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A FINITE ELEMENT COMPUTER PROGRAM
FOR NONLINEAR QUASI-STATIC PROBLEMS
IN ELECTROMAGNETICS

PART I - THEORETICAL BACKGROUND

David K. Gartling
Engineering Sciences Center
Sandia National Laboratories

Albuquerque, New Mexico 87185

ABSTRACT

The theoretical and numerical background for the finite element computer program,
TORO 11, is presented in detail. TORO II is designed for the multi-dimensional anal-
ysis of nonlinear, electromagnetic field problems described by the quasi-static form of
Maxwell’s equations. A general description of the boundary value problems treated by
the program is presented. The finite element formulation and the associated numerical
methods used in TORO II are also outlined. Instructions for use of the code are docu-
mented in SAND96-0903; examples of problems analyzed with the code are also provided
in the user’s manual.
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1 Introduction

The simulation of electric and magnetic fields is of significant interest for a variety of
engineering applications. Obviously, traditional electrical engineering design and anal-
ysis problems are primary candidates for the use of such numerical simulation capabil-
ity. However, the increasingly widespread need to perform multidiscplinary and systems
analyses has expanded the requirement for electromagnetic field computations beyond
the strict electrical device applications to less traditional application areas.

The purpose for developing the finite element code described here, TORO, was to
provide an electromagnetic (EM) field simulation capability that could be easily coupled
to other types of applied mechanics codes. Though the capabilities of TORO could be
exercised on standard electrical engineering problems the primary intent of the code was
to provide the appropriate EM forcing functions for coupled mechanics problems involving
solid, fluid and/or thermal analyses. TORO was designed to address a limited class of
EM problems, including static and quasi-static fields, with a user-oriented input format
that was easy to learn and remember. The code structure follows previously developed
finite element codes for fluid and thermal applications [1,2,3].

The present document describes the theoretical and numerical background for the
TORO II program. This volume is intended as a background document for the user’s
manual found in [4]. Potential users of TORO II are encouraged to become familiar with
the present report before using the program.

In the following section the initial-boundary value problems treated by TORO II are
described. Section 3 presents a brief description of the finite element method (FEM)
and its application to the current problem. Sections 4 and 5 outline the computational
techniques that are involved in forming the individual element equations and the equation
solution procedures needed for the various static and dynamic problems. The last section
outlines the auxiliary calculation procedures found in the code to perform flux, force and
volume heating computations.




2 Formulation of the Basic Equations

TORO II was primarily developed for the solution of multi-dimensional, nonlinear, static
and quasi-static, electromagnetic (EM) field problems. Within this broad definition are
included problems in electrostatics, magnetostatics and time dependent diffusion prob-
lems such as eddy currents. Specifically excluded from the current formulation are EM
fields involving wave propagation. The results from TORO II simulations are designed to
be used directly as forces and volume heat sources in other mechanics code applications.

In the following section the equations describing the basic electromagnetic field prob-
lem will be outlined along with the limiting assumptions used in developing TORO IL
A subsequent section will discuss all relevant boundary and material interface conditions
for the EM problem as expressed in both fundamental (primitive) variables and in the
potential variables used in the numerical formulation. The questions associated with a
gauge condition for the potential variables are also outlined. The theoretical development
in ‘each section will treat the general three-dimensional problem; the two-dimensional,
planar case follows in a straightforward manner. Details of the development for axisym-
metric geometries are covered in an Appendix. Also, most of the equation derivation will
be for the eddy current problem with the static field problems developed as subsets of
the more general case. )

2.1 Maxwell’s Equations

The appropriate mathematical description of electromagnetic phenomena in a conducting
material region, Q¢, is given by Maxwell’s equations. In rational MKSA notation these
equations.are expressed as [5,6,7]

oB
VXE——E’ (1)

oD
VXH—-J-l—-ét— (2)
V-B=0 (3)
V-D=p 4)

where the vector field variables are the electric field intensity, E, the magnetic field
intensity, H, the magnetic flux density, B, the electric flux (displacement) density, D,
the conduction current density, J and the scalar source charge density, p. Typically,
equation (1) is referred to as Faraday’s law, equation (2) is Ampere’s law (as modified
by Maxwell) and equation (4) is Coulomb’s law. A continuity condition on the current
density is also defined by

vI=2 -




Note that only three of the above five equations are independent; the combinations
(1), (2) and (4) or (1), (2) and (5) form valid descriptions of the fields. To complete
the formulation, the constitutive relations for the material are required. The fluxes are
related to the field variables by

D=¢y E=¢-E (6)
B=poyr - H=p-H or H=yw-B=v-B (7)
J=0-E+o0-(uxB) (8)

where ¢ is the permittivity of the material, p is the permeability, v is the reluctivity and
o is the conductivity. In equations (6) and (7) the subscripts r and 0 on the material
coefficients represent relative and base (or free space) values, repsectively. Note also that
in general the material properties are tensorial in nature and may be field dependent
and anisotropic; some properties may also exhibit hysteris effects. In equation (8) the
second term gives the current induced by the motion of a conductor with velocity u in the
presence of a magnetic field. For many problems of interest this term is identically zero
or relatively small. The above equations have been written for the case of a conducting
medium; the system can be simplified for the case of free space and this will be done
explicitly in a later section.

2.2 Electromagnetic Forces and Volume Heating

The coupling of electromagnetic fields with other types of problems in continuum me-
chanics occurs through the dependence of material properties on EM field quantities
and the production of EM induced body forces and volumetric energy production. The
Lorentz or body force in a charged conductor due to the presence of electric and magnetic
fields is given by

Fp=pE+JxB (9)

where in the general case the current is defined by equation (8). The first term on the
right-hand-side of equation (9) is the electric field contribution to the Lorentz force; the
magnetic J x B is usually of more interest in applied mechanics problems. The energy
generation or Joule heating in a conductor is described by

Q;=3-E (10)

which takes on a more familiar form if the simplified form (u = 0) of (8) is used to
produce
Q=01 (11)

The above forces and heat source are of primary importance in fluid, thermal and struc-
tural mechanics and form part of the primary output of the TORO II code.




2.3 Quasi-static Approximation

For good conductors, the conduction current, J, is large compared to the displacement
current, D, for most frequencies of interest. Neglecting the displacement current allows
Ampere’s law (2) to be simplified and Coulomb’s law (4) to be omitted (Coulomb’s law is
essential to the electrostatic case as shown later). Also, the continuity relation is simpified
since the divergence of V x H is zero by an identity. The omission of the displacement
current is termed a quasi-static approximation since the propagation of electromagnetic
waves is precluded. Under this assumption Maxwell’s equations for a conducting region
become

0B
E=— 12
V x 5 (12)
VxH=J (13)
V-B=0 (14)
The continuity condition is

V-J=0 (15)

The required constitutive relations are again
B=p-H or H=v-B - (16)
J=0-E+oc-(uxB) o J=0-E (17)

The above EM field description was developed for a conductive material region with-
out regard for the possible presence of conductors with specified source currents or elec-
trically nonconductive (dielectric) materials. The general problem of interest may include
multiple material types and is shown schematically in Figure 1. For purposes of iden-
tification, conducting regions are labeled Q¢, conducting regions with a specfied source
current, Js, are indicated by 7 and dielectric (electrically insulated or free space) regions
are labeled Qp. The equation set in (12)-(15) may be made specific for each of these
particular regions.

Conduction Region, (¢

oB
VXE=——
% Bt
VxH=J
V-B=0
V:-J=0

Conduction Region with Source Current, Sy

VxH=Js
V-B=0




Source Current
{Conductor)

Eddy Current
(Conductor)

ce

Eddy Current
(Conductor)

Eddy Current
(Conductor)

Dielectric/Free Space Region, Qp

Equations (16) and (17) are applicable in all three regions as stated.

It is clear from the above specification that the magnetic fields are required in all
of the material regions. The electric field must be found only in conductors subject to
induced (eddy) currents; the electric fields in other regions are either known, assumed or
do not exist. This variation in the number of equations between regions is significant to
the selection of appropriate computational variables and a computational procedure.

The general field equations and constitutive relations outlined above form the theoret-
ical basis for the TORO II code; the force and heat source definitions in (9) and (10) are
also included in this formulation. To complete the initial-boundary value specification,
appropriate boundary conditions and conditions at material interfaces must be defined.
Following a discussion of these conditions, the above equation set will be rewritten in

VxH=0

V.-B=0

terms of variables that are more suitable for computation.

Figure 1: Schematic of regions for general electromagnetic field problem.



2.4 Boundary and Interface Conditions

Boundary and interface conditions for the quasi-static, electromagnetic field problem are
most easily described by reference to the generic domain shown in Figure 1. The region
€ is composed of a number of different materials (Q = Q¢ U Qs U Qp), several of which
are illustrated in Figure 1. The boundary or interface between two conductors is denoted
by 'ce while the boundary between a dielectric or free space region and a conductor is
labeled I'pe. Note that since the equations for 7 and Qp are the same except for a
source function, no specific designation for an interface between these regions is required.
The external boundary of the entire domain (2 is defined by I’ which may be composed
of one or more well defined segments. A two-dimensional representation of the region is
used for simplicity.

The electromagnetic problem requires that on the exterior free space boundary either
the magnetic flux or the magnetic field be specified at all points of the boundary, I'. In
equation form these conditions are given by

B-n=f5(s;,1) on Tp (18)
Hxn=f%(s,t) on Ty (19)

In equations (18) and (19) the fZ and fH functions are specified values of the known
boundary magnetic flux and magnetic field. Also, n is the outward unit normal to the
boundary I, s; are coordinates defined on the boundary, ¢ is the time and I'=T's UT'y.
The functions f2 and f¥ are generally simple expressions for most boundaries of practical
interest. When a conductor forms part of the external boundary the above conditions
are augmented with a condition on the current flux or the electric field. That is

J-n=f(s;1t) on T; (20)
E x n = f¥(s;, 1) on T'g (21)

Along a material interface, such as I'cc or I'pe , the usual assumption is that the
normal component of the magnetic flux is continuous and the tangential component of
the magnetic field is discontinuous by an amount equal to the surface current, Js. These
conditions are specified by

(B2—B1)'n=0 on T'ce,I'pe (22)

(Hz - H]_) Xn= Js on Pcc, PDC (23)
where the subscripts 1 and 2 indicate variables evaluated on either side of the interface.
In many cases the surface current is not important and may be neglected.

The divergence and curl relations for the electric field also provide two conditions at a
material interface. In this case the normal component of the current density is continuous
and the tangential components of the electric field are continuous. That is

(Jz—J1)°n=0 on FCC (24)




(Ez — El) xn=0 on Fcc (25)

for the boundary between two conductors and
Jz ‘n=0 on PDC (26)

Ez Xxn=20 on FDC (27)

for the boundary between a very good conductor and a dielectric where the subscript 2
refers to the conducting region.

2.5 Electromagnetic Potentials

For many static and quasi-static applications it is usual to introduce a set of potential
functions to represent the electric and magnetic field variables and reduce the number
of partial differential equations requiring solution. Two basic systems of potentials may
be considered: a) the electric scalar potential, V' and a magnetic vector potential, A
and b) the electric vector potential, T and the scalar magnetic potential, ). The T,
formulation is of limited value for general analyses since there are significant difficulties in
representing multiply-connected domains. Though the A,V formulation generally leads
to a larger number of differential equations, it is preferred for numerical computation due
to its complete generality. The A,V potentials form the basis for the TORO II code.

From the condition V - B = 0, it follows that B is derivable from a vector potential.
By definition then
B=VxA (28)

where A is the magnetic vector potential. In addition, from Faraday’s law (12)

0B 9(VxA)
VXE__é‘t =" %

Vv x (E+—aﬁ> =0 (29)

or rearranging

ot

For a scalar V, the vector identity V x VV = 0 holds and allows the following definition
to be derived from equation (29)

oA

—-VV=E+ 5t

or aA
E=-VV - >t (30)

where V is the electric scalar potential. The definitions in (28) and (30) may be used in
the appropriate forms of Ampere’s law and the current continuity equation to produce
the needed field equations for A and V in conductors and in free space regions.




Using the constitutive relation (16b) and the definition in (28), Ampere’s law in
equation (13) can be written as

Vx ¥ -VxA)y=J=0-E

where Ohm’s law for a stationary conductor (17b) has also been used on the right-hand-
side. Substituting the definition in (30) then produces

Vx(zx-VxA):—a.%—?—a-VV (31)
In addition, the current continuity equation (15) can be written in terms of A and V by

use of (17b) and (30). That is,

v(—a-VV—a-%—‘:‘):o (32)

Equations (31) and (32) describe the general, quasi-static electromagnetic field problem
of interest in terms of the magnetic vector potential, A and electric scalar potential V.

The general problem outlined above may now be specialized to particular material re-
gions and types of current specifications. For conduction regions without source currents,
both equations (31) and (32) are generally required to describe both the electric and mag-
netic fields. Conduction regions that have specified currents require some alteration of
(31)-(32) depending on the form of the current source [8]. Electric currents described by
distributions of the electric potential require no alteration to the equation set since this
specification would appear as a boundary condition on the variable V. However, when
current densities are specified, these are identified with Ohm’s law and the last term on
the right-hand-side of (31) is rewritten to produce

Vx(v-VxA)=—a-%—?+Js. (33)
Also, equation (32) is no longer required in the source region since the imposed current
density is assumed to be divergence free. This formulation for imposed current densities
is not universal. In some developments the entire right-hand-side of (31) is identified
as the source current. This has the effect of eliminating any temporal variation of the
A field from the current source. The formulation in TORO II retains the distinction
between Js and the induced currents —o - (9A/8t); a specified current density is assumed
to mean that Js is known within the conductor. The equations needed for free space or
dielectric regions are simply those of (31) with o set to zero; equation (32) is not required
as no electric fields are considered. Finally, note that simplification of the equations
for all regions is possible for problems of reduced dimensionality. If the geometry is
two-dimensional (planar or axisymmetric) and the currents and potential gradients are
oriented orthogonal to the plane, then equation (32) is not required and (31) reduces to
a single equation for the remaining (axial) component of the magnetic potential.




2.6 Boundary and Interface Conditions for Potentials

The boundary conditions for the general, quasi-static EM problem expressed in terms of
potentials follow directly from the boundary conditions written in terms of the primitive
variables (see Section 2.4). On an external boundary where the normal component of
the magnetic flux is specified, the relevant condition is

B-n=(VxA) n=fB(s;,1) on I'p (34)

An external boundary with specified tangential components of the magnetic field is trans-
formed to

Hxn=@ -B)xn=( -V xA)xn=f(s,1) on Ty (35)
For a conductor that has an external boundary

J-n=a-E-n=(—a-—a£—a-VV)-n=fJ(si,t) on Iy (36)

Along a material interface similar conditions must be enforced. For the magnetic
field the normal component of the B field is continuous which implies that the curl of
the magnetic potential is continuous

-(B2—B1)-n=(VxA; —VxAz)-n=0 on Tee,T'pe (37)
Also, the tangential components of the H field are discontinuous which leads to
(He—H;))xn=(n -VxA;—12-VxA)xn=Jg on Tce,lpec  (38)
For the electrical problem, the general condition at a material interface is given by

(J2—-J1) n=(02-Ex—07-E;)-n=

ot ot

Equation (39) is simplified when the boundary is between a conductor and a nonconduc-
tor.

(_02..3_1’2_02.VV2+01.%1_+01-VV1)-n=0 on Tec (39)

2.7 Gauge Conditions

The quasi-static form of Maxwell’s equations are given by (31)-(33) in terms of the
magnetic and electric potentials. The original or primitive variable form of Maxwell’s
equations (12)-(14) can be shown to provide unique solutions for the B and E fields
when appropriate boundary conditions are specified. However, with the introduction of




the potential variables, uniqueness of the solution is not retained — equations (31) and (33)
define the curl of A, but A itself is only defined up to the gradient of an arbitrary scalar
function. Typically this arbitrariness in A is resolved by defining the divergence of A
and supplying appropriate boundary conditions for A (rather than boundary conditions
for the curl of A). The incorporation of a V - A constraint, termed gauging, may be
accomplished in any of several ways. The Coulomb gauge is one particular choice that
has found extensive use in numerical simulation methods. In this case the magnetic
vector potential is made unique by the constraint

V-A=0 (40)

Other choices for the gauge condition, such as the Lorentz gauge, select a nonhomoge-
neous form for (40). Note that in some cases of reduced dimensionality, the explicit use
of (40) is not required since A is automatically divergence free.

The actual implementation of (40) in a numerical method may take any of several
forms, including modification of the field equations, penalty methods, projection methods
and the construction of divergence free basis functions [7,8,9,10]. All of these techniques
incur a computational penalty in terms of either additional work or the modification of
the equation system to a less desirable form. The finite element scheme in TORO Il is
based on a projection method which is outlined here. Assume that ‘A* is a solution to
the unconstrained field equations given by (31)-(33). If the unique value of A can differ
from the nonunique value by the gradient of an arbitrary scalar, then define

A=A"+VS (41)
Substituting (41) into the gauge condition (40) provides
V.VS=-V-.A* (42)

With appropriate boundary conditions equation (42) can be used to determine S and
from (41) the unique, divergence-free potential, A..

In some applications a unique value of the magnetic potential is not required and
the above computation may be elminated. In particular, if the magnetic field is time
independent, then all field quantities are related to the curl of A and the scalar function
S is not required. However, for the time dependent case, the electric field E is related to
the time derivative of A in equation (30) and the A field must be unique.

2.8 Time-Harmonic Problems

The general time-dependent equations given in (31)-(33) are applicable to any type of
time varying field problem. However, in the often encountered, special case of a single
frequency, time-harmonic excitation (e.g., alternating current) the equations may be

10




simplified through use of a phasor representation. Let any specified current densities
be represented as a time harmonic excitation and assume that the electric scalar and
magnetic vector potentials have a time-harmonic form that can be represented as

Jo=Jgp e = (IR +iT0) £

V= % eiwt — (VR+1,VI) eiwt : A= Aoeiwt — (AR +’&A.I) ez'wt (43)
where w is the circular frequency (= 27f, f is the imposed AC frequency in Hz), 7 = /-1
and t is the time. The superscripts R and I denote the real and imaginary components

of a variable. Then substituting (43) into (31) and (32) and eliminating the common
exponential factor produces

Vx(:VxAg)+iwcAg+o:-VVy=0 (44)
V-(0-VVs+iwo-Ag) =0 (45)

and for conduction regions with source currents (33) produces
VX (v-V X Ap)+iwcAg=1Js, (46)

These complex equations now describe the amplitudes for the potentials. Note that
the boundary conditions for ¥V and A must also be expressed in-terms of the harmonic
approximation given in (43). Implicit in the use of the phasor representation is the
assumption that material properties are independent of the temporal behavior of the
electromagnetic fields. This is a particularly stringent requirement that is violated when
considering high field applications such as induction heating or any type of ferromagnetic
material.

2.9 .Static Field Problems

Within the general framework established above, a number of simpler static problems
may also be defined. Each of these problem classes may have importance in the context of
coupling with other mechanics problems or as standalone analyses in electromagnetics.
As subclasses of the general formulation they may be solved with many of the same
numerical techniques as the eddy current problem and are available as options in the
TORO II code.

2.9.1 ZHlectrostatics

The electrostatic problem is described by Coulomb’s law (4) and the definition of the
electric potential. Combining equation (4) with the steady form of (30) and using the
constitutive relation in (6) produces

V(e-VV)=—p (47)

11




where p is the spatial distribution of electric charge. Boundary conditions for electro-
statics generally involve specification of the potential, V, or the definition of the flux
normal to the boundary (i.e., the normal derivative of the potential). When the spatial
variation of the potential has been determined the electric field E may be found from
equation (30) and the current from the static form of (8). Also, the Joule heating could
be derived from equation (11).

2.9.2 Steady Current Flow

For time-independent problems the system in (31)-(33) becomes decoupled and the cur-
rent continuity condition (32) may be written as

V.(—c-VV)=0 (48)

with

J=—0-VV (49)
The equations in (48)-(49) describe steady electric currents within a conductor. Boundary
conditions on the system would normally include specification of the electric potential
(voltage) over part of the boundary and/or the current flux normal to the boundary,
i.e. %‘Tf. Once the current distribution has been found then the Joule heating could be
recovered from the definition in equation (11).

2.9.3 Magnetostatics

Ampere’s law (31) or (33) for the time-independent case becomes
Vx@-VxA)=—0:-VV =1 (50)

This describes the magnetic field due to specified current distributions Js. Note that the
conduction currents could be specified directly or computed from the steady current flow
equation (48) for the electric potential. When the magnetic potential is known, then the
magnetic field B may be computed from its definition in (28). In addition, the Lorentz
forces can be found from equation (9).

12




3 Finite Element Equations

The spatial discretization of the boundary value problem outlined in Section 2 by use of
the finite element method may be approached by either of two procedures. One popular
approach consists of rewriting the boundary value problem in a variational form for use
with the finite element approximation. An equivalent method uses the Galerkin form of
the method of weighted residuals to create an integral form of the basic field equations.
This latter method is employed here. In Section 3.1 the general time-dependent case is
considered with the time-harmonic problem outlined in Section 3.2. The gauge condition
and the various static equations will be treated in subsequent sections.

3.1 EM Field Equations - Time Dependent

.To simplify the ensuing derivation only the EM equations for a conducting region will
be considered initially. The free space equations will be considered separately in the
following section. The partial differential equations of concern are listed in (31)-(33).

3.1.1 Conduction Region, Q¢

Let the region of interest, ¢, be divided into a number of simply shaped regions called
finite elements, as shown in Figure 2. Within each element, a set of nodal points are
established at which the dependent variables (i.e., A, V) are evaluated. The variations
of the magnetic and electric potential within each element are represented by continu-
ous interpolation functions associated with each node. For purposes of developing the
equations for the nodal point coefficients, an individual element may be separated from
the assembled system. The global equation set is reassembled by use of the appropriate
continuity conditions between nodal point variables in adjoining elements.

Within each element, the components of the magnetic potential and the electric po-
tentials are approximated by expansions of the following forms

Ai(z;, 1) = ®T(z;) As(t) (51)
V(zi,t) = ¥ (z:)V(2) (52)

where the A; and V are vectors of nodal point unknowns, ® and ¥ are vectors of
interpolation (basis) functions and superscript 7' denotes a vector transpose. For the
general three-dimensional case the subscript ¢ runs from 1 to 3.

Substitution of the definitions in (51) and (52) into the EM field equations in (31)
and (32) yields a set of residual equations, due to the approximate nature of equations
(51) and (52). In functional form the components of Ampere’s law are

fA1 (Q) 11’7 A) V) = RA1
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Figure 2: Finite element discretization of a region.

fa, (2, ¥, A, V) =R, (53)
Fas(2,¥,A V) = Ry,
and the current continuity relation is
fv(®,%, A, V)=Ry (54)
where the R’s denote the residuals (errors) for each equation.

The Galerkin method guarantees the orthogonality of the residual vectors to the space
spanned by the interpolation functions. This orthogonality is expressed for each equation
by the inner product,

(®,fa) = (2, Ray) =0
(@, fa2) = (@, Ray} =0 (55)
(@, fa5) = (B, Ras) =0
(¥, fr) = (¥, Rv) =0
where (a, b) denotes the inner product defined by

(a,b)=/Q a-bdQ (56)

where {2, is the volume of the element.
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Carrying out the above operations explicitly for the electromagnetic equations yields
the following systems of matrix equations,

MA +KA+NV =F, (57)
and .
NTA +LV =Fy (58)

where the superposed dot indicates a time derivative and equation (57) represents the
three component equations for the magnetic potential. Details of the derivation of the
above equation set are given in Appendix A. The matrix equations in (57) and (58) may
be combined into a matrix equation of the following form

B HRIEI S I I

Unfortunately, the above system is unsymmetric and is of an unusual form from the
standpoint of time integration. To restore symmetry, the following definition is employed

=T+ ) (60)
Using (60) equations (57)-(58) can be rewritten as
MA + KA +Nv=Fy (61)
and
NTA4+Lv=Fy (62)

and the assembled form in (59) becomes

[#IEE0 -] e

A general symbolic form for the system in (63) can be written as
MU+KU=F (64)

where
UT = {AT,A7,AF,vT

The matrix equations given in (61)-(64) represent the discrete analog of the field
equations for an individual element. The discrete representation of the entire conducting
region of interest is obtained through an assemblage of elements such that interelement
continuity of the approximate magnetic and electrical potentials are enforced. This con-
tinuity requirement is met through the summation of equations for nodes common to
adjacent elements, the so-called direct stiffness method [11,12]. The result of such an
assembly process is a system of equations that is of the same form as given in (61)-(64).
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3.1.2 Dielectric and Conduction Regions with Source Currents, (p,{2;

The above derivation was carried out specifically for conducting (eddy current) regions
where both the magnetic potential and the electric potential were required. However,
the other regions of interest, such as specified current regions or dielectric regions, are
subsets of the above formulation and the required equations may be obtained directly
from (61)-(64). As noted previously, for the case of a conductor with a current specified
through a potential, the general equation set is the same as shown in (61)-(64). For the
case of a conductor with a specified current density, equation (62) need not be considered
and the relevant matrix equation is a modified form of (61). That is

MA + KA =Fp +F; (65)

where the specified current is contained in the force vector Fy. Similarly, the equations
for a dielectric region are as given by (65) but without the time derivative term and the

source current. That is
KA =Fu (66)

Note that when specified current and dielectric regions occur in a general eddy current
problem, equations (65) and (66) do not contribute to the electric potential equations; the
proper interface and boundary conditions for the electric potential in a conductor allow
this variable to be eliminated in the nonconducting regions. Details of the development
of (65)-(66) are presented in Appendix A.

3.2 EM Field Equations - Time-Harmonic

The time-dependent EM equations in discretized form may be specialized for the case of
time-harmonic fields. As was done in the continuum case in equations (43), let the nodal
point dependent variables be represented as

V=Vge¥ ; v=V=Vpe=voiwe""

A = AO eiwt
Substituting these definitions into (61)-(64) leads to

iwMAg+KApg+iwNveg=F Ag (67)
and
iwNTAg+iwLvg = Fy, (68)
Corresponding to the matrix form in (63), equations (67) and (68) may be written as
iwM 1wN Ap K 0 Ag | | Fa
[inT iwL]{vo}+[O 0]{V0}—{Fv} (69)
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Equation (69) is a complex matrix equation for the complex potentials V5 and Ag and
could be solved in this form using complex arithmetic. Since the matrix solvers utilized
in TORO II only use real arithmetic, the system in (69) is split into two matrix problems
by using the definitions V5 = (VE 44 V1) and Ag = (AR +i AT). When substituted into
(69) and separated into real and imaginary equations the system becomes

—wM —wN | [ Al K 0] AR F&

[ D E(E) @
for the real equation and

wM wN ][ AR K o][ Al F}

o Z{ WS () {R @

for the imaginary equation. These may be combined into a single matrix equation for
the real and imaginary parts of each unknown potential

K 0 —-wM —-wN AR FR

0 0 -wNT —uL vB | | FR -
oM wN K 0 Al [T) FL (72)
wNT wL, O 0 vi FL

Note that for a general three-dimensional problem equation (72) has eight unknowns per
node and the system is unsymmetric. As described previously, for dielectric regions or
conductors with specified current densities, equation (72) is simplified by the omission
of the electric potential unknowns. Known complex current densities appear in the
definition of the force vectors Fa.

3.3 Gauge Condition

In circumstances where the gauge condition on the magnetic potential is required, the
elliptic equation (42) for the scalar variable S must be transformed into a computational
form. As in the previous section the Galerkin form of the method of weighted residuals
may be used. The scalar correction variable S is represented by a finite element expansion

of the form
S(z;,t) = ©T(z;)S(2) (73)

Substitution of (73) and (57) into weighted integral form of the gauge condition in (42)
leads to the matrix system given by

KS=Fg+Fa- (74)
where the vector Fg contains any boundary conditions on S and the vector F - contains

the divergence of the unconstrained magnetic potential. Details of the derivation of (74)
are given in Appendix A. Note that K is altered when the problem is time-harmonic.
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3.4 Static Field Equations

The derivation of the finite element equations for the static field problems defined in
Section 2.9 follows the same procedure used for the general eddy current formulation. The
individual cases are considered explicitly in Appendix A. The relevant matrix equations
are cataloged here for reference. Due to the complete similarity between the following
static cases and the general problem, all of the numerical techniques and solution methods
used for the eddy current problem will be applicable to the simplified cases. In the
remainder of this text no further explicit mention will be made regarding the static field
equations though they are all included in the TORO II code.

3.4.1 Electrostatics

The matrix equation for electrostatic applications is a scalar system for the electric
potential given by
KV=F,+Fy (75)

where F, contains the volume charge density and Fv incorporates-the boundary con-
ditions on the electric potential, V. Compared to the current flow matrix L in (58)
the electrostatic problem produces a slightly modified finite element matrix due to the
presence of a different material property, the permittivity.

3.4.2 Steady Current Flow

The steady current flow problem is a small subset of the eddy current problem and the
finite element equation follows directly from that formulation. That is

LV =Fy (76)

where boundary conditions on the electric potential are contained in Fy.

3.4.3 Magnetostatics

The magnetostatic problem is also a subset of the general eddy current formulation and
has two forms depending on the specification of the electric current field. If the electric
field is defined using the electric potential then a steady current flow problem is solved
first with the relevant equation being (76)

LV =Fy
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Following this solution, electric currents are computed from the gradient of V' and used
to define the force vector Fy in a reduced form of (65)

KA =Fj+F;g (77)

for the magnetic vector potential. If the current densities are given initially then the
electric potential equation is neglected and (77) is solved directly. Note that a gauge
condition is not required for this type of problem.
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4 Elements and Element Matrix Construction

The formulation of the equations for an individual element, as indicated by equations
(A24) and (A34) from Appendix A, requires the specification of the shape function vec-
tors for the approximation of the magnetic potential, electric potential and the scalar
correction. The form of the shape functions depend on the particular element being
used; TORO II employs two basic elements for two-dimensional analyses and three ele-
ment types in the three-dimensional case. The interpolation functions for each of these
elements are described below. For each element type both linear and quadratic inter-
polation is available; the higher-order functions are generally of the “serendipity” type
[12,13] and avoid the use of nodes located in the interior of the element. Other element
types, such as the higher-order Lagrange elements, could be added to TORO II with
minor code modifications.

4.1 Triangular Elements (2D)

The triangular elements used in the two-dimensional formulations of TORO II consist of
a straight-sided, three-node element and a six-node element as shown in Figure 3. The
linear interpolation function for the three-node element is given by

L
@ =0=0;=¢ Lo (78)
Ly

and the corresponding quadratic function for the six-node element is

( La@Li—1) )

Lo(2L; — 1)

Ls(2Ls — 1)
4L L,
40,015

| 4Lz,

(79)

7/

The ordering of the functions in (78) and (79) corresponds to the ordering of the nodes
shown in Figure 3. The shape functions are expressed in terms of the area or natural
coordinates, L;, for a triangle [11,12,13] which range from 0 to 1, and are related by
the auxiliary condition Ly + L, + Lz = 1 (i.e., there are only two independent area
coordinates).

When the element interpolation functions are written in terms of the area coordinates,
the relationship between the physical coordinates z,y (or 7, z in the axisymmetric case)
and the element coordinates is obtained from the parametric mapping concept originally
developed by Ergatoudis, et al [14]. That is, the coordinate transformation is given by

z="YTx ; y=YTy (80)
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Figure 3: Two-dimensional triangular elements.

where Y is a vector of interpolation functions on the triangle and the x, y are vectors of
coordinates describing the geometry of the element (generally, nadal point coordinates).
The transformation given in (80) is quite general and allows for the description of curved-
sided elements. In the present case, if Y = &) = ¥} = @), a linear interpolation of the
element boundary is possible. When ¥ = &3 = ¥4 = @y, a quadratic interpolation of
the element geometry is allowed. Note that when the functions defining the element
geometry are the same as those defining the dependent variable the element is termed
isoparametric; a geometric description which is lower order than the dependent variable
is defined as subparametric. TORO II directly supports only isoparametric elements;
straight-sided, higher order elements can be utilized by appropriately locating mid-edge
nodes.’

4.2 Quadrilateral Elements (2D)

Two types of quadrilateral elements are used TORO II — a four-node and an eight-node
element. For the linear, four node element the interpolation functions are given by

1/4(1 — s)(1 — 1)
1/4(1+ s)(1 —2)
1/4(1 + s)(1 + 1)
1/4(1 — s)(1 +1)

& =T=0,= (81)

The ordering of the functions in (81) corresponds to the nodal point ordering shown in
Figure 4. The interpolation functions are written in terms of the normalized or natural
coordinates for the element, s, ¢, which vary from —1 to +1 as shown in the figure.
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Figure 4: Two-dimensional quadrilateral elements.

The eight-node element uses the biquadratic, “serendipity” functions [13] given by

((1/41—s) (1 —t)(—s—t—1) )
1/40+s) (1 —t)(s —t —1)
1/41+s)A+t)(s+t—1)

1/41 - s)(A+t)(—s+t—1) > (82)

1/2(1-s%)(1—-1¢)

1/2(1 + s)(1 — %)

1/2(1 - s¥)(1+1¢)
( 1/2(1 - s)(1— %)

7

The parametric mapping concept described for the triangular element is also available
for use with the quadrilaterals. Therefore, to relate the global coordinates z,y (or 7, 2)
to the local s, ¢ system, let

z=YTx ; y=7Ty (83)

where ¥ may be either a linear or quadratic (“serendipity”) interpolation function.
Again, TORO II only supports the formulation of isoparametric quadrilaterals, though
subparametric elements can be emloyed through the proper location of mid-edge nodes.

4.3 Hexahedral Elements (3D)

The hexahedral or brick elements available in TORO II for three-dimensional analyses
consist of a straight-edged, linear, eight-node element and a curved-sided, quadratic,
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Figure 5: Three-dimensional brick elements.

twenty-node element as shown in Figure 5. The linear element has shape functions given
by

(1/8(L—s)1—-t)(1—7) )
1/8(1+s)(1—-t) (1 —7)
1/8(1+s)(1+t)(1—1)
1/8(1—s)(1+8)(1—1) |
1/8(1—s)(1—¢t)(1+71)
1/81+s)(1—-¢8)(1+1)
1/8(1+s)(1+8)(1+1)

[ 1/8(1—-s)A+t)(1+7) )

D) =T = 0O =4 (84)
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The quadratic shape functions for the twenty-node element are given by

(1/8(1-s)(1—-t)(1—T1)(~s—t—7-2) )
1/81+s)1—-t)(1—1)(s—t—1—2)
1/8(1+s)L+t) 1 —r)(s+t—1—2)

1/8(1 — s)(l + t)(l - 7‘)(-—-3 4+t—-r— 2)

1/81—s)1 -1 +71)(—s—t+7—2)
1/81+s)(1—t)(1+7)(s—t+7—2)
1/8(1+s)1+t) A +r)(s+t+7—2)

1/8(1—s)(1+t)(1+7r)(—~s+t+7—2)
1/41 - )1 —-t)(1—7)
1/4(1 + s)(1-— tz)(l —r)
1/41-s2)(1+) (1 —7)
1/4(1—s)(1—-t3)(1—7)
1/4(1—s)(1 —t)(1 —7%)
1/4(1+s)1 -t)(1 —7?)
1/4(1+s)(1+t)(1 —r?)
1/4(1 - s)(1 +t)(1 —r?)
1/4(1-sH(1 -1 +7)
1/4(1+s)(1 ~22) (1 +7)
1/41 -+ +7)
1/4(1—s)1 —t3)(1 +7) )

Pq=Tq=0q =1 ( (85)

\

The functions in (84) and (85) are ordered according to the nodal point ordering shown in
Figure 5 and are written in terms of the local, normalized coordinates, s, ?,, which range
from —1 to +1. TORO II allows only the isoparametric form of each three-dimensional
element where

z=YTx ; y=YXTy ; 2z2=7YTz (86)

and Y takes on the appropriate linear or quadratic form.

4.4 Prism Elements (3D)

TORO II employs a linear and quadratic version of a triangular prism or wedge element.
The linear, straight-sided, six-node prism and curved-sided, fifteen-node quadratic ele-
ment are shown in Figure 6. The shape functions for these elements are given by

( 1/2L1(1 '—7‘) )
1/2L5(1 — 1)
1/2L3(1 - 7")
1/2L1(1 +’I’)
1/2Ly(1+17)
| 1/2Ls(1 +71) |

-

D) =T = 0O =« (87)
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Figure 6: Three-dimensional prism elements.

and

(1/2L[Q2L - (1 —r) = (1 =72 )
1/2L5[(2L, — 1)(1 — 1) — (1 — )]
1/2L5[(2Ls — 1)(1 — 1) — (1 = 72)]
1/2L1(2L1 — 1)1 + 1) — (1 — 72)]
1/2L5[(2L2 — 1)(1 4 7) — (1 — 72)]
1/2L5]2Ls = 1)(1 +7) — (1 = 77)]
2L1L2(1 —_ 7‘)

§q'.-—“yq=@q=< 2L2L3(1—’I‘)
2L3L1 (1 - T)

Ll (l - 7'2)

Lz (1 — 7‘2)

Ly(1—-1?)
2L1L2 (1 + 'l')
2L2L3 (1 + ’I')

2L3L1 (1 + 7‘)

> (88)

The functions in (87) and (88) use area coordinates, L;, for describing the triangular cross-
section and a normalized coordinate, 7, for the axial coordinate. Note that Ly +Ls+L; =
1; the L; vary from 0 to 1 and r varies from —1 to +1. Only the isoparametric forms of

this element are employed in TORO II.
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Figure 7: Three-dimensional tetrahedral elements.

4.5 Tetrahedral Element (3D)

The three-dimensional tetrahedron used in TORO II may be either a four-node or ten-
node isoparametric element as shown in Figure 7. The linear element is defined by the
functions

L
L,
Ly
Ly

while the quadratic element has shape functions of the form

[ L1(2L;1—1) )
Ly(2L, — 1)
L3(2L3 — 1)
Ly(2Ls — 1)
4L, L,
Dq=Tyq=0q =5 4LoLs a (90)
4031,
401y
4,14
| 4L3L4

P =01=0;= (89)

/

The functions in (89) and (90) are ordered as shown in the figure and are written in terms
of the volume coordinates [13] for the element, where Ly + Ly + L3 + Ly = 1. Again, only
the isoparametric forms of this element are considered.
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4.6 Spatial Derivatives and Integrals

The construction of the various finite element coefficient matrices in (A24) requires the
integration of combinations of the interpolation functions and their spatial derivatives
over the volume (area) of the element. The integration process is most easily carried
out in the normalized or natural coordinate system for each element since the limits of
integration are simple and independent of the global coordinates. The shape functions
presented in the previous sections were expressed in the natural coordinate system for
each element. There remains the task of expressing spatial derivatives of the shape
functions in the terms of same normalized coordinates. The following relations, based on
the chain rule and the parametric mapping ideas, are needed

oA 9z dy 9z 7 8A I 1 ¢ 2A oA
Bs 3s 9s Os dz J11 J12 J13 oz oz
A \ _ | 9z 9y 0= A \ _ A |\ _ oA
at — |8 Bt o oy Ju Ja2 Jos 3y J By (91)
8A 8z 9y Oz 8A 8A 2A
ar L3 ar o 1\ g | I Ja s oz 3z

where A represents any of the element interpolation functions (e.g., @1, 4. ..01,Oq)
and J is the Jacobian of the transformation from global coordinates z,y, z to the local
element coordinates s,t,r. The parametric mapping scheme defined in the previous
sections (e.g., equations (80) or (86)) can be used to define the components of J. That
is,

ox’T axT axT

J11=-3?X ; J12—3$— ; J13—-'55—Z
ox’T oxT axT

JZl:_b? X J22=§ y J23=§ z (92)
oxT oxT ox’T

J31—E'X ; Jsz—gr— ; JSS——BTZ

Inverting the transformation matrix in (91) provides the required definition of the spatial
derivatives of the shape functions in terms of the local element coordinates

SA A B b A
Fr s Ju Jiz Js | [ %
AA _ 11 A _- __1__ A
Ay =J Bt = I Jl In T2 Jos Bt (93)

where |J| indicates the determinant of the Jacobian matrix J. The components [J;; are
complex functions of the components of J that can be obtained by analytically inverting
the 3 x 3 Jacobian matrix. In practice, the Jacobian is usually inverted numerically.
For the two-dimensional case the above equations are simplified substantially and permit
analytic manipulation.

27




In performing integrations over the element volume it is also necessary to transform
the integration variables and limits from the global coordinates to the local element
coordinates. The differential elemental volume transforms according to

dQ =dzdydz = |J|dsdtdr (94a)
while for two-dimensional geometries the planar area is transformed by
dQ =dzdy = |J|dsdt (94b)

and
dQ=1rdOdrdz=2rr|J|dsdt (94c)

for axisymmetric geometries, where the circumferential dependence has been explicitly
evaluated to produce the 27 factor. In the axisymmetric case the radius 7 would be
interpolated by r = XTr. The integration limits for the integrals transform to the limits
on the local coordinates s,t,r, i.e., —1 to +1.

In the above equations the s, ¢, 7 variables for a brick element have been used for the
purpose of explanation. Similar relations for a tetrahedral element can be derived by
replacing s,¢,7 with L;, L and L3. The L, variable does not enter the formulas due to
the relation L; + Ly + L3 + Ly = 1. Hybrid coordinates, such as those used in the prism
element, are treated in an analogous manner. The two-dimensional case also follows the
above procedures.

4.7 Matrix Evaluation

With the previous definitions it is now possible to derive a computational form for the
matrix coefficients involved in the finite element equations of Section 3. For purposes
of discussion, only a representative term from the matrix system will be considered in
detail; the evaluation of the remaining terms follows in a similar manner.

Consider a typical term from the diagonal component of the double curl matrix given
by equation (A24) as
o® 08T

Kyx = / Vg 10 (95)

which will be evaluated for a three-dimensional, Wenty—no&e, brick element. From the
previous definitions in (93) and (94a), equation (95) can be written as

+st

B N PSR

e@g
9y

a@q
’)"

/
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0®,T 0®,T 08,7 1
| Tz s -+ ‘7:22—‘3? + Jos B -I-j-l |J| dsdtdr (96)
a;gT

9y

where the ®4 functions are given in (85). For an isoparametric (curve-sided) element the
components of J;; would also be evaluated using X = @4 from equation (85).

The above integral is of the general form

1= J:I [ jl [ :1 f(s,t,7) dsdtdr (97)

where f(s,t,7) is a rational function of the normalized coordinates. All of the element
matrices are of this form and can be conveniently evaluated using a numerical quadrature
procedure. That is, the integral in (97) can be evaluated by the formula

n n n
I=3%%"% WiW;Wif(siti Te) (98)
=1 j=1k=1
where W; are weighting coefficients, s;,%;,7x are quadrature points in the integration
interval and n is the number of quadrature points in the formula. For linear and quadratic
brick elements, TORO II generally employs a product Gauss quadrature rule as shown
in (98) with n = 2 and n = 3, respectively; the two-dimensional quadrilaterals employ
a similar scheme with a double sum used in (98) and n = 2 for a linear element and
n = 3 for the quadratic elements. Other elements in the library are also evaluated using
quadrature formulas, though the form of (97) and (98) are slightly different in these
cases. For elements using volume or area coordinates, the limits on the definite integral
in (97) run from 0 to 1. Also, these elements typically do not use a product rule but
rather a single summation over the total number of quadrature points. In TORO II,
the tetrahedral elements are evaluated with a four point or a five point formula and the
triangular elements with a three point or a seven point rule. The prism uses a three point
or a seven point integration rule in the triangular plane and a 2 or 3 point Gauss formula
along the normalized axis. Nonproduct Gauss rules [15] are also available for use with
the hexahedral elements and may offer some economic benefits over the product Gauss
rules.

Application of the quadrature formula in (98) to the integral in equation (96) produces
the element coefficient matrix Kxx. Note that variable coefficients, such as the magnetic
permeability or reluctivity, must be evaluated at the integration points if they vary over
the element. Constant coefficients are of course removed from the integral and play no
role in the quadrature procedure.

4.8 Element Boundary Conditions and Source Terms

In this section the construction of boundary conditions and volumetric source terms for
the element matrix equations is considered. Though the required force vectors are numer-
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ically evaluated in the same manner as the coefficient matrices, a number of additional
assumptions and details are necessary that require further comment.

4.8.1 Volumetric Sources

The force vectors for the various matrix equations generally consist of two parts: a part
due to volumetric sources and a part due to surface fluxes. Consider first the volumetric
term associated with a specified component of the current density (e.g., equation (A28))

Fi, = fQ B.J, dS. (99)

The source current is allowed to vary over the element in an arbitrary manner, which
is indicated by J, (s,%,7). As given previously in (94) the elemental volume can also
be written in terms of the normalized coordinates. Thus, in a computational form (99)
becomes

1 4+l
Fy, = /_ 1 /_ 1 /_ @, (s,t,7)|3] dsdidr (100)

for a three-dimensional brick element; similar forms are derivable for. the other elements
in two and three dimensions. The integral in (100) can be evaluated with a standard
numerical quadrature rule to produce the force vector Fy,. To accomplish the numerical
integration, the current source must be evaluated at the guadrature points. If the cur-
rent source depends on other variables, such as the field variables, temperature, spatial
location, etc., these quantities can be provided at the quadrature points through use of
the element basis functions. Though a current source was used in the present example,
the same procedure applies to all similar volumetric terms.

4.8.2 Surface Fluxes

The remaining force vectors in the matrix equations arise from surface fluxes distributed
along element boundaries. These terms need only be considered for those element sides
coinciding with the “exterior” boundaries of the problem domain; contributions from
interior element boundaries are cancelled by adjoining elements. A typical surface flux
vector for a magneotstatic problem is given by

Fy = /r @ Jin; dT = /r @ f7dr (101)

where T, is the surface of the element, J;n; is the current flux normal to the surface and
the remaining term is defined by the boundary condition in (20).

The computation of the indicated surface integral is most easily carried out in the
normalized or natural coordinate system for the face (edge) of an element. This requires
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Figure 8: Nomenclature for element surface computations.

that the elemental surface area (edge length) dI', be related to the local surface coor-
dinates. Consider the typical quadrilateral element face shown in Figure 8, where the
vectors e and ez are defined as being tangent to the curvilinear coordinates, s; and ;.
The e vectors are not necessarily unit vectors; the s; and %; coordinates are assumed fo
be natural coordinates for the element face. The elemental area dI' in terms of the global
coordinates z, ¥, z is related to an elemental area in surface coordinates by

dl' = |J| ds,dt; (102)

where Js is the Jacobian of the coordinate transformation and | - | indicates the de-
terminant. The determinant of the Jacobian can be written in terms of the e vectors
as

1/2
[9s| = lex x e2] = [(ex - e1)(ez - e2) — (e1 - €2)’] (103)
The e vectors can be expressed in terms of the global coordinates by
Oz dz
6ss ats
ey = g';f ; ez = gt% (104)
Dz 2z
9ss s
Using the parametric mapping concept allows
c=TTx ; y=1Ty ; 2=1Tz (105)




where the " notation indicates the restriction of the interpolation function to an element
face (edge). The functions Y may be either linear or quadratic depending on the type of
mapping used to describe the element geometry. Using (105) in (104) then

¢ A% A \
axT ) axT
Fss = ETIS
T T
e =5 __ags y L ;  ea={ Zy o (106)
T T
otT, axT

L 683 J \ ats P,

Equations (103) and (106) provide a means for computing |Js|, thus allowing the trans-
formation in (102) to be employed. Note that in two dimensions the above relations
simplify and the elemental length of an element edge is given by

N op N\ 212
dl' = [(% ) +(% ) } ds=Ads (107)

where s is the coordinate along the edge of an element.

To complete the specification of the integrand in (101) the variation of J;n; with s;
and t, is required. From the boundary condition definitions in equations (20) the normal
current flux consists of

J,;'n,: = fJ (108)

For calculation of the boundary fluxes it is assumed that the applied flux, f 7. is a known
functions of the surface (edge) coordinates, ss, t;. Then using the standard surface
(edge) interpolation for the potential, the current flux vector can be written for the
three-dimensional case as

+1 p+1
— T £J
F= /_ 1 /_ B (o0, )\ s] dsads (109)

The integrals in (109) are evaluated using a numerical quadrature procedure over the
element surface; in two dimensions only integrals along an element edge need to be
considered. When f7 is variable over the surface it must be evaluated at the quadrature
points and may depend on interpolated field variables or spatial location. The procedure
used above is typical of all surface flux computations.

4.8.3 Specified Potential Boundary Conditions

In addition to the (“natural”) boundary conditions specified by the boundary integrals
presented above, “essential” boundary conditions specifying particular values of the po-
tentials must also be considered. Application of a specified potential boundary condition
results in the field equation for that particular nodal point quantity being replaced by a
constraint equation that enforces the proper boundary value. TORO II uses a penalty
method [16] to implement this type of constraint condition.
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5 Solution Procedures

The major computational effort in any finite element procedure occurs in the solution of
the assembled matrix equations that describe the discretized problem. This is especially
true in the case of highly nonlinear equations or problems with coupled physical phe-
nomena, both of which can be found in the present case. In addition to computational
efficiency these characteristics also introduce questions regarding the ability to achieve a
solution, i.e., convergence for a given set of data. The choice of a solution algorithm is
therefore a critical element in the overall utility, robustness and efficiency of a computer
code such as TORO II.

As described previously, the basic matrix problem of concern can be written as
MU+EKU=F (110)

where M represents a type of capacitance matrix, K contains the diffusion terms, F pro-
vides the boundary and volumetric forcing functions and the vector U represents all of
the potentials in the problem. In the most general case, each term in (110) may depend
explicitly on various field variables due to nonconstant properties and/or boundary con-
ditions. In addition the matrices are large, sparse, and often symmetric in their structure;
a proper ordering of the equations will produce a banded matrix system.

The general system shown in (110) has very specific forms as the problem type changes
from static to time dependent to time-harmonic; the problem dimensionality also influ-
ences the matrix structure due to variations in the number of unknows that are active.
TORO II has three basic solution options that correspond to static problems (electro-
statics, current flow and magnetostatics), time-dependent problems (eddy currents) and
time-harmonic problems (AC eddy currents). The following sections outline the available
solution procedures for each type of problem.

5.1 Algorithms for Static Problems

The time-independent form of (110) is
K(U)U =F(U) (111)

which is recognized as a system of nonlinear, algebraic equations. Consider first the
case where K and F are not functions of U. In this situation (111) reduces to a linear
matrix equation which can be solved directly, without iteration. When (111) retains its
nonlinear form, an iterative technique is required. TORO II currently employs a single
type of iterative method, though it may be combined with other techniques to expand
the possibilities for achieving a steady state solution.
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5.1.1 Successive Substitution Method

A particularly simple iterative method with a large radius of convergence is the successive
substitution (Picard, functional iteration) method described by

R(U™ U™ = F(U") (112)

where the superscript indicates the iteration level. For the mildly nonlinear behavior
typically found in potential problems, the rate of convergence of (112) is generally good,
despite being a first-order method. An improvement in convergence rate can sometimes
be realized by use of a relaxation formula where

K(UMU* = F(U") | (113)

and
U™t = qU" + (1 — &) U* 0<a<l

Strongly nonlinear problems may cause the above algorithms to exhibit a very slow
rate of convergence or divergence. The standard approach to this difficulty is to switch to
a second-order iterative procedure, such as Newton’s method. However, in the present ap-
plication Newton’s method suffers an important shortcoming: the tangent matrix (Jaco-
bian) used in the algorithm requires derivative data for material properties and boundary
conditions. This would significantly complicate the data input and solution procedures.
The present version of TORO II does not employ Newton’s method though provisions
have been made in the code for its future inclusion.

5.1.2 Continuation Method

Failure to achieve a converged solution using (112) or (113) can often be ascribed to
the use of a poor initial guess (U?) for the iterative algorithm. There are two general
approaches to the problem of generating good initial estimates for a solution vector and
both involve some type of “tracking” of the solution. The first procedure is simply
the method of false transients in which the solution is followed through use of a time
parameter. The transient algorithms described in a later section are candidates for this
approach with certain types of EM simulations.

A second method consists of incrementally approaching the final solution through a
series of intermediate solutions. These intermediate solutions may be of physical interest
or may simply be a means to obtain the required solution. The formal algorithms used to
implement this procedure are termed continuation methods and can be used with either
of the iterative methods in (112) and (113).

Assume that the solution in (111) depends continuously on some real parameter, A.
For potential problems, A could be the magnitude of a volumetric source or the magnitude
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of a boundary condition. Then (111) can be written in general as
- K(U,\)U =F(U, \) (114)
which suggests the zeroth order continuation method
K(Ug, A®) U = F(UL, ™) (115)

where (115) is solved for a series of problems with increasing values of the continuation
parameter A™ = A™~1 + AX. The converged solution, Uy, at one value of X is used as
the starting solution at the next higher value of ); the iterative method in (112) or (113)
is used at each value of A to achieve a converged solution. This technique is available in
TORO II and can be used effectively with some very nonlinear problems.

5.1.3 Convergence Criteria

The use of an iterative solution method necessitates the definition of a convergence and
stopping criteria to terminate the iteration process. The usual measure of convergence
is a norm on the change in the solution vector between successive iterations. TORO II
employs the discrete norm defined by -

T 1 [X pmet 2]
Gns = 77— LZ__; (Ut - up) ] (116)
In the definition in (116) the subscript maz indicates the maximum value of the variable
found in the solution at iteration cycle n+1 and N is the total number of nodal points in
the problem. The norm in (116) is employed separately for each variable in the problem.

The criteria for terminating the iteration process is based on a user supplied tolerance.
The iterative algorithm is terminated when the following inequality is satisfied.

&, < (117)

where €Y is set by the user and has a default value of 0.001. The iterative process may also
be terminated after a fixed number of iterations. This option acts as a backup criteria to
prevent very slowly convergent or divergent problems from wasting computation time.

5.2 Algorithms for Time Dependent Problems

Equation (110) represents a discrete space, continuous time approximation to the original
system of partial differential equations. A direct time integration procedure replaces
the continuous time derivative with an approximation for the history of the dependent
variables over a small portion of the problem time scale. The result is an incremental
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procedure that advances the solution by discrete steps in time. In constructing such a
procedure, questions of numerical stablity and accuracy must be considered.

A large body of literature is available on possible time integration schemes for equa-
tions of the diffusion type. Both implicit and explicit methods, as well as mode super-
position, have been used successfully. Each of these approaches has its strong and weak
points, most of which are problem dependent. In order to provide solution capabilities
for as wide a range of problems as possible, three different integration schemes are used
in TORO IL. Two types of implicit methods are available, both of which make use of a
predictor/corrector strategy to improve efficiency and accuracy. These procedures were
originally developed by Gresho, et al [17] and are used in TORO II with only minor
modifications. The third integration scheme is an explicit procedure that can be used
effectively with the lower order elements available in the codes. All of the integration
methods may be used with either a fixed time step or an adaptive time step selection
algorithm.

5.2.1 Forward/Backward Euler Integration

The first-order implicit integration method used in TORO II employs a forward Euler
scheme as a predictor with the backward Euler method functioning as the corrector step.
Omitting the details of the derivation, the application of the explicit, forward Euler
formula to equation (110) produces

MU = MU” + At, [F(U™) - K(U™)U"] (118)

This can be written in a form that is more suitable for computation by replacing the
bracketed .term with a rearranged form of (110) to produce

Urt = U™ + At, U™ (119)
In equations (118) and (119) the superscript indicates the timeplane, the subscript p
denotes a predicted value and At, = tpt1 — 5. By using ‘the form shown in (119) a
matrix inversion of M is avoided; the “acceleration” vector U” is computed from a form

of the corrector formula as shown below.

The corrector step of the first-order scheme is provided by the backward Euler (or
fully implicit) method. When applied to equation (110) this implicit method yields

MU™ = MU" + At, [F(U™) - K(U™) U™ (120)
or in a form more suitable for computation

1 — = 1 —— —
M n-+1 ] n+1 — T +1
[—Atn + KU U ALMU +F(U™) (121)
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The implicit nature of this method is evident from the form of (121), since it is in effect,
a nonlinear, algebraic system for the variables in U at timeplane n + 1.

The solution to (121) at timeplane n + 1 can be achieved by an iteration procedure
such as Picard’s method. The rate of convergence of Picard’s method is greatly increased
if the initial solution estimate is “close” to the true solution. The solution predicted from
(118) provides this initial guess for the iterative procedure in a cost-effective manner.

5.2.2 Adams-Bashforth/Trapezoid Rule Integration

An implicit integration method that is second-order accurate in time can be developed
along the same lines as described above. A second-order equivalent to the forward Euler
method is the variable step, Adams-Bashforth predictor given by

At At . At .
+1 _ 110 n n n _ n ~1
v fe (i 2o (2)om]

where At, = tp41 — t, and At,_; = ¢, — tp—;. This formula can be used to predict
the solution vector given two “acceleration” vectors from previous timeplanes; no matrix
solution is required. -

A compatible corrector formula for use with (122) is available in the form of the
trapezoid rule. When applied to equation (110) the trapezoid rule produces
— = 2 — — —
[-2—1\/1 +R(UM)] UM = MU+ MO+ F(U™) (123)
At, At,
Equation (123) is observed to be a nonlinear, algebraic system for the vector U+ and
can again be solved using an iterative procedure such as Picard’s method.

5.2.3 Implicit Integration Procedures

The integration formulas outlined above form the basis for the implicit solution of time
dependent eddy current problems in TORO II. The similarity of the first- and second-
order methods makes it possible to include both procedures in a single, overall algorithm.
The major steps in the time integration procedure are outlined here.

At the beginning of each time step it is assumed that all of the required solution
and “acceleration” vectors are known and the time increment for the next step has been
selected. To advance the solution from time ¢, to time ¢,,; then requires the following
steps:

1) A tentative solution vector, Upt!, is computed using the predictor equations (119)
or (122).
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2) The corrector equations (121) or (123) are solved for the “true” solution, U™t This
involves the iterative solution of (121) or (123) via Picard’s method. The predicted
values U;"” are used to initialize the equation for the iteration procedure.

3) The “acceleration” vectors are updated using the new solution U™+l and the “in-
verted” forms of the corrector formulas. For the first-order method the acceleration
is computed from the backward Euler definition

1
At,
while the second-order accelerations are derived from the trapezoid rule

2
At,

Urtl = (Un+1 _ Un)

-['J-n+1 — (Un+1 _ Un) _ -['J'n

4) A new integration time step is computed. The time step selection process is based
on an analysis of the time truncation errors in the predictor and corrector formulas
as described in Section 5.2.4. If a constant time step is being used, this step is
omitted.

5) Return to step 1 for next time increment. -

In actual implementation the Picard iteration process in step 2 is not carried to
absolute convergence. Rather, a one-step correction is employed as advocated in [17].
This procedure is quite efficient and can be very accurate provided the time step is
suitably controlled.

5.2.4 Time Step Control

Both of the implicit time integration procedures available in TORO II can be used with
a fixed, user specified time step or a time step that changes only at certain points during
the integration interval. However, the a priori selection and modification of a reasonable
integration time step can be a difficult task, especially for a complex problem. One of
the benefits of using the predictor/corrector algorithms described here is that it provides
a rational basis for dynamically selecting the time step.

The detailed derivation of the time step selection formula is omitted here. The reader
interested in further details is referred to [17]. The general ideas for the time step selec-
tion process come from the well-established procedures for solving ordinary differential
equations. By comparing the time truncation errors for two time integration methods
of comparable order, a formula can be developed to predict the next time step based
on a user specified error tolerance. In the present case, the time truncation errors for
the explicit predictor and implicit corrector steps are analyzed and provide the required
formulas.
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The time step estimation formula is given by [17] as

t m
Atpys = Aty (b S ) (124)
dn+1

where m = 1/2, b = 2 for the first-order method and m =1/3, b = 3(1 + At,_1/At,) for
the second-order scheme. The user specified error tolerance for the integration process is
¢!, which has a default value of 0.0001. The quantity d,+; is an appropriate norm on the
integration error, which is defined as the difference between the predicted solution and
the corrected value. In TORO II the following norm is used

U 1 N Up 2 2
dn+1 = ﬂ Z (Ui(n+1) - i(n.+1)) (125)

z=1

" where (125) is used for each variable in the problem. The largest norm is then used in
(124) to compute the time step.

Unlike the procedure described in [17], TORO II always uses- the newly computed
time step derived from (124). If At,41 < 0.5At, a warning message is given to indicate
a large reduction in the time step has occurred. However, the previous time step is not
rejected nor recomputed.

5.2.5 Initialization

The predictor equations (119) and (122) require that one or more acceleration vectors be
available at each timeplane in order to estimate a new solution vector. At the beginning of
a transient solution these vectors are not generally available and thus a special starting
procedure must be used. The approach taken in TORO II is to use the dissipative,
backward Euler method for the first few steps and then switch to either of the standard
predictor/corrector methods. This procedure has the advantage that any nonphysical
features of the numerical model are quickly damped by the backward Euler scheme.

For the first time step, the implicit, backward Euler scheme is used alone; the second
step uses a forward Euler predictor and backward Euler corrector. Both of these steps
use a fixed, user supplied time step. At the third step, the usual predictor/corrector
integration procedure begins and automatic time step selection is started, if this option
has been requested. The initial time step supplied by the user to start the problem should
be very conservative to prevent large time step reductions when the automatic selection
procedure takes control.
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5.2.6 Forward Euler Integration

The explicit integration method used in TORO II is based on the first-order, forward
Euler method. This algorithm was previously defined in (118) and is written here as

MU™! = MU" + At, [F(U") - R(U")U"| (126)

Inverting the capacitance matrix M allows (126) to be written in a computationally
effective form as

U = U™+ AL M [F(U) - (UM U] = U™+ Aty M ' Feg (127)

As written in (127), this algorithm does not require the solution of a matrix system but
simply the construction of an effective force vector from known data and a matrix-vector
product.

The practical utility of (127) relies on two aspects of the algorithm. First, the in-
verse of the effective capacitance matrix must be easily obtainable (i.e., computationally
inexpensive). Also, the explicit nature of the method means that the stability of the
algorithm must be considered when choosing an integration time step.

5.2.7 Matrix Diagonalization

A particular feature of the finite element method when used for time-dependent problems
is the inherent coupling that occurs between nodal point time derivatives. By inspecting
the form of the element level capacitance matrix, as shown in (A24), it is clear that M
is not a simple diagonal matrix but has a banded structure. This structure carries over

to the global matrix, M.

The inverse to M could be directly computed for use in the explicit algorithm in
(127). Unfortunately, the inverse of a banded matrix is a full matrix; the generally large
size of M for two and three-dimensional problems precludes the use of such an approach.
For M ! to be computed efficiently, M must have a diagonal form. Several strategies
for diagonalizing M have been proposed in the literature [16]. The approach taken in
TORO II is to use the row-sum technique to approximate M at the element level. That
is, the diagonal form of the element matrix, Mip, is formed by the components given by

N
mg =3 my 3 mg=0 i#] (128)
j=1

where N is the number of degrees of freedom in the element and m;; are components
of the original capacitance matrix; the global matrix will also have the same diagonal
form. Tn the algorithm given in (127) the term M " is replaced with My, which is easily
computed from 1/m%.

40




Diagonalization (or “lumping”) techniques, such as the row-sum method, have been
widely used and investigated. It is known that the temporal response of the discretized
equations is altered by such techniques, though good results can still be obtained with
careful use. A major limitation to diagonalization (and row-sum in particular) is its
restriction to low-order (linear) finite element approximations. Higher order basis func-
tions generally produce poor results when used in a diagonalized form. This result implies
that the explicit integration procedures in TORO II should only be used with the linear
elements available in the code.

5.2.8 Stability and Time Step Control

Explicit integration methods are conditionally stable and thus require limits on the size
of the integration time step. Conventional stability analyses of the forward Euler scheme
for a diffusion equation [18] produce a time step restriction of the following form

AAE < 2 (129)

where ) is the largest eigenvalue for the matrix system Mp K from equation (127).
The largest eigenvalue for the system can be bounded by the largest element eigenvalue,
which in the present case is proportional to 1/A? with h being a representative element
dimension. From these results it is clear that the time step restriction for the explicit
method is quite severe especially on highly refined meshes. Reference [1] has further
details on the explicit time step control used in TORO IIL

5.3 Algorithms for Time-Harmonic Problems

When time-harmonic problems with a phasor representation are considered, the basic
matrix equation (110) becomes

iwMUp +KUg=F (130)

which usually represents a linear set of complex equations. Equation (130) could be
nonlinear if material properties or boundary conditions depend on the amplitude of the
field variables; time harmonic variations in the properties are not permitted. The time-
harmonic problem can also be expressed as

K(To)Uo = F(To) (131)

where it it is understood that K has complex coefficients, the solution vector Ug is also
complex and the overbar indicates a magnitude. The form of equation (131) is the same
as (111) for the static problems treated in Section 5.1. and the solution methods are
exactly the same. The reorganization of (131) into real and imaginary components (see
equation (72)) does not affect the solution algorithm though it does alter the allowable
selections for the matrix solver. This is discussed in the next section.
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5.4 Matrix Solution Procedures

When most of the algorithms of the previous sections are applied at a given iteration or
time step, the result is a matrix equation of the form

Ax=b (132)

In the problems considered here the matrix A is large, sparse, banded and usually sym-
metric. A solution to (132) can be achieved by either an iterative or direct method.
Historically, direct methods, such as the frontal method [19] or other forms of Gauss
elimination, have been the solution methods of choice for most finite element applica-
tions. However, the computer memory and CPU inefficiency of direct methods with
respect to large, three-dimensional problems, has produced renewed interest in iterative
methods for (132).

_ The solution method used in TORO ITis based on a preconditioned conjugate gradient
(PCG) algorithm. The matrix solution technique is embedded in a PCG library package
that was developed by Schunk and Shadid [20]. For application to the various symmetric
EM problems, any of three different preconditions can be invoked: J acobi, Polynomial
and the Incomplete Choleski method. The unsymmetric system associated with time-
harmonic applications requires an iterative method such as the generalized minimum
residual method (GMRES). This unsymmetric method may also be used with a number
of preconditioners. All of the preconditioners are derived from the assembled, global
matrix, A. To accommodate the storage requirements of A, a standard sparse matrix
format is used [21] that only records the nonzero entries of the A matrix. Complete
details on the iterative solvers available in TORO II can be found in [20].
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6 Pre- and Post-Processing

The TORO II program was designed to be a self-contained analysis package with the
necessary options to set up a problem, solve for the required dependent variables and
analyze the resultant solution in terms of derived quantitites. The present section doc-
uments some of the numerical procedures used in the pre-solution and data analysis
sections of the program.

6.1 Mesh Generation

TORO II contains no mesh generation capability and relies completely on external mesh
generation software for a geometric description of the problem. The code reads mesh gen-
eration data from a standard format file called EXODUS II [22]. A complete description
" of the mesh generation interface to TORO II is available in the user’s manual [4].

6.2 Auxiliary Field Computations

When the electric scalar potential, V, and magnetic vector potential, A, have been
computed for an electromagnetic problem, a number of auxiliary fields may be evaluated
over the computational domain. These fields are all derived from the basic definitions
given in equations (28) and (30), the constitutive relations (16) and (17) and the force
and volume heating definitions in (9) and (10).

Electr.ic Field Variables

The electric field in a region is given in terms of the potentials by equation (30)

OA

E=-VV 5 (133)
This may be computed on an element-by-element basis within TORO II depending on the
availability of the two potentials within a given material. For static problems, the time
derivative is absent and only the potential gradient may be available. For regions with
specified electric currents the gradient part of the E field is computed from an inverted
form of Ohm’s law, E = ¢~1J. For time-harmonic problems the real and imaginary parts
of the E field are derived from

ER = _VVE + wAl (134)

El=-—vyI - wAR

43




and the modulus and phase angles for the field are defined by

[B| = /(BR) + (EI)? (135)
¢ = tan“l( ) (136)
The components of E in (133) and (134) are computed by using the standard finite
element approximations for V' and A,
V(zi,t) = T (z;) V(2)
Ai(:z:i, t) = @T(IL‘,;)Ai(t)

and the relations for the local spatial derivatives as derived in Section 4.6. For example,
the gradient of V is obtained from

ayr v ¥
Se 5= Jui T2 Ji3 Ty
ow | _ 1) ow |1 %
5 (=3 % (=70 T Jo2 T2 5t

Using these definitions the electric field components in (133) become

. owT owT owT .
E,= | («7311 s —V+Jio—— V+J13 > BT Ax
’ 1 5‘I’T 3‘I’T 6\1:’—” :
1 6\IfT 9wt 6\IIT :
E, = |J| (Jm ——V+ Jsz ——V+Js3 e ) ®TA,

Similar expressions can be derived for the field components in cylindrical coordinates
and for the case of a time-harmonic problem where both real and imaginary components
must be computed.

The current density, if not specified, can be obtained from the electric field and Ohm’s
law J = o - E where for the general case the conductivity o is a tensor. The components
of J then are

Jo = OzeBor + U:r,yEy + 05 E;
J. = Ozzlz + UzyEy + UzzEz
with a similar form for the cylindrical geometry case. When time-harmonic problems are

considered the equations in (138) are employed for both real and imaginary components
of J and the modulus and phase are computed from definitions equivalent to (135)-(136).
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The Ohmic or Joule heating for a region can be defined once the electric field and/or
current has been evaluated. From equation (10) then

Q=J-E=¢E-E=0¢"13.7J

where the components of E and J are defined in (137) and (138). For the time-harmonic
case an average heating over a cycle is required and this is defined by

< @ >=< Re{J} -Re{E} >= 0 < Re{E} - Re{E} >= 0" < Re{J} - Re{J} >
which can be rewritten to avoid the explicit averaging as
1 o O o o} .
<Q>= -2-Re{J -E*} = ERe{E -E} = —2—Re{.] - J*} (139)

where Re indicates the real part of the field and the * denotes the complex conjugate of
the field. Using the current density definition as an example

J = (I® +i3Y) (coswt + i sinwt)
J* = (I® — I (coswt — i sinwt) (140)
Evaluating the product J - J* from (140) and taking the real part leads to

-1 -
o
<Q>=— (@) + @) (141)
which is the average volume heating.
Magnetic Field Variables

The magnetic flux for a region is defined in terms of the magnetic potential by

B=VxA (142)
which can be written in component form as
.= e 2
B,= aa‘ix _ a;}: (143)
5,20t

with a similar definition for other coordinate systems. Using the shape functions for the
components of A and the definitions of the spatial derivatives given above and in Section
4.7, then a typical component of the magnetic flux becomes

1 0BT a@T )

o®T
B; = IJI «721 Az-l-jzz Az+jzs
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T T T
1 ( o® 0® o® ) (144)

_m jél-a—-Ay + J},zwAy + %3—5T—Ay

S -
The remaining components follow in a similar manner. The time-harmonic case utilizes
(142) to produce real and imaginary components of B; the modulus and phase angle are
computed from the definitions given previously.

The magnetic field H is computed from the magnetic flux based on the constitutive
relation H = vB where v is a tensor. The components of H for the general case are

H,; = Vg By + vy By + 5. B,

Hy = vy By + vy By + vy B; (145)
H, =v,;B; +V;yBy +v,.B;

with a similar form for the cylindrical geometry case. When time-harmonic problems are
considered the equations in (145) are employed for both real and imaginary components
of H and the modulus and phase are computed from definitions equivalent to (135)-(136).

The magnetic part of the Lorentz force can be evaluated once the currents and mag-
netic flux are known. From equation (9) the force vector is -

F=JxB
where the components of F are
F,=JyB,— J.By

F,=J,B,— J.B. (146)
Fz = JxBy - JyB_fc

The components of J and B are defined in (138) and (143). An equation similar to
(146) may be written for the cylindrical geometry case. For time-harmonic problems the
Lorentz force must be averaged over a cycle and

< F >=< Re{J} x Re{B} >= %Re{.] x B'} (147)
As before, the J and B* fields may be written as
J=@" +4JY) (coswt + i sinwt)

B* = (B® — i BY) (coswt — i sinwt) (148)
Taking the real part of the cross product then produces the Lorentz force as

<F>= %(JR « BE + 71 x BY) (149)
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with components .
— 2(7RRR _ 7RRpR , 7Ipl _ jIpI
< F,>= —2-(Jy B, — J;'B; + J,B; — J, B,

< F,>= %(Jfo — JEBE 4 jIBI - jIBI) (150)
< F,>= -;—(Jfo - JEBE+JIB] - JIB])

A final quantity that is sometimes of interest for two-dimensional problems with out-
of-plane currents, is the magnetic stream function. By definition

oY ) oY
B, = B ; By = _6y (151)
for planar geometries and
109 o, 1oY
B, = ~3s ; B, = - (152)

for axisymmetric regions. The stream function could be computed from (151)-(152)
by integrating the components of B along closed contours (e.g., element boundaries)
as is typical in fluid mechanics codes. However, the stream function is also related to
the magnetic potential and this provides a more direct route for computation. For the
axisymmetric case 7 = 74y and in the planar geometries 1 = A,. The magnetic stream
function is thus most useful for visualization of axisymmetric problems.

The definitions given above are sufficient to define the various field components at
any point sg, tg, 7o within an element. In TORO II the field components are evaluated
in the interior of each element at selected integration points. For quadrilateral and
hexahedral elements the selected interior points are typically the 2 X 2 X 2 Gauss points
as recommended in [23]. Other element types also have recommended interior points
for acurate derivative evaluation. Note that auxiliary fields computed from derivatives
of a field variable are discontinuous between elements. To produce a continuous field
distribution, the integration point values are linearly extrapolated to the nodes of each
element and averaged between all connected elements. Fields that may not be continuous
across material interfaces, such as the current density, are not averaged across material
boundaries. The Joule heating and Lorentz force fields are defined only as an element
quantity and are assumed uniform within an element.

6.3 Graphical Output

TORO II contains no graphics capability and relies completely on external visualization
software. The code outputs solution data in a standard format file called EXODUS II
[22] that can be accessed by any of several graphics packages. Details are available in [4].
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Appendix A - Finite Element Equations for Quasi-
Static Electromagnetics

The detailed manipulations required to transform the basic field equations, written in
terms of the potentials, into a discrete system are presented here for the case of a con-
ducting material region. The development of the equations for various dielectric regions
is also summarized and the finite element form of the gauge condition is derived. Finally,
the discrete forms of the equations describing the static field problems are developed
from the results of the more general eddy current problem. Though the outline of the
numerical approximation procedure in Section 3 began with the definition of the finite
element approximations, the process to be described here begins with the weighted resid-
ual statement of the boundary value problem and introduces the element approximations
at a later stage.

Conduction Region, ¢

The starting point for the development is the set of vector and scalar equations describing
the magnetic and electric potentials as given in (31) and (32)

VX(I/-VXA)=—J°%%—-0'-VV (A1)
V-(——U-VV—J-%%>=O (42)

The weak or weighted integral forms corresponding to (A1) and (A2) are obtained by
defining a vector weighting function W and a scalar weighting function W, multiply-
ing (A1) and (A2) by the appropriate function and integrating each equation over the
conducting region. That is,

A
QCW-VX(V-VXA)dQ-i—/QcW~a-—6t—dQ+ [ Weo-vvae=0 (43)
and A
QCWV~(—o-VV)dQ+/QCWV-(—a-5¥-)dQ=O (A4)

The weak forms in (A3) and (A4) may be further transformed by utilizing Gauss’ theorem
to reduce the highest order derivative terms. Proceeding first with the magnetic potential
equation, let H =7V X A and rewrite (A3) as

Ji WV x Hd+ | w.o.-22 %0+ [ W.o-vvda=0  (45)
Qo Q¢ ot Qo

By a vector identity
V- WxH)=H-VxW-W.VxH

50




which allows (A5) to be written as
| OA
/ﬂc H-VdoQ—/QC V. (W x H) dQ+/QC Weo- 2 dQ+/QCW-a-VVdQ =0 (46)

Introducing the divergence theorem for the second integral and the vector identity
(W xH)-n=W .- (H x n) then (A6) becomes

DA
/QCI-I-VdoQ—/PCW-(H x 1) dl‘+/QCW-a-EdQ+/QC W-o-VVdQ =0 (A7)

where n is the outward normal to the boundary I'c. Finally, reintroducing the defini-

tion of H and rearranging produces a weighted integral form of the magnetic potential

equation

0A

W.o. ——dQ+/ VXW-(r-VxA)d = —/ Weo- VVdQ-i—/ W-(»-VxA)xn dT
(A8)

As a final step, the natural boundary condition for the magnetic potential may be intro-

duced. Note that the boundary integral in (A8) contains the boundary condition specified

in equation (35). Making the appropriate substitution leads to the requlred form of the
integral statement

Wa%dﬂ+/ VXW(VVXA)dQ——/ WaVVdQ+/ W-£E 4T (49)

Q¢

Q¢

The electric potential equation (A4) is transformed in a similar manner. Using the
divergence theorem on the first two integrals in (A4) leads to

—/ VW-(~c - VV) dQ—/ VW (—0' a—A-) Q= — W(—a %A _,. vv) ndl
Qo Q¢ T

Bt ot
(A10)

This may be rearranged into a standard form as
0A

vW.o.-vvae+ [ vw.o-22a0= [ w(s.22 1o vv) nar (a11)
Q¢ Qc ot T¢ at

which is a weighted integral form of the electric potential equation. Again, the natural
boundary condition for the potential, equation (36), may be substituted into (A11) to
obtain the final form of the weighted integral

0A

/chw-a.vvm-kfncvw-a =

22 a0 = / W#’ dr (A12)

The weak or weighted integral forms of the field equations in (A9) and (A12) form the
basis for the computational method. The region Q¢ is discretized into an assemblage of
finite elements and the weighted integral statements are applied to each element. Within
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each element the vector magnetic potential and scalar electric potential are approximated
by expansions of the form

A(x, 1) = 8T (x)Ax(t)ex + BT (x)Ay(t)ey + T (x)A,(t)er+ (A13)
V(x,t) = ¥T(x)V(2) (A14)

which are written here for the three-dimensional cartesian case with the e; being unit
vectors for the coordinate system. Similar expressions can be constructed for the ax-
isymmetric and two-dimensional cases. In (A13) and (A14) @ and ¥ represent vectors
of interpolation functions, A; and V are vectors of nodal point unknowns and superscript
T indicates a vector transpose. Note that the assumed approximations for the dependent
variables are semi-discrete with the spatial dependence being discretized through inter-
polation and the temporal dependence remaining continuous. For a Galerkin method the
weight functions W and W are selected to be the same functions as used to represent
the variables. That is

W(x) = B(x)ex + B(x)ey + B(x)e; (A15)
W(x) = ¥(x) (A16)

Substituting the definitions in (A13)-(A16) into the weighted residual equations in
(A9) and (A12) produces the following set of discrete equations for each element

MA + KA + NV =Fy (A17)

and .
NTA+ILV=Fy (A18)

where the superposed dot indicates a time derivative and equation (A17) represents the
three component equations for the magnetic potential.

The matrix system shown above is unsymmetric and is of an undesirable form from the
standpoint of time integration. To restore symmetry, the following definition proposed
by Chari, et al. [24] is employed

ov
=V _; 19
i (A19)
Using this definition equations (A17) and (A18) can be rewritten as
MA + KA +Nv=Fp (A20)
and .
NTA +Lv=Fy (A21)

and in a completely assembled form
M N[ A KO][A)_{Fa
ER A S et B
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A general symbolic form for the system in (A22) can be written as
MU+KU=F (A23)

where
UT = {AT, A7, AT vT}.

The component matrices defined in (A17)-(A22) are defined by the following integrals
that arise from the weighted residual statements. The matrices are written here in terms
of vector notation; the explicit forms of the matrices needed for computation are described
in Appendix B.

M=/| &.0-37dQ

Q.
K= QVx@m-Vx@TdQ
N= [ &.0-VETQ
NT = A V¥ .o-8TdQ (A24)

L=/ VE- o vET 0
Q.
= fH4r
Fa frc@

FV=/Pe\Ifdel"

Dielectric and Conduction Region with Source Currents, Qp, Qs

The development of the finite element equations for dielectric regions or regions with
specified currents follows the same procedure as outlined above but with a reduced set of
partial differential equations. Since dielectric or free space regions and specified current
regions differ only by the presence of a volumetric source, they may be treated as a
single domain. The starting point for the development is equation (31) that describes
the magnetic potential

Vxv-VxA)=1Ig (A25)

Following the previously described procedure, the weighted residual statement corre-
sponding to (A25) is
/ VxW-(v~V><A)dQ=/ W-Jon+/ W - fHgr (A426)
Q¢ Q¢ T'c

which is analogous to (A9) for conduction regions. The finite element approximation for
(A26) again makes use of the definitions in (A13) and (A15) and leads to the following
matrix system

KA=F,+F;3 (A27)
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Equation (A27) is the free space and source current equivalent of (A22). Note that for
free space regions Fy = 0 by definition while regions with specified currents will have F3
defined by

F;,:/Q & - JodQ (428)

Gauge Condition

When the magnetic potential must be made unique, a projection method is used to define
a scalar correction variable. The gauge condition is given by equation (42)

V.VS=-V-A* (A29)

where A* is the unconstrained magnetic potential. A weak form for (A29) is developed
in the standard way by defining a scalar weight function W, and writing the following
weighted residual statement

fwv-vsm:—f WV - A*dQ (A30)
Q Q
Use of the divergence theorem in (A30) leads to
/VW-VSdQ=—/WV-A*dQ+/WdeI‘ (431)
Q Q r

which is the -required integral equation for the gauge condition. Note that the natural
boundary condition for the variable S has been used in (A31); the boundary condition
{5 specifies the gradient of S normal to the boundary.

A finite element approximation to (A31) follows again the previously defined proce-
dure. The variable S is approximated by an expansion

S(x,t) = OT(x)S(t) (A32)

Using the definition in (A13) for A*, the weighted residual statement in (A31) along with
the Galerkin criteria, W = ©, produces the matrix equation

NS = Fg + Fa- . (A33)

where the components of (A33) are defined by

N= A Ve - veTdn

Fg = /r ©fSdr (A34)

Fa- =/r 0 .vaT 2 A*
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Static Field Equations

The finite element equations for the simplified static field problems are developed in the
same manner as outlined in the previous sections. For some situations, the equations are
merely subsets of the more complex problems treated above.

Electrostatics

The basic equation for electrostatics is (43)
V- (e-VV)=—p (A35)
This has a weak form that is similar to the gauge equation
/QVW-e-VVdQ=—/QWde+/erJdI‘ (436)
where the natural boundary condition is a specification of the current (gradient of the

potential) normal to the boundary. Let the electric potential bé approximated by the
steady form of the finite element representation given in (A14)

V() =¥ (x)V (A14)
Using the Galerkin definition in (A16), equation (A36) leads to the matrix equation
L.=F,+Fy (A37)

where '
Le=/ V- ¢ Vel 40
Qe

F,= /r Tpd0 (438)

Fv=/r¢\IfdeF

Steady Current Flow

The steady current flow problem is a subset of the general eddy current formulation and
can bedefined immediately as
LV =Fy (A39)

where the matrix and vector are defined in (A24).
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Magnetostatics

The magnetostatics problem is also a subset of the general eddy current problem and
corresponds to the equations for a free space region with specified currents. The relevant
finite element equations are given by (A27)

KA =F, +F; (A40)
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Appendix B - Matrix Equations for Quasi-Static Elec-
tromagnetics

In this section the matrix components of the eddy current equations are presented for the
case of a Cartesian coordinate system in three dimensions. A few matrices are also given
for the reduced dimensionality case of an axisymmetric geometry, since these have a form
that is somewhat different than the planar case. In all situations the general anisotropic
material models are employed; the isotropic case follows by a straightforward elimination
of off-diagonal tensor components. Also, the matrices associated with static problems
and the time-harmonic approximation will not be presented separately, since they can
be obtained easily from the following basic forms. The component matrices defined here
are derived from equation (A24) in the previous appendix. Note that derivatives are
expressed in terms of the global z,¥, z coordinates, which for purposes of computation
would be converted to local element coordinates via the isoparametric transformation
given in equuation (93).

Magnetic Mass Matrix

The magnetic mass matrix is defined by

M=/| &-0-3TdQ (B1)

Qe

which has components

Mix = /Q B0, @AY My = /Q B0, ®TdQ2 Mg = /Q 80,87 dO

Mye= | 20,,87d2  Myy= [ 80,87d2  Myz= [ @0,.27d0 (B2)

sz=/;2 0,87 dQ M.y =/Q @UzyéT Ay, M; =/9 &0..87 dQ

Magnetic Diffusion Matrix

The magnetic diffusion or double curl matrix is defined by

K= QVX@-V-VXQTdQ (B3)

which has components

o2 08T 0% 08T 02 0T 02 93T
xx = _—sz_ _sz_az dQ

Q. Oy ~ Oy T W, T s dy By
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0 9®T 0@ 0®T 0@ 08T 9% 03T
Kiy=| —=Ver g+ 5V — 5=

. B0 " 0n T8 oy 02 0z | 0y 0z
0% 02T oo 08T 0 08T 0% 087

sz=/ T s T ey oy oy oy Y or
o 9dT o 9T 0@ 08T o 9T

ds2

as2

Kyx = 0. 0z~ Oy T 5, 82 2 + 57 Ve Oy df
9 odT o0 03T o0d o0dT 0 BT
Ky = 03276, T 52" 8z 02 " 0z 0z *° 0z i (B4)
K _ [ %2 02T 0@ 98T 0% 03T 0% 087
2= Jo. 52 oy 0z > by 0z ¥ 0z @ 0z ™Y oz

aQ

p Uyy—gz— + Fy—yzy—a-‘—z— - By sz—-a? + Eyyz_gy—
Koy = _8_‘1’1/ —6‘—1)—1:4-@1/ -831:——621/ 6§T+6§V il
W= Jo. Oy T8z Oy O Ox ¥ Ox Oz ¥ Bz
9 odT 0 0T o 9dT 0% 08T

Kgz = / “a -

o odT o6 08T 9@ 9T 0% 0BT
sz=/ - .

dQ

aQ

= ooy oy 55 W oz oy ¥ oz 03 ¥ by

The components of the diffusion matrix can be written in cylindrical coordinates
using the standard definitions of the curl operator. The result is a series of terms that
are analogous to the components of equation (B4). The utility of the cylindrical form is
primarily for use in problems with reduced dimensionality, i.e., axisymmetric geometries.
The type of axisymmetric problem considered depends on the orientation of the current
and which components of the magnetic vector potential are active. When the problem is
independent of the azimuthal coordinate, 8, two components of the magnetic potential
are required to describe the field, A-(r, z) and A.(r, z). The components of the diffusion
matrix for this case are

r 0% 087 0% BT
K= [ G0 gy 9 Ku= [ —gwg a0
02 08T o2 0®T
K= [ "G5y 90 K= [ Grveg @0 (B9)

Note that only one component of the reluctivity tensor is utilized in these terms and
the problem is therefore isotropic. When the problem geometry is such that only the
azimuthal component of the vector potential is active (e.g., currents are in the azimuthal
direction and are invariant with this coordinate) then the matrix components of the
diffusion operator are limited to

o2 08T 0% 93T

Kao= oo o0 T 02" 0
PP & 58T 0B T
+‘/Qc VZZ-;Z_ + 1/27_77 + szE'—T— dQ (Bﬁ)
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00z “0r O "0z Oz “r r 7 9z
Here four components of the reluctivity tensor are present and the problem can be

anisotropic in the r — z plane.

Electric-Magnetic Coupling Matrices

The coupling matrices between the electric and magnetic field variables are defined by

N=| ®.0-VET4Q (B7)
and
=/Q VT .o 87 dQ (B8)
which has components
0w’ o®T w7
Nxx-—/nci’am—a;dﬂ ny_/ﬂe L Nxz—-/m@axz—aTdQ

0T T ) o
Ny = /Q Bop—dd Ny = /Q Toy 5 d Ny = [, @0 da (B9)

: 4 oo’ oeT
Nox= [ 80u-d  Noy= [ 8047500 Ny = [ 20,5 —d0

The component of N7 are defined by the transpose of the above components.

Electric Mass Matrix

The electric mass matrix is defined by

— . . T
L_/Qevq:: o vET dQ (B10)
which has components

or 9T or 9T 0T 9T

Lxx a 0';,;3;'3— dQ ny = o, —azdzy—w dQ sz o a O'zza— dQ
or o7 or ouT or owT

yx = o 6—ny1;'—6$— dQ) Lyy = . —ézdyy—'a&'— dQ Lyz a Uyza_ df)
8T 9wt 0T 9T 0T 9uT

sz a O'Z:ca—' dQ2 Lzy = o 'a—zo’zy—c,ﬂ- dsl Lzz a 0’228— dQ

(B11)
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This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
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