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How genomic differences contribute to phenotypic differences is a major question in
biology. The recently characterized genomes, isolation environments, and qualitative
patterns of growth on 122 sources and conditions of 1,154 strains from 1,049 fungal
species (nearly all known) in the yeast subphylum Saccharomycotina provide a powerful,
yet complex, dataset for addressing this question. We used a random forest algorithm
trained on these genomic, metabolic, and environmental data to predict growth on
several carbon sources with high accuracy. Known structural genes involved in assim-
ilation of these sources and presence/absence patterns of growth in other sources were
important features contributing to prediction accuracy. By further examining growth
on galactose, we found that it can be predicted with high accuracy from either genomic
(92.2%) or growth data (82.6%) but not from isolation environment data (65.6%).
Prediction accuracy was even higher (93.3%) when we combined genomic and growth
data. After the GALactose utilization genes, the most important feature for predicting
growth on galactose was growth on galactitol, raising the hypothesis that several species
in two orders, Serinales and Pichiales (containing the emerging pathogen Candida auris
and the genus Ogataea, respectively), have an alternative galactose utilization pathway
because they lack the GAL genes. Growth and biochemical assays confirmed that sev-
eral of these species utilize galactose through an alternative oxidoreductive D-galactose
pathway, rather than the canonical GAL pathway. Machine learning approaches are
powerful for investigating the evolution of the yeast genotype—phenotype map, and
their application will uncover novel biology, even in well-studied traits.

GAL pathway | fungal evolution | primary metabolism | Al | galactitol

Yeasts in the subphylum Saccharomycotina (hereafter referred to as yeasts) are genomically
diverse, geographically widely distributed, found in diverse habitats, and utilized for diverse
purposes by humans—the baker’s yeast Saccharomyces cerevisiae is the cornerstone of the
winemaking, brewing, baking, and biotech industries; Candida albicans is a human com-
mensal that thrives in the human gut and occasionally becomes a serious pathogen;
Candida auris is an emerging fungal pathogen of great concern because of its innate
resistance to available antifungal drugs; and Lipomyces starkeyi prodigiously produces lipids
and has several biotechnological applications (1-3).

Yeast ecological diversity is thought to be intimately tied to the vast diversity in their
diets, i.e., the diversity of primary metabolic capabilities that allow them to grow on many
different sources of carbon and nitrogen (4). However, we currently lack a comprehensive
understanding of how variation in yeast gene content or regulation is related to the met-
abolic diversity and environmental adaptation of the ~1,200 species found across the
subphylum. Recently, the Y1000+ Project (https://y1000plus.org/) published draft genome
sequences of 1,154 representative strains (mostly taxonomic type strains) from 990
described and 61 candidates for new species of yeasts (5-7). The Y1000+ Project has also
systematically recorded (from the literature) and/or experimentally generated the isolation
environments and qualitative and quantitative patterns of growth on diverse carbon
sources, nitrogen sources, and environmental conditions (e.g., temperature and salinity)
for a very large fraction of the same set of strains (4, 6). The availability of a comprehensive
dataset that captures the vast genomic, environmental, and metabolic diversity of yeasts
provides a unique testbed for understanding how adaptation to unique environments
occurs in eukaryotic genomes (7).

Several of the pathways that allow yeasts to grow on certain sources are well characterized
(8). For example, sucrose assimilation depends on the invertase Suc2p, and maltose assim-
ilation depends on the maltose permease Mal31p and maltase (x-D-glucosidase) Mal32,
which can also act on sucrose (9, 10). Arguably, the best-studied pathway is the Leloir or
GALactose utilization pathway, which has become a model not only for understanding gene
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regulation in eukaryotes (11, 12), but also for how evolutionary
changes in gene sequences, arrangement, and regulation contribute
to ecological adaptation (13-19). In the GAL pathway of the baker’s
yeast S. cerevisiae, Gal2p or an Hxt transporter protein imports
D-galactose into the cell, where the mutarotase domain of Gal10p
acts on the sugar, if necessary. Then, Gallp converts it to
galactose-1-phosphate, representing the first energy-consuming
step of the pathway (20). Gal7p then converts galactose-1-phosphate
to UDP-galactose. Gal10p acts on UDP-galactose using its epime-
rase domain, resulting in the production of UDP-glucose. Finally,
Gal7p converts UDP-glucose to glucose-1-phosphate, which
Pgm1p/Pgm2p then converts to glucose-6-phosphate, which enters
glycolysis to produce energy for the cell (20).

Galactose abundance varies widely across yeast environments.
For example, due to both the dietary influx of galactose and the
synthesis of the sugar, galactose is abundant in the gut, bloodstream,
and urine of most mammals (including humans) in the form of
oligosaccharides, glycoproteins, and glycolipids, as well as in milk
and other dairy products in the form of lactose (a disaccharide
composed of galactose and glucose subunits) (21). Galactose is also
found in a variety of fruit, vegetable, and other plant products, such
as legumes; levels of galactose in common fruits and vegetables
range from <0.1 mg/100 g to 34 mg/100 g (22-24). Galactose is
also part of oligosaccharides, such as lactose, raffinose, and melibi-
ose, as well as glycoproteins and glycolipids, that vary in their
distribution across environments (23, 24); hydrolysis of these mol-
ecules by microbial enzymes can release free galactose.

The substantial variation in abundance of galactose in different
environments is reflected in the evolution of the GAL pathway
and its regulation across the subphylum Saccharomycotina.
Numerous instances of wholesale pathway loss and gain, including
by horizontal gene transfer, have been discovered (13, 15, 16, 19),
as well as striking instances of ancient, multilocus polymorphisms
within species (16-18, 25). Different regulatory systems that lead
to different modes of induction and rates of growth have also
evolved in different lineages. For example, C. albicans exhibits an
earlier graded induction in response to galactose, while S. cerevisiae
has a more bimodal expression (14, 26, 27).

The rich genomic, environmental, and metabolic data of the
Y1000+ Project, coupled with extensive genetic and biochemical
knowledge of yeast primary metabolism, provide a unique oppor-
tunity to explore the genotype—phenotype map, which models the
interaction between the genes and the traits of an organism, and
how it has evolved across a subphylum. However, the enormity
and complexity of the Y1000+ Project’s data make standard sta-
tistical analyses less suitable. In recent years, machine learning
algorithms have emerged as powerful tools for analyzing biological
big data (28). Examples include predicting genes involved in spe-
cialized metabolism (29), predicting the bioactivities of specialized
metabolites from genomic data (30, 31), predicting protein expres-
sion and function from regulatory and protein sequences (32-34),
and distinguishing fungal ecological lifestyles, such as saprobes
from plant pathogens (35) or generalists from specialists (6).

One of the most successful machine learning algorithms for ana-
lyzing biological datasets is the random forest algorithm, which
employs randomized decision trees trained on subsets of the data
to identify the most informative data features (e.g., a gene’s pres-
ence/absence, a gene’s function, a strain’s ability to grow on a given
substrate) for predicting a trait of interest (e.g., the ability to assim-
ilate galactose). The algorithm is known to perform well in biolog-
ical datasets, likely because it can handle datasets where the number
of variables is larger than that the number of observations (36), it
can be trained on a part of the dataset at a time, and it can capture
interactive effects between features (37). Identification of the most
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Fig. 1. Workflow for machine learning prediction of how diet influences the
evolution of primary metabolism in the subphylum Saccharomycotina. Using
the phenotype of “grows on substrate” or “does not grow on substrate” for
each yeast strain, we trained an XGBoost random forest algorithm on 90% of
environmental, qualitative trait, and/or genetic features (893 strains containing
885 species). Using the 10% of remaining data, we tested model performance
by looking at accuracy, confusion matrices, and ROC/AUC curves, and we
repeated this assessment nine more times using cross-validation. Feature
importance was calculated using Gini importance as automatically generated
by the XGBoost random forest algorithm. Created with https://BioRender.com.

important features that contribute to the prediction accuracy of the
random forest algorithm is straightforward and efficient, facilitating
the exploration of very large datasets for biological meaning and
the generation of testable hypotheses.

In this study, we used a random forest algorithm trained on
environmental, metabolic, and/or genomic data to predict the
growth of nearly all known species of Saccharomycotina on
different carbon sources (Fig. 1 and SI Appendix, Tables S1-54).
Predicting growth on 29 different carbon sources tended to be
highly accurate when the algorithm was trained on gene presence/
absence and/or on presence/absence of growth on other carbon
sources, which shows that both metabolic genes and the structure
of the metabolic network are highly informative for understanding
the evolution of yeast primary metabolism; in contrast, the pre-
dictive ability of isolation environment data was weak. Although
the most important features associated with prediction accuracy
were well-known genes and carbon sources associated with the
source of interest, our machine learning approach also identified
features not previously known to be associated with growth on a
given carbon source. To illustrate the predictive ability of our
approach, we used growth on galactose as a test case because our
machine learning approach suggested a possible alternative path-
way for galactose assimilation in the genus Ogataea and in a clade
containing C. auris, which both lack GAL genes. Growth and
biochemical assays validated that these species assimilate galactose
through a hypothesized oxidoreductive D-galactose pathway,
demonstrating the potential power of machine learning analysis
for studying the relationship between genomic and phenotypic
variation across vast evolutionary timescales.

Results

Machine Learning Accurately Predicts Growth on 29 Different
Carbon Sources from Metabolic and Genomic Data but Not from
Environmental Data. A random forest algorithm (Fig. 1) trained on
the metabolic data matrix had high balanced accuracy (on average,
82%) for predicting growth of the 893 strains representing 885 of
the Y1000+ yeast species on 29 different carbon sources. This result
indicates that variation in the content and structure of the primary
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metabolic network in different strains informs patterns of growth
on these substrates (Fig. 2 and SI Appendix, Table S5). A random
forest algorithm trained on the genomic data matrices [composed of
InterPro and/or KEGG Orthology (KO) annotations] was similarly
accurate for predicting growth on these 29 sources (on average, 80
to 81% balanced accuracy). Interestingly, KO annotations were
able to predict growth on substrates, such as D-xylose (~82%
accurate) and L-sorbose (~79% accurate), with good accuracy;
several previous studies have noted that the utilization of these
substrates cannot be inferred solely from patterns of gene presence/
absence, since the presence of certain genes (e.g., the XYL genes)
is required for growth on these substrates but is not sufficient for
predicting the ability to grow on them (8, 38—40).

In contrast, when the random forest algorithm was trained on
environmental datasets, the balanced accuracy was between 49
and 60% (on average, 55%), which is only marginally above ran-
dom accuracy (Fig. 2 and SI Appendix, Table S5). This result sug-
gests that our environmental dataset does not provide useful
predictors for growth on these sources. Examination of the ROC/
AUC curves, confusion matrices, and most important features for
predicting growth on xylose, sucrose, and galactose supports this
hypothesis: Accuracy is only marginally above random using envi-
ronmental data, and the most important features concern isolation
environments not known to have high amounts of these sugars
(SI Appendix, Fig. S1).

However, the accuracy of predicting growth on 29 carbon
sources using a random forest algorithm trained on isolation envi-
ronments was on average 60% when only specialists were included
in the analysis, which compared favorably to 54% average accuracy
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when only generalists were included and 55% accuracy when all
species were included. This result suggests that isolation environ-
ment is more informative for predicting carbon utilization of
specialists (SI Appendix, Fig. S5 and Table S12). Additionally,
generalists tended to be better predicted on more commonly uti-
lized substrates, while specialists were better predicted on more

rarely utilized substrates (S7 Appendix, Fig. S5 and Table S12).

Top Features for Predicting Growth on a Specific Carbon Source
Are Related Sources and Metabolic Genes. The top features for
predicting growth on the 29 carbon sources examined were often
biologically relevant (Figs. 2 and 3 and ST Appendix, Table S5). For
example, for xylose, the most important feature was growth on
xylitol, a metabolic intermediate in the typical xylose-degrading
pathway in yeasts and other fungi (39, 41), while for sucrose,
the most important feature was maltose, another disaccharide
containing a glucose moiety (10) (Fig. 3). For galactose, the top
features included 2-keto-D-gluconate and L-sorbose, which are
generated from glucose or galactose, respectively, by the enzymes
acting on alternative galactose-degrading pathways in some
bacteria and fungi (41-44), as well as lactose and melibiose,
disaccharides that contain galactose (Fig. 3). When the top feature
from each metabolic trait matrix was removed for xylose, sucrose,
and galactose, and then the random forest was reran recursively,
accuracy decreased rapidly at first for sucrose and more slowly
for xylose and galactose, even though xylose and galactose were
initially less accurate (~80% accuracy) than sucrose (~90%
accurate) (SI Appendix, Fig. S4 and Table S11). After removing
the top feature from the algorithm around 30 times, the accuracy
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Fig. 2. Prediction accuracy of growth on different substrates was high when the random forest algorithm was trained on metabolic data (blue) or genomic
data (orange and gray) but low when the algorithm was trained on isolation environment data (yellow). Note that data on growth (and, where applicable, on
fermentation) of the condition tested were removed prior to each analysis (e.g., prediction of growth on xylose from metabolic data was conducted using data
for growth on all other substrates, but it excluded data for growth on xylose and xylose fermentation). Balanced accuracy was assessed by Repeated StratifiedK
Fold (n_splits = 10, n_repeats = 3) after training the random forest algorithm on either the remainder of the metabolic data, the InterPro and/or KEGG genomic
data matrices, or the environmental data. Traits are ordered from most frequent to least frequent in the dataset from left to right. The most important feature
for each random forest algorithm, as well as the precision of the algorithm, is shown in Datasets S1-S12 (S/ Appendix, Table S1).
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Fig. 3. Prediction accuracy of growth on different sugars was high when the random forest algorithm was trained on genomic data, and similarly high when the
algorithm was trained on metabolic data. Panels (A) and (B): prediction of growth on xylose from genomic (A) or metabolic data (B). Panels (C) and (D): prediction
of growth on sucrose from genomic (C) or metabolic (D) data. Panels (E) and (F): prediction of growth on galactose from genomic (E) or metabolic (F) data. Note
that data on growth (and, where applicable, on fermentation) of the carbon source tested were removed prior to each analysis (e.g., prediction of growth on
xylose from metabolic data was conducted using data for growth on all other substrates and conditions, but it excluded data for growth on xylose and xylose
fermentation). Also note that KEGG Orthology misannotated GAL7, likely leading GALT to not be in the top features, and that the epimerase and mutarotase domains
encoded by GAL70 were annotated separately by this program. Accuracy is shown in the form of confusion matrices, which show strains predicted correctly to
not grow on the sugar (true negatives, Top Left), strains predicted to grow on the sugar that do not (false positives, Top Right), strains correctly predicted to grow
on the sugar (true positives, Bottom Right), and strains predicted to not grow on the sugar that do (false negatives, Bottom Left), as well as Receiver Operating
Characteristic (ROC) curves, which show the true positive rate over false positive rate with changing classification thresholds. Feature importance graphs are also
included to show the input features that are most useful for predicting growth on this sugar. XGBoost random forest was used to generate feature importance,
and cross_val_predict() from sklearn.model_selection was used to generate confusion matrices. ROC curves were generated using the roc_curve function from
sklearn.metrics. The prediction accuracies of growth on xylose, sucrose, and galactose from isolation environment data are shown in S/ Appendix, Fig. S1.
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of predicting growth on xylose, sucrose, and galactose remained
around 60 to 70% and continued to slowly decline (S/ Appendix,
Fig. S4 and Table S11). At around 90 top features removed,
accuracy started declining more steeply toward 50% or random
accuracy (SI Appendix, Fig. S4 and Table S11). This analysis
demonstrates how much connectivity there is between metabolic
traits in the random forest algorithm, as there remains a moderate
level of accuracy even while removing top related traits to each
carbon substrate.

A random forest algorithm trained on KEGG Orthology (KO)
annotations was similarly accurate for predicting growth on xylose
(~82%), sucrose (~87%), and galactose (~91%) to the combined
KO and InterPro genomic dataset (Figs. 2 and 3). Despite the larger
size of the genomic data matrix (over 5,000 features compared to
the metabolic data matrix of 122 features), the top features of the
genomic data matrix were still often related to genetic pathways or
enzymes known to be involved in the utilization of each source. The
top features for the highly accurate prediction of growth on galactose
were GAL7 and GAL10 (specifically the mutarotase domain), which
are parts of the yeast GAL pathway (13). The top feature for the
algorithm predicting growth on sucrose was oligo-1,6-glucosidase
(K01182), which corresponds to the a-glucosidases encoded by
MAL32 and MALI2, as well as IMA1-IMAS5, which indeed do act
on sucrose, as well as maltose in some yeasts (9, 10). The distribution
of XYLI, XYL2, and XYL3 does not always correlate with yeast
growth on xylose (8, 40). Even though the XYZ genes were present
in the KO database (except for XYZ3, which was misannotated),
they were not among the top features contributing to the 85%
prediction accuracy, but an a-xylosidase (K01811) was the fifth-most
important feature (Fig. 3). Since galactose metabolism and its asso-
ciated genetic pathway have been thoroughly studied in yeasts, the
remainder of this paper is focused on using growth on galactose as
a test case for the utility of this machine-learning pipeline.

The GAL Genes Are Highly Predictive of Growth on Galactose in
Most, but Not All, Yeasts. Plotting the presence/absence of the
GAL genes jointly with the presence/absence of growth on galactose
on genome-scale phylogeny of 1,154 yeast strains showed that the
distributions of the GAL genes were tightly correlated with the
distribution of growth on galactose. Specifically, 526/558 strains
that can grow on galactose have the GAL genes, and 277/310 strains
that cannot grow on galactose lack the GAL genes. Notably, there
are two lineages in the orders Serinales and Pichiales that can grow
on galactose but lack the GAL genes (Fig. 4). One lineage contains
species closely related to the emerging opportunistic pathogen C.
auris in the order Serinales. The second lineage contains species
belonging to the genus Ogataea in the order Pichiales. Isolation
environments, such as isolation from plants, showed no significant
association with growth on galactose (Fig. 4).

Using the scores from the sequence similarity searches (from
jackhmmer software) of GALI, GAL7, GAL102, and GAL10, the
algorithm was even more accurate in its predictions of growth on
galactose (92.2%). Despite the mis-annotation of the yeast GAL1
by KO (Materials and Methods), the algorithm was still nearly as
accurate when trained on the entire genomic data matrix as when
trained on the manually curated GAL gene orthologs (Fig. 3,
Fig. 5). When the metabolic dataset was added to the training data,
the accuracy increased even further to 93.1% (Fig. 5). This increase
in accuracy suggests that there are strains for which presence or
absence of the GAL genes cannot accurately predict growth on
galactose; if that were the case, then the increase in accuracy due to
the inclusion of the rest of the metabolic dataset raises the possibility
that there might be an alternative galactose-degrading pathway in
some yeasts. After the GAL genes, the most predictive feature was
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growth on galactitol, pointing to a possible role for this metabolite
as an intermediate in a potential alternative pathway (Fig. 5).
Previous work in filamentous fungi identified a galactose-degrading
pathway that involves galactitol as an intermediate(42, 46), leading
us to hypothesize that a similar pathway may be present in these
yeasts and contribute to the increase in accuracy.

Machine Learning Predicts an Alternative Galactose-Degrading
Pathway in Two Yeast Lineages That Lack GAL Genes. To further
explore the possibility of an alternative galactose utilization
pathway that uses galactitol as an intermediate, we trained our
random forest algorithm just on the GAL genes and growth on
galactitol. We found that this algorithm was almost as accurate
as when the rest of the metabolic dataset was added (93.1%
vs. 93.3%). Examination of the confusion matrices when the
algorithm was trained using just the GAL gene data vs. when
trained on the GAL gene data and metabolic data suggested that
the increase in accuracy came from 16 species that were previously
classified as false negatives and were now true positives (Fig. 6).
Since these species lack the GAL genes, our original algorithm
predicted that they could not grow on galactose; when growth
on galactitol was added, however, they were correctly predicted
to grow on galactose, further supporting the hypothesis that they
have an alternative galactose-degrading pathway (Fig. 6). These
16 species are all able to grow on galactitol and belong to the
two lineages that lack GAL genes, as noted previously in Fig. 4:
the lineage of species closely related to C. auris in Serinales and
the genus Ogataea in Pichiales. Even with this highly accurate
algorithm, there were several species that were still not correctly
predicted: 22 false negatives (strains that are predicted not to grow,
but do) (S Appendix, Table S7) and 35 false positives (strains
that are predicted to grow, but do not) remained, plus 3 species
with low GAL gene sequence similarity scores also became false
positives, bringing the total to 38 false positives (SI Appendix,
Table S8). These species warrant further investigation as they may
contain other alternative pathways, grow weakly on galactose or
only under specific conditions (47), use galactose in glycosylation
but not for assimilation (as the fission yeast Schizosaccharomyces
pombe) (48), or have pseudogenized GAL genes (49). We note
that the GAL genes of yeasts that were false positives in our
classification exhibited, on average, lower sequence similarity
scores in our GAL gene searches than the GAL genes of yeasts
that were true positives (S/ Appendix, Table S9), which is consistent
with reduced purifying selection.

Some Pichiales and Serinales Species Utilize Galactose through
an Oxidoreductive Galactose Utilization Pathway. To test the
hypothesis that some species lacking GAL pathways can indeed utilize
galactose, we tested three species (S/ Appendix, Table S10) from two
different orders, Candida ruelliae and Candida duobushaemulonii
from Serinales and Ogataea methanolica from Pichiales (45),
for growth on galactose as the sole carbon source and measured
galactose consumption. All three species grew to high cell densities
and accumulated more biomass than the S. cerevisiae positive control
(81 Appendix, Fig. S3A), which contains an intact GAL pathway.
Sugar quantification indicated galactose consumption in all three
species (Fig. 7A4). The first step of the known oxidoreductive galactose
pathway in species of Aspergillus fungi (outside of Saccharomycotina
yeasts) utilizes an aldose reductase, which reduces galactose to the
sugar alcohol galactitol while oxidizing NADPH to NADP" (50)
(Fig. 7B). Thus, we developed a biochemical assay for NADPH-
dependent enzymatic activity on galactose as the sole carbon source.
In this assay, species that exhibit the hypothesized enzymatic activity
are predicted to show a decrease in NADPH absorbance at 340 nm
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over time, while species that do not exhibit enzymatic activity are
predicted to show no decrease in NADPH over time (Fig. 7C). All
three species displayed decreases in absorbance of NADPH compared
to their respective negative controls with no substrate (Fig. 7D) and
no extracted protein (S/ Appendix, Fig. S3B), which indicates that the
cells express NADPH-dependent enzymatic activity that is dependent
on the presence of galactose. The S. cerevisiae negative control used
for this experiment possessed an intact GAL pathway and did not
show a decrease in NADPH absorbance over time, indicating a lack
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of NADPH-dependent enzymatic activity on galactose as the sole
carbon source. Thus, we conclude that these three species possess at
least the first step of an oxidoreductive pathway.

Discussion

In this study, we employed machine learning on the rich environ-
mental, metabolic, and genomic data from nearly all known species
of an entire eukaryotic subphylum to predict patterns of yeast
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growth on different carbon sources. We found that we could accu-
rately predict growth on diverse sources of carbon from genomic
and/or metabolic data but not from environmental data (Fig. 2).
Previous research showed that many yeast traits are connected in a
trait-trait network, likely due to shared genes in different metabolic
pathways (4, 6). These connections and overlap in gene functions
likely explain the high accuracy of prediction from metabolic and/
or genomic data. Interestingly, accuracy of prediction was high,
even for carbon sources for which enzyme specificity was lacking,
such as xylose (Fig. 3) (40). However, accuracy for xylose growth
was lower than for predicting growth on sources, such as galactose,
whose utilization pathways contain dedicated enzymes (Fig. 3).
In contrast, the accuracy of prediction of growth on different
carbon sources from isolation environment data was marginally
better than random (Fig. 3). There are two possible explanations

for this finding. The first is that isolation environments may be
heterogenous in their carbon sources and thus capable of support-
ing metabolically diverse yeast species. An alternative, not neces-
sarily mutually exclusive explanation, is that isolation environments
can be informative with respect to yeast diets, but that our current
environmental data are incomplete. Notably, our isolation envi-
ronmental data for each yeast included in the data matrix stem
from information present in the taxonomic description of the type
strain of each species. A dataset that contains the range of isolation
environments of each yeast species would potentially be much
more informative but is currently unavailable.

We also found that machine learning accuracy for predicting
growth on galactose was higher when both the presence/absence
of GAL genes and growth on galactitol were used in training com-
pared to just the presence/absence of the GAL genes alone (Fig. 5),

GAL Genes GAL genes and galactitol
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Fig. 6. Adding the galactitol growth data to presence/absence of the GAL genes increased prediction accuracy by correctly classifying several false negatives
as true positives. On the left is the confusion matrix for predicting growth on galactose using just GALT, GAL7, GAL10, and GAL102 presence/absence. Note the
presence of 35 false negatives; the algorithm predicted that these 35 species would be unable to grow on galactose because they lack the GAL genes, but they are
known to grow on galactose. When the metabolic trait “Growth on Galactitol” was added to the training data, 16 of these species were then correctly predicted
to grow on galactose and were moved to the “True Positive” category, while 19 remained false negatives. Three additional species that have low sequence
similarity scores for the presence of GAL genes in their genomes (Metschnikowia kofuensis, Kuraishia piskuri, and Wickerhamomyces subpelliculosus) also became
new false negatives, bringing the total up to 22 false negatives and 536 true positives, as shown in the confusion matrix on the right. The taxonomy (order) (45),
quantitative growth on galactose (which is normalized to growth on glucose), and qualitative ability to grow on galactitol for these 15 species are listed in the
table. Additionally, it is worth noting that one of the species (Nakazawaea siamensis) that was a false negative and became a true positive has GAL genes with low
sequence homology—with the addition of galactitol data, on which it does grow, it was then correctly predicted to grow on galactose.
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Fig. 7. All three species showed galactose consumption and enzymatic activity on galactose. (A) Average and SD across three biological replicates of galactose
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NADPH present in the assay mixture decreases, absorbance at 340 nm decreases. (D) Average and SD across four biological replicates of NADPH absorbance
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enzyme assay included all four species on one 96-well plate, and the protein blank possessed reagents that were the same across all species (Tris-HCl, galactose,

NADPH, and deionized water).

suggesting the presence of a rare alternative galactose-degrading
pathway. We found that this alternative galactose-degrading path-
way is found in two distinct lineages that grow in galactose in the
absence of GAL genes; we further proposed that this alternative
pathway involves galactitol as a metabolic intermediate (Figs. 4—
6). Enzyme assays validated the oxidoreductive activity of three
species in these two lineages when grown on galactose, providing
additional support for the hypothesized mechanism of utilization
(Fig. 7). We are currently investigating which genes are involved
in this alternative pathway.

This work illustrates the remarkable breadth of yeast metabolic
diversity and how machine learning approaches can help uncover
heretofore unknown alternative pathways, even in well-studied
traitsand lineages, such as galactose assimilation in Saccharomycotina
yeasts. The potential for additional findings using machine learning
is further highlighted by considering the several yeasts that appear
as false positives or false negatives in our machine learning predic-
tions. There are several possible explanations for why we currently
cannot accurately predict growth on galactose for every strain in
the subphylum. One explanation for some of the false positives
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could be that the GAL pathway is inactivated in some of the strains
examined, but that their genomes contain GAL pseudogenes.
Examples of GAL pseudogenes are known from several different
species (16, 18, 49), but strains with pseudogenes would still give
positive hits in our ortholog detection analyses. In support of this
hypothesis, the average sequence similarity scores for the GAL genes
in yeasts classified as false positives were lower than the scores for
GAL genes in yeasts classified as true positives (S Appendix, Tables S8
and S9). Another possible explanation for false positives could be
that some yeasts may contain GAL genes that are used in other pro-
cesses, such as glycosylation, but not in assimilation; although such
examples are not currently known from the Saccharomycotina, the
fission yeast S. pombe (subphylum Schizosaccharomycotina) is a case
in point (51). They may also be growing very weakly or under specific
conditions not tested here. Furthermore, since growth on galactitol
is predictive of this alternative pathway of galactose utilization in the
genus Ogataea and the C. auris lineage, our algorithm now predicts
that any strain that grows on galactitol can also grow on galactose,
which may not always true [e.g., some yeasts in these lineages may
be lacking the gene(s) to convert galactose to galactitol]. In fact,
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there are six yeasts (five from these two lineages, plus one Starmerella
species) in the list of false positives that grow in galactitol but do
not grow in galactose. Finally, we note that there are more false
positives in lineages other than the more extensively studied
Serinales and Saccharomycetales; this could be because the availa-
bility of fewer strains from other lineages results in less accurate
identification of gene presence/absence. Alternatively, the induction
of GAL genes or use of the pathway may be different in these
lineages (S Appendix, Table S8).

Yeasts that appear as false negatives in our analyses, which indi-
cates that they can indeed grow on galactose but are not predicted
to grow, may be growing weakly or they may have other alternative
pathways that do not involve galactitol. These may also lack the
appropriate inducing conditions for growth on galactitol since
they are often closely related to our documented alternative path-
way species (SI Appendix, Table S7). Additionally, 11 (out of 22)
of these have GAL genes that are highly divergent in their
sequences, indicating that they may have homologs that do not
reach the sequence similarity threshold (S Appendix, Table S7).
These yeasts could have very divergent, but still functional, GAL
genes; their GAL genes may have been misannotated; or they have
incomplete genomes that are missing the full sequences of the
GAL genes. These yeasts may also require cryptic inducing con-
ditions to test positive for growth on galactitol since they are often
closely related to our documented alternative pathway species
(81 Appendix, Table S7).

The broader take-home message of our study is that machine
learning approaches harbor great promise for studying the macro-
evolution of the genotype—phenotype map. The random forest
algorithm used to analyze this dataset was very efficient in finding
relevant genes and traits that predict growth on several carbon sub-
strates with high accuracy, without requiring extensive manual
parameter tuning. Part of its success is likely because we used the
one-of-a-kind matrix of genomic, metabolic, and ecological data of
the Y1000+ Project (6). While similar data matrices for other fungal
or eukaryotic lineages are currently lacking, it would be fascinating
to apply this type of analysis in clades with different morphologies,
ecologies, or lifestyles than those of Saccharomycotina. While gen-
eration of data matrices equivalent to the one currently available for
Saccharomycotina will undoubtedly require extensive effort and
coordination, the potential for discovery is likely to be greater in
lesser-studied lineages.

Of course, how successful machine learning or any other gen-
otype—phenotype association approach (52) will be for bridging
genomic and phenotypic variation across macroevolutionary
timescales will depend on numerous factors, including the genetic
architecture of the trait (oligogenic vs. polygenic); the degree to
which the evolution of the trait is correlated with the evolution
of other traits (univariate vs. multivariate); how often the trait
has evolved (once vs. repeatedly); and whether the evolutionary
mechanisms that contribute the trait are conserved (conserved
vs. divergent). Oligogenic, univariate, repeatedly evolved traits
that arise by the same evolutionary mechanisms will be the easiest
to study. In certain respects, the GAL pathway fits these descrip-
tions quite well; the ability to grow on galactose is encoded by a
few genes (13), growth on galactose is only weakly correlated
with growth on other traits (4), and the trait has been repeatedly
gained and lost (15, 19). We therefore find it striking that
machine learning enabled us to uncover the existence of an alter-
native pathway not previously known to be present in Saccha-
romycotina in such a well-studied trait. When coupled with rich
data, such as the treasure-trove of genomic, metabolic, and eco-
logical data of the Y1000+ Project (6), we believe that machine
learning approaches hold tremendous power to elucidate how
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genomic variation transforms into phenotypic variation across
the tree of life.

Materials and Methods

Genomic Data Matrix. Using the KEGG (53, 54) and InterProScan (55) gene
functional annotations generated by the Y1000+ Project (6), a data matrix was
builtwith presence and absence of each unique KEGG Orthology (KO) and counts
of each unique InterPro ID number in each genome. Each genome was its own
row, and each unique KO (N = 5,043) or InterPro ID (N = 12,242) present in
one or more of the 1,154 yeast genomes was its own column. A python script
recorded the presence and absence of KO annotations (S/ Appendix, Table S1),
the number of each InterPro ID for each genome (S/Appendix, Table S2), and put
them in the appropriate cells of the data matrix. Upon observing that accuracy
was typically similar for predicting growth on 29 carbon sources between a ran-
dom forest algorithm trained just on the KO dataset and the combined KO and
InterPro dataset, the KO genomic dataset was used for all subsequent analyses,
and the InterPro data were dropped from the genomic analyses following Fig. 2.
Comparison of our own GAL gene searches with the KO dataset revealed that GALT
was misannotated, and that the mutarotase and epimerase domains of GALT0
were annotated separately by KEGG.

Metabolic Data Matrix. Our metabolic data matrix contained 122 traits from
893 yeast strains from 885 species in the subphylum. The list of traits included
growth on different carbon and nitrogen sources, such as galactose, raffinose, and
urea, as well as on environmental conditions, such as growth at different temper-
atures and salt concentrations (S/ Appendix, Table S3). The metabolic data were
sourced from information available for each of the sequenced strains from the
CBS strain database. These data were gathered from strains studied as part of the
published descriptions of species, additional data on strains obtained by previous
studies done in the Westerdijk Fungal Biodiversity Institute (CBS), or additional
data provided by the depositors of the strains in the CBS culture collection. The
data matrix contained metabolic data for 893/1,154 species. The percentage of
missing data in the data matrix was 37.5% (40,906 missing values out of 108,946
total). Less thoroughly studied traits tended to have more missing data than more
commonly found and/or thoroughly studied traits. For example, our data matrix
included data on melibiose fermentation, which was estimated to be presentin
12%(28/234) of yeasts, but only 26.2% (234/893 of strains have been tested for
growth on this substrate. In contrast, our data matrix included data on galactose
assimilation, which was estimated to be presentin 64.2% (558/868), but 97.2%
(868/893) of strains have been tested. Since there were 25 strains for which
growth on galactose was not characterized, the total number of strains for which
we have both genomic data and galactose assimilation data was 868.

Environmental Data Matrix and Ontology. The isolation environments for
1,088 (94%) out of the 1,154 yeasts examined were gathered from strain data-
bases, species descriptions, or from The Yeasts: ATaxonomic Study (6, 56). Strains
without isolation environments either had been significantly domesticated via
crossing or subculturing or were lacking information in our searches. Written
descriptions of the environments were converted into a hierarchical trait matrix
using a controlled vocabulary. The ontology was built with Web Protégé (https:/
webprotege.stanford.edu/), with six broader categories: animal, plant, environ-
mental, fungal, industrial products, and victuals (food or drink). Within these
categories, more specific controlled vocabulary annotations were connected to
each strain: for example, an isolation environment reported as "Drosophila hibisci
on Hibiscus heterophyllus" was associated in our ontology with the animal sub-
class "Drosophila hibisci" and the plant subclass "H. heterophyllus." This ontology
was converted to a binary trait matrix containing all the unique environmental
descriptors (SI Appendix, Table S4). The same ontology was used in the recent
Y1000+ manuscript (6), but that manuscript only considered the first subclass
in subsequent analyses; our analyses here used all connections in the ontology
for training a random forest algorithm.

Predicting Growth on Different Carbon Sources Using Machine Learning
Algorithms Trained on Genomic, Metabolic, and/or Environmental Data.
To test whether we could predict growth on 29 different carbon sources from
genomic, environmental, and/or (the rest of the) metabolic data, we used a ran-
dom forest algorithm. These 29 traits were selected because they were measured
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in at least 743 strains and were present in 20 to 80% of strains included in this
analysis. For each trait, a random forest algorithm was trained separately on envi-
ronmental, metabolic, or genomic datasets to evaluate the accuracy of prediction
and identify the most important predictive features (S/ Appendix, Table S5).

We trained a machine learning algorithm built by an XGBoost (1.7.3) (57)
random forest classifier (XGBRFClassifier()) with the parameters "max_depth=12
and n_estimators = 100; all other parameters were in their default settings. The
max_depth parameter specifies the depth of each decision tree, determining
how complex the random forest will be to prevent overfitting while maintaining
accuracy. The n_estimators parameter specifies the number of decision trees in
the forest—after testing the increase in accuracy while increasing each of these
parameters, we found that having a higher max_depth or more decision trees
per random forest did not further increase accuracy.

The random forest algorithm was trained on 90% of the data, and used the
remaining 10% for cross-validation, using the RepeatedStratifiedKFold and
cross_val_score functions from the sklearn.model_selection (58) (1.2.1) pack-
age. Cross-validation is a method for assessing accuracy involving 10 trials, each
of which holds back a random 10% of the training data for testing (57, 58). The
mean accuracy of the algorithm from this test was used for our in-depth xylose,
sucrose, and galactose analyses, as those datasets were relatively balanced; that
is, there were relatively similar numbers of strains that grew in these substrates
(growers) and strains that did not grow in them (non-growers). For the analyses
involving all 29 carbon substrates, we used balanced accuracy, which takes the
mean of the true positive rate and the true negative rate, since there were une-
qual numbers of growers and non-growers in many of these substrates. For both
measures, an accuracy value of 50% would be equivalent to randomly guessing.

Receiver operator characteristic (ROC) curves, which plot the true positive rate
against the false positive rate, were also generated for each prediction analysis
to visualize the accuracy of the algorithm in predicting growth on a given sub-
stratevalues of area under the curve (AUC) greater than 0.5 in these plots indicate
better than random accuracy. We also used the cross_val_predict() function from
Sci-Kit Learn separately to generate the confusion matrices; these matrices show
the numbers of strains correctly predicted to grow or not grow on a specific carbon
source (True Positives and True Negatives, respectively) and incorrectly predicted
(False Positives, predicted to grow but do not; and False Negatives, not predicted
to grow but do). This function also employs a 10-fold cross-validation step, but it
keeps track of which species are classified as True/False Positives and True/False
Negatives during each of these 10 trials, while entering the final results into a con-
fusion matrix. Top features were automatically generated by the XGBRFClassifier
function using Gini importance, which uses node impurity (the amount of var-
iance in growth on a given carbon source for strains that either have or do not
have this trait/feature).

In each prediction analysis, we excluded from each training dataset growth
and fermentation data for each of the 29 carbon sources under investigation.
For example, we excluded growth on galactose and galactose fermentation from
the training dataset for predicting growth on galactose; thus, the final metabolic
data matrix used in the training contained data from 120 sources and conditions,
instead of the total 122. Similarly, we excluded growth on sucrose and sucrose
fermentation from the training dataset for predicting growth on sucrose; we
excluded xylose and xylose fermentation from the training dataset for predicting
growth on xylose. The code used for these analyses is available at https://github.
com/mcharrison95/RF_for_ML_GAL_paper.

GAL1, GAL7, GAL10, and GAL102 Gene Searches. To determine presence/
absence of genes in the GAL pathway in each of the genomes of the 1,154 strains
included in our study, we conducted sequence similarity searches for the GALT,
GAL7, GAL102, and GALT0 genes using the jackhmmer function from HMMER
software, version 3.3.2 (59). Using the representative GAL gene sequences from
the C. albicans genome, jackhmmer searched for all hits above a similarity score of
200, which captured genes from all 12 Saccharomycotina taxonomic orders, and
then used these results to build a custom hidden Markov model profile to search
for the gene throughout the phylogeny. jackhmmer repeated this method until
the results converged, which was three rounds for all genes except GAL10, which
required five rounds, likely because the mutarotase and epimerase domains are
part of the same protein in some yeast orders (e.g., Saccharomycetales and
Serinales) but belong to two separate proteins (encoded by GALM and GALE,
respectively) in others (e.g., Lipomycetales) (15, 19). In analyses where only
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the GAL gene dataset was used as genomic data, both the presence/absence
and similarity score produced by jackhmmer for GALT, GAL7, and GAL10 were
included in the dataset; hits with similarity scores below 200 were considered
absent and were entered as 0 (S/ Appendix, Table S6). As noted above, compar-
ison of our own GAL gene searches with the KO dataset revealed that GALT was
misannotated, and that the mutarotase and epimerase domains of GAL70 were
annotated separately by KEGG.

Quantification of Galactose Utilization in Strains Lacking the GAL
Pathway. To validate galactose utilization by certain strains lacking the GAL
genes that were identified in our qualitative metabolic data matrix, we quan-
tified growth and galactose consumption in liquid culture. Standard undefined
yeast lab media were prepared as previously described (60). YPD medium for
culturing yeasts contained 10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose,
and 18 g/Lagar (US Biological). Cells were streaked onto YPD plates, and single
colonies were picked. Cells were inoculated into 5 mLof YP (10 g/L yeast extract,
20 g/L peptone) + 2% galactose (Amresco) and grown to mid-log phase (48 to
55 h depending on the strain; see S/ Appendix, Table S10 for further information)
on a tissue culture wheel at room temperature. The optical density of the cells
was measured at 600 nm (ODyq,) using an OD600 DiluPhotometer (Implen).
Cells were inoculated into 50 mLYP + 2% galactose at a starting 0D, 0.05 for
all species except for the negative control species, Saccharomycopsis malanga,
which was inoculated at starting 0Dy, 0.01 due to the low cell density caused by
the absence of its GAL pathway. The cultures were shaken in non-baffled 150-mL
Erlenmeyer flasks (Fisher Scientific) at 250 rpm at room temperature for 7 d. One
microliter of culture was collected every 24 h and spun down; 600 uL of superna-
tant was used for extracellular sugar quantification via high performance liquid
chromatography and refractive index detection (HPLC-RID). 0D, readings were
also taken at each 24-h timepoint. All samples taken for HPLC-RID were stored at
—20 °C until the end of the experiment. Extracellular galactose concentrations
were determined by HPLC-RID as previously described using a galactose standard
(61,62).The strain S. cerevisiae gre3A::loxP-kanMX-loxP (63) served as a positive
control for galactose utilization because it has an intact GAL pathway; the deletion
of GRE3, which encodes a promiscuous aldose reductase that could conceivably
have some activity on galactose (64), also allowed this strain to serve as a negative
control for the hypothesized oxidoreductive pathway. Galactose concentrations
were expressed as g/L, and the results correspond to the mean value of biological
triplicate timepoints. All extracellular galactose quantification data visualization
was performed using R (v4.1.2) in the RStudio platform (v2022.07.01+554) and
with the package ggplot2 (v3.4.2) (65, 66).

Assay for Galactose- and NADPH-Dependent Enzymatic Activity. T0
determine whether galactose utilization in strains lacking the GAL genes but
able to grow in galactose occurred through a hypothesized oxidoreductive
D-galactose pathway, we tested NADPH-dependent enzymatic activity on
galactose as a sole carbon source. Yeast cells were pregrown in YPD, single
colonies were inoculated into 5 mLYP + 2% galactose, cultures were grown
to mid-log phase, and they were inoculated into 50 mLYP + 2% galactose
using the same methods as described above. C. duobushaemulonii, C. ruelliae,
and 0. methanolica cells were harvested at mid-log phase along with their
respective S. cerevisiae gre3A::loxP-kanMX-loxP negative controls for whole-
cell lysate protein extraction using Y-PER (Thermo Fisher Scientific). Then, 1
mL of culture was sampled, and cells were centrifuged at 3,000 x g at 4 °C for
5 min. Subsequently, 250 mg of wet cell pellet was resuspended in 1,250 L of
Y-PER and homogenized by pipetting. The mixture was left to agitate at room
temperature for 50 min to ensure successful cell lysis and soluble protein extrac-
tion. Cell debris was pelleted at 14,000 x g for 10 min at room temperature.
Finally, 1 mLof supernatant was removed for analysis and protein concentration
determination. Protein concentrations were determined using the Pierce BCA
protein assay kit and protocol (Pierce Biotechnology), and absorbance at 562 nm
was measured using The Infinite M1000 microplate reader (Tecan). Galactose-
dependent enzymatic activity was determined by monitoring the oxidation
of the cofactor NADPH to NADP* by absorbance measurement at 340 nm at
25°C(67).The assay mixture (200 pL) contained 200 mM Tris-HCl (pH 7.5), 5
mM of NADPH, 200 mM of galactose, 200 pg of undefined cell-free protein
extract, and deionized water in 96-well plates (Corning 96-Well Clear Flat-
Bottom UV-Transparent). In addition, each assay contained a protein extract
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blank and a substrate (without galactose) blank to account for protein and sub-
strate noise, cofactor degradation, and off-target cofactor oxidation. Enzyme
assays were performed in biological quadruplicate. Data analyses and plots
were performed and visualized using the methods described above.

Data, Materials, and Software Availability. The supplementary dataset is
available at https://doi.org/10.6084/m9.figshare.24855294. The code used to
run the random forest algorithm is available at https://github.com/mcharrison95/
RF_for_ML_GAL_paper. All Y1000+ Project genome sequence assemblies and
raw sequencing data have been deposited in GenBank (6) and are available at
the Figshare+ repository at https://doi.org/10.25452/figshare.plus.c.6714042.
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