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Abstract— Power Electronic Systems have grown in size and 

complexity over the past years. Therefore, users require interfaces 

to properly configure, develop, and deploy these systems. This 

work presents a Graphical User Interface that dynamically adapts 

to the system and allows the user to control and monitor its 

operation. This GUI uses networked communication and open-

source Python libraries to allow the user to interact with the 

system at its different hierarchical layers, as well as visualize the 

interconnection of the full system. This is demonstrated by 

showing the user interface applied to a megawatt class charging 

station that consists of various energy resources. 
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I. INTRODUCTION 

The drive for developing the ideal user experience for 

interfacing products is significant. Estimates for global market 

investments in graphical user interfaces (GUI) approximate to 

$1.596 billion for 2021 [1]. Forecasts suggest that these 

investments will only grow in the coming years. Well-

constructed GUIs are recognized as a valuable commodity as 

these tools can improve productivity and reduce learning time 

and operational errors [2]. 

Developing a high-quality GUI requires many 

considerations. As presented in [3]-[5], there are many 

attributes to supporting a GUI: consistency, universality, 

feedback, closure, error prevention, reversibility, control, 

automatic adoption, screen scalability, and memory 

maintenance to name a few. These are critical traits in ensuring 

that GUIs become a production tool and not a burden.  

While GUI development has been significant in many 

industries, the adoption of GUIs to support wide 

implementation of power electronic systems (PES) has been 

limited. GUIs to support single PES modeling and interfacing 

examples have been presented in [6]-[9]. In [6]-[7], GUIs have 

been created for modeling and evaluating single power 

electronic converters in Matlab/Simulink simulation. In [8]-[9] 

GUIs have been developed to support digital signal processor 

(DSP) interfacing using National Instruments LabView and 

software package called jscomm.  

Wind, solar, microgrid, and industrial plant operational 

control and data have also observed some developments in 

GUIs [10]-[17]. In [10] a solar plant GUI has been constructed 

that uses Modbus to connect to the solar inverters to retrieve 

data. A web portal and trend graphs are available for basic 

information on solar irradiance and converter information. A 

GUI has been constructed as part of a tool for performance 

comparison of PV plants in [11]. Optimization of PV plant 

performance in a GUI is presented in [12]. In [13], a GUI has 

been constructed for displaying wind plants connectivity and 

operation status, gauge meters, and provides plots on output. In 

[14], a GUI has been developed to interface a platform for wind 

energy technology evaluation.  In [15], a GUI has been 

constructed for Microgrid design and performance evaluation 

in Matlab/Simulink considering power factor and harmonics.  

In [16], a Supervisory Control and Data Acquisition (SCADA) 

system is introduced for industrial systems that can tie the 

different features necessary including fire protection, 

ventilation, generation, and other systems into a common 

platform. In [17], a mixed integer linear programming (MILP) 

output is put into tables within a GUI. 

In many of the works presented, GUIs are constructed by 

the user or developer to support the informational and control 

needs of a specific domain (resource, plant, etc). This work 

looks to present a framework of GUIs that are automatically 

generated based on information content provided by the 

resources and system models. These created GUIs allow for the 

operator to both control the PES and integrated resource, as 

well as control plant level system interactions. This adopts 

many of the attributes of consistency, universality, and 

automatic adoption. These GUIs have also been developed to 

provide real-time data from the devices in the field and manual 

control opportunities based on user needs. This gives the user 

an overview of the system’s operation, as well as individual 

system components.  In the next section, the GUI architecture 

to support a PES system of integrated resources is presented 

followed by an example use case of a system.  
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II. ARCHITECTURE TO SUPPORT DYNAMIC GUIS 

With the growth and increasing complexity of integrated 

PES, GUIs have become of increasing interest. Observability 

and controllability represent two critical components required 

to ensure that the usefulness of a GUI is maximized. Having 

this capability throughout an architecture to support debugging 

and over-ride controls is a important to constructing larger 

power electronic systems. For a system to be observable, 

components must have the ability to communicate information 

to other systems. Furthermore, for a system to be controllable, 

the system must be able to accept communication controls 

signals from external devices.  

An architecture to support communications and controls for 

PES considering an agent integration framework is presented in 

[18]. This system has been developed to support features that 

include integrated safety, plug-and-play capability, unit 

commissioning and operation, and DER peer-to-peer 

coordination. Key to these features includes the ability to 

provide user direct visibility and control in real-time 

considering the different layers of the architecture. Another 

objective is to utilize as many open-source libraries as possible 

to ensure open frameworks. A representation of the architecture 

including linkages to the various systems for GUIs is shown in 

Fig. 1. 

The architecture is hierarchal with three distinct layers: 1) 

resource management controller (RMC), the resource 

integration controller (RIC), and the converter controller (CC). 

The CC is at the lowest stage in the hierarchal framework. The 

CC performs the fast computation and control calculations that 

are necessary for power electronic converter closed loop 

controls (~1us). The CC pushes data and receives control 

request from the RIC through user datagram protocol (UDP) 

based communication. The RIC is responsible for coupling the 

PES with resources such as energy storage systems or electric 

vehicle chargers. The coupling is associated with how systems 

interact in terms of safety and other factors discussed in [18]. 

Finally, the RMC incorporates all the integrated technologies 

and performs various optimization strategies to orchestrate 

behavior from the systems. For the communication a message 

queuing telemetry transport protocol (MQTT) is used to support 

plug-and-play integration of the RICs.  
 In this framework, three different GUI based systems have 
been constructed to provide user feedback and control:  
electrical network and central control GUIs that reside in the 
RMC and a device control GUI that is in the RIC. These systems 
are described in further detail in the following subsections.  

A. Central Controller Graphical User Interface 

The central controller GUI has similarly been constructed 

to be able to adopt different electrical systems and 

configurations. In this case, information is pulled from a 

message queuing system and pushed to an application 

programing interface (API) server in JavaScript Object 

Notation (JSON). This server utilizes Flask, a python library 

that allows Python 3 code to link and interact with HyperText 

Markup Language (HTML) code. By launching an internet 

browser, the user is able to control the various functions of the 

system. This browser can be either set to display only on the 

computer’s internal IP address, localhost, or utilize the 

computer external IP address to support outside device 

interactions. The use of HTML provides users the ability to 

utilize lightweight computational platforms such as a phone, or 

single board computer (SBC) for access. Scalability is also 

easily adaptable as HTML has automatic adoptability.  

The HTML GUI, shown in Fig. 2, is hierarchal in nature to 

provide universality, consistency, and reversibility. The API 

data includes device measurements, configuration information 

including bus interconnections, and status data of the devices.  

This information is utilized to develop a natural construct for 

displaying the hierarchy. The initial HTML GUI contains 

buttons pertaining to the different bus systems upon which 

power electronic and resource integrated systems are 

connected. Selection of any bus button results in the HTML 

portal address that links to the specific bus with the 

corresponding devices. Selection of the devices creates another 

web portal that provides a control window of input windows to 

interject setpoings, buttons for starting and shutting down the 

corresponding resource, button for clearing any faults or 

performing an emergency stop, and a button to either close or 

return to the previous window. Any information entered or 

buttons pushed result in an API message that is sent to the 

message queuing system and ultimately converted to a MQTT 

message for distribution to the devices. Another button has been 

provided to provide direct access to the RIC HTML which 

bypasses the central controller MQTT system. This allows the 

user to interact with the devices in a lower level of the layered 

communication hierarchy.  
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Figure 1. Software and communications framework to support power 

electronic converters in various system topologies. Integration of 

graphical user interfaces is also shown for resource management 

controller an\d resource integration controllers. 

 



 

B. Electrical Networks Graphical User Interface 

The electrical network GUI has been constructed with plug-

and-play adaptability considerations while also adopting 

consistency and universality. This GUI uses python libraries 

Matplotlib, Tkinter, and NetworkX to automatically generate 

an electrical representation of the distribution network in real-

time. The Matplob and Tkinkter libraries provide the basis for 

the background GUI to operate. An empty plot provides the 

template for the NetworkX to structure a set of graphics for the 

system. The core program can extract the necessary system data 

by subscripting to the necessary MQTT topics and extracting 

messages pertaining to the devices (resource + converter) and 

bus interconnections. The electrical model is provided directly 

in a text file format while any devices interconnecting the 

system provide bus interconnection information via the MQTT 

communications. This information is used to create the 

necessary linkages between the components. The NetworkX 

library and functions use this information along with routing 

information to create the plot with images automatically. As 

new information is incorporated (messages showing system 

changes such as outages or new devices added to the system), 

the NetworkX automatically updates the layout of the system 

without any user inputs.  

Each converter and resource image is interconnected to an 

IP address that will automatically launch a internet browser to 

connect to the independent device hosted server HTML. Details 

on the device HMTL interface is discussed in the next section. 

  

C. Device Controller Graphical User Interface 

Similar to the central controller GUI, the device controller 

GUI uses a flask API server to host the HTML interfaces, as 

shown in Fig. 3. The server and HTML is also hierarchal and 

interconnects different aspects of a single resource for user 

viewing and control. Upon the launch of the server, a main 

HTML browser is shown that provides buttons to different 

informational components to the system operation: converter 

specifications, converter real-time dashboard, error codes, fault 

codes, and system real-time control.  Selection of any of these 

buttons will result in separate HTML browser windows with the 

respective information displayed and buttons and entries for 

control. 

The converter specification window provides the converter 

information required for operation. This information is stored 

in the converter controller and is communicated up to the RIC 

and then to the RMC. This information includes contactor and 

pre-charge circuit information, operation limits, such as 

minimum and maximum voltage, available control modes, such 

as power control, voltage regulation, and current control. By 

providing this information, a user can verify the capabilities of 

the hardware in the system. During system operation, converter 

configuration information is subject to change, such as in the 

event of a converter derating. If this occurs, the information is 

updated, and by refreshing the page, the updated information 

on the converter specifications can be observed.  

The converter real-time dashboard provides the current 

setpoints and measurements of the device in the system. This 

offers a visualization of the commands given from either the 

central controller or a user alongside the measurements 

provided by the converter. The status of the converter’s 

contactors, precharge circuits, and chosen control mode are also 

visible. The converter’s current state is also included with error 

and fault codes having dedicated pages. This provides 

additional information on the nature of the error or fault beyond 

just a state machine update. 

The system real-time control allows the user to control the 

resource without the presence of the RMC on the network. The 

server code directly sends commands to the RIC level MQTT 

broker. Typical system operation in the architecture presented 

in [18] relies on the RMC to optimize and send setpoints to the 

RIC and be relayed on to the converter and resource. However, 

during system debugging and testing, there is an advantageous 

to operate without the RMC to better control and understand the 

operation of the resource. This can be done through the system 

real-time control GUI. A user can clear faults/errors, send 

startup/shutdown commands, set control modes, and send 

setpoints to the converter. When done with multiple converters 

across the system, the system operator can observe different 

conditions that the RMC would not typically operate the system 

Device IP Address

 
Figure 2. Image of HTML layers and the interconnection on the central 

controller. 



at, such as maximum power operation across all system 

converters, or specific subsystem activation/deactivation. 

 

 
 

III. MEGAWATT CLASS CHARGING IMPLEMENTATION EXAMPLE  

For demonstration of the architecture and integrated GUI 

capability, the controller hardware in the loop system for a 

megawatt class charging system proposed in [19],[20] is used. 

This system consists of 2 DC multiports connected to an AC 

electrical system. Each DC multiport supports multiple DC/DC 

conversion stages that are used to integrate energy storage and 

an EV charger. An AC/DC converter composed of cascaded H 

bridges interfaces each multiport system with the power grid.  

For this architecture, two multiports were used to make up 

the megawatt class charging system. A typical multiport 

contains up to 3 EV chargers, an energy storage system, and a 

grid-tied inverter.  

For this example, the point of common coupling, where all 

grid-tied inverter attach to the power grid, is designated as “Bus 

0”. The RMC electrical model specifies the voltage level of this 

bus as 13.8kV. The grid-tied inverter for multiport 1 connects 

Bus 0 to Bus 1, which is the DC-DC bus for multiport 1. This 

bus has a nominal value of 2kV. The DC-DC converters that tie 

the resources to the bus specify Bus 1 as their connection point. 

The point where the resource ties to the DC-DC converter does 

not have a bus number specified. For multiport 2, the grid-toed 

inverter species Bus 0 and Bus 2, and the multiport’s resources 

also specify Bus 2.  

Based on the interconnection provided by the converters, 

along with the bus configuration in the RMC, the entire system 

topology can be visualized and displayed, as shown in Fig. 4. 

The two multiports are shown with one medium-duty EV 

charging and one energy storage system in each multiport.  

 

 
 

IV.   CONCLUSIONS  

This work presents a framework for supporting both 

distributed and centralized user interfaces. This provides users 

the ability to interact with varying integrated power electronic 

systems and to perform control and testing. Addressed in this 

work are qualities required for an effective graphical user 

interface to be used with a power electronic system, namely 

scalability, adaptability, and real-time feedback. Also 

incorporated into this system is a SQLite data historian and data 

plotting tool, which allows the user to see the data that was 

logged on the HTML interface.  

This work also demonstrates the advantage gained when 

information about the system is available at different system 

levels (including the device level). Plug-and-play adoption of 

the various GUI systems provides a flexible and dynamic 

capability to auto populate information, with different systems 

and subsystems populating the HTML interface.  

  
Figure 3. Image of HTML layers and how they interconnect on the device 

controller and linkage 

Multiport 1

Multiport 2  
Figure 4. Automatic generation of electrical models using NetworkX 
python libraries and pre-loaded images for converters, resources (EVs, 

batteries), and buses. 



Future work will look at the more advanced implications 

of augmented reality, virtual reality, voice and gesture type 

implications proposed in more advanced UI technologies [21]. 

Further future work will also be including dashboard 

integration to allow the user to see how measurements, control, 

and the system status change over time. 
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