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ABSTRACT 

Westinghouse is pursuing an advanced Nuclear Power Plant design based on Lead Fast Reactor 

(LFR) technology for global commercialization. To achieve an optimal combination of key 

attributes, such as safety, sustainability, and economic competitiveness, Westinghouse and ANL 

partnered in developing and applying a formalized core design optimization strategy. An LFR 

analysis workflow was developed to automate a suite of reactor physics, fuels performance, safety, 

and economics simulations on a selected LFR concept. The workflow streamlines analysis of a wide 

range of LFR designs with different dimensions and fuel types to assess their viability and economic 

performance, significantly reducing human processing time and risks of processing errors. The LFR 

optimization exercise was defined, resulting in selection of the design constraints (geometric, 

neutronics, thermo-mechanical, safety, thermal-hydraulics, and economics) and performance 

metrics researched (minimization of both the fuels LCOE and the first core inventory cost). A total 

of 14 varied design parameters were considered, including assembly dimensions, coolant 

temperature, and enrichment distribution throughout the core. The LFR analysis workflow was 

connected to DAKOTA for sensitivity and optimization analyses. Due to the extremely large size of 

the potential LFR optimization solution space relative to the computing time required to characterize 

one LFR solution, a multi-stage optimization approach was proposed to breakdown the problem into 

several stages with more reasonable sizes. This optimization approach enabled finding various 

viable core solutions with different cost tradeoffs that were considered by Westinghouse and justify 

selection of a smaller core with multi-batch 2-year cycle length. 
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1. INTRODUCTION 

Westinghouse is pursuing an advanced Nuclear Power Plant design based on Lead Fast Reactor (LFR) 

technology for global commercialization [1]. To achieve an optimal combination of key attributes, such as 

safety, sustainability, and economic competitiveness, Westinghouse and ANL partnered in completing a 

core design optimization. ANL has acquired wide experience in advanced nuclear reactor core design 

optimization that was applied to ABTR [2], Holos microreactors [3] [4], and initial work was completed on 

an earlier version of the Westinghouse LFR [5]. Similar efforts are also underway by other groups on LFRs 

[6] and applying optimization techniques to microreactors [7].  

The work summarized in this paper enables effective optimization of an LFR core based on fuel economics 

performance metrics by building on an extensive workflow, with streamlined execution of neutronics, 

thermal-hydraulics, fuel rod performance and system analyses, to ensure viability of the core design options 

being selected against a wide range of design constraints. This paper summarizes the optimization work, 

with focus on method description while providing a set of representative results obtained. 



The baseline LFR model employed for this effort is described in [8], featuring High Assay Low Enriched 

Uranium (HALEU) UO2 fuel, with radial and axial layouts shown in Figure 1. The core delivers a power 

of 950 MWt core and it employs four radial enrichment zones, labeled “inner”, “middle”, “outer”, and 

“external”, with increasing U-235 enrichment from the inner to the external zone. The fuel assemblies use 

grid spacers to position the fuel pins within the duct. The fuel features two axial enrichment zones, with top 

and bottom tip regions at higher U-235 enrichment, and middle zone at lower U-235 enrichment. Two 

groups of control assemblies, defined as CP (primary control rods) and CS (secondary control rods), are 

employed to compensate excess reactivity throughout the cycle, while also providing shutdown capabilities 

independently from the other.   

 

 

Figure 1. Radial (above) and axial (below) layout of the baseline LFR core. 
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2. METHODS AND TOOLS 

A wide range of calculation tools are used in this project to enable detailed LFR analysis, covering 

neutronics, thermal-hydraulics, fuel performance, safety analysis, and economics evaluation. WATTS 

(Workflow and Template Toolkit for Simulation) [9] is used to automate the LFR modeling workflow, 

connecting tools together with required pre/post-processing capabilities into a combined Python script. 

WATTS is a generic open-source workflow management tool developed at ANL.  

2.1. DAKOTA [10] 

The Dakota software maintained by Sandia National Laboratory is an uncertainty quantification and 

optimization toolkit with over 20 years of development. Dakota provides advanced mathematical methods 

to vary a code’s input parameters and analyze the output results, enabling multi-objective optimization and 

uncertainty quantification analysis. The core optimization is performed with a multi-objective genetic 

algorithm (MOGA) and direct physics simulation. MOGA is used based on extensive experience applied at 

ANL on various previous core design optimization projects.  

2.2. PyARC and ARC 

The ARC codes have been developed at ANL for over 60 years and some of the components have been used 

all over the world. The main parts of ARC used for this analysis include MC2-3 [11] [12], DIF3D [13], 

GAMSOR [14], PERSENT [15], and DASSH [16]. The ENDF/B-VII.0 nuclear data library [17] is used for 

this application. For this project, the ARC codes are executed within the PyARC module [18] that handles 

input pre-processing, workflow execution, and results processing. 

The deterministic options used for LFR modeling were selected following the recommendations derived 

from benchmark analyses performed in [8]. For MC2-3, cross-sections are processed with a 1D 

heterogeneous model, to condense them into 33 energy groups. For DIF3D, VARIANT is used as main 

solver for every calculation, using diffusion P1P0 options. 

2.3. SAS for fuels performance and safety analysis [19] 

The SAS4A/SASSYS-1 (SAS) code [19] is a multi-physics system analysis code developed for safety 

evaluation of liquid-metal fast reactors. SAS is actively used at Westinghouse for LFR safety analyses [20]. 

SAS is used in this project for fuel performance (with DEFORM-4 module) and safety analysis under 

steady-state and unprotected transient conditions. The DEFORM-4 module of SAS simulates oxide fuel 

behavior for normal operation and transients and was recently verified and validated on LFR fuel pins.  

2.4. Westinghouse economic script  

A Python-based methodology to calculate fuel costs and related impact on Levelized Cost of Electricity 

(LCOE) developed by Westinghouse has been implemented in the workflow [21].  It streamlines calculation 

of cash flows and timing for each category of plant operation cost and discounts (or escalates) these values 

back to a reference date, allowing consistent comparison of the economic performance of various core 

design candidates with respect to operating expenses, and namely fuel expenses, including refueling outage 

costs.   

More specifically, pre-operational, operational and post-operational costs associated with the nuclear fuel 

cycle are calculated. The pre-operational costs, for HALEU fuel, include purchase of U3O8, conversion, 

enrichment and fabrication. The cost of each uranium commodity component is computed using time 

dependent values from a price forwarding model. The resulting pre-operational cost is the undepreciated 

asset value of the fuel prior to operation. The operational phase involves the evaluation of electric 



generation and the burnup depreciation of the fuel. The fuel asset is depreciated as burnup is accrued up to 

final discharge (for HALEU fuel and in the current open fuel cycle assumed in the analysis). The time 

dependent fuel asset value is used to compute the in-core carrying costs required to evaluate the return on 

the undepreciated fuel asset as it is irradiated through multiple cycles in the reactor. Finally, spent fuel 

storage and disposal costs for the post-operational phase of the fuel cycle are calculated, and discounted to 

the reference date.  

The fuel LCOE is then calculated by adding pre-operational, operational and post-operational costs divided 

by the amount of energy produced (discounted by inflation) by the fuel during its residence time in the 

reactor. Outage expenses, which vary for the various scenarios evaluated as a result of the different fuel 

management schemes and time intervals between refueling, are also accounted for in terms of maintenance 

personnel cost and replacement power that needs to be purchased during outages. The outage length 

accounts for the wait time to safely dry-lift fuel assemblies, which depends on their decay heat and geometry, 

and is calculated as part of the workflow developed for this work, as discussed in Section 4. In this way, 

fuel cycle and outage expenses for various scenarios can be calculated over a consistent period of time (e.g. 

the reactor lifetime) and compared as part of determining economically optimal candidates.  

3. OPTIMIZATION METHOD 

The overall design analysis approach applied to the Westinghouse LFR is summarized in Figure 2.  

 

Figure 2. Summary of LFR design approach. 

There are two objective functions that have been selected to be optimized (e.g. minimized) for the LFR 

core: 

- LCOE ($/MWh). Note that for discriminating economic performance of the various core designs, 

only fuel cycle cost plus outage expenses needed to be accounted for, as the remaining components 

of the overall plant LCOE is not affected by the specific core design solution being proposed (within 

the assumed boundary condition of this analysis of a fixed barrel size). This metric is linked to 

many other performance metrics such as fuel burnup, outage length, and thermal efficiency, which 

may change for the various core designs analyzed according to the core-average lead outlet 

temperature that each can support.  

- Cost of initial (startup) core fuel inventory (M$). This metric is linked to the total mass of fuel and 

fissile content in the core needed to reach criticality throughout the first cycle. While for single-

batch designs it was possible to accurately calculate this performance metric, as it coincides with 

the cost of reloads, for multi-batch designs first core cost was calculated in a conservative fashion 

multiplying the cost of a reload at the equilibrium cycle, by the number of batches. 

Parameters 
• Cycle length 

• Reloading strategy 

• Core Height 

• Pin radius
• Smeared density

• P/D (fuel assembly)

• Number of pin rings

• Number of assembly rings

• Number of control rods 
• Fissile enrichment fractions

(Section 3)

Automated WATTS Workflow
(Section 4)

Objectives
• LCOE - minimization

• Initial fuel inventory cost - minimization

Constraints 
• Barrel size

• Fuel enrichment and thermo-mechanics

• Safety performance and shutdown margins

• Thermal-hydraulics

(Section 3)

DAKOTA
Optimization

(Section 5)



3.1. Design Constraints 

The design constraints selected for this optimization exercise are summarized in Table 1. These are “hard” 

constraints, meaning that a core solution that fails to meet one of these requirements during the optimization 

workflow will be disregarded. Note that specifics relating to calculation steps will be discussed in detail 

later in section 4. 

Table 1. Summary of core design constraints. 

Constraint Unit Limit Calc 
Step 

Geometry / Neutronics    

Max. core barrel radius m 1.93 (cold) 1 

Max. fuel assembly weight MT 3 1 

Max. U-235 enrichment w% 19.75 2 

Min. control margin $ 0 4 

Min. safety margin $ 0 4 

Thermo-mechanical    

Max. clad thermal creep (steady-state) % 0.2 10 

Max. clad strain (steady-state) % 2 10 

Max. CDF* (steady-state) % 0.05 10 

Safety     

Max. rod ejection worth $ 1 4 

Max. RV temperature (transient) oC 750 10 

Max. CDF* (transient) % 0.1 10 

Max. fuel temp (transient) oC 2865 10 

Thermal Hydraulics    

Max. fuel temp (steady-state) oC 2765 10 

Max. coolant velocity m/s 2 
 

Economics    

First core cost  Normalized** 1.25 8 

* CDF: Cumulative creep Damage Fraction 

** refer to Figure 3 

3.2. Varied Parameters  

The core design parameters to be varied during the optimization workflow were identified (as listed in 

Figure 2), together with their range of interest.  There are 15 different variables, some with a range of 

discrete or continuous values, others with Boolean-type options. This relatively extensive list of parameters 

has then been reduced after sensitivity analysis performed as part of various rounds of optimization. From 

these input variables, the relevant LFR design dimensions are being derived and used to setup the different 

PyARC and SAS models. An initial sensitivity analysis completed showed that only about 7% of the cases 

were passing all design constraints, the rest failing in Step #0 (due to the maximum core radius constraint), 

#1 (due to the maximum U-235 enrichment constraint), #5 (due to excessive coolant velocity), and #10 

(due to exceeding the CDF limits in steady-state and ULOSSP transients).   

For the optimization calculation, the main parameters to adjust are the number of initial samples (first 

generation) and maximum number of samples allowed. An initial good scan of the space ensures not to miss 

areas of interest and convergence to a local optimum solution. For the LFR workflow analysis, the size of 



the problem had to be constrained accounting for the time required to converge one simulation using the 

available computing resources. For practicality, a maximum number of 3,000 simulations was targeted so 

that completion of an optimization round could be performed within 30 days. The full range of combinations 

to sample for the LFR core design optimization is extremely aggressive with more than 1012 potential 

options to consider. To be able to ensure full coverage of the design space, one would need around half a 

million simulations of the LFR workflow, which is unrealistic under current computing constraints. Using 

a small number of initial simulations will most likely lead to not properly investigating the full design space 

and result in convergence to local minima. Expert judgement informed from the early experience 

performing many initial simulations was used to reduce the size of the problem through prioritization of 

parameters, breaking down the problem into two successive smaller stages: 

- First Stage: the initial stage focuses on wide range analysis across the geometry space. However, 

many variables were fixed, due to their expected lower impact on the LFR key performance metrics, 

using reference value as fixed points. In this case, the cycle length is researched to target material 

dose close to (but less than) the “soft” 120 DPA cladding limit as higher DPA levels are expected 

to fail “hard” CDF limits set for this core design optimization effort. Thanks to this judicious choice, 

the size of the solution space in this first stage could be significantly reduced, resulting in an initial 

population of 300 cases. 

- Second Stage: The second stage consists in refining the optimization of the preferred solution 

among the best candidates obtained in Stage 1. Accordingly, most of the parameters varied in Stage 

1 are fixed in Stage 2, or their ranges are reduced. New sets of parameters (such as the enrichment 

modification factors across different axial and radial core regions) are varied around the value from 

the Stage 1 solution to attain further performance improvements. Once again, the space size could 

be kept at a reasonable size with this approach, allowing to select an initial population of 300 cases 

also for Stage 2 optimization simulations. 

4. OVERVIEW OF THE LFR ANALYSIS WORKFLOW 

The LFR optimization relies on an automated LFR analysis workflow that takes about three hours to 

complete (if design constraints are not violated sooner) using one CPU for a single candidate core. This 

allows thorough assessment of the viability and performance of a design candidate, using traditional fidelity 

modeling capabilities.  

This comprehensive 10-step workflow is summarized in Table 2, showing the codes employed in each step 

together with key tasks achieved, output from the analysis and the approximate CPU time required to 

perform it. While one workflow calculation typically requires running all the steps consecutively, the 
workflow stops whenever it detects a failed hard constraint, helping to save computation time on unviable 

cases. 

Table 2. Summary of multi-step WATTS workflow developed for LFR analysis. 

Step Codes Task Output 
CPU Time 

(min) 

1 Python 
Pre-processing of core 

dimensions  

Cold/Hot dimensions 

Geometric constraints 
0 

2 
MC2-3 

REBUS 

Initial XS calculation and 

enrichment search calculation 

Reloading enrichment and BOEC composition 

Cycle length adjusted to stay below 120DPA * 
25 

3 DIF3D S-curve calculations S-curve 3 

4 DIF3D Shutdown margin calculations Shutdown margin requirements 5 

5 
REBUS 

ORIGEN 

Depletion with CR at critical 

position 

Critical rods position 

Decay heat curve 
20 



6 GAMSOR Gamma heating (BOL/EOL) 
Power distribution 

Average flow rate in different regions 
25 

7** 

REBUS 

GAMSOR 

DASSH 

Sub-channel calculation 

(BOL/EOL) 

Pressure drop 

Peak pin/cladding temperature constraints 
60 

8 
Economics 

script 

Liftoff time, thermal 

efficiency, and fuel cost 

calculations 

Outage duration 

LCOE & Inventory cost 
0 

9 

MC2-3 

DIF3D 

PERSENT 

Perturbation calculations 

(EOL) 
Reactivity coefficients for SAS 60 

10 SAS 
Fuels Performance 

Safety transients calculations 

Steady-state fuels performance 

Transients (PLOSSP, ULOSSP, UTOP) 

performance 

30 

* This option to adjust the cycle length to attempt to reach close to 120 DPA is used in early optimization 

analyses to try to converge earlier to more economic optimum solutions.  

** This sub-channel calculation step is skipped during the optimization workflow as its results are currently 

not used as hard constraints in the optimization, relying instead on SAS results from step #10.  

5. OPTIMIZATION RESULTS 

The first stage of the optimization was completed over 25-30 generations for a total of ~3000 solutions 

considered. The results of this optimization are shown in Figure 3, with normalized LCOE and core 

inventory values with respect to their values at the start of the optimization. Each point shown on this figure 

represents a fully characterized LFR design, where grey points failed at least one constraint, and blue/purple 

points met all constraints. Lighter blue points were considered in the earlier optimization generations, while 

purple points were found in later generations. This color transition helps show convergence of the 

optimization algorithms toward viable solutions with lowest fuel cycle LCOE and initial core fuel inventory 

costs. 

The two objective functions selected for this study (fuel LCOE and core inventory cost) evinced opposite 

optimization trends. This is attributable to the fact that a larger fuel inventory typically entails a larger core 

size, with fewer neutron leakages, lower enrichment and higher conversion ratio, and thereby improved 

initial fissile use which, even more so for HALEU cores, is a predominant factor in achieving better fuel 

economics; on the other hand, a larger fuel inventory negatively impacts first core costs. A larger fuel 

inventory also favors longer intervals between refueling, with reduced impact of the refueling outage on 

overall operating expenses, with further benefit on outage schedule from the lower fuel decay heat (from 

the reduced core power density) and wait time for fuel dry-lift. On the other hand, long cycles also entail 

higher in-core carrying charges (and relative impact on fuel LCOE) from the long fuel residence time and 

large reload costs, which eventually caps the achievable improvements in fuel LCOE.  

Multi-batch fuel management is preferred as enabling smaller fuel inventory, while favoring improved 

fissile use with respect to single-batch fuel management. Lower LCOE can also be obtained for solutions 

with higher operating temperature and thus thermal efficiency, which are more easily achieved reducing 

power density at the expense of higher core inventory and associated cost. A higher discharge burnup (still 

within the 120 DPA limit assumed) also enable lowering fuel LCOE. As a result of the many (and often 

competing) factors at play with respect to the set optimization goals, there are many design options that 

may enable reaching different types of optimal solutions. The optimization converges to a Pareto Front, 

with three groups of solutions identified: 

- Lower LCOE/Higher fuel inventory cost (upper region of the plot) 

- Medium values for LCOE and fuel inventory costs (center of the plot)  



- Higher LCOE/Lower fuel inventory cost (bottom/right of the plot) 

 

Figure 3. Optimization results for Stage 1 of the LFR with UO2 – blue-purple pass constraints / grey 

fail at least one constraint. 

From these three groups, optimal core design candidates can be extracted from the Pareto Front, such as 

“S1” (representative of lower LCOE/higher fuel inventory cost solutions), “S2” (medium LCOE and fuel 

inventory cost) “S3” (higher LCOE and lower fuel inventory costs) as shown in Figure 3. These solutions 

feature different combinations of design options and fuel management schemes to achieve the various 

optimization objectives. For instance, S1 features a relatively high core inventory with a 2-batch refueling 

scheme, a 4-year cycle length. On the other hand, S3 features about half the fuel inventory compared to S1, 

relying on same fuel management but higher U-235 enrichment to achieve half the cycle length of S1.  

Outside of these three main groups, a few outliers are still observed showing potentially interesting local 

minimum solutions. From these results, it is concluded that despite the judicious effort performed to reduce 

the size of the space, more work is needed to enable a fully converged optimization by increasing the 

number of initial solutions, and avoid reducing too quickly the number of evaluations for each new 

population.  

The optimum candidates can then be further optimized in a second stage by tuning the enrichment 

modification factors and cladding thickness to gain margins to different design constraints that are leveraged 

to increase coolant outlet temperature. This was demonstrated for one of the optimal candidates, where 

thanks to the second state of optimization it has been possible to raise the core outlet temperature by 25 oC 

with respect to the first-stage optimal design candidate (with resulting improvement in efficiency and LCOE) 

while reducing the fuel active length (thereby further reducing fuel inventory cost). Detailed core 

performance characteristics including results from the safety analyses will be covered in future publications. 



6. CONCLUSIONS 

A formal approach was developed to support design and optimization of the Westinghouse LFR core. It 

relies on a comprehensive and efficient analysis workflow that performs a suite of reactor physics, fuel 

performance, safety, and economics simulations for a selected LFR concept. This enables streamlined 

analyses of a wide range of LFR design configurations to efficiently assess their viability and economic 

performance, significantly reducing human processing time and risks of processing errors. The LFR 

analysis workflow was connected to DAKOTA for optimization analysis aiming at optimal fuel economic 

performance while meeting a wide range of design constraints (geometric, neutronics, thermo-mechanical, 

safety, thermal-hydraulics, and economics). 

This optimization approach enabled finding various viable core solutions that were considered by 

Westinghouse, with different LCOE versus first inventory cost tradeoff, enabling the selection of an 

optimum LFR solution with HALEU UO2 fuel. Follow-up work will focus on optimization of MOX- and 

UN-fueled LFR cores. 

The developed core design optimization approach enables reallocation of human/machine efforts for 

effective reactor design and analysis: after a front-end investment in workflow development, human effort 

in modeling different physics of early-stage core design solutions can be reduced through automation and 

concentrated in making strategic decisions.  
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