation is developed to rapidly evaluate the fundamental 

parameters of a bottom-raised OSWEC based on its response amplitude operator (RAO), 

foundation load, and hydrodynamic coefficients. While the first two variables are derived from the 

equations of motion, the hydrodynamic coefficients (the added mass and radiation), which are the 

highlight of this work, are formulated by extending the work introduced in Michele et al. (2016). 

In addition to the pitch-pitch hydrodynamic coefficients, the current study includes derivations for 

the surge-pitch added mass and radiation damping, which are needed for a complete calculation of 

the foundational loads and power estimates. Note that the two sets of hydrodynamic coefficients 

are developed in this study: one is for the OSWEC pitching at the hinge and one is for the OSWEC 
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pitching at the center of gravity. The former set is used directly in the analytical formulas to 

calculate structural loading. The latter set is useful for compatibility with WEC-Sim, which 

requires the input hydrodynamic coefficients used in rotational modes to be strictly defined around 

the center of gravity (as was done in WAMIT for comparison).  

The OSWEC in this study is assumed to be a simple flat plate with negligible thickness 

connected to a fixed foundation (Fig. 1). The proposed analytical model is benchmarked against 

numerical simulations including 1) a comparison of hydrodynamic coefficients with output from 

WAMIT, and 2) a comparison of the foundation force reaction and RAO with output from WEC-

Sim. For the remainder of the paper, Section 2 presents the theoretical formulations for the 

hydrodynamic coefficients in pitch-pitch and surge-pitch directions, the RAO, and the structural 

loads. Section 3 describes the validation test cases and comparisons with WAMIT and WEC-Sim 

solutions. Section 4 presents discussion on the model’s sensitivity to OSWEC thickness and the 

limitation of the flat plate assumption. The section also demonstrates the usefulness of the 

proposed model through a parametric study over a range of geometric dimensions using capture 

width ratio and structural loading as objectives. Section 5 concludes and summarizes key points 

from the study.  
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2. Theoretical Model 

2.1. Governing Dynamics 

This section presents a set of formulations to predict the foundational loads and system 

responses of a bottom-raised OSWEC due to wave excitation. The OSWEC has the simple 

geometry with negligible thickness shown in Fig. 1.  Since the OSWEC system is constrained to 

pitch motion only, the equations of motions are first established employing the sum of moments 

at the hinge. Using frequency domain analysis, characteristics of foundation loads and RAOs are 

then derived as functions of incoming wave properties, hydrodynamic and hydrostatic coefficients, 

and any external forces such as those from attached springs and the power take-off (PTO) system. 

The analytical model does not consider body-to-body radiation interaction effects between the flap 

and the foundation.  

 

 

Figure 1 – Bottom-raised OSWEC geometry, showing the foundation of height c in 
water of depth h. The flap motion is denoted as 𝜙(𝑡). The flap is assumed to be a 

thin plate of negligible thickness. 
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2.1.1.  Force and Torque Balances 

The OSWEC is constrained to move in the pitch direction. The general one degree of freedom 

equation of motion is derived from the balance of torques as 

𝐼55𝜙̈ = 𝑇𝑒𝑥5 + 𝑇𝑟𝑎𝑑5 + 𝑇𝐺 + 𝑇𝐵 + 𝑇𝑃𝑇𝑂 + 𝑇𝑠 + 𝑇𝑑 (1) 

where 𝐼55 is the pitch moment of inertia about the hinge, and 𝜙̈ is the second time derivative of the 

pitch displacement ϕ, or the pitch angular acceleration. 𝑇𝐺 and 𝑇𝐵 are gravity and buoyancy 

torques, which produce counteracting moments about the hinge O (Fig. 1). 𝑇𝑒𝑥5 and 𝑇𝑟𝑎𝑑5 denote 

the excitation and radiation torques in the pitch direction of motion. Additional torques, resulting 

from the PTO (𝑇𝑃𝑇𝑂), external springs (𝑇𝑠), and viscous sources (𝑇𝑑), also contribute moments 

about the hinge. 

2.1.2. Equation of Motion in the Frequency Domain 

In the case of regular, monochromatic waves, the incident wave elevation is described by linear 

wave theory as 

𝜂(𝑥, 𝑡) = ℜ{𝑎𝑒𝑖(𝜔𝑡−𝑘𝑥)} (2) 

where 𝑎 is the wave amplitude, or half the wave height 𝐻, 𝑖 is the imaginary unit, 𝜔 is the angular 

frequency, and 𝑘 is the wavenumber. Setting the origin along the mean position of the flap (Fig. 

1), the harmonic response of the OSWEC in pitch motion is then described as 

𝜙(𝑡) = ℜ{𝜙̃𝑒𝑖𝜔𝑡} (3) 

𝜙̇(𝑡) = ℜ{𝑖𝜔𝜙̃𝑒𝑖𝜔𝑡} (4) 

𝜙̈(𝑡) = ℜ{−𝑖𝜔2𝜙̃𝑒𝑖𝜔𝑡} (5) 

where 𝜙̃ is the complex pitch amplitude composed of the pitch magnitude |𝜙| and a phase ∠𝜙 

𝜙̃ = |𝜙|𝑒𝑖∠𝜙 (6) 
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The torques on the right-hand side of Equation (1) can now be expressed as functions of 

frequency as following (Techet, 2005; Gomes et al., 2015): 

𝑇𝑒𝑥5(𝜔) = ℜ{𝑎𝑋5(𝜔)𝑒𝑖𝜔𝑡} (7) 

𝑇𝑟𝑎𝑑5(𝜔) = ℜ{−𝜔2𝐴55(𝜔)𝜙̃𝑒𝑖𝜔𝑡 + 𝑖𝜔𝐵55(𝜔)𝜙̃𝑒𝑖𝜔𝑡} (8) 

where 𝑋5 is the frequency-dependent complex pitch excitation torque per unit wave amplitude, 

again composed of an ordinary amplitude |𝑋5| and phase ∠𝑋5. The radiation torque, on the other 

hand, is represented as the linear sum of the added mass and radiation damping contributions, 

which are in phase with the OSWEC angular acceleration and velocity, respectively. Here, 𝐴55 is 

the frequency-dependent pitch added moment of inertia and 𝐵55 is the pitch radiation damping 

coefficient. The torque contributions due to gravity and buoyancy are (Gomes et al., 2015, 

Choiniere et al. 2019) 

𝑇𝐺 = −𝑚𝑔𝑟𝑔 sin(𝜙(𝑡)) (9) 

𝑇𝐵 = 𝜌𝑔𝑉𝑟𝑏 sin(𝜙(𝑡)) (10) 

where m is the OSWEC body mass, 𝑉 is its displaced volume, g is the acceleration of gravity, ρ is 

the fluid density, 𝑟𝑔 ≡ 𝑂𝐺̅̅ ̅̅  is the distance measured from the hinge axis to the center of gravity, 

and 𝑟𝑏  ≡ 𝑂𝐵̅̅ ̅̅  is the distance from the hinge axis to the center of buoyancy. These two 

contributions are combined to obtain a net restoring torque 

𝑇ℎ𝑠 = 𝑇𝐺 + 𝑇𝐵 = (𝜌𝑉𝑟𝑏 − 𝑚𝑟𝑔)𝑔 sin(𝜙(𝑡)) (11) 

with 

𝐶55 = 𝜌𝑉𝑟𝑏 − 𝑚𝑟𝑔 (12) 

The coefficients are grouped into a hydrostatic restoring coefficient, denoted 𝐶55, and the 𝑠𝑖𝑛𝑒 

term is linearized under the assumption that, for small pitch displacements, sin(𝜙(𝑡))  ≈ 𝜙(𝑡): 
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𝑇ℎ𝑠
′ (𝜔) = 𝐶55𝜙(𝑡) = ℜ{𝐶55𝜙̃𝑒𝑖𝜔𝑡} (13) 

The power take-off also applies a torque on the OSWEC as it extracts energy. Depending on 

the type of PTO system used, the applied torque can have components that are in phase with both 

velocity and position (Kelly et al., 2017): 

𝑇𝑃𝑇𝑂(𝜔) = ℜ{𝑖𝜔𝐵𝑃𝑇𝑂𝜙̃𝑒𝑖𝜔𝑡 + 𝐶𝑃𝑇𝑂𝜙̃𝑒𝑖𝜔𝑡} (14) 

Here, 𝐵𝑃𝑇𝑂 and 𝐶𝑃𝑇𝑂 are the PTO damping and restoring coefficients, respectively. Depending on 

the capabilities of the PTO and the control scheme, these coefficients can be time-varying or 

constant. 

The remaining two torque contributions, which account for externally attached springs and 

viscous damping sources, are described as 

𝑇𝑠(𝜔) = ℜ{𝐶𝑒𝑥𝑡𝜙̃𝑒𝑖𝜔𝑡} (15) 

𝑇𝑑(𝜔) = ℜ{𝑖𝜔𝐵𝑣𝜙̃𝑒𝑖𝜔𝑡} (16) 

where 𝐶𝑒𝑥𝑡  is the net restoring coefficient of any externally attached springs and 𝐵𝑣 is the net 

damping coefficient, composed of any viscous sources that can be approximated as linearly 

proportional to the pitch angular velocity (Nguyen et al., 2023).  

The expressions in Equations (7)–(16) are substituted into the general equation of motion 

(Equation (1)), and rearranged to obtain the frequency domain equation of motion as 

ℜ{[−𝜔2(𝐼55 + 𝐴55(𝜔)) + 𝑖𝜔(𝐵55(𝜔) + 𝐵𝑃𝑇𝑂 + 𝐵𝑣) + (𝐶55 + 𝐶𝑃𝑇𝑂 + 𝐶𝑒𝑥𝑡)]𝜙̃𝑒𝑖𝜔𝑡} 

= ℜ{𝑎𝑋5(𝜔)𝑒𝑖𝜔𝑡} (17) 

Dropping the time-dependent sine terms, the equation of motion in its final form is: 

𝜙̃[−𝜔2(𝐼55 + 𝐴55(𝜔)) + 𝑖𝜔(𝐵55(𝜔) + 𝐵𝑃𝑇𝑂 + 𝐵𝑣) + (𝐶55 + 𝐶𝑃𝑇𝑂 + 𝐶𝑒𝑥𝑡)] = 𝑎𝑋5(𝜔) (18) 
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2.2.Structural Loadings 

2.2.1. Hinge Reaction Forces 

Neglecting centrifugal forces, the surge and heave reaction forces, 𝐹𝑟1 and 𝐹𝑟3, at the hinge 

(point O in Fig. 2) of a fore-aft symmetrical OSWEC can be described in the frequency domain 

as (Kurniawan and Moan, 2012) 

𝐹𝑟1(𝜔) = (−𝜔2𝐴15(𝜔) + 𝑖𝜔𝐵15(𝜔))𝜙̃ − 𝑎𝑋1(𝜔) (19) 

𝐹𝑟3(𝜔) = −(𝜌𝑉 − 𝑚) − 𝑎𝑋3(𝜔) (20) 

where 𝐴15 and 𝐵15 are the surge-pitch added mass and surge-pitch radiation damping coefficients, 

respectively. 𝑋1 and 𝑋3 denote the complex surge and heave excitation forces per unit wavelength. 

The surge reaction force is composed entirely of dynamic terms that result from the motion of the 

OSWEC itself and the incident wave load. The heave reaction force, on the other hand, is 

composed of a static contribution from the net hydrostatic forces and a time-varying wave load 

component. Due to the thin plate assumption, the heave reaction force is not calculated in the 

analytical study. 

2.2.2. Foundation Shear Force and Bending Moment 

Structural loads are of principal concern during the design of OSWECs. Generally, these are 

the result of the hinge reaction forces and power take-off torque/forces described in the previous 

subsections. When raised on a foundation, these dynamics induce a significant shear force and 

bending moment at the base of the foundation. Additionally, if the wave orbitals penetrate to the 

depths of the foundation, and/or if external currents are present, the hydrodynamics of the 

foundation itself can also contribute to this load.  

Treating the foundation as its own hydrodynamic body, which is rigidly fixed to the sea 

bottom, the force balances and torques about point F at the base of the foundation (Fig. 2) are 
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∑𝐹𝑥 = 𝐹𝑓𝑟1 + 𝐹𝑟1 + 𝐹𝑒𝑥1,𝑓 (21) 

∑𝐹𝑧 = 𝐹𝑓𝑟3 + 𝐹𝐺 + 𝐹𝐵 + 𝐹𝑟3 + 𝐹𝑒𝑥3,𝑓 (22) 

∑𝑇𝐹 = 𝑀𝑓𝑟5 + 𝑟𝑓𝐹𝑟1 + 𝑇𝑃𝑇𝑂 + 𝑇𝑠 + 𝑇𝑑 + 𝑇𝑒𝑥5,𝑓 (23) 

where 𝐹𝑓𝑟1, 𝐹𝑓𝑟3, and 𝑀𝑓𝑟5 are the foundation reaction forces/torques in the surge, heave, and pitch 

directions; 𝑟𝑓 ≡ 𝐹𝑂̅̅ ̅̅  represents the distance from the base of the foundation F to the hinge point 

O; and 𝐹𝐺  and 𝐹𝐵  are the gravitational and buoyancy forces on the foundation, separate from those 

of the OSWEC body force balance. 𝐹𝑒𝑥1,𝑓  and 𝐹𝑒𝑥3,𝑓 are the foundation surge excitation and heave 

excitation forces, respectively (distinguished from those of the OSWEC body through the use of 

the f subscript); 𝑇𝑒𝑥5,𝑓  is the foundation pitch excitation torque. Contrary to the OSWEC body, the 

foundation does not experience any radiation hydrodynamic loads, as it does not undergo any rigid 

body motion. There could be, however, body-body interaction effects arising from the motion of 

 

Figure 2 – (Left) Foundation force and torque balance. (Right) Forces on the flap. 
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the OSWEC, but as stated previously, they are not considered in the current model. 𝐹𝑟1 and 𝐹𝑟3 

are the hinge reaction forces introduced in the OSWEC force balance (Equations (19) and (20)). 

These forces and torques are summarized in Fig. 2. 

2.3. Performance Characterization 

2.3.1. Response Amplitude Operator 

The RAO represents the transfer function between the OSWEC (pitch) motion and the incident 

wave amplitude. For waves in the linear regime, it provides a prediction of the OSWEC pitch 

response for any wave period and amplitude combination. It is derived simply from the 

rearrangement of the frequency domain equation of motion (Equation (18)): 

𝑅𝐴𝑂 ≡
𝜙̃

𝑎
=

𝑋5(𝜔)

[−𝜔2(𝐼55 + 𝐴55(𝜔)) + 𝑖𝜔(𝐵55(𝜔) + 𝐵𝑃𝑇𝑂 + 𝐵𝑣) + (𝐶55 + 𝐶𝑃𝑇𝑂 + 𝐶𝑒𝑥𝑡)]
(24) 

A rotational RAO is commonly nondimensionalized by the wave number, 𝑘, of the 

incident wave: 

𝑅𝐴𝑂∗ ≡
𝜙̃

𝑘𝑎
(25) 

where an asterisk has been used to distinguish the nondimensional quantity from its dimensional 

counterpart. The RAO will be integral to characterizing and understanding the OSWEC dynamics 

in subsequent sections. 

2.3.2. Time-Averaged Power and Capture Width 

When a PTO is simulated, the power performance of an OSWEC and its PTO system can be 

characterized by the commonly used nondimensional capture width (CW) 

𝐶𝑊 =
𝑃𝑇

𝑤𝑃𝑊

(26) 
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where 𝑤 is the width of the OSWEC and 𝑃𝑇 and 𝑃𝑊 are the time-averaged power absorbed by the 

system and the time-averaged wave power per unit crest-width, respectively. The former is 

calculated in the time domain as 

𝑃𝑇 =
1

𝑇
∫ 𝑃𝑃𝑇𝑂(𝑡′)𝑑𝑡′

𝑡+𝑇

𝑡

(27) 

and in the special case of passive damping control, it can be obtained in the frequency domain 

following (Tom et al., 2017) as 

𝑃𝑇 =
1

2
∫

|𝑋5|2

𝐵55

1

1 + 𝜀
𝑆(𝜔)𝑑𝜔 (28) 

𝜖 is a nondimensional coefficient (always greater than or equal to 1) employed in passive damping 

control model such that 𝐵𝑃𝑇𝑂(𝜔) = 𝜖(𝜔)𝐵55(𝜔) and 

𝜖(𝜔) = √1 + (
𝐶55 + 𝐶𝑃𝑇𝑂 − 𝜔2(𝐼55 + 𝐴55(𝜔))

𝜔𝐵55(𝜔)
)

2

(29) 

This corresponds to the optimum PTO damping of the system. It is noted that this strategy implies 

the PTO damping can be modified on a per-wave basis, and that the PTO restoring coefficient is 

a constant value. The PTO damping coefficient that maximizes the instantaneous power absorbed 

by the PTO is related to the OSWEC body’s wave radiation damping coefficient. 𝑆(𝜔) denotes 

the wave energy spectrum. In this paper, the Bretschneider Spectrum is used: 

𝑆(𝜔) =
5

16

𝜔𝑚
4

𝜔5
𝐻1 3⁄

2  exp (−
5

4

𝜔𝑚
4

𝜔4
) (30) 

where 𝜔𝑚 is the modal frequency and 𝐻1/3 is the significant wave height. The time and spatially 

averaged wave power per unit crest-width is purely a function of the wave conditions and is 

calculated as  

𝑃𝑤 =
1

2
𝜌𝑔𝑎2𝑉𝑔 (31) 
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with wave group velocity  

𝑉𝑔 =
1

2
√

𝑔

𝑘
tanh 𝑘ℎ (1 +

2𝑘ℎ

sinh 2𝑘ℎ
) (32) 

The expressions in Equations (26–32) are evaluated for a single wave period (or frequency); thus, 

the capture width is typically characterized over a desired range of wave frequencies. The passive 

damping model and metrics will be used in subsequent sections to conduct a case study on 

OSWEC power output performance. 

2.4. Analytical Model of Hydrodynamic Coefficients 

The following work extends the analytical models originally proposed in Michele et al. (2016) 

for a bottom-fixed OSWEC. In the following section, the problem description and the solutions 

will be reformulated such that they can take into account the raised support structure. Coupling 

surge-pitch coefficients are also derived so that the foundational loads can be estimated (Equations 

(21) and (23)). 

Consider a bottom-raised OSWEC with width w and height 𝐻𝑜  hinged on a foundation of 

height c. The height and width dimensions of the OSWEC are significantly greater than its 

thickness, such that the OSWEC can be represented as a thin flap. The OSWEC pierces the surface 

at all pitch angles, such that no overtopping occurs (Fig. 1). 

A velocity potential (or total wave potential) Φ(𝑥, 𝑦, 𝑧, 𝑡) is sought that satisfies the Laplace 

equation for an inviscid, incompressible, and irrotational fluid domain: 

𝛻2Φ(𝑥, 𝑦, 𝑧, 𝑡) =  0 (33) 

We assume that the flap undergoes regular harmonic motion with frequency 𝜔 around the y-axis 

(Fig. 1) as 

𝜓(𝑡) = 𝑅𝑒{Ψ𝑒−𝑖𝜔𝑡} (34) 
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Here, Ψ is the complex amplitude of rotation. The temporal component in the velocity potential 

can be separated out (or rewritten) as 

Φ(𝑥, 𝑦, 𝑧, 𝑡) = ℜ{Φ̃(𝑥, 𝑦, 𝑧)𝑒𝑖𝜔𝑡} (35) 

where Φ̃ is the spatial potential, which is a function of only 𝑥, 𝑦, 𝑧, and can be decomposed into a 

linear sum of the incident, scattered, and radiated wave potentials (Techet, 2005):  

Φ̃(𝑥, 𝑦, 𝑧) = Φ̃𝐼 + Φ̃𝑆 + Φ̃𝑅 (36) 

with 

Φ̃𝐼 = −
𝑖𝐴𝑔

𝜔

cosh  𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
𝑒−𝑖𝑘(𝑥 cos 𝜃 +𝑦 sin 𝜃 ) (37) 

Here, 𝐴 is the wave amplitude, 𝑔 = 9.81
m

s2 is the gravitational constant, and 𝑖 denotes the 

imaginary unit. 𝜃 represents the relative angle of the incident wave with respect to the x-axis, and 

h is the water depth. These describe the potential of the incident waves in absence of any bodies (

), the potential of the incident wave as it is modified (through diffraction) by the presence of a 

fixed OSWEC (Φ̃𝑆), and the potential of the waves that radiate from the moving OSWEC in the 

absence of any incident waves (Φ̃𝑅). It is noted that solutions of these potentials should satisfy 

Laplace’s equation. 

The governing equations are subject to the following boundary conditions (Nguyen et al., 2021): 

1. Combined free surface boundary condition on 𝑧 = 0: 

𝑔
𝜕Φ̃(𝑅,𝑆)

𝜕𝑧
− 𝜔2Φ̃(𝑅,𝑆) = 0 (38) 

2. No-flux condition at the sea bottom, 𝑧 = −ℎ: 

𝜕Φ̃(𝑅,𝑆)

𝜕𝑧
= 0 (39) 

3. Kinematic condition (no through flow) on the flap’s surfaces, 𝑧 ∈  [−ℎ, 0], 𝑥 =

±0, −𝑤/2 < 𝑦 < 𝑤/2 
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𝜕Φ̃𝑅

𝜕𝑥
= −𝜓𝑡 ∗ (𝑧 + ℎ − 𝑐) ∗ H(𝑧 + ℎ − 𝑐) = 𝑖𝜔Ψ ∗ (𝑧 + ℎ − 𝑐)𝑒−𝑖𝜔𝑡 ∗ 𝐻(𝑧 + ℎ − 𝑐) (40) 

𝜕Φ̃𝑆

𝜕𝑥
= −

𝜕Φ̃𝐼

𝜕𝑥
(41) 

4. Φ̃𝑆 and Φ̃𝑅 must be bounded as √𝑥2 + 𝑦2 → ∞ (42) 

H is the Heaviside function to equate the OSWEC body and flow velocities over the paddle height 

(𝐻0  =  ℎ − 𝑐) and to set the flow velocity to zero otherwise. A small pitch amplitude assumption 

has also been employed in Equation (40) such that the lateral velocity of a point on the surface of 

the OSWEC can be approximated by the product of the pitch velocity and the distance of the point 

from the hinge. 

In the ordinary solution process, solutions to the diffraction, and radiation potentials are 

obtained in 𝑥, 𝑦, 𝑧 and integrated over the body surface to derive their respective force amplitudes. 

The resulting forces are used to derive the added mass and radiation damping coefficients, as well 

as the wave excitation force and moments. Due to the complexity of the OSWEC boundary value 

problem, however, only semi-analytical solutions are possible in Cartesian coordinates (Renzi and 

Dias, 2012, 2013; Noad and Porter, 2015; Michele et al., 2016). An alternative solution process is 

to transform the governing equations and boundary conditions into elliptical coordinates. 

Following this transformation, an analytical solution can still be obtained using separation of 

variables. The results thus obtained can be shown to capture the physics of the more 

comprehensive semi-analytical and numerical methods, yet at a fraction of setup and solution time. 

2.4.1. Analytical Solutions for Hydrodynamic Coefficients 

The elliptical coordinate system is defined by three coordinate variables: 𝜉, which represents 

a confocal ellipse for each constant value; 𝜂, which represents a hyperbola of focal length 𝑤 for 
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each constant angle; and 𝑧, which describes elevation (Weisstein, 2003). The Cartesian coordinates 

(𝑥, 𝑦, 𝑧) are related to the elliptical coordinates (𝜉, 𝜂, 𝑧) as 

𝑥 =
𝑤

2
sinh 𝜉 sin 𝜂        𝑦 =

𝑤

2
cosh 𝜂 cos 𝜉        𝑧 = 𝑧 (43) 

With the focal width set to the width of the OSWEC, the body of the OSWEC is then described 

by the confocal ellipse at 𝜉 =  0 (i.e., a flat line lying on the y-axis), 𝜂 ∈  [0,2𝜋], and 𝑧 ∈

 [0, −𝐻0]. This configuration is best observed in the plan view (Fig. 3). With the use of Equation 

(43), the governing equations formed by Equations (33–36) and the four boundary conditions can 

be transformed into the new coordinate system and separation of variables employed to obtain 

solutions for Φ̃𝑅 and Φ̃𝑆.  

The expressions of Φ̃𝑅 and Φ̃𝑆 in Equation Error! Reference source not found. can be written 

using separation of variables as 

{
Φ̃𝑅 = 𝜑𝑛

𝑅(𝑥, 𝑦)𝑍(𝑧)

Φ̃𝑆 = 𝜑𝑛
𝑆(𝑥, 𝑦)𝑍(𝑧)

(44) 

  

Figure 3 – OSWEC boundary value problem. Plan view in elliptical coordinates. 
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Using the conditions that both 𝜙𝑅 and 𝜙𝑆 satisfy the Laplace equation to obtain 

𝑍′′ − 𝑘2𝑍 = 0 (45) 

Employing boundary conditions on the water surface (Equation Error! Reference source not 

found.) and at the sea bottom (Equation Error! Reference source not found.), the corresponding 

normalized eigenfunction can be derived as (Chiang et al., 2005) 

𝑍𝑛(𝑧) =
√2 cosh 𝑘𝑛(ℎ + 𝑧)

(ℎ + (
𝑔

𝜔2) sinh2 𝑘𝑛ℎ)

1
2

     ,       n = 0,1,2,3 … (46)
 

where 𝑘𝑜(𝑛 = 0) = 𝑘  (wave number as defined previously) and 𝑘𝑛 for 𝑛 ≥ 1 are evaluated as the 

root of the dispersion relations, respectively, as 

𝜔2 = 𝑔𝑘 tanh(𝑘ℎ)      ,       𝑛 = 0

𝜔2 = −𝑔𝜅𝑛 tan(𝜅𝑛ℎ)      ,      𝑛 ≥ 1
𝜅𝑛 = −𝑖𝑘𝑛                             

(47) 

On the other hand, converting the Laplace equation for 𝜑𝑅(𝑥, 𝑦) and 𝜑𝑆(𝑥, 𝑦) to the elliptical 

system, the two-dimensional Helmholtz equations can be obtained as 

[
𝜕2

𝜕𝜉2
+

𝜕2

𝜕𝜂2
+

𝑤2𝑘𝑛
2

8
(cosh 2𝜉 − cos 2𝜂)] {

𝜑𝑅(𝜉, 𝜂)

𝜑𝑆(𝜉, 𝜂)
} = 0 (48) 

The general solutions to the Helmholtz equation in these coordinates are obtained using the 

solutions of the angular Mathieu and Hankel-Mathieu functions. These are analogous to the use of 

trigonometric functions in the Cartesian system or Bessel functions in cylindrical coordinates. 

Applying the boundary conditions specified in Equations Error! Reference source not found.–

Error! Reference source not found., the resulting solutions of the radiated and scattered 

potentials describing the foundation-raised OSWEC are derived as 

𝜑𝑛
𝑅(𝜉, 𝜂) =  −𝑖𝜔Ψ𝑓𝑛𝑤 ∗ ∑

𝐵1
(2𝑚+1)

𝐻𝑜2𝑚+1
(1) (0, 𝜏𝑛)𝑠𝑒2𝑚+1(𝜂, 𝜏𝑛)

2𝐻𝑜𝜉2𝑚+1
(1) (0, 𝜏𝑛)

∞

𝑚=0

(49) 

𝜑𝑛
𝑆(𝜉, 𝜂) =  𝐴𝑑𝑛𝑤 ∗ ∑

𝐵1
(2𝑚+1)

𝐻𝑜2𝑚+1
(1) (0, 𝜏𝑛)𝑠𝑒2𝑚+1(𝜂, 𝜏𝑛)

2𝐻𝑜𝜉2𝑚+1
(1) (0, 𝜏𝑛)

∞

𝑚=0

(50) 

With 
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𝑓𝑛 =
√2[𝑘𝑛(ℎ − 𝑐) sinh 𝑘𝑛ℎ + cosh 𝑘𝑛𝑐 + cosh 𝑘𝑛ℎ]

𝑘𝑛
2 [ℎ + (

𝑔
𝜔2) sinh2 𝑘𝑛ℎ]

1
2

, 𝑛 = 0,1,2,3 … (51)
 

𝑑𝑛 = {𝑔𝑘𝑜 (ℎ + (
𝑔

𝜔2
) sinh2 𝑘𝑜ℎ)

1
2

     𝑛 = 0

                      0                                 𝑛 ≥ 1

(52) 

𝜏𝑛 =
1

16
𝜔2𝑘𝑛

2 (53) 

where 𝐻𝑜 and 𝑠𝑒 are the odd Hankel-Mathieu and odd Mathieu functions of the first kind. 𝐵1 is 

the first coefficient of the 𝑠𝑒 function, and 𝑁𝑜 is the odd radial Mathieu function of the second 

kind. The first subscript of 𝐻𝑜𝜉2𝑚+1
 denotes the function is of order 2m+1 and that a derivative is 

to be taken with respect to the elliptical coordinate 𝜉. For information on Mathieu functions, refer 

to Gutiérrez-Vega et al. (2003). 

The pitch-pitch hydrodynamic added inertia 𝐴55, radiation damping 𝐵55, and the wave excitation 

torque 𝑋5 are also obtained (from the normal surface integral of the velocity potential derivative): 

𝐴55 = 𝜌𝑤2𝜋 ∑ 𝑓𝑛
2

∞

𝑛=0

𝐼𝑚 { ∑
𝐵1

(2𝑚+1)2

𝑁𝑜2𝑚+1(0, 𝜏𝑛)

4𝐻𝑜𝜉2𝑚+1
(1) (0, 𝜏𝑛)

∞

𝑚=0

} (54) 

𝐵55 = −𝜌𝜔𝑤2𝑓𝑜
2𝜋 𝑅𝑒 { ∑

𝐵1
(2𝑚+1)2

𝑁𝑜2𝑚+1(0, 𝜏𝑜)

4𝐻𝑜𝜉2𝑚+1
(1) (0, 𝜏𝑜)

∞

𝑚=0

} (55) 

𝑋5 = 𝜌𝜔𝑤2𝑓𝑜𝑑𝑜𝜋 cos 𝜃 { ∑
𝐵1

(2𝑚+1)2

𝑁𝑜2𝑚+1(0, 𝜏𝑜)

4𝐻𝑜𝜉2𝑚+1
(1) (0, 𝜏𝑜)

∞

𝑚=0

} (56) 

In order to quantify the structural performance characteristics of the OSWEC, the study further 

develops analytical solutions for the surge wave load as following 

𝐴15 =
𝜌

𝜔
∑ 𝐼𝑚

∞

𝑛=0

(∬ 𝜙𝑛
𝑅(𝜉, 𝜂)𝑍𝑛(𝑧)𝑛1𝑑𝑆

⬚

𝑆𝑏𝑜𝑑𝑦

) =
𝜌

𝜔

𝑤

2
∑ 𝐼𝑚

∞

𝑛=0

(∬ 𝜙𝑛
𝑅(𝜉, 𝜂)𝑍𝑛(𝑧) sin 𝜂 𝑑𝑧 𝑑𝜂

⬚

𝑆𝑏𝑜𝑑𝑦

) (57) 

𝐵15 = −𝜌𝑅𝑒 (∬ 𝜙𝑜
𝑅(𝜉, 𝜂)𝑍𝑜(𝑧)𝑛1𝑑𝑆

⬚

𝑆𝑏𝑜𝑑𝑦

) = −𝜌
𝑤

2
𝑅𝑒 (∬ 𝜙𝑜

𝑅(𝜉, 𝜂) sin 𝜂 𝑑𝜂
⬚

𝑆𝑏𝑜𝑑𝑦

𝑍𝑜(𝑧)𝑑𝑧) (58) 
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𝑋1 = 𝑖𝜔𝜌 ∬ 𝜙𝑆(𝜉, 𝜂, 𝑧)𝑛1𝑑𝑆
⬚

𝑆𝑏𝑜𝑑𝑦

= −𝑖𝜔𝜌
𝑤

2
∬ 𝜙𝑆(𝜉, 𝜂)𝑍𝑜(𝑧) sin 𝜂 𝑑𝑧𝑑𝜂

⬚

𝑆𝑏𝑜𝑑𝑦

(59) 

Substituting the equations of 𝜙𝑛
𝑅, 𝜙𝑛

𝑆 and 𝑍𝑛(𝑧), the integral solutions can be obtained analytically 

to get 

𝐴15 = 𝜌𝑤2𝜋 ∑ 𝑓𝑛𝜆𝑛

∞

𝑛=0

𝐼𝑚 { ∑
𝐵1

(2𝑚+1)2

𝑁𝑜2𝑚+1(0, 𝜏𝑛)

4𝐻𝑜𝜉2𝑚+1
(1) (0, 𝜏𝑛)

∞

𝑚=0

} (60) 

𝐵15 = 𝜌𝜔𝑤2𝑓𝑜𝜆𝑜𝜋 𝑅𝑒 { ∑
𝐵1

(2𝑚+1)2

𝑁𝑜2𝑚+1(0, 𝜏𝑜)

4𝐻𝑜𝜉2𝑚+1
(1) (0, 𝜏𝑜)

∞

𝑚=0

} (61) 

𝑋1 = 𝜌𝜔𝑤2𝜆𝑜𝑑𝑜𝜋 cos 𝜃 { ∑
𝐵1

(2𝑚+1)2

𝑁𝑜2𝑚+1(0, 𝜏𝑜)

4𝐻𝑜𝜉2𝑚+1
(1) (0, 𝜏𝑜)

∞

𝑚=0

} (62) 

𝜆𝑛 =
√2(sinh 𝑘𝑛ℎ − sinh 𝑘𝑛𝑐)

𝑘𝑛 (ℎ +
𝑔

𝜔2 sinh2 𝑘𝑛ℎ)

1
2

    , 𝑛 = 0,1,2,3, … (63)
 

Although not utilized in this model directly, the retardation function (represents free-surface 

memory effects), 𝐾(𝑖𝜔), in frequency domain can be calculated as 

𝐾(𝑖𝜔) = 𝐵(𝜔) + 𝑖𝜔(𝐴(𝜔) − 𝐴(∞)) (64) 

With 𝐴(∞) is the added mass at infinite frequency and obtained by taking the limits of equations 

(54 and 60) corresponding to the modes of interest. The retardation function in frequency domain 

can be utilized to approximate the convolution term in the Cummins equation when simulating the 

system in time domain. For reference, comparisons of this parameter to the outputs of WAMIT 

are presented in Appendix A.    

Using an appropriate number of orders m and terms n in the summations, the hydrodynamics can 

be characterized over a desired frequency range and used to obtain frequency domain results as 

usual. These formulas are applicable for the OSWEC placed on the sea floor or with supporting 

structure underneath. They can also be employed to estimate the hydrodynamic coefficients and 
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excitation forces/torques if the OSWEC were to pitch around its center of gravity with simple 

modifications in the kinematic boundary condition (Equation (40)). This results in a slight change 

in the  𝑓𝑛 (distinguish by 𝑓𝑛|𝑐𝑔
) equation as 

𝑓𝑛|𝑐𝑔
=

√2[𝑘𝑛(ℎ − 𝑐) sinh 𝑘𝑛ℎ − 2 cosh(𝑘𝑛ℎ) + 𝑘𝑛(ℎ − 𝑐) sinh(𝑘𝑛𝑐) + 2 cosh(𝑘𝑛𝑐)]

2𝑘𝑛
2 [ℎ + (

𝑔
𝜔2) sinh2 𝑘𝑛ℎ]

1
2

(65)
 

The model will be benchmarked with the numerical results from WAMIT, and the results will be 

discussed in next section. Additionally, the analytical model is also validated by employing a 

second approach based on the Haskind-Hanaoka relation. The derivations and associated formulas 

are discussed in Appendix B along with the comparison between the two approaches. 
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3. Numerical Model Setup and Benchmark Studies 

 

To substantiate the developed analytical model of a bottom-raised OSWEC, comparisons of 

the outputs with those from the numerical programs WAMIT and WAMIT/WEC-Sim are 

presented in this section. While the hydrodynamic properties, including added mass, radiation 

damping, and wave excitation force/torque, are benchmarked against the results from WAMIT, 

the response and loading on the support foundation are compared with the results from a 

WAMIT/WEC-Sim model. The properties of the simulated model, based on the physical model 

previously developed in Davis (2021), are provided in Table 1. Some deviations from the physical 

model are implemented to achieve a more equivalent comparison between the two models, 

including 1) the OSWEC thickness is scaled as 1:80 of its width to reflect the flat plate assumption 

used in the analytical model, 2) the support foundation is modeled as a thin rectangle with the 

same cross-sectional area as the OSWEC (Fig. 1), and 3) the OSWEC flap is assumed homogenous 

such that its mass and moment of inertia about the y-axis (Fig. 1) can be calculated as 

 

Table 1 - Validation model properties 

Symbol Property Value Unit 

𝒉 Water depth 1.0 m 

𝒄 Hinge to seabed 0.5 m 

𝑯𝒐 OSWEC height 0.5 m 

𝒘 OSWEC width 0.4 m 

𝒑 OSWEC thickness 0.005 m 

𝑴 OSWEC mass 0.85 𝑘𝑔 

𝑰𝟓𝟓 Moment of inertia about the center 

of gravity and the hinge 
0.01771,0.07084* 𝑘𝑔 − 𝑚2 

*  Calculated about the hinge point 
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𝑀 = 𝜌𝑤𝑝𝐻𝑜 = 𝜌𝑉 (66) 

𝐼55𝑐𝑔
=

1

12
𝑀[(ℎ − 𝑐)2 + 𝑝2] at the center of gravity (67) 

𝐼55ℎ𝑖𝑛𝑔𝑒
= 𝐼55𝑐𝑔

+
𝑀𝐻𝑜

2

4
 at the hinge (68) 

Two benchmark cases are carried out that compare the hydrodynamic results computed at 1) 

the body’s center of gravity and 2) the hinge location.  

3.1. Numerical Model Setup and Solutions from WAMIT/WEC-Sim 

Similar to the analytical solution process, where the incident, scattered, and radiated potentials 

are solved independently of one another and combined into a linear solution, WAMIT solves for 

the velocity potential and fluid pressure at each “panel” (surface mesh element) of a discretized 

body surface. For this project, surfaces of the geometry were discretized into panels using an 

external Python-based script. While hydrodynamic coefficients and excitation forces/torques for 

all six degrees of freedom are solved by WAMIT, only the components in surge, pitch, and heave 

are needed. As required by WEC-Sim, the presented hydrodynamics are computed about the center 

of gravity (as opposed to the hinge). Additional WAMIT runs, however, are performed about the 

hinge to be used for benchmarking with the analytical outputs. The WAMIT models were 

simulated over a frequency range of 0.1 rad/s to 20 rad/s with a step size of 0.05 rad/s. 

The OSWEC and its support structure were modeled in WEC-Sim as two hydrodynamic bodies 

connected by a rotational PTO constraint (Fig. 4a). The rotational PTO was configured to prevent 

motion in all degrees of freedom except rotation about the y-axis. Due to the thin structure model, 

which leads to a small hydrostatic restoring force term, the OSWEC flap can easily become 

unstable/overturned. A small torsional restoring coefficient, 𝐶𝑃𝑇𝑂 = 56 kg ∙ m2/s2 is applied at 

the hinge (by setting the stiffness in the PTO module) to keep the OSWEC flap upright when 
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subjected to wave loads. Linear damping from a physical model (Davis, 2021) is also modeled 

with 𝐵𝑣 = 0.316. The foundation is rigidly connected to the seafloor by a fixed constraint. The 

Simulink configuration is shown in Fig. 4b. The WAMIT/WEC-Sim model is simulated with 30 

cases covering a period range, 𝑇, from 0.8 s to 5.0 s (1.25 rad/s to 7.85 rad/s). The corresponding 

wave amplitudes are chosen such that 
2𝑎

𝑔𝑇2 = 0.0001 to keep within the linear regime. The regular 

convolution integral calculation class, regularCIC, was used with a convolution integral time 

(CITime) of 20 s and the fixed time step MATLAB solver, ODE4. A linear ramp function was 

applied to the incident wave forcing to prevent unwanted transients and numerical instabilities. 

The Multiple Condition Runs (MCR) feature was used to script the simulation process based on 

the wave heights, periods, ramp times, end times, and time steps provided in an external MCR case 

file. The wave ramp time, simulation end time, and simulation time step size were set to 20 times, 

40 times, and 1/400 times the period, respectively. A summary of the WEC-Sim simulation 

parameters is provided in Table 2.  

 

(a) WEC-Sim geometry  (b) Simulink bodies and constraints 

Figure 4 - WEC-Sim and Simulink setup 
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Table 2 - WEC-Sim simulation parameters 

Parameter Value Description 

Wave class regularCIC Regular waves with convolution integral calculation 

Solver ODE4 Ordinary differential equation solver fixed time step 

𝐵𝑣 0.316 Linear damping 

𝐶𝑃𝑇𝑂 56 kg ∙ m2s−2 𝑃𝑇𝑂 torsional restoring coefficient 

dt 1/400T Solution time step 

CITime 20 s Convolution integral time 

rampTime 20T Wave forcing ramp time 

endTime 40T Simulation end time 

 

3.2. Hydrodynamic Coefficient Model – Comparison of Analytical Approach and WAMIT 

Employing the same OSWEC specifications, analytical solutions are calculated for pitch added 

mass and radiation damping, surge-pitch added mass and radiation damping, surge excitation 

force, and pitch excitation torque over a frequency range of 0.1 rad/s to 20 rad/s with a step size 

of 0.05 rad/s (WAMIT output is the same). In addition, a total of 15 frequencies (n = 15) were 

retained in the solutions to Equations (54–63) with m = 15 to achieve convergence. The theoretical 

and numerical results for motions about the hinge, and about the center of gravity are compared in 

Figs. 5 and 6, respectively. 

For motion about the hinge (Fig. 5), solutions of the hydrodynamic coefficients (𝐴55 and 𝐵55) 

show excellent comparison between the two models. The trends of the numerical model are well-

captured by the analytical model, with less than 2% variations across the entire observed frequency 

range. Similarly, great correlations are observed for the pitch and surge excitation torque/force 

curves (Fig. 5c and d) throughout the same simulated frequencies. The figure also contains close-

up views of the added-mass curves to show that the absolute variations are observed to be on the 

order of O(E-2) and O(E-1) for pitch and surge-pitch added mass, respectively. It is noted that the 

close-up views show only a portion of the frequency range but they are applicable to the entire x-

axis. These absolute differences are important for the discussion in the following paragraph.  
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For motion about the center of mass (Fig. 6), the excitation force in surge, 𝑋1, torque in pitch, 

𝑋5, and radiation damping (𝐵55, 𝐵15) correlate very well between the two methods. While 

differences of up to 15% are present in the added mass solutions in both pitch and surge-pitch 

modes, the absolute variations are again observed to be on the order of O(E-2) and O(E-1) for 

pitch and surge-pitch added mass, respectively. The large percentage difference seen in this case, 

however, is magnified due to the smaller values (about 10 times smaller than the previous case) of 

 

 

Figure 5 – Comparison of analytically derived (solid) and numerically derived (dashed) 

hydrodynamic coefficients. Outputs are computed with respect to the hinge location. (a) 

Pitch added mass (A55) and radiation damping (B55). (b) Surge-pitch added mass (A15) and 

radiation damping (B15). (c) Pitch excitation torque magnitude per wavelength (|X5|) and 

phase (∠5). (d) Surge excitation force magnitude per wavelength (|X1|) and phase (∠1). 

(d) 

(a) (b) 

(c) 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.



27 
 

the added mass coefficients. This could indicate that there is an inherent static variation between 

the two methods rather than a variation caused by the performance of the analytical model. Other 

reasons that could lead to the differences might be attributed to the flat plate assumption and the 

handling of the boundary element method for thin structures. Due to the thin plate nature, it is 

challenging to generate a good mesh for the simulation such that the panels on the thin side and 

the panels near the sides are comparable in dimension. In addition, modeling thin structures also 

leads to close proximity of the target and the source panels, which could result in numerical 

 

 

 

Figure 6 – Comparison of analytically derived (solid) and numerically derived (dashed) 

hydrodynamic coefficients. Outputs computed with respect to the center of gravity. (a) 

Pitch added mass (A55) and radiation damping (B55). (b) Surge-pitch added mass (A15) and 

radiation damping (B15). (c) Pitch excitation torque magnitude per wavelength (|X5|) and 

phase (∠5). (d) Surge excitation force magnitude per wavelength (|X1|) and phase (∠1). 

(a) (b) 

(c) (d) 
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modeling uncertainties (Sheng et al., 2022). It is noted that the current study has not carried out an 

extensive optimization of the mesh for WAMIT modeling. Future studies will be completed to 

explore these variations further.   

Despite the slight differences, this section shows that the analytical model correlates very well 

with WAMIT numerical solutions. The strength of the analytical model becomes evident when the 

solution times are compared; whereas the WAMIT model used to produce validation results 

requires preparation on the order of hours and requires several minutes to run a single frequency 

step, the analytical model can be set up on the order of minutes and used to produce similar results, 

averaging less than one second to execute each frequency.  

3.3. OSWEC Motion and Structural Loads – Comparison of Analytical, and WAMIT/WEC-

Sim Approaches  

This section compares the OSWEC response and foundation loads calculated by the proposed 

analytical formulas with those obtained from the numerical models (WAMIT/WEC-Sim). The 

wave conditions are the same as described previously. The results of pitch RAO and of the hinge 

forces and foundational torques are presented in Figs. 7 and 8, respectively. There is excellent 

agreement between the solutions of the two models over much of the frequency range. While it is 

not shown here, the phase was also relatively aligned. Slight variations are observed near the 

resonance frequency region for all parameters. This could be attributed to the challenge of 

estimating the hydrodynamic coefficients for thin structures, as discussed in the previous section. 

Further studies should be done to examine these effects. The dissimilarity in this case study, 

however, is small, and it could be neglected to simplify the analysis. In Fig. 8, the normalized 

magnitude of excitation wave loads/torques obtained in previous sections are also plotted for 
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comparison. The results show that the effect of wave load components are small (except at low 

periods) and the foundation reaction forces are mostly due to the flap’s pitching motions.  

The resonance frequency predicted by both models is approximately 1.9 s, which is close to 

the resonance frequency of the physical model at 1.76 s (Davis, 2021). The discrepancy is 

reasonable given the smaller thickness of the OSWEC used in this study, as well as the difference 

in foundation geometry. In this study, the foundation is represented by a 2D geometry with the 

same width and thickness as the OSWEC flap. In the experiments of (Davis, 2021), the foundation 

is modeled as a 3D circular cylinder.  

 

 

 
Figure 7 – Comparisons of analytical and WEC-Sim results for pitch RAO outputs.  
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Figure 8 – Simulated foundation base reaction forces and moments. Wave excitation 

force/torque on the full system are also plotted for comparison. The results show that wave 

loads are small (except at low periods) and indicate that foundation reaction forces are mostly 

due to the flap’s pitching motions. The components are nondimensionalized as |𝐹𝑓𝑟1
∗ | =

|𝐹𝑓𝑟1|/(𝜌𝑔ℎ2𝑎), |𝑀𝑓𝑟5
∗ | = |𝑀𝑓𝑟5|/(𝜌𝑔ℎ2𝑎𝑤), |𝑋∗| = |𝑋|/(𝜌𝑔ℎ2) . 
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4. Parametric Study and Discussion 

4.1. Thickness Sensitivity Study 

This section investigates the sensitivity of plate thickness on the analytical hydrodynamic 

solutions. The results shed light on the advantages and limitations of the proposed analytical 

formulas. Several WAMIT models with thickness-to-width ratio (𝑝/𝑤) ranging from 1:80, 1:40, 

1:20, and 1:10 relative to the scale of the physical model are constructed and simulated over the 

same frequency range. Figs. 9a and 9b show sample comparisons of hydrodynamic coefficients 

from the analytical model and WAMIT with varying plate thicknesses. As the plate thickness gets 

larger, the results from the two approaches start to deviate. While the differences in the predicted 

added mass values occur mostly in the low- and high-frequency ranges, the variations of radiation 

damping coefficients are present around the curve peaks (5–10 rad/s). Outside this region, the 

 

Figure 9 – Sample comparison of hydrodynamic coefficients from the analytical model 

and WAMIT with varying plate thicknesses. (a) Pitch added mass. (b) Surge-pitch added 

mass. As the plate gets thicker, the solutions between the two models start to deviate, with 

the WAMIT outputs growing larger. The peaks of these curves also shift to lower 

frequencies.  

(a) (b) 
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variations in radiation damping are small. The results also show a consistent shift to a lower-

frequency region as the plate thickness increases. In order to compare these deviations more 

quantitatively, normalized errors, 𝜀,̅ are calculated following Equation (69), for both cases 

(rotational motions with respect to the center of gravity and to the hinge): 

𝜀̅ =
𝑆Wamit − 𝑆analytical

max|𝑆Wamit|
∗ 100 (69) 

where 𝑆 is the hydrodynamic parameter of interest.  

From Figs. 10 and 11, except for the surge-pitch added mass values discussed previously, the 

analytical model and WAMIT compare very well, with maximum differences ranging from 3% 

for the thinnest plate (𝑝/𝑤 = 1: 80) to 10% for (𝑝/𝑤 = 1: 20), and 20% for the thickest plate 

(𝑝/𝑤 = 1: 10). The large variations come mostly from the hydrodynamic coefficient values. If 

only excitation forces/torques are considered, the differences between the two approaches are 

contained within 12% for all thicknesses studied. Given the significant reduction in computational 

times and model setup (a few minutes versus hours), this level of uncertainty is justifiable, 

especially during the initial phase of design parameter exploration. The analytical model is thus 

useful to narrow the design scope before a higher-fidelity model is employed.  

4.2. Parametric Study of Power Production for a Range of Flap Heights and Widths 

This section demonstrates the ability of analytical models to explore the design space of a 

WEC with computational ease (i.e., performing a sweep over a range of dimensions). A full-scale 

irregular wave state from the U.S. Department of Energy Wave Energy Prize (Driscoll et al., 2018) 

is used to define the environmental wave conditions of the demonstration. Full-scale irregular 

wave state 2 (IWS 2) was elected for use. The irregular sea state was defined by a Bretschneider 

wave energy spectrum (Equation (30)). The environmental conditions used in the demonstration 

are summarized in Table 3. 
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Figure 10 – Error quantifications of analytical model and WAMIT solutions for different 

plate thicknesses. (a) Pitch added mass. (b) Surge-pitch added mass. (c) Pitch excitation 

torque. (d) Surge excitation force. Outputs are computed with respect to the hinge 

location. The ratio of plate thickness to plate width (
𝑝

𝑤
) ranges from 1:10 to 1:80.  

(a) (b) 

(c) (d) 
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Figure 11 – Error quantifications of analytical model and WAMIT solutions for different 

plate thicknesses. (a) Pitch added mass. (b) Surge-pitch added mass. (c) Pitch excitation 

torque. (d) Surge excitation force. Outputs are computed with respect to the center of 

gravity. The ratio of plate thickness to plate width (
𝑝

𝑤
) ranges from 1:10 to 1:80.  

(a) (b) 

(c) (d) 
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Five dimensions define the bottom-raised OSWEC system: water depth ℎ, flap height 𝐻𝑜, 

distance from the hinge to the seabed 𝑐, width 𝑤, and thickness 𝑝.  If the height of the flap is 

constrained such that the flap always extends from the hinge to the free surface (i.e., 𝐻𝑜 = ℎ − 𝑐), 

the thickness is parameterized as a function of width (𝑤/𝑝 = constant). If the mean water depth is 

assumed constant, the number of free dimensions can be reduced to two: the flap width and the 

distance from the hinge to the seabed.  

Here, the flap width 𝑤 ranges from 1/3 of the water depth to the full water depth (the flap is as 

wide as the water is deep) in increments of 1 m. The distance from the hinge to the seabed 𝑐 ranges 

from 0 m to 2/3 of the water depth in increments of 1 m. Though the theoretical model is reliant 

on a thin plate assumption, a thickness is defined to obtain reasonable mass moment of inertia and 

body volume properties. The width-to-thickness ratio is held constant at 𝑤/𝑝 =  30. To 

parameterize mass, a mass density 𝜌𝑚 equivalent to half the water density is assigned. For each 

set of dimensions, the body mass-moment of inertia and linear, combined hydrostatic and 

gravitational restoring coefficient are calculated using Equations (68) and (12), respectively. These 

dimensions and properties are defined in Table 4. 

Variations in frequency-dependent pitch added mass, pitch radiation damping, and pitch 

excitation moment with normalized width (𝑤/𝐻𝑜) are presented in Fig. 12. Results are shown for 

a single flap height of 𝐻𝑜 = ℎ/2. As width is increased, these coefficients increase in magnitude, 

Table 3 - Environmental conditions used in the demonstration 

Symbol Name Value Unit 

S(ω) Energy spectrum Bretschneider - 

Tp Peak period 9.86 s 

Hs Sig. wave height 2.64 m 

ωmin Min. frequency  0.25 rad s-1 

ωmax Max. frequency 3.00 rad s-1 

dω Frequency increment 0.01 rad s-1 
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and peak values shift toward lower frequencies. These trends are consistent with WAMIT results 

from Kurniawan and Moan (2012), who conducted a similar frequency-domain sweep across 

widths on a bottom-raised OSWEC. Similar trends have been well-documented in studies on 

bottom-fixed OSWECs (Gomes et al., 2015). 

Performance characteristics, displayed as a function of the normalized distance to seabed (𝑐/ℎ) 

and normalized width (𝑤/ℎ), are presented in Fig. 13. It is noted that color bars are not included 

in all Fig. 13 plots to reduce visual clutter. The colors, however, are scaled with their respective z-

axis values. The capture width ratio (Fig. 13a) is representative of the ratio of power absorbed by 

an ideal PTO during operation in the IWS 2 sea state to the total wave power available in that sea 

state following Equations (28) and (31). The surge force at the hinge (Fig. 13b) and its resulting 

Table 4 - Dimensions and properties of demonstration model 

Symbol Name Value Unit 

h Water depth 30 m 

c Hinge to seabed 0:1:20:a m 

𝐻𝑜  Flap height 10:1:30 m 

w Flap width 10-30 m 

𝑤/𝑝 Flap width-to-thickness ratio 30 m/m 

𝜌𝑚  Mass density 500 kg m-3 

a start:stepsize:stop 

 

Figure 12 - Hydrodynamic coefficients as a function of frequency and normalized width w/𝐻𝑜 

for a constant flap height 𝐻𝑜 = h/2: (a) pitch added mass; (b) pitch radiation damping; (c) 

excitation pitch moment. 
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contribution to the bending moment about the foundation base (Fig. 13c) are taken as the maximum 

values in response to a regular design wave at the significant wave height and peak period.  

Under the constraints used in the demonstration calculations, the capture width ratio increases 

dramatically with increasing width and decreases slightly as the distance from the seabed 

increases.  The maximum surge hinge reaction force follows a similar trend. This result is 

expected: As the OSWEC grows in width or height, its face occupies a larger portion of the water 

cross section, hence increasing the magnitude of the hydrodynamic coefficients and excitation 

loads. The foundation base bending moment is maximized at the full width and at the largest 

distance from the seabed. Though the surge hinge reaction force decreases with increasing 

distance, this change is overcome by the increase in moment arm as the hinge is moved further 

from the seabed. Additional constraints unique to each study could be imposed to further narrow 

the optimal dimensions. These constraints could include knowledge of the structural limits of the 

internal hinge support mechanisms (e.g., bearings, shafts, shaft mounts), as well as the geometry 

and material limits of the foundation. The trade-off between power absorption and loading on 

OSWEC designs has been the subject of previous studies (e.g., Tom et al., 2017).  

 
Figure 13 - Performance characterization metrics as a function of normalized distance to seabed 

c/h and normalized width w/h: (a) capture width ratio; (b) surge hinge reaction force; (c) 

foundation base bending moment. Colors correspond to the z-axis values. 
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5. Conclusion 

The current study presents theoretical formulations to evaluate the fundamental parameters of 

a bottom-raised OSWEC device, including foundation loads, the RAO, hydrodynamic 

coefficients, and excitation forces/torques. Specifically, the study develops closed-form equations 

for pitch-pitch and surge-pitch added inertia and radiation damping for the OSWEC body pitching 

at the hinge and at the center of gravity. These parameters are then utilized to investigate capture 

width ratio (power production) and the structural load on the support foundations resulting from 

the motion of the OSWEC. 

The proposed analytical model is benchmarked against numerical simulations using WAMIT 

and WEC-Sim. The comparisons demonstrate excellent agreement between the two approaches 

for the aforementioned parameters. Although variations are observed in the added mass solutions 

for pitch-pitch and surge-pitch modes, the overall correlation between the models is strong. The 

differences in pitch-pitch and surge-pitch added mass are about 15% while variations in other 

parameters of interest are less than 2%. The analytical model demonstrates the advantage of 

significantly reduced computational time and setup complexity compared to the numerical models. 

To determine the validity of the flat plate assumption (which is inherent to the analytical 

solution), this study also examines the sensitivity of plate thickness on the analytical 

hydrodynamic solutions. A range of plate thickness was tested with thickness-to-width ratios 

ranging from 1:80 to 1:10. The results show that as the thickness increases, the deviations of 

hydrodynamic coefficients with numerical solutions also grow from 3% to 25% correspondingly. 

For excitation forces and torques, however, the differences are contained within 12%. This level 

of uncertainty is reasonable, especially during the initial design phase, where the analytical model 

can be utilized to explore the design space before employing higher-fidelity models.  
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Furthermore, the study demonstrates the use of theoretical models in the design of OSWEC 

devices, allowing for easy exploration of the design space. By varying dimensions such as flap 

width and distance from the hinge to the seabed, the study examines the performance 

characteristics of the OSWEC, including capture width ratio, surge force at the hinge, and bending 

moment about the foundation base. The results show that increasing the width of the OSWEC 

leads to higher capture width ratio and surge hinge reaction force, while the foundation base 

bending moment is maximized at the full width and the largest distance from the seabed. 

Overall, the proposed analytical model provides a valuable tool for evaluating the performance 

and loads of bottom-raised OSWEC devices. Its accuracy and computational efficiency make it 

suitable for initial design exploration and parameter optimization, complementing more time-

consuming numerical models such as WAMIT and WEC-Sim. Further studies can be conducted 

to improve the analytical model's accuracy, especially considering the limitations of the thin plate 

assumption. 
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Appendix A 

Retardation Function in Frequency Domain 

Using the proposed model, the retardation function in the frequency domain can be derived 

from equation (64) based on factors such as radiation damping, frequency-dependent added mass, 

and added mass at infinite frequency. Table A1 and Fig. A1 present comparisons between the 

model outputs and those obtained from WAMIT. It is noted that the WAMIT results discussed in 

this section employed the thinnest flap geometry (with a thickness to width ratio of 1:80). 

In comparing the added mass at infinite frequency, a strong correlation between the two models 

is observed, with differences typically within 3% for the case where the flap rotates around the 

hinge. On the other hand, for the scenario where the flap rotates around its center of mass, 

significant disparities between the models are noted. However, it is important to highlight that the 

added mass at infinite frequency tends towards zero in this configuration. The substantial 

differences observed are likely attributed to numerical errors rather than inherent physical 

variations between the models.  

 

 

 

 

 

 

Table A1 – Added mass at infinite frequency comparison 

 𝐾55 𝜀 ̅(%) 𝐾15 𝜀̅ (%) 

Flap rotates around the hinge 

Analytical model 2.6233 
2.98 

9.3102 
0.01 

WAMIT 2.7040 9.3230 

Flap rotates around its center of mass 

Analytical model 0.5000 
7.78 

-0.328 
60.0 

WAMIT 0.4639 -0.820 

𝜀̅: variations (%) between the proposed model and WAMIT.  
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Figure A1 – The comparison of the retardation function, 𝐾(𝑖𝜔), in the frequency domain is 

depicted for both magnitudes (blue curves) and phases (red curves). Strong correlations are 

observed between the results obtained from WAMIT and those derived from the proposed 

model. In the figures, solid lines represent the solutions obtained from the analytical model, 

while dashed lines denote the outputs from WAMIT. The left panel illustrates the results for 

the case where the flap rotates around the hinge, while the right panel presents solutions for 

the setup where the flap rotates around its center of mass. 
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Appendix B 

Hydrodynamic Analytical Model Using Haskind-Hanaoka Approach 

The analytical model can be validated by evaluating the excitation torque on the structure 

employing two approaches. The first method, which is described in Section 2, employs the surface 

integral of the scattered potential while the second technique utilizes the Haskind-Hanaoka 

relation. Using the Haskind-Hanaoka relation for a 3D floating body, the excitation torque is 

formulated as (see Chapter 8 in Mei et al. (2005) for derivation details): 

𝑋𝑗 = −
4

𝑘
𝜌𝑔𝒜𝑗

𝑅 (
𝜋

2
) cos 𝜃 (70) 

where 𝑗 denotes the body motion mode. 𝒜𝑅 is called the angular variation of the radially spreading 

wave (Mei et al., 2005) and has the unit of time. Moreover, the general form of asymptotic behavior 

of the radiation potential in the far field (𝜉 → ∞) can be written as (Equation 8.6.12 in Mei et al. 

(2005)): 

∑ 𝜙𝑗𝑛
𝑅

∞

𝑛=0

~
𝑖𝑔𝒜𝑗

𝑅(𝜂)

𝜔

cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
 √

2

𝜋𝑘𝑟
𝑒𝑖(𝑘𝑟−

𝜋
4) (71) 

where 𝑟 =
𝑤𝑒𝜉

4
 is the radius expressed in terms of the radial elliptic coordinate 𝜉. Equating the 

right-hand side with the expressions of 𝜙𝑗𝑛
𝑅 , and using the asymptotic formula of the Hankel-

Mathieu function of the first kind, 𝐻𝑜2𝑚+1
(1)

(𝜉 → ∞, 𝜏𝑛), as (Gutiérrez-Vega, 2000): 

𝐻𝑜2𝑚+1(𝜉 → ∞, 𝜏𝑛) = −
𝑆2𝑚+1

√𝜏𝑛𝐵1

√
2

𝜋√𝜏𝑛𝑒𝜉
𝑒

𝑖(√𝜏𝑛𝑒𝜉−
3𝜋
4 ) (72) 

with 𝜏𝑛 = (
𝑤𝑘𝑛

4
)

2
 

𝐻𝑜2𝑚+1(𝜉 → ∞, 𝜏𝑛) = −
4𝑆2𝑚+1

𝑤𝑘𝑛𝐵1
√

2

𝜋𝑘𝑛𝑟
𝑒

𝑖(𝑘𝑛𝑟−
3𝜋
4 ) (73) 
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where 

𝑆2𝑚+1 = 𝑠𝑒𝜂2𝑚+1
(0, 𝜏𝑛)𝑠𝑒2𝑚+1 (

𝜋

2
, 𝜏𝑛) (74) 

𝑠𝑒𝜂 denotes the derivatives of 𝑠𝑒 with respect to 𝜂. 𝒜𝑗
𝑅(𝜂) can then be found for surge and pitch 

excitation forces/torques as 

𝒜1
𝑅(𝜂) = − ∑

2𝜔𝑍𝑜𝜆𝑜 [𝑠𝑒2𝑚+1 (
𝜋
2 , 𝜏𝑛)]

2
𝑠𝑒𝜂2𝑛+1

(0, 𝜏𝑛)

𝑔𝑘𝑜𝐻𝑜𝜉2𝑚+1
(0, 𝜏𝑛)

∞

𝑚=0

(75) 

and 

𝒜5
𝑅(𝜂) = − ∑

2𝜔𝑍𝑜𝑓𝑜 [𝑠𝑒2𝑚+1 (
𝜋
2 , 𝜏𝑛)]

2
𝑠𝑒𝜂2𝑛+1

(0, 𝜏𝑛)

𝑔𝑘𝑜𝐻𝑜𝜉2𝑚+1
(0, 𝜏𝑛)

∞

𝑚=0

(76) 

𝜆𝑜 and 𝑓𝑜 are presented in Equations (51) and (63). Substituting these into Equation (70), 𝑋1 and 

𝑋5 can be calculated. Comparisons of solutions from the two approaches are presented in Fig. B1. 

Employing 𝑚 = 7 (the number of orders used in evaluating the Mathieu functions), the differences 

between the two approaches are estimated to be in the order of  O(E-12).  

 

 

Figure B1 – Comparison of wave excitation pitch and surge moment magnitudes and phases 

using 1) Diffraction method and 2) Haskind-Hanaoka relation. Left: pitch excitation torque, 

𝑋5. Right: surge excitation force, 𝑋1. The converged results were obtained with 𝑛 = 15, 𝑚 =
7 to achieve an order of O(E-12) differences between the two solutions. 
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