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ABSTRACT

This chapter provides a broad overview of the various computational modeling techniques used to gain
fundamental insights into coupled electrochemical processes that occur in battery materials at electronic-
to-mesoscopic scales. Representative successes of these techniques in modeling electrodes, electrolytes,
and electrode-electrolyte interfaces are highlighted to establish the current state-of-the-art in the field.
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INTRODUCTION

The ever-increasing demand for low-cost, safe, and high-density energy storage solutions for electric
vehicles, consumer electronics, robotics, and electrical grids has necessitated development of new battery
materials/chemistries at a rapid pace (Yu and Manthiram, 2017; Franco et al., 2019). Such unprecedented
rate of innovations cannot be sustained by traditional heuristic approaches involving expensive, time-
intensive, and intuition-driven experiments alone (Jain et al., 2013). With the high-performance computing
facilities available today, computational modeling has emerged as an effective way to accelerate
innovations in battery materials. This speed-up can happen in three ways: 1) computational screening of a
vast library of battery-relevant materials to search for those with specific combination of desirable
properties (e.g., electro-chemical stability, mechanical strength); 2) inverse design of materials by
predicting a structure with prescribed properties; and 3) advancing the fundamental understanding of the
physical factors underlying functionality of various battery components — all of which rely on an accurate
description of complex electrochemical phenomena that occur in a typical battery.

The measurable electrochemical performance of battery, including its capacity, cycle life, rate capability,
and Coulombic efficiency is governed by a complex hierarchy of electrochemical processes that occur over
multiple length scales (Figure 1) (Franco ez al., 2019). For instance, the performance of a lithium ion battery
relies on (a) stable (de)intercalation of Li" in the active material in the electrodes, which is governed by
chemistry and lattice stability at sub-nanometer scale, (b) ion conduction through the bulk electrolyte,
dictated by solvation dynamics over several nanometers, (¢) nucleation/growth of passivating solid-
electrolyte interphase (SEI), controlled by chemical reactions, electron transfer, and atomic transport over
multiple scales, spanning Angstroms to microns, and (d) charge/mass/heat transfer and stress distribution
over continuum scales. Notably, all these processes are strongly and non-linearly coupled with each other.
Consequently, a holistic understanding of the correlations between these processes, and their overall impact
on functionality of a battery requires a multiscale modeling treatment. Owing to the immediate relevance
of such computational strategies to the ever-growing battery community, numerous comprehensive reviews
are already published focusing on individual modeling scales, including (a) first-principles approaches,
(Urban, Seo and Ceder, 2016) (b) phase-field methods (Wang et al., 2020), (¢) linking the multiple
modeling scales (Franco et al., 2019), (d) understanding interfacial processes (Wang et al., 2018) and (d)
application of emerging machine learning tools, for various components of a battery (Guo et al., 2021).

Among the various scales of materials, the electronic-to-mesoscopic regime that encompasses the
spatiotemporal scales spanning 107'°-10° meters and 10> — 10 seconds is particularly important for
batteries, and constitutes the focus of this chapter. This regime features a rich variety of key electrochemical
phenomena, including, solvation dynamics, ion transport, electron transfer, chemical reactions, structural
transitions, and nucleation/growth of interphases — that are tightly coupled with each other, and strongly
impact macroscale behavior of batteries, e.g., cycling performance, and degradation (Franco et al., 2019).
A wide range of materials modeling techniques are employed to access different regions in this
spatiotemporal domain (Figure 2). In general, as the spatial/temporal resolution of the technique reduces,
the complexity of the model reduces, and consequently, the associated computational time/costs become
progressively smaller. Typically, each of the electrochemical processes is investigated using a different
modeling technique that is best suited to access the necessary length/time scale (Figure 2).

Computational approaches based on quantum chemistry (QC) or first-principles provide most accurate
predictions of material properties, often with errors on par with experiments; and are, thus, best suited for
rapid computational screening of a library of materials. 4b initio molecular dynamics (AIMD), wherein
interactions among electrons and nuclei are treated using Kohn-Sham density functional theory (DFT), can
accurately describe molecular ordering around a metal ion (called solvation structures) in an organic liquid
electrolyte, identify key chemical reactions, and assess their energetics as well as kinetic barriers. Classical
atomic-scale approaches treat atoms as indivisible entities, and employs interatomic potential functions (or
force fields, i.e., FFs) to describe the atomic interactions in terms of their positions relative to each other.
Two kinds of FFs are commonly used, namely (a) reactive FFs that can capture the dynamics of
formation/dissociation of chemical bonds, and associated charge transfer accurately, and (b) non-reactive



ones in which the connectivity between atoms remains fixed throughout the simulation. Reactive MD
(RMD) simulations elucidate the mechanisms underlying intercalation/conversion dynamics, electrolyte
decomposition, and formation of interphases at electrode-electrolyte interfaces. Non-reactive classical MD
(CMD) reveal the critical links between solvation structure, ion aggregation and ionic conductivity.
Mesoscopic coarse-grained MD (CGMD) approach further reduces the physical degrees of freedom of the
system by defining a collection of atoms as an indivisible entity called beads; and describes dynamics in
terms of interactions between these beads. Such techniques are critical to capture the slow relaxation
dynamics of macromolecular segments in polymer electrolytes. Finally, material evolution over long time-
scales (>10° s) can be simulated using kinetic Monte Carlo (kMC) approach for a selected set of
reactions/events sampled from AIMD/DFT/RMD simulations. Often, sequential linking multi-scale
schemes are employed to unravel the relationship between processes occurring at different scales. In these
schemes, processed output from a model at smaller scale (higher level of theory) is used to inform or train
models at the next scale in the hierarchy. Usually, datasets derived from first principles (quantum theory)
calculations are used to train classical force-fields, which are employed to perform CMD simulations at
atomic-scale; dynamic properties obtained from CMD, in turn, are used as input to develop coarse-grained
or MC models. In recent times, emerging techniques in machine learning (ML) have played a vital role in
enabling rapid, robust, and seamless bridging of models across different length/timescales (Chan et al.,
2019b; Patra et al., 2019; Chan et al., 2019a; Narayanan et al., 2017).

In this chapter, we introduce the reader to the various commonly employed approaches to model three main
battery components, namely, (a) electrolyte, (b) electrode, and (¢) electrode-electrolyte interface, within the
electronic-to-mesoscopic regime. Representative examples from the literature are highlighted to establish
the current state-of-the-art. Finally, we provide an outlook of the field with a few suggestions for future
directions.

ELECTROLYTES

In any rechargeable battery, the electrolyte serves as a conduit to transport active ionic charge carriers
between the electrodes, while the electrons flow through the external circuit. Owing to its central role in
ion transport, design of electrolyte materials with a prescribed set of physical properties is crucial to
engineer rechargeable batteries that offer high capacity-retention, long cycle life, good rate capability, and
safety. Ideally, an electrolyte should exhibit (a) fast ionic conduction, (b) excellent electrochemical stability
against high energy density electrodes (e.g., lithium nickel manganese cobalt oxide (NMC) cathodes and
lithium anode), (¢) low flammability, and (d) good thermomechanical robustness. Several concepts for
high-performance electrolytes have been proposed to meet these needs, which can be broadly classified
into three categories, namely, (a) organic liquids, (b) polymers, and (c) inorganic solids. Computational
materials modeling techniques have accelerated design of electrolytes belonging to each of these categories
by (a) enabling rapid screening of thousands of compounds for desirable physical properties using first-
principles methods (with speed-up by ML) (Qu ef al., 2015; Narayanan et al., 2019), and (b) providing a
fundamental understanding of the dynamical processes associated with conduction of ionic charge carriers
(e.g., Li" ion) through bulk electrolyte over multiple length/time scales (Franco et al., 2019).

Organic Liquid Electrolytes

DFT (especially using B3LYP functional) has emerged as the standard method to compute thermochemical,
solvation, and electronic properties of organic liquid electrolytes (Qu et al., 2015; Narayanan et al., 2019).
High throughput infrastructures (such as Electrolyte Genome(Qu et al., 2015)) utilize these first principles
approaches within automated workflows to generate large databases of molecular properties relevant for
battery electrolytes. For instance, using ~55,000 DFT-B3LYP calculations, Electrolyte Genome reported
an open dataset of ionization potential (IP) and electron affinity (EA) for 4,830 possible organic electrolytes
— two key properties, which (a) set the voltage limits within which a traditional Li ion battery can operate
without any electrolytic decomposition, and (b) determine the operating voltage of a redox-flow battery(Qu
et al., 2015). Recently, similar infrastructures have been extended to compute energies for 133,296 organic
molecules in GDB-9 database (that contain up to 9 C/N/O/F atoms, as well as H atoms) at chemical accuracy



(< 1 kcal/mol) using a high-level quantum chemistry composite method called G4MP2. The G4MP2
energies, in turn can accurately predict feasibility of millions of reaction pathways.(Narayanan et al., 2019)

Large datasets from first-principles calculations provide (a) insights into links between the structure (motifs,
chemical nature, and relative positioning of functional groups) and properties of molecules, as well as (b)
a valuable resource to search for new organic liquids (present in the dataset) that possess desirable
combination of molecular properties for use as an electrolyte. More importantly, these databases can be
used to train fast-yet-accurate ML models to predict properties of large molecules that lie beyond the size-
limitations of quantum-chemical methods. Indeed, G4MP2 dataset on 133,296 GDB-9 molecules enabled
development of (a) fast ML models based on kernel-ridge-regression and deep convolution neural networks
to provide accurate estimates of G4MP2 atomization energy of large molecules (> 10 non-hydrogen atoms)
using their DFT-B3LYP energies (Ward et al., 2019; Dandu et al., 2020), and (b) graph neural networks to
predict solvation energy of molecules in five solvents (acetone, ethanol, acetonitrile, dimethyl sulfoxide,
and water) within 1 kcal/mol of those obtained from DFT-B3LYP calculations (Ward et al., 2021). Such
ML models, in turn, can be used to screen billions of organic molecules to identify promising electrolytes.

Typical liquid electrolytes used in batteries are solutions of a salt (e.g., LiPFs) in an organic solvent (e.g.,
ethylene carbonate). Solvent molecules and salt anions present in liquid electrolytes tend to organize around
ionic charge carriers (e.g., Li") forming solvation shells. Molecular structure of these shells as well as their
atomic-scale dynamics govern ion transport through bulk electrolyte; and have, consequently, been the
subject of numerous computational investigations. AIMD simulations indicate that Li" prefers a tetrahedral
coordination in most organic electrolytes. However, the structure, composition, energetics, and dynamics
of the solvation shell are controlled by the nature of salt/solvent as well as salt concentration. In particular,
the relative energetics of (a) cation-anion interactions in the salt, and (b) cation-solvent interactions is of
paramount importance to ion-transport (Tang, Tse and Liu, 2016; Franco et al., 2019). Weak interactions
between the salt cation and the solvent, such as that observed between Li" in LiPF; salt and diethyl carbonate
(DEC) solvent allow the salt anion (PFs in LiPFs) to remain in the Li" solvation shell along with three
solvent molecules. Consequently, Li" ion is forced to travel along with relatively slow-moving salt anion
(PFs") in the bulk electrolyte, resulting in low Li" ion conductivity. More importantly, such a salt mediated
mechanism yields progressively lower Li" conductivity with increase in viscosity, severely restricting the
range of amenable salt concentration. In contrast, solvents containing cyano- functional group (—CN), such
as acetonitrile (AN), cause complete detachment of Li" from salt anion owing to strong interactions between
Li" and N of —CN. This, in turn, allows Li" to move along with the solvent molecules without any
impediment from the salt anions. Such a solvent-mediated diffusion mechanism facilitates fast Li" ion
conduction even at high viscosity owing to Li" ion hopping between transient solvation shells (Tang, Tse
and Liu, 2016). This finding opened the possibility of decoupling the effect of salt concentration and
electrolyte viscosity on Li" conductivity; spurring design of super-concentrated electrolytes with high Li"
ion conductivity and excellent thermal/electrochemical stability.

Super-concentrated (solvate) electrolytes feature unique network-like solvation structures composed of
contact ion pairs, coordinated solvent molecules, and ion aggregates, like those elucidated by AIMD
simulations of glyme (Gn):LiTFSI electrolytes (Figure 3(A-D)). Such networks enable precise control over
reaction pathways, solubility of intermediates, and electrolyte stability in emerging Li-S batteries.
Specifically, they (a) exhaust the solvating power of the solvent to solvate any Li" ion belonging to Li-
polysulfides, suppressing their dissolution and shuttle, (b) enable a quasi-solid-state speciation pathway that
allows cell operation at low electrolyte-to-sulfur ratio (making Li-S batteries competitive with Li-ion on
the basis of gravimetric energy), and (c) reduce solvent activity, which inhibits parasitic reactions at Li-
anode (Pang ef al., 2018). Importantly, AIMD simulations indicate that the amount of free (uncoordinated)
solvent can be carefully tuned with appropriate choice of solvent and concentration of salt in solvate
electrolytes. For instance, among glyme:LiTFSI solvates, choosing a solvent diglyme (G2) similar in size
to the salt anion (TFSI") results in a compact solvation shell, and minimizes the amount of free solvent
(Figure 3(E,F)). The amount of free solvent is just enough to facilitate reaction kinetics, but not too high
to promote deleterious reactions with Li-anode. In essence, the solvate electrolytes can address all key



barriers thwarting commercialization of Li-S batteries. Indeed, G2:LiTFSI (0.8:1) solvate electrolytes have
enabled long-lived Li-S cells that retain high-capacity (~900 mAh/g) even after 100 cycles at low E/S ratios
(~5 mL/g) (Pang et al., 2018). Similarly, nominal amount of free solvent have been achieved with
hydrofluoroether co-solvents to facilitate reaction kinetics in (AN),-LiTFSI solvates (Shin et al., 2017).
AIMD simulations have also been used to estimate solubility of Li»O and LiO; in various organic solvents,
which is crucial to gain insights into the charge-discharge processes of Li-O; batteries (Cheng et al., 2017).

Long-time dynamics of solvation structure, solvent exchange, migration of ion clusters, salt aggregation;
and their collective impact on conductivity of ionic charge carriers is best described by CMD simulations
Careful analysis of CMD trajectories reveal two distinct modes of Li" migration: (a) vehicular diffusion, in
which Li" ion moves along with its solvation shell, and (b) structural diffusion, in which Li" hops from one
solvation shell to another via frequent exchange of mobile solvent molecules. Among these two modes,
structural diffusion yields faster ion conduction (Borodin et al., 2020). Competition between these two
modes of diffusion depends on (a) cation-solvent binding energy, (b) solvent viscosity, and (c) salt
aggregation. For instance, strong binding of Li" with ethereal oxygen atoms makes Li" transport in glyme-
based electrolytes primarily vehicular. In contrast, the weaker interactions between Na™ and ethereal
oxygens enables frequent exchange of solvent molecules between neighboring solvation shell, rendering
structural diffusion as the dominant transport mechanism for Na" ions in glymes (Borodin et al., 2020).
Weakly bound solvation shell around AI’" in 1-ethyl-3-methylimidazolium chloride ([emim][Cl]) ionic
liquid facilitate rapid ion association- dissociation, which allows rapid ion transport. CMD simulations with
adaptive biasing force show that AI** solvation shell in [emim][CI] (containing 6 CI ions) has a free energy
~35 kcal/molecule lower than the solvation sheath in traditional 1:1 ethyl carbonate (EC): ethyl methyl
carbonate (EMC) blend electrolyte (containing 3 EC and EMC molecules). The lower solvation free energy
in [emim][CI] results in largely structural diffusion, which enables ~3 times faster AI’* conductivity in as
compared to that in EC:EMC electrolyte, wherein Al’* motion is vehicular (Kamath, Narayanan and
Sankaranarayanan, 2014).

Polymer Electrolytes

Computational investigations on polymer electrolytes have been primarily focused on different variants of
poly (ethylene oxide) (PEO) based electrolytes, including amorphous and crystalline forms, as well as those
containing tethered anions and ceramic nanoparticles (Franco et al., 2019). CMD simulations based on a
polarizable FF show that PEOs form coordination loops around Li", which restrict the range of motion in
polymer chains slowing down their dynamics. Notably, the slow motion of the polymer chains renders Li"
motion sub-diffusive in amorphous PEOs over long times (30 — 40 ns) under ambient conditions, signaling
the need for long timescales (100’s of nanoseconds) to accurately describe Li" conduction in polymer
electrolytes (Borodin and Smith, 2006). A typical approach to access such long timescales involves the use
of CGMD simulations with interaction parameters derived from DFT or short all-atom CMD simulations.

CGMD simulations are extensively used to investigate the correlation between chain dynamics, ionic
association, and structural order in polymer electrolyte. Importantly, these simulations have elucidated that
percolation networks of polymer chains with ion aggregates preferably form in low dielectric constant
ionomers (e.g., poly (ethylene-co-acrylic acid)). Such percolation networks enable fast Li" ion conduction
through polymer electrolytes either via (a) continuous reformation of the network, or (b) collective motion
of ion aggregates along the polymer chains (Hall, Stevens and Frischknecht, 2012; Franco et al., 2019).
Furthermore, CGMD simulations have also been employed to study the effect of solvent dilution and salt
concentration on order-disorder transitions in block PEO-polystyrene (PS) copolymers. Neutral solvent
diluents reduce the glass transition temperature by lowering the repulsive interactions between polymer
blocks. On the other hand, at intermediate concentrations, salt ions stabilize PEO rich domains; and in turn,
raise the transition temperature (Qin and de Pablo, 2016). These insights offer new principles to design
block copolymers that feature both (a) stable blocks with high mechanical robustness, and (b) percolation
networks of ion-aggregates facilitating fast Li" conduction.

Several models based on Monte-Carlo approaches have been used to obtain microscopic understanding of
ion conduction in polymer electrolytes. Among these, the dynamic bond percolation (DBP) theory remains



the most popular owing to its simplicity. In the framework of DBP, Li" ion diffusion is treated as a random
walk process, wherein Li" ions can hop between neighboring sites in a statistically disordered host lattice
(polymer chains). The lattice itself undergoes dynamic re-arrangement owing to the orientational motion
(or configurational entropy) of polymer chains. The model is characterized by two timescales, namely, (a)
Li" hopping rate (fast), and (b) lattice renewal (slow) governed by local polymer relaxation dynamics
(Druger, Nitzan and Ratner, 1983). Microscopic simulations based on DBP have been successfully
employed to understand the effect of temperature and salt concentration on Li" conduction though polymer
electrolytes. Another approach involves modeling the polymer chains as a one-dimensional lattice in which,
Li" ions can move either by (a) hopping along a chain, (b) translate with chain segments, or (c) hop between
chains; with probability of occurrence of each type of Li" move determined from short CMD runs. This
microscopic transport model revealed that Li" hopping along PEO chains and Li" translation with PEO
chain segments contribute equally to Li" conduction, while interchain hops are less important contributing
merely ~10% to the overall Li" conduction (Borodin and Smith, 2006). Approaches combining DBP and
microscopic transport models have also been proposed to understand the effect of polymer chain length on
Li" conductivity (Franco et al., 2019). Similarly, kinetic MC models based on key events identified by
CMD simulations have been used to study the effect of nanoparticle fillers on Li" conduction in polymers
(Franco et al., 2019).

ML approaches have been recently employed to rapidly screen through a vast chemical space to identify
promising polymer electrolytes. For instance, graph neural networks have been used to identify key
structural features in polymers; these alongside gaussian process regression models have been used to learn
the relationship between composition and experimentally measured conductivity for thousands of polymers.
These newly developed ML models could successfully identify glassy polymers with high Li" conductivity
(~107 S/cm) (Guo et al., 2021)

Inorganic Solid Electrolytes

The growing safety concerns surrounding flammability of traditional organic liquid electrolytes has brought
the inorganic solid-state superionic conductors, such as LISICON, NASICON, LiPON, garnet oxides,
sulfides, and perovskites to the forefront (Nolan et al., 2018). Until now, most computational efforts on
understanding Li" ion conduction in bulk ceramic electrolytes have primarily focused on first-principles
methods, including AIMD and DFT calculations. AIMD simulations are employed to sample different types
of ion jumps, identify effect of temperature on ion-migration pathways, and understand effect of
structure/composition on ion-migration. Nudged elastic band (NEB) calculations in the framework of DFT
are employed to understand the physical factors underlying kinetic barriers for specific migration pathways
(Nolan et al., 2018). Using sulfide electrolytes as a representative class of solid electrolytes (SEs), AIMD
simulations have elucidated that (a) defects promote Li" ion transport by reducing activation energy needed
for hop and increasing charge carrier concentration in LijoGeP2S1,, (b) distribution of halogen (X) dopants
among the available sites in LigPSsX electrolytes has marked impact on Li" conductivity owing to subtle
changes in the Li substructure around halogens or sulfur atoms, and (c) collective motion of Li" along with
flexibility of P,S; ditetrahedrals underlies superionic Li" conduction in Li;P5S;; (Franco et al., 2019). In
perovskite oxides, Li" ion conduction follows a percolation pathway in A-site vacancies and is influenced
by the structure and concentration of Li" ions. Interestingly, in a recent study integrating AIMD, DFT, and
synchrotron experiments revealed that strongly correlated quantum effects can strongly influence Li" ion
conduction. Specifically, in strongly correlated perovskite nickelates, Li" induces electron doping of a
nearby Ni*" in the perovskite lattice, which simultaneous causes (a) Mott transition into an electronically
insulating phase, and (b) lattice expansion, which enables facile Li" diffusion. Such emergent physics
provides a promising alternate pathway to design super-ionic conductors for other ions, such as Na" as well
(Sun et al., 2018).

MC and CMD simulations based on non-reactive classical pair potentials (with fixed atomic charges) have
been used to extend the accessible length/time scales. For instance, MC and CMD simulations revealed the
effect of grain boundary structure, and its impact on Li" ion migration in Li;La;Zr,O1» garnet electrolytes.
These calculations showed that (a) the grain boundaries are enriched with Li, and (b) Li" diffusivity along



grain boundaries is lower than that in the bulk, but the extent of this decrease is sensitive to temperature
and grain boundary structure (Yu and Siegel, 2017). The recent emergence of ML approaches in materials
science has also enabled rapid computation of ion-diffusion behavior in solid state electrolytes. ML has
primarily been used for three main purposes, namely (a) developing artificial neural network (ANN)
potentials to describe atomic interactions from first principles datasets; these potentials are employed to run
long-time MD simulations in complex solid electrolytes (including amorphous ones), (b) training ML
models to directly predict conductivity based on structural features, without any MD simulations, and (c)
developing ML models to identify new candidate materials based on key structural features in existing
superionic conductors (Guo et al., 2021).

ELECTRODES

Electrochemical performance of any battery, including its capacity, operating voltage, cyclability, and rate
capability depends crucially on the physical properties of the active material used in the positive (cathode)
and negative (anode) electrodes. Specific materials phenomena of interest include (a) thermodynamics of
ion adsorption/desorption, (b) phase stability, (c) ion migration, (d) equilibrium voltage, and (e)
microstructural evolution alongside associated stress distribution during battery cycling (i.e., lithiation/de-
lithiation in lithium-ion batteries). A holistic understanding of these processes requires a combination of
first-principles calculations, cluster expansion methods, AIMD/CMD simulations, statistical approaches
(e.g., Monte Carlo), phase field and finite element calculations owing to the wide range of length/time
scales associated with these processes. Below, we provide a brief discussion on the application of
electronic-to-mesoscopic modeling techniques for electrode materials using Li-ion technology as a
representative system. Detailed review of research progress on different aspects of modeling electrodes is
available elsewhere.(Ma, 2018; Urban, Seo and Ceder, 2016)

Cathodes

In Li-ion batteries, typical positive electrodes serve as intercalation hosts for Li" ion, in which Li" ions are
inserted during discharge, and extracted when the battery is charged. Several classes of transition metal
oxides, including layered (e.g., LiCoO>), spinel (e.g., LiMn;Os), tunneled oxides (e.g., MnO>), and
polyanionic frameworks (e.g., LiFePO4) have been proposed and investigated as cathode materials (Franco
et al., 2019; Urban, Seo and Ceder, 2016; Ma, 2018). Ideally, the structure of these hosts should remain
largely intact during intercalation/de-intercalation of Li" ions; however, phase changes via lattice distortions
(beyond certain Li amount) have been observed in most electrodes. Hubbard-corrected DFT+U calculations
are used to evaluate formation energies for various possible host structures at any given concentration of
Li; the phases (or linear combination of phases) with the lowest energy at different composition are
connected to construct the convex hull (Urban, Seo and Ceder, 2016). This convex hull shows the most
energetically stable structure at any Li-content and provides insight into energetics of structural/phase
evolution during charge/discharge of Li-ion battery (lithiation/de-lithiation). Convex hull construction
based on DFT+U was recently used to investigate the effect of stabilizing K" cations on structural transitions
in tunneled MnO; cathodes during lithiation (Figure 4) (Kempaiah et al., 2021). These calculations showed
that at low K" concentrations (e.g., KMnsOs6), Li" ions preferentially intercalate into 8% sites in empty
tunnels (that do not contain K") to avoid electrostatic repulsive interactions with K*. In fact, convex hull
analysis indicated that these electrolytes undergo lithiation by first intercalating 4 Li" ions in the empty
tunnels, before inserting Li" ions in the K' tunnels (Figure 4A,B). Such a lithiation pathway allows the
tunneled structure to remain stable up to high Li" insertions (Li/Mn ~0.75), at which point tunneled structure
begins to transform to layered one (Figure 4B). The ability of KMngOi4 to host more Li" per transition
metal without structural change would enable higher capacity, and better cyclability. However, at high K*
concentrations, K;MngOj6, empty tunnels are not available for Li" to intercalate. Consequent electrostatic
repulsions between K and Li" ions in the tunnels causes significant structural distortion, causing transition
to layered form at lower levels of Li insertion (Li/Mn ~0.375) and subsequent amorphization (Li/Mn
~0.625); these structural transitions hamper cyclability of these cathodes (Figure 4C). Formation energies
of the stable phases from the convex hull at different Li concentration can be used to predict the cell voltage



profile (with respect to Li/Li") in good agreement with experiments (Figure 4D). For K,MnsOs cathode,
lithiation can be represented as: K,MngO¢ + xLi 2 Li,K;Mn3O16. The cell voltage can be evaluated as:

V = — (E{LixKyMnsolﬁ} - E{KyMn8016} — X. E{Ll}) /(X. e),
where Efp; g Mngoy6}> E{kyMng0y5}> EfLiy are the ground-state formation energies of the lithiated

LixKyMnsOis, unlithiated KyMnsgO1¢, and body-centered cubic Li, while e is the charge on an electron. NEB
calculations in the framework of DFT+U give insights into the kinetic barriers associated Li" transport
within the electrode. A more facile Li" migration is indicative of good rate capability of the electrode. For
instance, increased K" doping results in higher Li-migration barriers, which in turn, signifies lower rate
capability (Figure 4E). Electronic structure calculations show that K doping introduces semi-metallicity,
which could enhance the capacity and rate capability of K,MnsO;s tunneled cathodes (Kempaiah et al.,
2021).

To understand the effect of temperature on the phase diagram of Li-TM-O (TM: transition metal), cluster
expansion models are developed using formation energies obtained from DFT+U. These models are then
used to empower grand-canonical MC or kMC simulations to investigate the effects of finite temperature
on phase stability, and Li/vacancy ordering (Urban, Seo and Ceder, 2016; Ma, 2018; Franco et al., 2019).
Similarly, kMC simulations informed by DFT+U energetics have been used to explore the kinetics of phase
evolution in LiFePOy cathodes during lithiation/de-lithiation. Integrating DFT+U, cluster expansion. And
kMC simulations has enabled identifying the effect of temperature, vacancy distribution, and Li
concentration on the Li" diffusion in layered LiTiS,. These studies indicated that Li" migration is (a)
dominated by hops between neighboring octahedral sites in TiS,, and (b) promoted by presence of
divacancies (Van der Ven et al., 2008). Additionally, AIMD simulations have also been used to investigate
Li" diffusion pathways in several cathode materials. The structural, thermodynamic, and kinetic properties
deduced from these electronic-to-mesoscopic simulations have been used to evaluate the parameters in
continuum scale formulations, such as phase-field coupled with mechanics and Butler-Volmer
electrochemical kinetics (Srinivasan et al., 2018). Such frameworks provide a pathway to investigate the
relationships between microstructure evolution, stress distribution, and cell voltage. Detailed discussion of
such continuum approaches is out of scope of this chapter and are available elsewhere (Srinivasan et al.,
2018).

Recently, ML approaches have been employed to (a) train ANN potentials for complex cathodes (e.g.,
LiNixMnyCo(-x-y)O2) using training set derived from DFT to predict phase stability, thermodynamics of
defect ordering, and cell voltage, (b) estimate Li" migration barriers by learning-on-the-fly, (¢) develop
quantitative structure-property relationships, and (d) develop predictive models that can screen vast number
of compounds for desired cell voltage based on simple features (Guo et al., 2021).

Anodes

Graphitic carbon-based materials remain most popular choice for use as anodes in LiBs owing to their low
voltage with respect to Li, low cost, abundance, and long cycle life. Like for the cathodes, a combination
of DFT, cluster expansion, and MC methods have been used to investigate the thermodynamics of Li
ordering within graphite. Importantly, these studies revealed that Li insertion in graphite is governed by the
competition between (a) electrostatic repulsion among intercalating Li" ions, and (b) van der Waals
attraction between atomic layers of graphite. The tug-of-war between these two opposing factors precludes
homogeneous insertion of Li" ions within graphite during lithiation (Persson ef al., 2010). Depending on
the concentration of Li, either one or two empty layers of graphite can exist between Li-filled layers. A
combination of DFT-NEB and kMC simulations elucidated the effect of Li concentration on Li" diffusion
along the graphitic planes. These studies indicated that although Li" conduction within graphitic planes is
quite fast (107 to 10" cm?/s), grain boundaries can drastically impede Li" diffusion (~10"! cm?/s) (Persson
et al., 2010). First-principles simulations have also been employed to understand lithiation behavior in
beyond-graphene anode materials, such as amorphous SiOy/3. AIMD simulations have shown that high Li/Si
ratio (~4) can be achieved in oxygen-deficient silica anodes by carefully tuning the O distribution and Si/O
ratio (Chou and Hwang, 2013). Reactive MD simulations provide an effective route to access the



length/time-scales necessary to explore the energetics, dynamics, and mechanics associated with
lithiation/de-lithiation process in low-dimensional (e.g., onion like carbon) or amorphous materials. Grand
canonical MC and MD simulations based on a reactive force field (ReaxFF) showed that vacancies provide
energetically preferred sites for Li adsorption in graphitic carbon. As the number of vacancies in graphitic
carbon increase, the Li/C ratio increases yielding higher cell voltages at all lithiation levels. Additionally,
these atomic-scale simulations also revealed that zero-dimensional onion-like carbon facilitate fast
charging/discharging rates by providing numerous sites for Li adsorption/desorption in the outer layers,
demonstrating the promise of onion-like carbon for anode applications (Raju et al., 2015). Similarly,
reactive MD simulations have elucidated the atomic-scale mechanisms underlying mechanical response of
amorphous LixSi alloys under a variety of chemo-mechanical loading conditions, with implications for Si
anodes (Fan et al., 2013).

ML models based on gaussian process regression developed using ab initio datasets have been used to study
amorphization and battery performance in graphitic anodes. Similarly, ANN potentials (alongside
evolutionary sampling) have been used to (a) identify low-energy atomic configurations over the entire
range of compositions in amorphous LixSi, which yield average voltage values consistent with experiments,
and (b) elucidate mechanisms underlying Li diffusion and Si segregation during de-lithiation of amorphous
Li-Si nanoparticles. Insights from these simulations offer guidelines to design Si-based anodes with
enhanced rate-capability (Guo et al., 2021).

ELECTRODE-ELECTROLYTE INTERFACES

The primary redox reactions underlying the operation (i.e., charge/discharge) of a battery rely on steady
transfer of ions to and from the electrode across the boundary region (few tens of nanometer thick) between
electrode and electrolyte, called electrode-electrolyte interfaces. Consequently, the electrochemical
performance of a battery (i.e., capacity, rate capability, and cycle life) is intimately tied to the
thermodynamics, reactivity, electron/ion conduction, and mechanics at these interfaces. Evidently, a
fundamental understanding of structure-property-performance relationships at electrode-electrolyte
interfaces is crucial to accelerate design of high-performance battery technologies. Computational modeling
at electronic-to-mesoscopic scales has been instrumental in elucidating such relations by providing insights
into several interconnected interfacial phenomena, including, chemical reactions, solvation dynamics,
atomic diffusion, charge transport, and microstructural evolution.

Anode-Electrolyte Interfaces

Nominal decomposition of the electrolyte is inevitable at electrified interfaces in any rechargeable battery,
owing to the metastable nature of electrolytes under typical voltages of battery operation. Especially, at the
anode-clectrolyte interface, products arising from electrolyte decomposition form a passivating layer, called
the solid electrolyte interphase (SEI), which is widely regarded as the key enabler of rechargeable battery
technologies (Franco ef al., 2019). A perfect SEI should prevent continuous electrolyte decomposition by
hindering electron flow, while still allowing rapid conduction of primary charge carrying ions (e.g., Li" in
Li-ion battery). Realization of such a SEI requires a clear understanding of the elementary steps underlying
the initial formation of SEI and subsequent growth during cycling, as well as identifying key structure-
property relationships. Specifically, it is necessary to delineate the effect of (a) solvents, co-solvents, salts,
and additives in the electrolyte, and their relative amounts, (b) chemistry, structure, and morphology of the
anode, and (c) operating conditions (e.g., voltage, C-rate, temperature) on the structure, composition, and
physical properties of the SEI.

AIMD simulations have been successfully used to identify the mechanisms underlying initial stages of
degradation of liquid electrolytes (up to ~100 ps) upon contact with commonly used anodes, including
lithium metal, graphite, silicon, and tin (Franco et al., 2019). Most studies have focused on interfaces with
carbonate electrolytes (primarily EC) due to their prevalence in conventional Li-ion batteries. AIMD
simulations reveal that EC decomposes on Li (001) to form SEI via a sequential transfer of two electrons
from anode to EC. This two-electron mechanism can either cause stepwise dissociation of two bonds
between (a) the carbonyl C and two O atoms of the ring, resulting in a O(C;H4)O,7/CO pair, which



subsequently reacts with two CO, molecules to form ethylene decarbonate; or (b) ethylene C and ring O to
form C,H4/CO;*pair. Both pathways have similar reaction barriers, indicating that they are equally likely
(Leung et al., 2011; Brennan et al., 2017). However, AIMD simulations show that EC rearranges into a
bent geometry near Li or graphite anode, which is more amenable to decomposition via the first pathway
yielding O(C>H4)O,/CO pair (Leung et al., 2011). Similar decomposition of EC has also been reported for
graphite, silicon, and tin anodes (Franco et al., 2019). Interestingly, AIMD simulations show that the nature
of edge terminations in graphite control the decomposition products, e.g., (a) edge C=0 facilitate EC
decomposition to form O(C2H4)O,/CO or CoH4/CO;* pairs, (b) edge C-OH forms ethylene glycol via EC
degradation followed by H" transfer, while (c) edge C-H terminations do not cause breakdown of EC.
Breakdown of anions (e.g. TFSI) in electrolyte salt also contributes to SEI formation(Leung and Budzien,
2010). AIMD simulations indicate that TFSI” salt anions provide sacrificial protection to a range of solvents
(e.g., glymes, AN, ionic liquids) from reductive decomposition against Li anode by forming an amorphous
SEI containing LiF, Li,O, as well as S, N, and C anions bonded with Li (Merinov et al., 2019).

Understanding dynamical processes underlying formation, composition, and atomic-structure of SEI
requires access to larger length/time scales (10’s of nm and few ns) that are afforded by RMD simulations
in the framework of ReaxFF trained using first-principles datasets. RMD simulations have elucidated the
distribution of various species in the SEI formed in traditional Li" ion batteries with carbonate electrolytes
(EC, and dimethyl carbonate (DMC)). These simulations showed that SEI consists of two layers: (a) an
outer layer containing organic salts, and (b) an inner layer made up of inorganic salts, consistent with
experimental reports. Importantly, they indicate that lithium butylene dicarbonate (LiBDC) can form in the
initial stages by combination of two EC™ radicals releasing a CoHa; subsequently, LiBDC decomposes into
Li,COs and Li>O in Li-rich regions. DMC is less reactive against Li than EC, as evidenced by presence of
partially reduced products, such as LiOCH3 and LiOCO,CH3, in the SEI (Kim, Duin and Shenoy, 2011).
RMD simulations have also been employed to assess the effectiveness of additives in preventing solvent
decomposition. Recently, the formalism of ReaxFF has been extended to explicitly describe electron
transfer events using a pseudo-classical treatment.(Islam et al., 2016) This extended framework, called
eReaxFF, shows that electron transferred from Li anode to EC localizes between the C and O atoms in the
ring causing these bonds to break. Subsequent reactions of the EC™ radical depend on its concentration;
presence of several EC radicals in close proximity results yields Li,BDC or LiEDC alongside release of
C,Hy4 (Islam et al., 2016). Non-reactive CMD simulations are used to investigate ion conduction in as-
formed SEI layers. For instance, CMD simulations using polarizable FFs show that (a) Li" diffusion in
ordered SEI made up of Li,EDC is 2-3 times higher than that in amorphous SEI, and (b) presence of long
alkyl chain spacers between carbonate groups (e.g., in LixBDC vs Li,EDC) promotes ordered SEI, albeit
with reduced stiffness, which cannot suppress dendrite growth (Bedrov, Borodin and Hooper, 2017).
Furthermore, using key reaction paths identified by AIMD/RMD simulations, hybrid MD/MC and kMC
approaches have been used to investigate growth of SEI during battery cycling over mesoscopic
length/timescales (Franco et al., 2019).

The success of emerging solid-state battery technology is also irrevocably tied to the reactivity, and
ion/electron transport across anode-SE interfaces. Most efforts on solid-state anode-electrolyte interfaces
have focused on either (a) phase stability of SEs at different lithiation levels using convex hulls constructed
in the framework of DFT following similar techniques as discussed earlier for electrodes (Schwietert,
Vasileiadis and Wagemaker, 2021), or (b) AIMD simulations to identify the initial reactions at the interface
(Galvez-Aranda and Seminario, 2019). The thermodynamics and kinetics of ion/electron transfer across a
solid anode-electrolyte interface is controlled by a space charge layer made up of point defects, also known
as the electrical double layer (EDL). To capture spatial variation of (a) defect concentration and (b)
electrochemical potential across the EDL, a general mathematical model based on Poisson-Fermi-Dirac
equation has been proposed, which treats electronic band bending and point defect formation energies
(obtained from DFT) in a self-consistent manner (Swift, Swift and Qi, 2021). This model enables
determination of optimal thickness for any given interlayer material (e.g., LiF, Li,CO3) to minimize the
electrostatic barrier for Li-ion transport across anode-SE interface (e.g., interface between Li and



Li;LasZr,O12). The key driving forces identified by such models can also be integrated with CMD
simulations to unravel atomistic details of the EDL (Swift, Swift and Qi, 2021). Recently, ML approaches
have been employed to (a) identify the structure of energetically stable SEI with complex electrolytes (e.g.,
Lii 3Alo3Ti1.7(POs)s3), (b) investigate relationship between their structure, ionic-conductivity and mechanical
properties, and (c) predict promising coating materials with superionic conduction (Guo et al., 2021).

Cathode-Electrolyte Interfaces

On the cathode side, an analogous cathode-electrolyte interphase (CEI) forms, whose characteristics vary
significantly depending on the chemistry of the active material in the cathode. Apart from electrolyte
decomposition, cathodes introduce a rich variety of unique processes, including structural transitions in
cathode, transition metal leaching, and gas evolution that govern structural evolution of CEI (as well as its
physical properties). Owing to the vast array of distinct cathode chemistries used in batteries today, and
their inherent complexity, computational studies on CEI are relatively scarce (Yu and Manthiram, 2017).
Most works have focused on using AIMD simulations to understand (a) decomposition of EC, and (b) the
role of Mn disproportionation in Mn dissolution at interfaces between LixMn,O4 spinel cathodes and
carbonate electrolytes (Leung, 2012). Additionally, AIMD simulations have also been employed to study
reactions between sulfur cathodes and various solid state sulfide electrolytes (Camacho-Forero and
Balbuena, 2018). ML approaches have also been recently employed to study the structure, ionic
conductivity, and mechanical properties of CEI (similar to SEI), particularly for Li-P-S electrolytes with
typical cathode LiCoO; (Guo et al., 2021).

OUTLOOK

Computational modeling at electronic-to-mesoscopic scales have elucidated the molecular-scale dynamics
underlying a wide range of key electrochemical phenomena relevant to batteries, especially for idealized
electrodes, bulk electrolytes, and electrode/electrolyte interfaces. Equally important, high throughput
searches based on first-principles have even led to discovery of promising new electrolyte chemistries,
high-voltage cathode materials, and superionic conducting solid-state electrolytes. Nevertheless, challenges
still persist with respect to modeling electrode-electrolyte interfaces, especially (a) interfaces between Li-
metal anode, and emerging organic electrolyte chemistries, (e.g., room temperature ionic liquids and solvate
electrolytes) and complex solid-state electrolytes (e.g., sulfide electrolytes), and (b) cathode-electrolyte
interfaces. In addition, understanding molecular processes underlying thermodynamics/kinetics of ion de-
solvation at electrified electrode-electrolyte interfaces holds the key for designing materials for fast
charging rechargeable batteries; yet, such knowledge is still in its infancy. Most efforts till now have
focused on first-principles based approaches. AIMD simulations have identified key reactions governing
initiation of SEI/CEI for ideal electrode-electrolyte interfaces (Merinov et al., 2019; Camacho-Forero and
Balbuena, 2020; Leung, 2012). Similarly, AIMD simulations coupled with rare-event sampling methods
(e.g., blue moon ensemble) have unraveled (a) transition states, (b) free energy profiles, and (c) activation
energy associated with de-solvation of Li ions at the interface between Si anode and propylene carbonate
electrolyte under applied bias (Ohwaki et al., 2018).

Notwithstanding the key insights provided by first principles approaches, they cannot access the
length/timescales necessary to understand the effect of salt, additives, and solvents in emerging organic
electrolytes or stoichiometry of SEs on (a) formation processes, (b) structure, morphology, and
composition, as well as (c¢) structure-property relationships of SEI/CEIL. Similarly, ab initio techniques
cannot probe the effect of (a) electrolyte composition, and (b) structure, morphology, and composition of
SEI/CEI, on ion de-solvation. CMD simulations based on reactive FFs alongside advanced rare-event
sampling methods provide an effective route to access the necessary length/time scales; however, such FFs
are not available. ML methods based on gaussian process regression, kernel ridge regression, and artificial
neural networks, as well as automated FF-development workflows can enable rapid training of these
classical FFs from first-principles datasets (Patra et al., 2019; Chan et al., 2019b). Such ML-assisted
bridging of spatiotemporal scales in modeling would also be helpful to investigate lithium-excess cathode



materials that exhibit partial cation disorder, and non-coherent structural transitions with stoichiometric
changes (Urban, Seo and Ceder, 2016).

As ML based techniques become more popular with the battery modeling community, two key issues need
to be addressed: 1) incorporation of physics into ML models to enhance their transferability, 2) collecting,
curating, and maintaining an open database of materials properties calculated from first principles and/or
experiments (similar to Materials Project (Jain et al., 2013)).

Lastly, another key area that deserves attention is the link between models at electronic-to-mesoscale with
continuum scale approaches, including phase-field, Butler-Volmer frameworks. Recent works have already
reported using DFT/AIMD/CMD simulations to extract key materials parameters (e.g., interfacial energies,
fracture strength, grain boundary energy etc.) needed for these continuum simulations to investigate
dendrite growth in LLZO electrolyte, and delamination of transition-metal oxide cathodes
(LiNipsMnyo.1C00.10; and LiCo0O,) against LLZO, as well as its effect on the capacity fade in battery (Barai
et al.,2021; Barai et al., 2020). Such efforts become even more meaningful when considered in the context
of increasing availability of automated or robotic high-throughput synthesis/characterization (Dave ef al.,
2020). Continuum scale models informed by atomic-scale simulations can help speed-up Bayesian-
optimization methods to guide the robotic synthesis and drastically reduce the number of experiments.
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