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ABSTRACT

Westinghouse is pursuing an advanced Nuclear Power Plant design based on Lead Fast Reactor
(LFR) technology for global commercialization. To achieve an optimal combination of key
attributes, such as safety, sustainability, and economic competitiveness, Westinghouse and ANL
partnered in developing and applying a formalized core design optimization strategy. An LFR
analysis workflow was developed to automate a suite of reactor physics, fuels performance, safety,
and economics simulations on a selected LFR concept. The workflow streamlines analysis of a wide
range of LFR designs with different dimensions and fuel types to assess their viability and economic
performance, significantly reducing human processing time and risks of processing errors. The LFR
optimization exercise was defined, resulting in selection of the design constraints (geometric,
neutronics, thermo-mechanical, safety, thermal-hydraulics, and economics) and performance
metrics researched (minimization of both the fuels LCOE and the first core inventory cost). A total
of 14 varied design parameters were considered, including assembly dimensions, coolant
temperature, and enrichment distribution throughout the core. The LFR analysis workflow was
connected to DAKOTA for sensitivity and optimization analyses. Due to the extremely large size of
the potential LFR optimization solution space relative to the computing time required to characterize
one LFR solution, a multi-stage optimization approach was proposed to breakdown the problem into
several stages with more reasonable sizes. This optimization approach enabled finding various
viable core solutions with different cost tradeoffs that were considered by Westinghouse and justify
selection of a smaller core with multi-batch 2-year cycle length.
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1. INTRODUCTION

Westinghouse is pursuing an advanced Nuclear Power Plant design based on Lead Fast Reactor (LFR)
technology for global commercialization [1]. To achieve an optimal combination of key attributes, such as
safety, sustainability, and economic competitiveness, Westinghouse and ANL partnered in completing a
core design optimization. ANL has acquired wide experience in advanced nuclear reactor core design
optimization that was applied to ABTR [2], Holos microreactors [3] [4], and initial work was completed on
an earlier version of the Westinghouse LFR [5]. Similar efforts are also underway by other groups on LFRs
[6] and applying optimization techniques to microreactors [7].

The work summarized in this paper enables effective optimization of an LFR core based on fuel economics
performance metrics by building on an extensive workflow, with streamlined execution of neutronics,
thermal-hydraulics, fuel rod performance and system analyses, to ensure viability of the core design options
being selected against a wide range of design constraints. This paper summarizes the optimization work,
with focus on method description while providing a set of representative results obtained.



The baseline LFR model employed for this effort is described in [8], featuring High Assay Low Enriched
Uranium (HALEU) UO: fuel, with radial and axial layouts shown in Figure 1. The core delivers a power
of 950 MWt core and it employs four radial enrichment zones, labeled “inner”, “middle”, “outer”, and
“external”, with increasing U-235 enrichment from the inner to the external zone. The fuel assemblies use
grid spacers to position the fuel pins within the duct. The fuel features two axial enrichment zones, with top
and bottom tip regions at higher U-235 enrichment, and middle zone at lower U-235 enrichment. Two
groups of control assemblies, defined as CP (primary control rods) and CS (secondary control rods), are
employed to compensate excess reactivity throughout the cycle, while also providing shutdown capabilities
independently from the other.

Radial Shield

Outer core Fuel

External core Fuel

Control rods (CS+CP - withdrawn)

Middle core Fuel
Inner core Fuel

Radial Lead Reflector

¢ e aply ol
1o el 5% ass® s gemdY
gia 1628 1o et orefU™ od not fuel 8° q
Ra tef dd\e yonef © on'u‘“” outer cor® adidl cnie!
Upper spring

Upper insulator

Upper fuel enrichment zone

Middle fuel enrichment zone

““ Lower fuel enrichment zone
Lower insulator

Lower gas plenum

Figure 1. Radial (above) and axial (below) layout of the baseline LFR core.




2. METHODS AND TOOLS

A wide range of calculation tools are used in this project to enable detailed LFR analysis, covering
neutronics, thermal-hydraulics, fuel performance, safety analysis, and economics evaluation. WATTS
(Workflow and Template Toolkit for Simulation) [9] is used to automate the LFR modeling workflow,
connecting tools together with required pre/post-processing capabilities into a combined Python script.
WATTS is a generic open-source workflow management tool developed at ANL.

2.1. DAKOTA [10]

The Dakota software maintained by Sandia National Laboratory is an uncertainty quantification and
optimization toolkit with over 20 years of development. Dakota provides advanced mathematical methods
to vary a code’s input parameters and analyze the output results, enabling multi-objective optimization and
uncertainty quantification analysis. The core optimization is performed with a multi-objective genetic
algorithm (MOGA) and direct physics simulation. MOGA is used based on extensive experience applied at
ANL on various previous core design optimization projects.

2.2. PyARC and ARC

The ARC codes have been developed at ANL for over 60 years and some of the components have been used
all over the world. The main parts of ARC used for this analysis include MC2-3 [11] [12], DIF3D [13],
GAMSOR [14], PERSENT [15], and DASSH [16]. The ENDF/B-VII.O0 nuclear data library [17] is used for
this application. For this project, the ARC codes are executed within the PyARC module [18] that handles
input pre-processing, workflow execution, and results processing.

The deterministic options used for LFR modeling were selected following the recommendations derived
from benchmark analyses performed in [8]. For MCZ23, cross-sections are processed with a 1D
heterogeneous model, to condense them into 33 energy groups. For DIF3D, VARIANT is used as main
solver for every calculation, using diffusion P1P0 options.

2.3.  SAS for fuels performance and safety analysis [19]

The SAS4A/SASSYS-1 (SAS) code [19] is a multi-physics system analysis code developed for safety
evaluation of liquid-metal fast reactors. SAS is actively used at Westinghouse for LFR safety analyses [20].
SAS is used in this project for fuel performance (with DEFORM-4 module) and safety analysis under
steady-state and unprotected transient conditions. The DEFORM-4 module of SAS simulates oxide fuel
behavior for normal operation and transients and was recently verified and validated on LFR fuel pins.

2.4.  Westinghouse economic script

A Python-based methodology to calculate fuel costs and related impact on Levelized Cost of Electricity
(LCOE) developed by Westinghouse has been implemented in the workflow [21]. It streamlines calculation
of cash flows and timing for each category of plant operation cost and discounts (or escalates) these values
back to a reference date, allowing consistent comparison of the economic performance of various core
design candidates with respect to operating expenses, and namely fuel expenses, including refueling outage
costs.

More specifically, pre-operational, operational and post-operational costs associated with the nuclear fuel
cycle are calculated. The pre-operational costs, for HALEU fuel, include purchase of UsOs, conversion,
enrichment and fabrication. The cost of each uranium commodity component is computed using time
dependent values from a price forwarding model. The resulting pre-operational cost is the undepreciated
asset value of the fuel prior to operation. The operational phase involves the evaluation of electric



generation and the burnup depreciation of the fuel. The fuel asset is depreciated as burnup is accrued up to
final discharge (for HALEU fuel and in the current open fuel cycle assumed in the analysis). The time
dependent fuel asset value is used to compute the in-core carrying costs required to evaluate the return on
the undepreciated fuel asset as it is irradiated through multiple cycles in the reactor. Finally, spent fuel
storage and disposal costs for the post-operational phase of the fuel cycle are calculated, and discounted to
the reference date.

The fuel LCOE is then calculated by adding pre-operational, operational and post-operational costs divided
by the amount of energy produced (discounted by inflation) by the fuel during its residence time in the
reactor. Outage expenses, which vary for the various scenarios evaluated as a result of the different fuel
management schemes and time intervals between refueling, are also accounted for in terms of maintenance
personnel cost and replacement power that needs to be purchased during outages. The outage length
accounts for the wait time to safely dry-lift fuel assemblies, which depends on their decay heat and geometry,
and is calculated as part of the workflow developed for this work, as discussed in Section 4. In this way,
fuel cycle and outage expenses for various scenarios can be calculated over a consistent period of time (e.g.
the reactor lifetime) and compared as part of determining economically optimal candidates.

3. OPTIMIZATION METHOD

The overall design analysis approach applied to the Westinghouse LFR is summarized in Figure 2.
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Number of pin rings (Section 5) « Safety performance and shutdown margins
Number of assembly rings + Thermal-hydraulics
Number of control rods (Section 3)
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Automated WATTS Workflow
(Section 4)

Figure 2. Summary of LFR design approach.

There are two objective functions that have been selected to be optimized (e.g. minimized) for the LFR
core:

- LCOE ($/MWh). Note that for discriminating economic performance of the various core designs,
only fuel cycle cost plus outage expenses needed to be accounted for, as the remaining components
of the overall plant LCOE is not affected by the specific core design solution being proposed (within
the assumed boundary condition of this analysis of a fixed barrel size). This metric is linked to
many other performance metrics such as fuel burnup, outage length, and thermal efficiency, which
may change for the various core designs analyzed according to the core-average lead outlet
temperature that each can support.

- Cost of initial (startup) core fuel inventory (M$). This metric is linked to the total mass of fuel and
fissile content in the core needed to reach criticality throughout the first cycle. While for single-
batch designs it was possible to accurately calculate this performance metric, as it coincides with
the cost of reloads, for multi-batch designs first core cost was calculated in a conservative fashion
multiplying the cost of a reload at the equilibrium cycle, by the number of batches.



3.1.  Design Constraints

The design constraints selected for this optimization exercise are summarized in Table 1. These are “hard”
constraints, meaning that a core solution that fails to meet one of these requirements during the optimization
workflow will be disregarded. Note that specifics relating to calculation steps will be discussed in detail
later in section 4.

Table 1. Summary of core design constraints.

Constraint Unit Limit Calc
Step
Geometry / Neutronics
Max. core barrel radius m 1.93 (cold) 1
Max. fuel assembly weight MT 3 1
Max. U-235 enrichment w% 19.75 2
Min. control margin $ 0 4
Min. safety margin $ 0 4
Thermo-mechanical
Max. clad thermal creep (steady-state) % 0.2 10
Max. clad strain (steady-state) % 2 10
Max. CDF* (steady-state) % 0.05 10
Safety
Max. rod ejection worth $ 1 4
Max. RV temperature (transient) °C 750 10
Max. CDF* (transient) % 0.1 10
Max. fuel temp (transient) °C 2865 10
Thermal Hydraulics
Max. fuel temp (steady-state) °C 2765 10
Max. coolant velocity m/s 2
Economics
First core cost Normalized** 1.25 8

* CDF: Cumulative creep Damage Fraction

** refer to Figure 3
3.2. Varied Parameters

The core design parameters to be varied during the optimization workflow were identified (as listed in
Figure 2), together with their range of interest. There are 15 different variables, some with a range of
discrete or continuous values, others with Boolean-type options. This relatively extensive list of parameters
has then been reduced after sensitivity analysis performed as part of various rounds of optimization. From
these input variables, the relevant LFR design dimensions are being derived and used to setup the different
PyARC and SAS models. An initial sensitivity analysis completed showed that only about 7% of the cases
were passing all design constraints, the rest failing in Step #0 (due to the maximum core radius constraint),
#1 (due to the maximum U-235 enrichment constraint), #5 (due to excessive coolant velocity), and #10
(due to exceeding the CDF limits in steady-state and ULOSSP transients).

For the optimization calculation, the main parameters to adjust are the number of initial samples (first
generation) and maximum number of samples allowed. An initial good scan of the space ensures not to miss
areas of interest and convergence to a local optimum solution. For the LFR workflow analysis, the size of



the problem had to be constrained accounting for the time required to converge one simulation using the
available computing resources. For practicality, a maximum number of 3,000 simulations was targeted so
that completion of an optimization round could be performed within 30 days. The full range of combinations
to sample for the LFR core design optimization is extremely aggressive with more than 10'? potential
options to consider. To be able to ensure full coverage of the design space, one would need around half a
million simulations of the LFR workflow, which is unrealistic under current computing constraints. Using
a small number of initial simulations will most likely lead to not properly investigating the full design space
and result in convergence to local minima. Expert judgement informed from the early experience
performing many initial simulations was used to reduce the size of the problem through prioritization of
parameters, breaking down the problem into two successive smaller stages:

- First Stage: the initial stage focuses on wide range analysis across the geometry space. However,
many variables were fixed, due to their expected lower impact on the LFR key performance metrics,
using reference value as fixed points. In this case, the cycle length is researched to target material
dose close to (but less than) the “soft” 120 DPA cladding limit as higher DPA levels are expected
to fail “hard” CDF limits set for this core design optimization effort. Thanks to this judicious choice,
the size of the solution space in this first stage could be significantly reduced, resulting in an initial
population of 300 cases.

- Second Stage: The second stage consists in refining the optimization of the preferred solution
among the best candidates obtained in Stage 1. Accordingly, most of the parameters varied in Stage
1 are fixed in Stage 2, or their ranges are reduced. New sets of parameters (such as the enrichment
modification factors across different axial and radial core regions) are varied around the value from
the Stage 1 solution to attain further performance improvements. Once again, the space size could
be kept at a reasonable size with this approach, allowing to select an initial population of 300 cases
also for Stage 2 optimization simulations.

4. OVERVIEW OF THE LFR ANALYSIS WORKFLOW

The LFR optimization relies on an automated LFR analysis workflow that takes about three hours to
complete (if design constraints are not violated sooner) using one CPU for a single candidate core. This
allows thorough assessment of the viability and performance of a design candidate, using traditional fidelity
modeling capabilities.

This comprehensive 10-step workflow is summarized in Table 2, showing the codes employed in each step
together with key tasks achieved, output from the analysis and the approximate CPU time required to
perform it. While one workflow calculation typically requires running all the steps consecutively, the
workflow stops whenever it detects a failed hard constraint, helping to save computation time on unviable
cases.

Table 2. Summary of multi-step WATTS workflow developed for LFR analysis.

Step Codes Task Output CPU T Ime
(min)
1 Python Pre—pro_cessw_lg of core Cold/Ho_t dlmen3|9ns 0
dimensions Geometric constraints
2 MC2-3 Initial XS calculation and Reloading enrichment and BOEC composition 25
REBUS enrichment search calculation ~ Cycle length adjusted to stay below 120DPA *
DIF3D S-curve calculations S-curve
DIF3D Shutdown margin calculations Shutdown margin requirements
5 REBUS Depletion with CR at critical Critical rods position 20
ORIGEN position Decay heat curve




. Power distribution
6 GAMSOR  Gamma heating (BOL/EOL) Average flow rate in different regions 25
REBUS

Sub-channel calculation Pressure drop
*x
! GI'DA‘ A'\\/ISZ%R (BOL/EOL) Peak pin/cladding temperature constraints 0
. Liftoff time, thermal .
Economics . Outage duration
8 . efficiency, and fuel cost 0
script calculations LCOE & Inventory cost
MC2:3 Perturbation calculations
9 DIF3D (EOL) Reactivity coefficients for SAS 60
PERSENT

Fuels Performance Steady-state fuels performance

10 SAS . . Transients (PLOSSP, ULOSSP, UTOP) 30
Safety transients calculations
performance

* This option to adjust the cycle length to attempt to reach close to 120 DPA is used in early optimization
analyses to try to converge earlier to more economic optimum solutions.

** This sub-channel calculation step is skipped during the optimization workflow as its results are currently
not used as hard constraints in the optimization, relying instead on SAS results from step #10.

5. OPTIMIZATION RESULTS

The first stage of the optimization was completed over 25-30 generations for a total of ~3000 solutions
considered. The results of this optimization are shown in Figure 3, with normalized LCOE and core
inventory values with respect to their values at the start of the optimization. Each point shown on this figure
represents a fully characterized LFR design, where grey points failed at least one constraint, and blue/purple
points met all constraints. Lighter blue points were considered in the earlier optimization generations, while
purple points were found in later generations. This color transition helps show convergence of the
optimization algorithms toward viable solutions with lowest fuel cycle LCOE and initial core fuel inventory
costs.

The two objective functions selected for this study (fuel LCOE and core inventory cost) evinced opposite
optimization trends. This is attributable to the fact that a larger fuel inventory typically entails a larger core
size, with fewer neutron leakages, lower enrichment and higher conversion ratio, and thereby improved
initial fissile use which, even more so for HALEU cores, is a predominant factor in achieving better fuel
economics; on the other hand, a larger fuel inventory negatively impacts first core costs. A larger fuel
inventory also favors longer intervals between refueling, with reduced impact of the refueling outage on
overall operating expenses, with further benefit on outage schedule from the lower fuel decay heat (from
the reduced core power density) and wait time for fuel dry-lift. On the other hand, long cycles also entail
higher in-core carrying charges (and relative impact on fuel LCOE) from the long fuel residence time and
large reload costs, which eventually caps the achievable improvements in fuel LCOE.

Multi-batch fuel management is preferred as enabling smaller fuel inventory, while favoring improved
fissile use with respect to single-batch fuel management. Lower LCOE can also be obtained for solutions
with higher operating temperature and thus thermal efficiency, which are more easily achieved reducing
power density at the expense of higher core inventory and associated cost. A higher discharge burnup (still
within the 120 DPA limit assumed) also enable lowering fuel LCOE. As a result of the many (and often
competing) factors at play with respect to the set optimization goals, there are many design options that
may enable reaching different types of optimal solutions. The optimization converges to a Pareto Front,
with three groups of solutions identified:

- Lower LCOE/Higher fuel inventory cost (upper region of the plot)
- Medium values for LCOE and fuel inventory costs (center of the plot)



- Higher LCOE/Lower fuel inventory cost (bottom/right of the plot)
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Figure 3. Optimization results for Stage 1 of the LFR with UO; — blue-purple pass constraints / grey
fail at least one constraint.

From these three groups, optimal core design candidates can be extracted from the Pareto Front, such as
“S1” (representative of lower LCOFE/higher fuel inventory cost solutions), “S2” (medium LCOE and fuel
inventory cost) “S3” (higher LCOE and lower fuel inventory costs) as shown in Figure 3. These solutions
feature different combinations of design options and fuel management schemes to achieve the various
optimization objectives. For instance, S1 features a relatively high core inventory with a 2-batch refueling
scheme, a 4-year cycle length. On the other hand, S3 features about half the fuel inventory compared to S1,
relying on same fuel management but higher U-235 enrichment to achieve half the cycle length of S1.

Outside of these three main groups, a few outliers are still observed showing potentially interesting local
minimum solutions. From these results, it is concluded that despite the judicious effort performed to reduce
the size of the space, more work is needed to enable a fully converged optimization by increasing the
number of initial solutions, and avoid reducing too quickly the number of evaluations for each new
population.

The optimum candidates can then be further optimized in a second stage by tuning the enrichment
modification factors and cladding thickness to gain margins to different design constraints that are leveraged
to increase coolant outlet temperature. This was demonstrated for one of the optimal candidates, where
thanks to the second state of optimization it has been possible to raise the core outlet temperature by 25 °C
with respect to the first-stage optimal design candidate (with resulting improvement in efficiency and LCOE)
while reducing the fuel active length (thereby further reducing fuel inventory cost). Detailed core
performance characteristics including results from the safety analyses will be covered in future publications.



6. CONCLUSIONS

A formal approach was developed to support design and optimization of the Westinghouse LFR core. It
relies on a comprehensive and efficient analysis workflow that performs a suite of reactor physics, fuel
performance, safety, and economics simulations for a selected LFR concept. This enables streamlined
analyses of a wide range of LFR design configurations to efficiently assess their viability and economic
performance, significantly reducing human processing time and risks of processing errors. The LFR
analysis workflow was connected to DAKOTA for optimization analysis aiming at optimal fuel economic
performance while meeting a wide range of design constraints (geometric, neutronics, thermo-mechanical,
safety, thermal-hydraulics, and economics).

This optimization approach enabled finding various viable core solutions that were considered by
Westinghouse, with different LCOE versus first inventory cost tradeoff, enabling the selection of an
optimum LFR solution with HALEU UQO:; fuel. Follow-up work will focus on optimization of MOX- and
UN-fueled LFR cores.

The developed core design optimization approach enables reallocation of human/machine efforts for
effective reactor design and analysis: after a front-end investment in workflow development, human effort
in modeling different physics of early-stage core design solutions can be reduced through automation and
concentrated in making strategic decisions.
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