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Abstract

Assigning statistical confidence estimates to discoveries produced by a tandem mass spec-
trometry proteomics experiment is critical to enabling principled interpretation of the results
and to assess the cost/benefit ratio of experimental follow-up. The most common technique for
computing such estimates is to use target-decoy competition (TDC), in which observed spectra
are searched against a database of real (target) peptides and a database of shuffled or reversed
(decoy) peptides. TDC procedures for estimating the false discovery rate (FDR) at a given
score threshold have been developed for application at the level of spectra, peptides, or pro-
teins. Although these techniques are relatively straightforward to implement, it is common in
the literature to skip over the implementation details or even to make mistakes in how the TDC
procedures are applied in practice. Here we present Crema, an open source Python tool that im-
plements several TDC methods of spectrum-, peptide- and protein-level FDR estimation. Crema
is compatible with a variety of existing database search tools and provides a straightforward
way to obtain robust FDR estimates.
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1 Introduction

The goal of a typical proteomics mass spectrometry experiment, whether it is carried out on samples
from humans, model organisms, or environmental samples, is to produce biological insights that
can inform future experiments. The purpose of assigning statistical confidence estimates to such
results is to allow scientists to assess the likely utility of such follow-up experiments by quantifying
the estimated rate of false positives among the discoveries! produced by the experiment.

By far the most common approach for estimating the false discovery rate (FDR) among
spectrum identifications or peptide or protein detections from a mass spectrometry experiment is
the target-decoy competition (TDC) framework.! This approach involves searching the observed

Terms in boldface are defined in Box 1.
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spectra against a database comprised of real (target) peptides and an equal number of decoy
peptides, where the decoys may be created by reversing or shuffling the amino acids of the targets.
FDR control among the identified spectra (peptide-spectrum matches, PSMs) is attempted
by competing the target PSMs against the decoy PSMs, retaining only the best-scoring PSM per
spectrum. The FDR among the optimal PSMs above a specified score threshold (known as the
“accepted PSMs”) can then be estimated by taking the ratio of the numbers of accepted decoy
versus target PSMs (Section 2.1). This procedure provably controls the FDR—the expected rate
of false discoveries among accepted PSMs.? Similar competition-based procedures have also been
developed for FDR control among detected peptides or proteins.?*

When formulating and proving the underlying mathematical theory of TDC,? He et al. cautioned
against the use of TDC at the PSM level, a warning that was recently reinforced.® At the same
time, both papers argued that TDC does manage to control the peptide-level FDR—the expected
rate of false discoveries among reported peptides. Interestingly, the core idea of TDC, namely, that
incorrect discoveries are equally likely to come from a target or decoy match, also plays a central
role in the widely used knockoff framework for general FDR control,® which was introduced by
Barber and Candés in 2015.

Unfortunately, although TDC procedures for FDR control are relatively straightforward to im-
plement, it is not uncommon for mistakes to be made in their application. Perhaps the most
common problem is simply omission of implementation details from the methods section of pub-
lished papers. Methodologically, one challenge is ensuring that every peptide in the target database
has a corresponding isobaric peptide in the decoy database. This property is required for valid FDR
control, yet as has been pointed out repeatedly in the literature,>” 10 several common methods
for producing a decoy database do not maintain equal-sized target and decoy databases. Another
potential source of error is that, to accurately control the FDR, a “pseudocount” of +1 must be
added to the number of accepted decoy PSMs.%!! This pseudocount has a relatively small im-
pact on studies with thousands of discoveries but can become consequential for studies with few
discoveries or that aim for very strict FDR control. Many additional types of mistakes can be
introduced when FDR control is carried out in conjunction with a machine learning post-processor,
such as PeptideProphet!'? or Percolator,' or in complex analysis strategies in which subsets of the
discoveries are analyzed separately.' A general rule of thumb is that information about which
discoveries are targets and which are decoys must not “leak” into the analysis pipeline prior to
FDR estimation, but detecting such leakages can sometimes be challenging. Finally, an unfortu-
nately common mistake is to misinterpret FDR estimates by first controlling the FDR in one set
of discoveries, selecting a subset of those discoveries for analysis or follow-up, and then erroneously
associating the original FDR estimate with the subset.? 1516

A number of existing methods provide the ability to estimate the FDR on a set of detections.
The MS-GF+ search engine implements a TDC procedure internally.!” Several proteomics data
analysis toolkits, such as Crux,'® Pyteomics,'??? and OpenMS,?! provide commands for estimating
the FDR at the PSM or peptide levels. Furthermore, post-processor programs such as Percolator!?
and PeptideProphet?? also estimate FDR on a set of detections, after first applying machine learning
methods to re-rank the discoveries produced by a search engine. Recently, Debrie et al. created a
software tool to empirically evaluate whether the assumptions that TDC requires are followed,??
but the tool itself does not provide FDR, estimates.

As a step toward ensuring more uniform and accurate FDR control procedures in mass spec-
trometry proteomics, we have created Crema, an open source Python tool that computes FDR
estimates at the PSM, peptide and protein levels. Crema works directly with a variety of widely
used database search tools that produce search results in tab delimited, pepXML, or mzTab for-
mats. We provide a tutorial case study to illustrate how to use Crema, as well as examples of how
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to use Crema with Tide,?* MS-GF+,'" Comet,?%26 MSFragger,?” and MSAmanda.?® We also show
empirical results on a variety of publicly available datasets.

2 Methods

e Peptide-spectrum match (PSM): Assignment of a peptide from the
database to an observed spectrum.

e Discovery: One observation drawn from the data. This can be a PSM, a
detected peptide, or a detected protein.

e Accepted discovery: A discovery whose associated score is above a specified
threshold.

e False discovery proportion (FDP): The proportion of accepted discoveries
that are false positives (type I errors).

e False discovery rate (FDR): The expected (i.e., average) FDP.

Box 1: Key definitions

2.1 PSM-level FDR control

FDR control is commonly performed at the PSM level following a database search. However, it
has been demonstrated that PSM-level FDR control is problematic because it can be liberally
biased.?® This bias occurs because one of the assumptions that is required for valid FDR control—
namely, that the incorrect PSMs are independent of one another—is violated in practice.? We
therefore strongly recommend avoiding PSM-level FDR and instead use peptide-level FDR control.
Nonetheless, due to the ubiquity of PSM-level analysis, Crema provides a procedure that attempts
to perform PSM-level FDR control.

2.1.1 PSM-level TDC

The goal of TDC carried out at the PSM level is to estimate the false discovery rate among a
collection of PSMs produced by a database search engine. We are given a set S of n spectra, and
we assume that the spectra have already been searched against a target database 7 and a decoy
database D. Critically, the target and decoy databases must be the same size and must exhibit
the same distribution of masses, so that each target peptide has a corresponding isobaric decoy
peptide. For each spectrum we retain the top-scoring PSM across the target and decoy database,
breaking any ties randomly. We refer to the scores of the optimal PSMs that involve target peptides
as t1,t2,...,tm,, and of those that involve decoy peptides as di,ds, ..., dy,, where m; +mg = n.
We can then estimate the FDR among all PSMs that score greater than a specified score threshold
7 (assuming larger scores are better) as

> mi=1,.. 1
FDR(r) = min <1, Hdi > 7 ma}| + )

{ti >mi=1,...,m}|

(1)

Intuitively, the denominator represents the number of discoveries of interest (the target PSMs), and
the numerator is our decoy-based estimate of the number of false positives among those discoveries.
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The formulation in Equation 1 differs from the one offered by Elias and Gygi' in three ways.
First, their formulation includes a factor of 2 in the numerator and includes both target and decoy
PSMs in the denominator. This approach thus controls the FDR among the combined set of target
and decoy PSMs. In practice, it typically is of more interest to control the FDR only among
the targets, as in Equation 1. Second, the numerator in our formulation includes a +1 that is
missing from the Elias and Gygi formulation. This +1 correction is analogous to +1 corrections in
permutation testing, and it is required in order to achieve valid FDR control under the assumption
that incorrect identifications are independently equally likely to be targets or decoys.>'129 In
practice, this +1 correction will have a negligible effect except in the presence of very few discoveries
or a very stringent FDR threshold. Finally, our formulation includes an enclosing min operation,
which simply ensures that we do not report an FDR > 1.

2.2 Peptide-level FDR control

Aside from the aforementioned problematic nature of FDR control at the PSM level, FDR control
at the PSM level, in practice, may not be as useful as controlling FDR at the level of peptides,
especially if the primary conclusions are being drawn about peptides rather than spectra. Crema
offers three previously described® peptide-level FDR controlling procedures—psm-only, peptide-
only, psm-peptide (previously called “PSM-and-peptide” )—all based on TDC. Empirical evidence
suggests that psm-peptide offers the best statistical power, but Crema offers implementations of
all three methods.

2.2.1 PSM-only peptide TDC

The first method, PSM-only peptide TDC (“psm-only”), is both the traditional and most commonly
used method for estimating peptide-level FDR. In this method, the direct competition is only done
at PSM level: for each spectrum we compare its best matching decoy peptide with its best matching
target peptide and we keep the higher scoring of the two PSMs. Note that ties are randomly broken
and that this process is largely equivalent to searching each spectrum against the concatenated
target-decoy database. Next, each target/decoy peptide is assigned the score associated with its
best scoring PSM. Finally, with a slight abuse of notation, if we refer to the list of target peptides
as ti,t2,...,tm,, and similarly for decoys d1,ds, ..., dm, (in this case m; = mg), then the peptide-
level FDR can be estimated using Equation 1. This method can be used within Crema by setting
“pep_fdr_type=psm-only” when calling the assign_confidence function.

2.2.2 Peptide-only peptide TDC

The second peptide-level FDR procedure, peptide-only, requires that each peptide in the target
database is paired with its corresponding peptide in the decoy database. In this case the direct
competition only takes place at the peptide level: each spectrum is separately searched against
the target and the decoy databases to find its optimal target and decoy PSMs. Each target/decoy
peptide is then assigned the score associated with its best scoring PSM, and from each target-
decoy pair of peptides only the higher scoring peptide is retained. We note that ties are randomly
broken. Referring to this filtered (winning) list of target peptides as t1,ta,...,tm,, and similarly
for decoys di, da, . .., dn,, the peptide-level FDR is again estimated using Equation 1. We note this
procedure is similar to the “picked protein” procedure described below. This method can be used
in Crema by setting “pep_fdr_type=peptide-only” when calling the assign_confidence function. The
pairing between target and decoy peptides can be explicitly provided to Crema via the pairing_file
parameter when reading the PSM files. This pairing file is a text file in which the first column
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eptide level .
score PSM level psm-only pSptpi de-only psm-peptide protein level
XCorr v v v v v
XCorr p-value v v v v v
Tailor v v v v v
combined p-value v v v v v
Comet e-value v v v v v
MSGF+ v v v
MSFragger v v v
MSAmanda v v v

Table 1: FDR. control procedures implemented for each score function. Crema implements
one, three, and one FDR control procedure at the psm, peptide, and protein level, respectively.

contains a target peptide and the second column contains the corresponding paired decoy peptide.
If Tide or Comet, within Crux, is used as the database search engine, the pairing file can be
generated by setting “—peptide-list=T" when building the peptide index. Alternatively, for these
search engines, the pairing file can be implicitly created, as described below. Otherwise, this file
must be generated by the user.

In addition to an explicit pairing, a peptide pairing can be implicitly created if Crema is provided
the search results of Tide or Comet. Comet generates decoy sequences by reversing a target peptide
sequence, while keeping the first and last amino acid fixed. Therefore, the pairing between targets
and decoys is self-evident. Tide can generate decoy sequences by either reversing or shuffling the
internal amino acids of a peptide sequence, while keeping the first and last amino acid fixed. Crema
infers the target-decoy matching based on amino acid composition, selecting matches at random as
necessary.

Unfortunately, target and decoy peptides cannot be paired based on results from MSGF,
MSAmanda, or MSFragger because these search engines create decoys by reversing or shuffling
protein sequences. In order for a peptide pairing to be created, decoys must be generated at the
peptide level since a paired target and decoy sequence must be isobaric to ensure they are always
considered by the same set of spectra. To explain why protein reversal does not work, consider
the toy protein sequence of “ACRMCK?”. This protein will generate two peptides when digested
by trypsin: “ACR” and “MCK.” If the protein is reversed, then it will generate three peptides:
“K”, “CMR”, “CA.” None of these decoy sequences have the same mass as any of the targets, and
therefore a pairing cannot be generated. Table 1 summarizes which types of FDR control can be
carried out with which search engines.

2.2.3 Peptide-level FDR with PSM competition

The third procedure, “psm-peptide” executes both PSM and peptide-level competitions. First,
as in PSM-only, for each spectrum only the top matching target/decoy PSM is kept. Thereafter,
it continues as in peptide-only: scores are aggregated to the peptide level by retaining only the
top-scoring PSM per peptide, and a second round of competition is carried out, this time between
paired target and decoy peptides. The FDR among the resulting detections is again estimated
using Equation 1. Similar to peptide-only, because psm-peptide requires peptide-level pairing
information, it is only compatible with Comet and Tide searches. This method can be used by
setting “pep_fdr_type=psm-peptide” when calling the assign_confidence function.


https://doi.org/10.1101/2023.06.18.545038
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.18.545038; this version posted June 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Filename Species PRIDE ID

Rcom_9_M4_AM_R1_7TMarl6_Samwise_15-08-55 castor plant PXD007933
134.2018_ZBS6_Ecoli_SP3_2 E. coli PXD011189
228_2018_7ZBS6_HeLa_FASP_3 human PXDO011189
HF1_.003796 mouse PXD028550
Trel yeast PXD009420

Table 2: Datasets used in this manuscript.

2.3 Protein-level FDR control

In addition to PSM- and peptide-level FDR control, Crema provides protein-level FDR control via
the picked protein FDR procedure, which carries out competition at the protein level.? Similar to
the picked peptide approach, the picked protein procedure begins by performing PSM-level TDC
to identify the top-scoring PSM per spectrum. Subsequently, peptides that occur in more than
one protein in the database are removed. Using the unique peptides, each protein is assigned
two scores: the maximum score (or minimum score, if a smaller score is better) associated with
all of that protein’s target peptides, and the maximum score associated with all of that protein’s

decoys. The final protein score is the maximum of these two values. Assuming that tq,t2,...,tm,
and di,do,...,dy,, now refer to protein-level scores, the protein-level FDR is calculated using
Equation 1.

2.4 Q-value calculation

For benchmarking purposes, Crema can also compute the g-value for each target detection ¢;, which

can be a PSM, peptide, or protein. The g-value is defined as the minimum FDR threshold at which
this detection would be accepted, i.e.,

a(t:) = min FDR(t;) @)

t;<t;

Note that we strongly discourage the use of g-values for anything other than benchmarking. In

particular, selecting a desired g-value cutoff 5 by comparing the list of discoveries corresponding

to different g-values does not control the FDR at level 5. Practically, this means that the FDR
threshold should be fixed prior to analysis.

2.5 Implementation

Crema is an open source project written in Python, and the source code is available on Github
at https://github.com/Noble-Lab/crema with an Apache license. Crema can be installed using
pip and run via a Python package API or through the command line. Installation instructions and
usage documentation can be found at https://crema-ms.readthedocs.io. In addition to Python
3.6+, the following dependencies are required, and will be automatically installed via pip: numba,
numpy, pandas, Ixml, and pyteomics.

2.6 Dataset and database searches

For the experiment reported here, we used five LC-MS/MS runs, where each run was generated
with a sample from a different species—castor plant, yeast, human, mouse, and Fscherichia coli—
from four different studies (Table 2). The raw files were downloaded from PRIDE3? and converted
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to mzML format using MSConvert version 3.0.3! The reference proteomes were downloaded from
Uniprot3*33 (www.uniprot.org) in October 2021 and January 2022.

We searched each run against its respective proteome using eight different score functions from
five different database search engines. The following search engines were used: Tide version 4.1,%
MSGF+ version v2021.09.06,'" MSFragger version 3.5,2” MSAmanda version 2.0.0.18350,2% and
Comet version 2022.01 rev. 1 (11ch28f).?26:3%  Searches using Tide employed four different
score functions: XCorr,?* XCorr p-value,® combined p-value,?® and the Tailor score.?” For the
searches with Tide, we used the default parameters except “concat=F" and “peptide-list=T".
With MSGF+, all parameters were set to their default values except for “inst 3” and “tda 17.
We used all default parameters for MSAmanda and MSFragger, and the concatenated target-decoy
database used in MSFragger was generated by Philosopher.?® For Comet we used the default
parameters found in comet.params.high-high except that “decoy_search=2", “output_txtfile=1",
“output_mzidentmlfile”, and “num_output_lines=1”. The output of these database searches were
provided to Crema for FDR estimation.

In addition to the database searches above, we also performed additional Tide searches to
compare the performance between an explicit and implicit target-decoy pairing. We used the same
five runs and four score functions that were previously used. In addition, the parameters that were
used remained exactly the same except that we allowed for up to five methionine oxidations. The
explicit target-decoy pairing was provided by the tide-index tool.

3 Results

3.1 Tutorial: Computing FDR estimates at the PSM, peptide and protein levels

In addition to standardizing how TDC estimates the FDR, we intend Crema to be a straightforward
program to install and use. To that end, we give users the ability to run Crema through a command-
line interface or via a Python API. In addition, we provide here a tutorial of how to run Crema,
and additional usage information can be found at https://crema-ms.readthedocs.io.

Estimating the FDR among a set of PSMs using the Crema Python API is simple and can be
performed using only a couple lines of code. We provide example code showing how to estimate
the FDR on database search results from Tide (Figure 1). After importing the Crema package,
the PSMs are read using the “read_tide” function. This function is given a list of search results.
We note that these input files can be either system paths or Pandas dataframes. In the provided
example, target file contains target PSMs and decoy file contains decoy PSMs (Figure 1).
In addition, if a file that explicitly pairs target and decoy sequences exist, it can be passed by
the “pairing_file name” argument. Finally, the “read_tide” function can be switched out for other
functions, such as “read_msgf” and “read_msfragger”, depending on which database search engine
was used.

After reading and storing the PSMs, the FDR is estimated using the “assign_confidence” func-
tion. The user has three choices, via the “pep_fdr_type” argument, for estimating peptide level
FDR: “psm-only”, “peptide-only”, and “psm-peptide”. The “assign_confidence” returns a Confi-
dence object that contains the list of discoveries at a given FDR threshold at the psm, peptide,
and protein level. The discoveries at a single level can be obtained as a Pandas dataframe using
the “confidence_estimates” function. Alternatively, results can be returned as a text files (one each
for PSM, peptide and protein level FDR) using the “to_txt” function. In addition, instead of dis-
coveries, Crema can also provide g-values. As noted, we strongly discourage the use of g-values for
anything other than benchmarking.
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import crema

# target_file contains target PSMs

# decoy_file contains decoy PSMs

# patir_file contains pairing between targets and decoys
# target_file, decoy_file, and pair_file can either be
# a system path or a Pandas dataframe

o~NoOoOuULpkhWNRE

# loads search results
input_files = [target_file, decoy_file]

(o]

10 psms = crema.read_crux(input_files, pairing_file_name=pair_file)

11

12 # estimates FDR

13 results = psms.assign_confidence(method="'tdc', pep_fdr_type='psm-peptide')
14

15 # obtain dataframe of PSM results

16 results_psms = results.confidence_estimates['psms']

17

=
o0}

# obtain dataframe of peptide results

19 results_pep = results.confidence_estimates['peptides’]
20

21 # obtain dataframe of protein results

22 results_prot = results.confidence_estimates['proteins']
23

24 # save results to disk

N
(%)

results.to_txt()

Figure 1: Code for running Crema Example code for computing FDR estimates at the PSM,
peptide, and protein levels using Crema on output from Tide.
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Figure 2: Peptide-level Crema output. Each panel shows the number of peptide detections as a
function of FDR threshold after using Crema. Each row of panels represents a run from a different
species and each column represents a different score function.

3.2 Comparison of peptide-level FDR control procedures

We first compared the three peptide-level FDR control procedures implemented within Crema.
Note that, due to the inability to match targets to decoys with some search engines, we report
results for MSGF+, MSFragger, and MSAmanda using only the psm-only method.

Our results provide evidence, as previously shown,® that psm-peptide outperforms both peptide-
only and psm-only, and that peptide-only outperforms psm-only (Figure 2). This trend held across
all runs and score functions over the entire FDR range of 0-10%. The sole exception was for runs
analyzed by Comet. For these searches, peptide-only and psm-only had very similar performance
(far left column of Figure 2). At a 1% FDR, we found that psm-peptide outperformed psm-only
and peptide-only by an average of 17.14% and 9.52% peptide detections, respectively. Note that
this average does not include data from the castor run analyzed by XCorr, because psm-only did
not obtain any confident detections at 1% FDR.

As we have noted, the only peptide-level FDR control procedure that is compatible with the
decoys produced by MSGF+, MSFragger, or MSAmanda is psm-only. Accordingly, we show the
performance curves for these search engines in Figure 3. Importantly, we note that, in these
results, one cannot easily compare the number of discoveries from different search engines against
each other. This is because different search engines use different decoy generation methods. We
also did not verify that all of the user-specified parameters were exactly comparable across search
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engines. Thus, any observed difference in performance may be a result of a combination of factors.

The best-performing peptide-level FDR estimation procedure, psm-peptide, requires a matching
between a target peptide and its corresponding decoy peptide. With Tide, this matching can be
provided by the user or can be inferred automatically by Crema. We verified that both approaches
yield similar results, for a variety of Tide score functions (Supplementary Figure S3).

Finally, within Crema, there is one method estimating the FDR at the PSM level and one
method for the protein level. We systematically examined the performance of these two methods for
all score functions and runs (Supplementary Figures S1-S5). Note that we also considered a variant
of the protein-level FDR estimation procedure, in which a protein score is the sum (rather than
the maximum) of the unique peptides scores. Ultimately, we chose not to implement this method
within Crema because it performed significantly worse than the original method (Supplementary
Figure S4-S5).

4 Discussion

In this work, we introduce an open-source Python tool, Crema, that implements several TDC-based
methods for estimating the FDR. Crema can currently be used with five search engines, and it can
provide an easy way to obtain accurate and robust FDR estimates.

The results in Figure 2 support the idea that performing “double competition” between targets
and decoys, as in the psm-peptide procedure, provides a substantial boost in statistical power to
detect peptides. This is an important but not novel observation, as we have previously reported
similar results.® Furthermore, it is worth noting that our previous paper includes additional em-
pirical evidence (in the form of entrapment experiments®’) that psm-peptide’s increased power is
not due to lax control of the FDR.

Several decoy-free procedures for estimating the FDR have been proposed,‘®4! but these are
not implemented within Crema. We focused on TDC-based methods because TDC is the most
commonly used method for estimating the FDR.

Although Crema can help to ensure that practitioners employ valid FDR control procedures, it
does not solve all possible analytical issues. For example, if a given dataset is searched against a
problematic decoy database, then Crema cannot help. In addition, Crema is unable to help with
incorrect post-processing or biological interpretation. Finally, Crema does not employ machine
learning approaches for estimating the FDR employed by methods such as Percolator,'® Mokapot,*?
and PeptideProphet.??

In the future, we hope to improve Crema further. We plan, for example, to add a graphical
user interface to the tool. We also plan to expand support for additional search engines and output
formats. Users with specific feature requests are invited to submit them via the Crema issue tracker
on Github.
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Figure 3: Peptide-level Crema output for MSGF+, MSFragger and MSAmanda. Each
panel shows the number of peptide detections, using “psm-only”, as a function of FDR threshold
estimated by Crema. Each row of panels represents a run from a different species, and each column
represents a different database search engine.
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