
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A graphical user interface platform to support power

electronic converters and integrated systems

Benjamin Dean, Michael Starke, Steven Campbell, Radha Sree Krishna Moorthy

Grid Systems Architecture (GSA) Group

Oak Ridge National Laboratory

{deanbr, starkemr, campbellsl, krishnamoorr}@ornl.gov

Abstract— Power Electronic Systems have grown in size and

complexity over the past years. Therefore, users require interfaces

to properly configure, develop, and deploy these systems. This

work presents a Graphical User Interface that dynamically adapts

to the system and allows the user to control and monitor its

operation. This GUI uses networked communication and open-

source Python libraries to allow the user to interact with the

system at its different hierarchical layers, as well as visualize the

interconnection of the full system. This is demonstrated by

showing the user interface applied to a megawatt class charging

station that consists of various energy resources.

Keywords—HTML, Power Electronics, User Interface

I. INTRODUCTION

The drive for developing the ideal user experience for

interfacing products is significant. Estimates for global market

investments in graphical user interfaces (GUI) approximate to

$1.596 billion for 2021 [1]. Forecasts suggest that these

investments will only grow in the coming years. Well-

constructed GUIs are recognized as a valuable commodity as

these tools can improve productivity and reduce learning time

and operational errors [2].

Developing a high-quality GUI requires many

considerations. As presented in [3]-[5], there are many

attributes to supporting a GUI: consistency, universality,

feedback, closure, error prevention, reversibility, control,

automatic adoption, screen scalability, and memory

maintenance to name a few. These are critical traits in ensuring

that GUIs become a production tool and not a burden.

While GUI development has been significant in many

industries, the adoption of GUIs to support wide

implementation of power electronic systems (PES) has been

limited. GUIs to support single PES modeling and interfacing

examples have been presented in [6]-[9]. In [6]-[7], GUIs have

been created for modeling and evaluating single power

electronic converters in Matlab/Simulink simulation. In [8]-[9]

GUIs have been developed to support digital signal processor

(DSP) interfacing using National Instruments LabView and

software package called jscomm.

Wind, solar, microgrid, and industrial plant operational

control and data have also observed some developments in

GUIs [10]-[17]. In [10] a solar plant GUI has been constructed

that uses Modbus to connect to the solar inverters to retrieve

data. A web portal and trend graphs are available for basic

information on solar irradiance and converter information. A

GUI has been constructed as part of a tool for performance

comparison of PV plants in [11]. Optimization of PV plant

performance in a GUI is presented in [12]. In [13], a GUI has

been constructed for displaying wind plants connectivity and

operation status, gauge meters, and provides plots on output. In

[14], a GUI has been developed to interface a platform for wind

energy technology evaluation. In [15], a GUI has been

constructed for Microgrid design and performance evaluation

in Matlab/Simulink considering power factor and harmonics.

In [16], a Supervisory Control and Data Acquisition (SCADA)

system is introduced for industrial systems that can tie the

different features necessary including fire protection,

ventilation, generation, and other systems into a common

platform. In [17], a mixed integer linear programming (MILP)

output is put into tables within a GUI.

In many of the works presented, GUIs are constructed by

the user or developer to support the informational and control

needs of a specific domain (resource, plant, etc). This work

looks to present a framework of GUIs that are automatically

generated based on information content provided by the

resources and system models. These created GUIs allow for the

operator to both control the PES and integrated resource, as

well as control plant level system interactions. This adopts

many of the attributes of consistency, universality, and

automatic adoption. These GUIs have also been developed to

provide real-time data from the devices in the field and manual

control opportunities based on user needs. This gives the user

an overview of the system’s operation, as well as individual

system components. In the next section, the GUI architecture

to support a PES system of integrated resources is presented

followed by an example use case of a system.

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The

US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE

will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-

public-access-plan).

II. ARCHITECTURE TO SUPPORT DYNAMIC GUIS

With the growth and increasing complexity of integrated

PES, GUIs have become of increasing interest. Observability

and controllability represent two critical components required

to ensure that the usefulness of a GUI is maximized. Having

this capability throughout an architecture to support debugging

and over-ride controls is a important to constructing larger

power electronic systems. For a system to be observable,

components must have the ability to communicate information

to other systems. Furthermore, for a system to be controllable,

the system must be able to accept communication controls

signals from external devices.

An architecture to support communications and controls for

PES considering an agent integration framework is presented in

[18]. This system has been developed to support features that

include integrated safety, plug-and-play capability, unit

commissioning and operation, and DER peer-to-peer

coordination. Key to these features includes the ability to

provide user direct visibility and control in real-time

considering the different layers of the architecture. Another

objective is to utilize as many open-source libraries as possible

to ensure open frameworks. A representation of the architecture

including linkages to the various systems for GUIs is shown in

Fig. 1.

The architecture is hierarchal with three distinct layers: 1)

resource management controller (RMC), the resource

integration controller (RIC), and the converter controller (CC).

The CC is at the lowest stage in the hierarchal framework. The

CC performs the fast computation and control calculations that

are necessary for power electronic converter closed loop

controls (~1us). The CC pushes data and receives control

request from the RIC through user datagram protocol (UDP)

based communication. The RIC is responsible for coupling the

PES with resources such as energy storage systems or electric

vehicle chargers. The coupling is associated with how systems

interact in terms of safety and other factors discussed in [18].

Finally, the RMC incorporates all the integrated technologies

and performs various optimization strategies to orchestrate

behavior from the systems. For the communication a message

queuing telemetry transport protocol (MQTT) is used to support

plug-and-play integration of the RICs.
 In this framework, three different GUI based systems have
been constructed to provide user feedback and control:
electrical network and central control GUIs that reside in the
RMC and a device control GUI that is in the RIC. These systems
are described in further detail in the following subsections.

A. Central Controller Graphical User Interface

The central controller GUI has similarly been constructed

to be able to adopt different electrical systems and

configurations. In this case, information is pulled from a

message queuing system and pushed to an application

programing interface (API) server in JavaScript Object

Notation (JSON). This server utilizes Flask, a python library

that allows Python 3 code to link and interact with HyperText

Markup Language (HTML) code. By launching an internet

browser, the user is able to control the various functions of the

system. This browser can be either set to display only on the

computer’s internal IP address, localhost, or utilize the

computer external IP address to support outside device

interactions. The use of HTML provides users the ability to

utilize lightweight computational platforms such as a phone, or

single board computer (SBC) for access. Scalability is also

easily adaptable as HTML has automatic adoptability.

The HTML GUI, shown in Fig. 2, is hierarchal in nature to

provide universality, consistency, and reversibility. The API

data includes device measurements, configuration information

including bus interconnections, and status data of the devices.

This information is utilized to develop a natural construct for

displaying the hierarchy. The initial HTML GUI contains

buttons pertaining to the different bus systems upon which

power electronic and resource integrated systems are

connected. Selection of any bus button results in the HTML

portal address that links to the specific bus with the

corresponding devices. Selection of the devices creates another

web portal that provides a control window of input windows to

interject setpoings, buttons for starting and shutting down the

corresponding resource, button for clearing any faults or

performing an emergency stop, and a button to either close or

return to the previous window. Any information entered or

buttons pushed result in an API message that is sent to the

message queuing system and ultimately converted to a MQTT

message for distribution to the devices. Another button has been

provided to provide direct access to the RIC HTML which

bypasses the central controller MQTT system. This allows the

user to interact with the devices in a lower level of the layered

communication hierarchy.

M
Q

T
T

B
R

O
K

E
R

Historian

Device

Integrator

Converter Agent

Intelligence Agent

Interface Agent

Resource Agent

Historian Agent

Historian

Optimization

MQTT BROKER

Real-Time API

Resource Management Controller

Device

Control

(HTML)

Resource Integration Controller

Message

Queing

System

Manual Overide

Converter Controller
(DSP)

HARDWARE / SIMULATOR

Central

Control

(HTML)

Electrical

Network

(NetworkX)

Data Plotting

Bus Info

Electrical Model

System

Design

API Server

API Server

1 2

3

4

Figure 1. Software and communications framework to support power

electronic converters in various system topologies. Integration of

graphical user interfaces is also shown for resource management

controller an\d resource integration controllers.

B. Electrical Networks Graphical User Interface

The electrical network GUI has been constructed with plug-

and-play adaptability considerations while also adopting

consistency and universality. This GUI uses python libraries

Matplotlib, Tkinter, and NetworkX to automatically generate

an electrical representation of the distribution network in real-

time. The Matplob and Tkinkter libraries provide the basis for

the background GUI to operate. An empty plot provides the

template for the NetworkX to structure a set of graphics for the

system. The core program can extract the necessary system data

by subscripting to the necessary MQTT topics and extracting

messages pertaining to the devices (resource + converter) and

bus interconnections. The electrical model is provided directly

in a text file format while any devices interconnecting the

system provide bus interconnection information via the MQTT

communications. This information is used to create the

necessary linkages between the components. The NetworkX

library and functions use this information along with routing

information to create the plot with images automatically. As

new information is incorporated (messages showing system

changes such as outages or new devices added to the system),

the NetworkX automatically updates the layout of the system

without any user inputs.

Each converter and resource image is interconnected to an

IP address that will automatically launch a internet browser to

connect to the independent device hosted server HTML. Details

on the device HMTL interface is discussed in the next section.

C. Device Controller Graphical User Interface

Similar to the central controller GUI, the device controller

GUI uses a flask API server to host the HTML interfaces, as

shown in Fig. 3. The server and HTML is also hierarchal and

interconnects different aspects of a single resource for user

viewing and control. Upon the launch of the server, a main

HTML browser is shown that provides buttons to different

informational components to the system operation: converter

specifications, converter real-time dashboard, error codes, fault

codes, and system real-time control. Selection of any of these

buttons will result in separate HTML browser windows with the

respective information displayed and buttons and entries for

control.

The converter specification window provides the converter

information required for operation. This information is stored

in the converter controller and is communicated up to the RIC

and then to the RMC. This information includes contactor and

pre-charge circuit information, operation limits, such as

minimum and maximum voltage, available control modes, such

as power control, voltage regulation, and current control. By

providing this information, a user can verify the capabilities of

the hardware in the system. During system operation, converter

configuration information is subject to change, such as in the

event of a converter derating. If this occurs, the information is

updated, and by refreshing the page, the updated information

on the converter specifications can be observed.

The converter real-time dashboard provides the current

setpoints and measurements of the device in the system. This

offers a visualization of the commands given from either the

central controller or a user alongside the measurements

provided by the converter. The status of the converter’s

contactors, precharge circuits, and chosen control mode are also

visible. The converter’s current state is also included with error

and fault codes having dedicated pages. This provides

additional information on the nature of the error or fault beyond

just a state machine update.

The system real-time control allows the user to control the

resource without the presence of the RMC on the network. The

server code directly sends commands to the RIC level MQTT

broker. Typical system operation in the architecture presented

in [18] relies on the RMC to optimize and send setpoints to the

RIC and be relayed on to the converter and resource. However,

during system debugging and testing, there is an advantageous

to operate without the RMC to better control and understand the

operation of the resource. This can be done through the system

real-time control GUI. A user can clear faults/errors, send

startup/shutdown commands, set control modes, and send

setpoints to the converter. When done with multiple converters

across the system, the system operator can observe different

conditions that the RMC would not typically operate the system

Device IP Address

Figure 2. Image of HTML layers and the interconnection on the central

controller.

at, such as maximum power operation across all system

converters, or specific subsystem activation/deactivation.

III. MEGAWATT CLASS CHARGING IMPLEMENTATION EXAMPLE

For demonstration of the architecture and integrated GUI

capability, the controller hardware in the loop system for a

megawatt class charging system proposed in [19],[20] is used.

This system consists of 2 DC multiports connected to an AC

electrical system. Each DC multiport supports multiple DC/DC

conversion stages that are used to integrate energy storage and

an EV charger. An AC/DC converter composed of cascaded H

bridges interfaces each multiport system with the power grid.

For this architecture, two multiports were used to make up

the megawatt class charging system. A typical multiport

contains up to 3 EV chargers, an energy storage system, and a

grid-tied inverter.

For this example, the point of common coupling, where all

grid-tied inverter attach to the power grid, is designated as “Bus

0”. The RMC electrical model specifies the voltage level of this

bus as 13.8kV. The grid-tied inverter for multiport 1 connects

Bus 0 to Bus 1, which is the DC-DC bus for multiport 1. This

bus has a nominal value of 2kV. The DC-DC converters that tie

the resources to the bus specify Bus 1 as their connection point.

The point where the resource ties to the DC-DC converter does

not have a bus number specified. For multiport 2, the grid-toed

inverter species Bus 0 and Bus 2, and the multiport’s resources

also specify Bus 2.

Based on the interconnection provided by the converters,

along with the bus configuration in the RMC, the entire system

topology can be visualized and displayed, as shown in Fig. 4.

The two multiports are shown with one medium-duty EV

charging and one energy storage system in each multiport.

IV. CONCLUSIONS

This work presents a framework for supporting both

distributed and centralized user interfaces. This provides users

the ability to interact with varying integrated power electronic

systems and to perform control and testing. Addressed in this

work are qualities required for an effective graphical user

interface to be used with a power electronic system, namely

scalability, adaptability, and real-time feedback. Also

incorporated into this system is a SQLite data historian and data

plotting tool, which allows the user to see the data that was

logged on the HTML interface.

This work also demonstrates the advantage gained when

information about the system is available at different system

levels (including the device level). Plug-and-play adoption of

the various GUI systems provides a flexible and dynamic

capability to auto populate information, with different systems

and subsystems populating the HTML interface.

Figure 3. Image of HTML layers and how they interconnect on the device

controller and linkage

Multiport 1

Multiport 2
Figure 4. Automatic generation of electrical models using NetworkX
python libraries and pre-loaded images for converters, resources (EVs,

batteries), and buses.

Future work will look at the more advanced implications

of augmented reality, virtual reality, voice and gesture type

implications proposed in more advanced UI technologies [21].

Further future work will also be including dashboard

integration to allow the user to see how measurements, control,

and the system status change over time.

REFERENCES

[1] Business Research Insights, User Interface (UI) Design Market Size,
Share, Growth, and Industyr Analsyis, By Type (User Experience (UX)
Desing, Interactive Design(ID), Visual & Graphical Design and Others),
By Application (Software and APP, Web Page, Game, TV Interfaces and
Others. Regional Forecast from 2022 to 2028), BRI102500, Dec. 2022.
https://www.businessresearchinsights.com/market-reports/user-
interface-ui-design-market-102500

[2] R. E. Opaluch and Y. Tsao, "Ten ways to improve usability engineering
— Designing user interfaces for ease of use," in AT&T Technical Journal,
vol. 72, no. 3, pp. 75-88, May-June 1993.

[3] K. Y. Zamri and N. N. Al Subhi, "10 user interface elements for mobile
learning application development," 2015 International Conference on
Interactive Mobile Communication Technologies and Learning (IMCL),
Thessaloniki, Greece, 2015, pp. 44-50.

[4] B. Shneiderman and C. Plaisant, Designing the user interface: strategis
for effective human-computer interaction, 5th ed. USA: Addison Wesley,
2009.

[5] J. Gong and P. Tarasewich, “Guidelines for handheld mobile device
interface design,” in Proceedings of DSI 2004 Annual Meeting, 2004, pp.
3751–3756.

[6] R. Višnić, V. Šunde and I. Mrčela, "Matlab/GUI interface for simulation
of power electronic converters," 2011 Proceedings of the 34th
International Convention MIPRO, Opatija, Croatia, 2011, pp. 136-140.

[7] S. Doolla, S. S. Bhat, T. S. Bhatti and M. Veerachary, "A GUI based
simulation of power electronic converters and reactive power
compensators using MATLAB/SIMULINK," 2004 International
Conference on Power System Technology, 2004. PowerCon 2004.,
Singapore, 2004, pp. 1710-1715 Vol.2.

[8] A. Marquez, J. I. Leon, L. G. Franquelo and S. Vazquez, "Educational
hardware/software interface for power electronic applications," 2012 6th
IEEE International Conference on E-Learning in Industrial Electronics
(ICELIE), Montreal, QC, Canada, 2012, pp. 47-51.

[9] J. A. Sanchez et al., "Educational software interface for power electronic
applications," IEEE EDUCON 2010 Conference, Madrid, Spain, 2010,
pp. 1165-1170.

[10] E. Irmak, M. Ersan and O. Guney, "Software and Hardware
Implementation of a Graphical User Interface for Solar Power Plants,"

2019 1st Global Power, Energy and Communication Conference
(GPECOM), Nevsehir, Turkey, 2019, pp. 312-315.

[11] M. S. Jaferi, M. N. Mohd Hussain, N. '. Mohamad Zakaria, M. M.
Hussain, K. Daud and S. S. Mat Isa, "Performance Evaluation GUI for 50
MW Large Scale Solar PV System," 2022 11th Electrical Power,
Electronics, Communications, Controls and Informatics Seminar
(EECCIS), Malang, Indonesia, 2022, pp. 17-21.

[12] G. Adinolfi, R. Ciavarella, V. Palladino, M. Valenti and G. Graditi, "A
multi-objective optimization design tool for Smart Converters in
photovoltaic applications," 2018 International Symposium on Power
Electronics, Electrical Drives, Automation and Motion (SPEEDAM),
Amalfi, Italy, 2018, pp. 793-798.

[13] T. Kamel, Y. Biletskiy and L. Chang, "Data communication to monitor
power electronic converters," 2015 IEEE 24th International Symposium
on Industrial Electronics (ISIE), Buzios, Brazil, 2015, pp. 992-997.

[14] L. Wang, H. Zhao and B. Li, "The design and implementation of graphic
user interface for real-time wind farm simulation platform," The 10th
Renewable Power Generation Conference (RPG 2021), Online
Conference, 2021, pp. 445-450.

[15] R. Shrivastava, J. Kodnani, R. Manikandan and R. R. Singh, "GUI based
Power Factor and Harmonics Computation for Microgrid Central
Controller," 2021 Innovations in Power and Advanced Computing
Technologies (i-PACT), Kuala Lumpur, Malaysia, 2021, pp. 1-6.

[16] I. C. Hoarcă, N. Bizon and F. M. Enescu, "The design of the graphical
interface for the SCADA system on an industrial platform," 2020 12th
International Conference on Electronics, Computers and Artificial
Intelligence (ECAI), Bucharest, Romania, 2020, pp. 1-6.

[17] E. Lázár, D. Petreuş, R. Etz and T. Pătărău, "Minimization of operational
cost for an Islanded Microgrid using a real coded Genetic Algorithm and
a Mixed Integer linear Programming method," 2017 International
Conference on Optimization of Electrical and Electronic Equipment
(OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and
Power Electronics (ACEMP), Brasov, Romania, 2017, pp. 693-698.

[18] M. Starke et al., "Agent-Based Distributed Energy Resources for
Supporting Intelligence at the Grid Edge," in IEEE Journal of Emerging
and Selected Topics in Industrial Electronics, vol. 3, no. 1, pp. 69-78, Jan.
2022.

[19] M. Starke et al., "A MW scale charging architecture for supporting
extreme fast charging of heavy-duty electric vehicles," 2022 IEEE
Transportation Electrification Conference & Expo (ITEC), 2022, pp. 485-
490.

[20] R. S. K. Moorthy, M. Starke, B. Dean, A. Adib, S. Campbell and M.
Chinthavali, "Megawatt Scale Charging System Architecture," 2022
IEEE Energy Conversion Congress and Exposition (ECCE), 2022, pp. 1-
8.

[21] Christopher Holloway, Designing for Tomorrow: Addressing UI
Challenges in Emerging Interfaces (With Infographic)

https://www.businessresearchinsights.com/market-reports/user-interface-ui-design-market-102500
https://www.businessresearchinsights.com/market-reports/user-interface-ui-design-market-102500

