A graphical user interface platform to support power
electronic converters and integrated systems

Benjamin Dean, Michael Starke, Steven Campbell, Radha Sree Krishna Moorthy
Grid Systems Architecture (GSA) Group
Oak Ridge National Laboratory
{deanbr, starkemr, campbellsl, krishnamoorr}@ornl.gov

Abstract— Power Electronic Systems have grown in size and
complexity over the past years. Therefore, users require interfaces
to properly configure, develop, and deploy these systems. This
work presents a Graphical User Interface that dynamically adapts
to the system and allows the user to control and monitor its
operation. This GUI uses networked communication and open-
source Python libraries to allow the user to interact with the
system at its different hierarchical layers, as well as visualize the
interconnection of the full system. This is demonstrated by
showing the user interface applied to a megawatt class charging
station that consists of various energy resources.

Keywords—HTML, Power Electronics, User Interface

I. INTRODUCTION

The drive for developing the ideal user experience for
interfacing products is significant. Estimates for global market
investments in graphical user interfaces (GUI) approximate to
$1.596 billion for 2021 [1]. Forecasts suggest that these
investments will only grow in the coming years. Well-
constructed GUIs are recognized as a valuable commodity as
these tools can improve productivity and reduce learning time
and operational errors [2].

Developing a high-quality GUI requires many
considerations. As presented in [3]-[5], there are many
attributes to supporting a GUI: consistency, universality,
feedback, closure, error prevention, reversibility, control,
automatic adoption, screen scalability, and memory
maintenance to name a few. These are critical traits in ensuring
that GUIs become a production tool and not a burden.

While GUI development has been significant in many
industries, the adoption of GUIs to support wide
implementation of power electronic systems (PES) has been
limited. GUIs to support single PES modeling and interfacing
examples have been presented in [6]-[9]. In [6]-[7], GUIs have
been created for modeling and evaluating single power
electronic converters in Matlab/Simulink simulation. In [8]-[9]
GUIs have been developed to support digital signal processor
(DSP) interfacing using National Instruments LabView and
software package called jscomm.

Wind, solar, microgrid, and industrial plant operational
control and data have also observed some developments in
GUIs [10]-[17]. In [10] a solar plant GUI has been constructed
that uses Modbus to connect to the solar inverters to retrieve
data. A web portal and trend graphs are available for basic
information on solar irradiance and converter information. A
GUI has been constructed as part of a tool for performance
comparison of PV plants in [11]. Optimization of PV plant
performance in a GUI is presented in [12]. In [13], a GUI has
been constructed for displaying wind plants connectivity and
operation status, gauge meters, and provides plots on output. In
[14], a GUI has been developed to interface a platform for wind
energy technology evaluation. In [15], a GUI has been
constructed for Microgrid design and performance evaluation
in Matlab/Simulink considering power factor and harmonics.
In [16], a Supervisory Control and Data Acquisition (SCADA)
system is introduced for industrial systems that can tie the
different features necessary including fire protection,
ventilation, generation, and other systems into a common
platform. In [17], a mixed integer linear programming (MILP)
output is put into tables within a GUI.

In many of the works presented, GUIs are constructed by
the user or developer to support the informational and control
needs of a specific domain (resource, plant, etc). This work
looks to present a framework of GUIs that are automatically
generated based on information content provided by the
resources and system models. These created GUIs allow for the
operator to both control the PES and integrated resource, as
well as control plant level system interactions. This adopts
many of the attributes of consistency, universality, and
automatic adoption. These GUIs have also been developed to
provide real-time data from the devices in the field and manual
control opportunities based on user needs. This gives the user
an overview of the system’s operation, as well as individual
system components. In the next section, the GUI architecture
to support a PES system of integrated resources is presented
followed by an example use case of a system.

public-access-plan).

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the US Department of Energy (DOE). The
US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-

XXX=-X-XXXX-XXXX-XIXX/$XX.00 ©20XX IEEE

Il. ARCHITECTURE TO SUPPORT DYNAMIC GUIs

With the growth and increasing complexity of integrated
PES, GUIs have become of increasing interest. Observability
and controllability represent two critical components required
to ensure that the usefulness of a GUI is maximized. Having
this capability throughout an architecture to support debugging
and over-ride controls is a important to constructing larger
power electronic systems. For a system to be observable,
components must have the ability to communicate information
to other systems. Furthermore, for a system to be controllable,
the system must be able to accept communication controls
signals from external devices.

An architecture to support communications and controls for
PES considering an agent integration framework is presented in
[18]. This system has been developed to support features that
include integrated safety, plug-and-play capability, unit
commissioning and operation, and DER peer-to-peer
coordination. Key to these features includes the ability to
provide user direct visibility and control in real-time
considering the different layers of the architecture. Another
objective is to utilize as many open-source libraries as possible
to ensure open frameworks. A representation of the architecture
including linkages to the various systems for GUIs is shown in
Fig. 1.

The architecture is hierarchal with three distinct layers: 1)
resource management controller (RMC), the resource
integration controller (RIC), and the converter controller (CC).
The CC is at the lowest stage in the hierarchal framework. The
CC performs the fast computation and control calculations that
are necessary for power electronic converter closed loop
controls (~1us). The CC pushes data and receives control
request from the RIC through user datagram protocol (UDP)
based communication. The RIC is responsible for coupling the
PES with resources such as energy storage systems or electric
vehicle chargers. The coupling is associated with how systems
interact in terms of safety and other factors discussed in [18].
Finally, the RMC incorporates all the integrated technologies
and performs various optimization strategies to orchestrate
behavior from the systems. For the communication a message
queuing telemetry transport protocol (MQTT) is used to support
plug-and-play integration of the RICs.

In this framework, three different GUI based systems have
been constructed to provide user feedback and control:
electrical network and central control GUIs that reside in the
RMC and a device control GUI that is in the RIC. These systems
are described in further detail in the following subsections.

A. Central Controller Graphical User Interface

The central controller GUI has similarly been constructed
to be able to adopt different electrical systems and
configurations. In this case, information is pulled from a
message queuing system and pushed to an application
programing interface (API) server in JavaScript Object
Notation (JSON). This server utilizes Flask, a python library
that allows Python 3 code to link and interact with HyperText
Markup Language (HTML) code. By launching an internet
browser, the user is able to control the various functions of the
system. This browser can be either set to display only on the

Electrical Central
Network Control
(NetworkX) 1 Electrical Model (HTML) 2 API Server
A

System

Design Manual Overide

Real-Time API

vy

Device
Integrator

PPN Data Plotting

Resource Management Controller,

Device 3
Control
[GLLYIS)

MQTT BROKER

Interface Agent

(s)

Resource Integration Controller

MQTT
BROKER

Converter Agent

C"""e’t(eD’S‘;;”""”e’ <> HARDWARE / SIMULATOR

Figure 1. Software and communications framework to support power
electronic converters in various system topologies. Integration of
graphical user interfaces is also shown for resource management
controller an\d resource integration controllers.

computer’s internal IP address, localhost, or utilize the
computer external IP address to support outside device
interactions. The use of HTML provides users the ability to
utilize lightweight computational platforms such as a phone, or
single board computer (SBC) for access. Scalability is also
easily adaptable as HTML has automatic adoptability.

The HTML GUI, shown in Fig. 2, is hierarchal in nature to
provide universality, consistency, and reversibility. The API
data includes device measurements, configuration information
including bus interconnections, and status data of the devices.
This information is utilized to develop a natural construct for
displaying the hierarchy. The initial HTML GUI contains
buttons pertaining to the different bus systems upon which
power electronic and resource integrated systems are
connected. Selection of any bus button results in the HTML
portal address that links to the specific bus with the
corresponding devices. Selection of the devices creates another
web portal that provides a control window of input windows to
interject setpoings, buttons for starting and shutting down the
corresponding resource, button for clearing any faults or
performing an emergency stop, and a button to either close or
return to the previous window. Any information entered or
buttons pushed result in an APl message that is sent to the
message queuing system and ultimately converted to a MQTT
message for distribution to the devices. Another button has been
provided to provide direct access to the RIC HTML which
bypasses the central controller MQTT system. This allows the
user to interact with the devices in a lower level of the layered
communication hierarchy.

Device IP Address

Clear Fault

INPUT SIDE : DC OUTPUT SIDE : DC

Figure 2. Image of HTML layers and the interconnection on the central
controller.

B. Electrical Networks Graphical User Interface

The electrical network GUI has been constructed with plug-
and-play adaptability considerations while also adopting
consistency and universality. This GUI uses python libraries
Matplotlib, Tkinter, and NetworkX to automatically generate
an electrical representation of the distribution network in real-
time. The Matplob and Tkinkter libraries provide the basis for
the background GUI to operate. An empty plot provides the
template for the NetworkX to structure a set of graphics for the
system. The core program can extract the necessary system data
by subscripting to the necessary MQTT topics and extracting
messages pertaining to the devices (resource + converter) and
bus interconnections. The electrical model is provided directly
in a text file format while any devices interconnecting the
system provide bus interconnection information via the MQTT
communications. This information is used to create the
necessary linkages between the components. The NetworkX
library and functions use this information along with routing
information to create the plot with images automatically. As
new information is incorporated (messages showing system
changes such as outages or new devices added to the system),

the NetworkX automatically updates the layout of the system
without any user inputs.

Each converter and resource image is interconnected to an
IP address that will automatically launch a internet browser to
connect to the independent device hosted server HTML. Details
on the device HMTL interface is discussed in the next section.

C. Device Controller Graphical User Interface

Similar to the central controller GUI, the device controller
GUI uses a flask API server to host the HTML interfaces, as
shown in Fig. 3. The server and HTML is also hierarchal and
interconnects different aspects of a single resource for user
viewing and control. Upon the launch of the server, a main
HTML browser is shown that provides buttons to different
informational components to the system operation: converter
specifications, converter real-time dashboard, error codes, fault
codes, and system real-time control. Selection of any of these
buttons will result in separate HT ML browser windows with the
respective information displayed and buttons and entries for
control.

The converter specification window provides the converter
information required for operation. This information is stored
in the converter controller and is communicated up to the RIC
and then to the RMC. This information includes contactor and
pre-charge circuit information, operation limits, such as
minimum and maximum voltage, available control modes, such
as power control, voltage regulation, and current control. By
providing this information, a user can verify the capabilities of
the hardware in the system. During system operation, converter
configuration information is subject to change, such as in the
event of a converter derating. If this occurs, the information is
updated, and by refreshing the page, the updated information
on the converter specifications can be observed.

The converter real-time dashboard provides the current
setpoints and measurements of the device in the system. This
offers a visualization of the commands given from either the
central controller or a user alongside the measurements
provided by the converter. The status of the converter’s
contactors, precharge circuits, and chosen control mode are also
visible. The converter’s current state is also included with error
and fault codes having dedicated pages. This provides
additional information on the nature of the error or fault beyond
just a state machine update.

The system real-time control allows the user to control the
resource without the presence of the RMC on the network. The
server code directly sends commands to the RIC level MQTT
broker. Typical system operation in the architecture presented
in [18] relies on the RMC to optimize and send setpoints to the
RIC and be relayed on to the converter and resource. However,
during system debugging and testing, there is an advantageous
to operate without the RMC to better control and understand the
operation of the resource. This can be done through the system
real-time control GUI. A user can clear faults/errors, send
startup/shutdown commands, set control modes, and send
setpoints to the converter. When done with multiple converters
across the system, the system operator can observe different
conditions that the RMC would not typically operate the system

at, such as maximum power operation across all system
converters, or specific subsystem activation/deactivation.

............. FAULT CODES

Figure 3. Image of HTML layers and how they interconnect on the device
controller and linkage

I1l. MEGAWATT CLASS CHARGING IMPLEMENTATION EXAMPLE

For demonstration of the architecture and integrated GUI
capability, the controller hardware in the loop system for a
megawatt class charging system proposed in [19],[20] is used.
This system consists of 2 DC multiports connected to an AC
electrical system. Each DC multiport supports multiple DC/DC
conversion stages that are used to integrate energy storage and
an EV charger. An AC/DC converter composed of cascaded H
bridges interfaces each multiport system with the power grid.

For this architecture, two multiports were used to make up
the megawatt class charging system. A typical multiport
contains up to 3 EV chargers, an energy storage system, and a
grid-tied inverter.

For this example, the point of common coupling, where all
grid-tied inverter attach to the power grid, is designated as “Bus
0”. The RMC electrical model specifies the voltage level of this
bus as 13.8kV. The grid-tied inverter for multiport 1 connects

Bus 0 to Bus 1, which is the DC-DC bus for multiport 1. This
bus has a nominal value of 2kV. The DC-DC converters that tie
the resources to the bus specify Bus 1 as their connection point.
The point where the resource ties to the DC-DC converter does
not have a bus number specified. For multiport 2, the grid-toed
inverter species Bus 0 and Bus 2, and the multiport’s resources
also specify Bus 2.

Based on the interconnection provided by the converters,
along with the bus configuration in the RMC, the entire system
topology can be visualized and displayed, as shown in Fig. 4.
The two multiports are shown with one medium-duty EV
charging and one energy storage system in each multiport.

Multiport 1

— ~

N & /
N
~
Multiport 2

Figure 4. Automatic generation of electrical models using NetworkX
python libraries and pre-loaded images for converters, resources (EVs,
batteries), and buses.

IV. CONCLUSIONS

This work presents a framework for supporting both
distributed and centralized user interfaces. This provides users
the ability to interact with varying integrated power electronic
systems and to perform control and testing. Addressed in this
work are qualities required for an effective graphical user
interface to be used with a power electronic system, namely
scalability, adaptability, and real-time feedback. Also
incorporated into this system is a SQL.ite data historian and data
plotting tool, which allows the user to see the data that was
logged on the HTML interface.

This work also demonstrates the advantage gained when
information about the system is available at different system
levels (including the device level). Plug-and-play adoption of
the various GUI systems provides a flexible and dynamic
capability to auto populate information, with different systems
and subsystems populating the HTML interface.

Future work will look at the more advanced implications

of augmented reality, virtual reality, voice and gesture type
implications proposed in more advanced Ul technologies [21].

Further future work will

also be including dashboard

integration to allow the user to see how measurements, control,
and the system status change over time.

(1]

[2]

(3]

(4]

(5]

(6]

[7]

8]

(9]

[10]

REFERENCES

Business Research Insights, User Interface (Ul) Design Market Size,
Share, Growth, and Industyr Analsyis, By Type (User Experience (UX)
Desing, Interactive Design(ID), Visual & Graphical Design and Others),
By Application (Software and APP, Web Page, Game, TV Interfaces and
Others. Regional Forecast from 2022 to 2028), BRI102500, Dec. 2022.
https://www.businessresearchinsights.com/market-reports/user-
interface-ui-design-market-102500

R. E. Opaluch and Y. Tsao, "Ten ways to improve usability engineering
— Designing user interfaces for ease of use," in AT&T Technical Journal,
vol. 72, no. 3, pp. 75-88, May-June 1993.

K. Y. Zamri and N. N. Al Subhi, "10 user interface elements for mobile
learning application development,” 2015 International Conference on
Interactive Mobile Communication Technologies and Learning (IMCL),
Thessaloniki, Greece, 2015, pp. 44-50.

B. Shneiderman and C. Plaisant, Designing the user interface: strategis
for effective human-computer interaction, 5th ed. USA: Addison Wesley,
2009.

J. Gong and P. Tarasewich, “Guidelines for handheld mobile device
interface design,” in Proceedings of DSI 2004 Annual Meeting, 2004, pp.
3751-3756.

R. Visni¢, V. Sunde and I. Mréela, "Matlab/GUI interface for simulation
of power electronic converters,” 2011 Proceedings of the 34th
International Convention MIPRO, Opatija, Croatia, 2011, pp. 136-140.

S. Doolla, S. S. Bhat, T. S. Bhatti and M. Veerachary, "A GUI based
simulation of power electronic converters and reactive power
compensators using MATLAB/SIMULINK," 2004 International
Conference on Power System Technology, 2004. PowerCon 2004.,
Singapore, 2004, pp. 1710-1715 Vol.2.

A. Marquez, J. I. Leon, L. G. Franquelo and S. Vazquez, "Educational
hardware/software interface for power electronic applications," 2012 6th
IEEE International Conference on E-Learning in Industrial Electronics
(ICELIE), Montreal, QC, Canada, 2012, pp. 47-51.

J. A. Sanchez et al., "Educational software interface for power electronic
applications,” IEEE EDUCON 2010 Conference, Madrid, Spain, 2010,
pp. 1165-1170.

E. Irmak, M. Ersan and O. Guney, “Software and Hardware
Implementation of a Graphical User Interface for Solar Power Plants,"

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

2019 1st Global Power, Energy and Communication Conference
(GPECOM), Nevsehir, Turkey, 2019, pp. 312-315.

M. S. Jaferi, M. N. Mohd Hussain, N. '. Mohamad Zakaria, M. M.
Hussain, K. Daud and S. S. Mat Isa, "Performance Evaluation GUI for 50
MW Large Scale Solar PV System," 2022 11th Electrical Power,
Electronics, Communications, Controls and Informatics Seminar
(EECCIS), Malang, Indonesia, 2022, pp. 17-21.

G. Adinolfi, R. Ciavarella, V. Palladino, M. Valenti and G. Graditi, "A
multi-objective optimization design tool for Smart Converters in
photovoltaic applications,” 2018 International Symposium on Power
Electronics, Electrical Drives, Automation and Motion (SPEEDAM),
Amalfi, Italy, 2018, pp. 793-798.

T. Kamel, Y. Biletskiy and L. Chang, "Data communication to monitor
power electronic converters," 2015 IEEE 24th International Symposium
on Industrial Electronics (ISIE), Buzios, Brazil, 2015, pp. 992-997.

L. Wang, H. Zhao and B. Li, "The design and implementation of graphic
user interface for real-time wind farm simulation platform,” The 10th
Renewable Power Generation Conference (RPG 2021), Online
Conference, 2021, pp. 445-450.

R. Shrivastava, J. Kodnani, R. Manikandan and R. R. Singh, "GUI based
Power Factor and Harmonics Computation for Microgrid Central
Controller,” 2021 Innovations in Power and Advanced Computing
Technologies (i-PACT), Kuala Lumpur, Malaysia, 2021, pp. 1-6.

I. C. Hoarca, N. Bizon and F. M. Enescu, "The design of the graphical
interface for the SCADA system on an industrial platform," 2020 12th
International Conference on Electronics, Computers and Atrtificial
Intelligence (ECAI), Bucharest, Romania, 2020, pp. 1-6.

E. Lazar, D. Petreus, R. Etz and T. Patarau, "Minimization of operational
cost for an Islanded Microgrid using a real coded Genetic Algorithm and
a Mixed Integer linear Programming method," 2017 International
Conference on Optimization of Electrical and Electronic Equipment
(OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and
Power Electronics (ACEMP), Brasov, Romania, 2017, pp. 693-698.

M. Starke et al., "Agent-Based Distributed Energy Resources for
Supporting Intelligence at the Grid Edge," in IEEE Journal of Emerging
and Selected Topics in Industrial Electronics, vol. 3, no. 1, pp. 69-78, Jan.
2022.

M. Starke et al., "A MW scale charging architecture for supporting
extreme fast charging of heavy-duty electric vehicles,” 2022 |IEEE
Transportation Electrification Conference & Expo (ITEC), 2022, pp. 485-
490.

R. S. K. Moorthy, M. Starke, B. Dean, A. Adib, S. Campbell and M.
Chinthavali, "Megawatt Scale Charging System Architecture," 2022
IEEE Energy Conversion Congress and Exposition (ECCE), 2022, pp. 1-
8.

Christopher Holloway, Designing for Tomorrow: Addressing Ul
Challenges in Emerging Interfaces (With Infographic)

https://www.businessresearchinsights.com/market-reports/user-interface-ui-design-market-102500
https://www.businessresearchinsights.com/market-reports/user-interface-ui-design-market-102500

