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ABSTRACT 
This chapter provides a broad overview of the various computational modeling techniques used to gain 
fundamental insights into coupled electrochemical processes that occur in battery materials at electronic-
to-mesoscopic scales. Representative successes of these techniques in modeling electrodes, electrolytes, 
and electrode-electrolyte interfaces are highlighted to establish the current state-of-the-art in the field.  
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INTRODUCTION  
The ever-increasing demand for low-cost, safe, and high-density energy storage solutions for electric 
vehicles, consumer electronics, robotics, and electrical grids has necessitated development of new battery 
materials/chemistries at a rapid pace (Yu and Manthiram, 2017; Franco et al., 2019). Such unprecedented 
rate of innovations cannot be sustained by traditional heuristic approaches involving expensive, time-
intensive, and intuition-driven experiments alone (Jain et al., 2013). With the high-performance computing 
facilities available today, computational modeling has emerged as an effective way to accelerate 
innovations in battery materials. This speed-up can happen in three ways: 1) computational screening of a 
vast library of battery-relevant materials to search for those with specific combination of desirable 
properties (e.g., electro-chemical stability, mechanical strength); 2) inverse design of materials by 
predicting a structure with prescribed properties; and 3) advancing the fundamental understanding of the 
physical factors underlying functionality of various battery components – all of which rely on an accurate 
description of complex electrochemical phenomena that occur in a typical battery.  
The measurable electrochemical performance of battery, including its capacity, cycle life, rate capability, 
and Coulombic efficiency is governed by a complex hierarchy of electrochemical processes that occur over 
multiple length scales (Figure 1) (Franco et al., 2019). For instance, the performance of a lithium ion battery 
relies on (a) stable (de)intercalation of Li+ in the active material in the electrodes, which is governed by 
chemistry and lattice stability at sub-nanometer scale, (b) ion conduction through the bulk electrolyte, 
dictated by solvation dynamics over several nanometers, (c) nucleation/growth of passivating solid-
electrolyte interphase (SEI), controlled by chemical reactions, electron transfer, and atomic transport over 
multiple scales, spanning Ångstroms to microns, and (d) charge/mass/heat transfer and stress distribution 
over continuum scales. Notably, all these processes are strongly and non-linearly coupled with each other. 
Consequently, a holistic understanding of the correlations between these processes, and their overall impact 
on functionality of a battery requires a multiscale modeling treatment. Owing to the immediate relevance 
of such computational strategies to the ever-growing battery community, numerous comprehensive reviews 
are already published focusing on individual modeling scales, including (a) first-principles approaches, 
(Urban, Seo and Ceder, 2016) (b) phase-field methods (Wang et al., 2020), (c) linking the multiple 
modeling scales (Franco et al., 2019), (d) understanding interfacial processes (Wang et al., 2018) and (d) 
application of emerging machine learning tools, for various components of a battery (Guo et al., 2021). 
Among the various scales of materials, the electronic-to-mesoscopic regime that encompasses the 
spatiotemporal scales spanning 10-10–10-6 meters and 10-15 – 10-4 seconds is particularly important for 
batteries, and constitutes the focus of this chapter. This regime features a rich variety of key electrochemical 
phenomena, including, solvation dynamics, ion transport, electron transfer, chemical reactions, structural 
transitions, and nucleation/growth of interphases – that are tightly coupled with each other, and strongly 
impact macroscale behavior of batteries, e.g., cycling performance, and degradation (Franco et al., 2019). 
A wide range of materials modeling techniques are employed to access different regions in this 
spatiotemporal domain (Figure 2). In general, as the spatial/temporal resolution of the technique reduces, 
the complexity of the model reduces, and consequently, the associated computational time/costs become 
progressively smaller. Typically, each of the electrochemical processes is investigated using a different 
modeling technique that is best suited to access the necessary length/time scale (Figure 2).  
Computational approaches based on quantum chemistry (QC) or first-principles provide most accurate 
predictions of material properties, often with errors on par with experiments; and are, thus, best suited for 
rapid computational screening of a library of materials. Ab initio molecular dynamics (AIMD), wherein 
interactions among electrons and nuclei are treated using Kohn-Sham density functional theory (DFT), can 
accurately describe molecular ordering around a metal ion (called solvation structures) in an organic liquid 
electrolyte, identify key chemical reactions, and assess their energetics as well as kinetic barriers. Classical 
atomic-scale approaches treat atoms as indivisible entities, and employs interatomic potential functions (or 
force fields, i.e., FFs) to describe the atomic interactions in terms of their positions relative to each other. 
Two kinds of FFs are commonly used, namely (a) reactive FFs that can capture the dynamics of 
formation/dissociation of chemical bonds, and associated charge transfer accurately, and (b) non-reactive 



ones in which the connectivity between atoms remains fixed throughout the simulation. Reactive MD 
(RMD) simulations elucidate the mechanisms underlying intercalation/conversion dynamics, electrolyte 
decomposition, and formation of interphases at electrode-electrolyte interfaces. Non-reactive classical MD 
(CMD) reveal the critical links between solvation structure, ion aggregation and ionic conductivity. 
Mesoscopic coarse-grained MD (CGMD) approach further reduces the physical degrees of freedom of the 
system by defining a collection of atoms as an indivisible entity called beads; and describes dynamics in 
terms of interactions between these beads. Such techniques are critical to capture the slow relaxation 
dynamics of macromolecular segments in polymer electrolytes. Finally, material evolution over long time-
scales (>10-6 s) can be simulated using kinetic Monte Carlo (kMC) approach for a selected set of 
reactions/events sampled from AIMD/DFT/RMD simulations. Often, sequential linking multi-scale 
schemes are employed to unravel the relationship between processes occurring at different scales. In these 
schemes, processed output from a model at smaller scale (higher level of theory) is used to inform or train 
models at the next scale in the hierarchy. Usually, datasets derived from first principles (quantum theory) 
calculations are used to train classical force-fields, which are employed to perform CMD simulations at 
atomic-scale; dynamic properties obtained from CMD, in turn, are used as input to develop coarse-grained 
or MC models. In recent times, emerging techniques in machine learning (ML) have played a vital role in 
enabling rapid, robust, and seamless bridging of models across different length/timescales (Chan et al., 
2019b; Patra et al., 2019; Chan et al., 2019a; Narayanan et al., 2017). 
In this chapter, we introduce the reader to the various commonly employed approaches to model three main 
battery components, namely, (a) electrolyte, (b) electrode, and (c) electrode-electrolyte interface, within the 
electronic-to-mesoscopic regime. Representative examples from the literature are highlighted to establish 
the current state-of-the-art. Finally, we provide an outlook of the field with a few suggestions for future 
directions. 
ELECTROLYTES 
In any rechargeable battery, the electrolyte serves as a conduit to transport active ionic charge carriers 
between the electrodes, while the electrons flow through the external circuit. Owing to its central role in 
ion transport, design of electrolyte materials with a prescribed set of physical properties is crucial to 
engineer rechargeable batteries that offer high capacity-retention, long cycle life, good rate capability, and 
safety. Ideally, an electrolyte should exhibit (a) fast ionic conduction, (b) excellent electrochemical stability 
against high energy density electrodes (e.g., lithium nickel manganese cobalt oxide (NMC) cathodes and 
lithium anode), (c) low flammability, and (d) good thermomechanical robustness. Several concepts for 
high-performance electrolytes have been proposed to meet these needs, which can be broadly classified 
into three categories, namely, (a) organic liquids, (b) polymers, and (c) inorganic solids. Computational 
materials modeling techniques have accelerated design of electrolytes belonging to each of these categories 
by (a) enabling rapid screening of thousands of compounds for desirable physical properties using first-
principles methods (with speed-up by ML) (Qu et al., 2015; Narayanan et al., 2019), and (b) providing a 
fundamental understanding of the dynamical processes associated with conduction of ionic charge carriers 
(e.g., Li+ ion) through bulk electrolyte over multiple length/time scales (Franco et al., 2019). 
Organic Liquid Electrolytes 
DFT (especially using B3LYP functional) has emerged as the standard method to compute thermochemical, 
solvation, and electronic properties of organic liquid electrolytes (Qu et al., 2015; Narayanan et al., 2019). 
High throughput infrastructures (such as Electrolyte Genome(Qu et al., 2015)) utilize these first principles 
approaches within automated workflows to generate large databases of molecular properties relevant for 
battery electrolytes. For instance, using ~55,000 DFT-B3LYP calculations, Electrolyte Genome reported 
an open dataset of ionization potential (IP) and electron affinity (EA) for 4,830 possible organic electrolytes 
– two key properties, which (a) set the voltage limits within which a traditional Li ion battery can operate 
without any electrolytic decomposition, and (b) determine the operating voltage of a redox-flow battery(Qu 
et al., 2015). Recently, similar infrastructures have been extended to compute energies for 133,296 organic 
molecules in GDB-9 database (that contain up to 9 C/N/O/F atoms, as well as H atoms) at chemical accuracy 



(< 1 kcal/mol) using a high-level quantum chemistry composite method called G4MP2. The G4MP2 
energies, in turn can accurately predict feasibility of millions of reaction pathways.(Narayanan et al., 2019) 
Large datasets from first-principles calculations provide (a) insights into links between the structure (motifs, 
chemical nature, and relative positioning of functional groups) and properties of molecules, as well as (b) 
a valuable resource to search for new organic liquids (present in the dataset) that possess desirable 
combination of molecular properties for use as an electrolyte. More importantly, these databases can be 
used to train fast-yet-accurate ML models to predict properties of large molecules that lie beyond the size-
limitations of quantum-chemical methods. Indeed, G4MP2 dataset on 133,296 GDB-9 molecules enabled 
development of (a) fast ML models based on kernel-ridge-regression and deep convolution neural networks 
to provide accurate estimates of G4MP2 atomization energy of large molecules (> 10 non-hydrogen atoms) 
using their DFT-B3LYP energies (Ward et al., 2019; Dandu et al., 2020), and (b) graph neural networks to 
predict solvation energy of molecules in five solvents (acetone, ethanol, acetonitrile, dimethyl sulfoxide, 
and water) within 1 kcal/mol of those obtained from DFT-B3LYP calculations (Ward et al., 2021). Such 
ML models, in turn, can be used to screen billions of organic molecules to identify promising electrolytes.  
Typical liquid electrolytes used in batteries are solutions of a salt (e.g., LiPF6) in an organic solvent (e.g., 
ethylene carbonate). Solvent molecules and salt anions present in liquid electrolytes tend to organize around 
ionic charge carriers (e.g., Li+) forming solvation shells. Molecular structure of these shells as well as their 
atomic-scale dynamics govern ion transport through bulk electrolyte; and have, consequently, been the 
subject of numerous computational investigations. AIMD simulations indicate that Li+ prefers a tetrahedral 
coordination in most organic electrolytes. However, the structure, composition, energetics, and dynamics 
of the solvation shell are controlled by the nature of salt/solvent as well as salt concentration. In particular, 
the relative energetics of (a) cation-anion interactions in the salt, and (b) cation-solvent interactions is of 
paramount importance to ion-transport (Tang, Tse and Liu, 2016; Franco et al., 2019). Weak interactions 
between the salt cation and the solvent, such as that observed between Li+ in LiPF6 salt and diethyl carbonate 
(DEC) solvent allow the salt anion (PF6

– in LiPF6) to remain in the Li+ solvation shell along with three 
solvent molecules. Consequently, Li+ ion is forced to travel along with relatively slow-moving salt anion 
(PF6

–) in the bulk electrolyte, resulting in low Li+ ion conductivity. More importantly, such a salt mediated 
mechanism yields progressively lower Li+ conductivity with increase in viscosity, severely restricting the 
range of amenable salt concentration. In contrast, solvents containing cyano- functional group (–CN), such 
as acetonitrile (AN), cause complete detachment of Li+ from salt anion owing to strong interactions between 
Li+ and N of –CN. This, in turn, allows Li+ to move along with the solvent molecules without any 
impediment from the salt anions. Such a solvent-mediated diffusion mechanism facilitates fast Li+ ion 
conduction even at high viscosity owing to Li+ ion hopping between transient solvation shells (Tang, Tse 
and Liu, 2016). This finding opened the possibility of decoupling the effect of salt concentration and 
electrolyte viscosity on Li+ conductivity; spurring design of super-concentrated electrolytes with high Li+ 
ion conductivity and excellent thermal/electrochemical stability.  
Super-concentrated (solvate) electrolytes feature unique network-like solvation structures composed of 
contact ion pairs, coordinated solvent molecules, and ion aggregates, like those elucidated by AIMD 
simulations of glyme (Gn):LiTFSI electrolytes (Figure 3(A-D)). Such networks enable precise control over 
reaction pathways, solubility of intermediates, and electrolyte stability in emerging Li-S batteries. 
Specifically, they (a) exhaust the solvating power of the solvent to solvate any Li+ ion belonging to Li-
polysulfides, suppressing their dissolution and shuttle, (b) enable a quasi-solid-state speciation pathway that 
allows cell operation at low electrolyte-to-sulfur ratio (making Li-S batteries competitive with Li-ion on 
the basis of gravimetric energy), and (c) reduce solvent activity, which inhibits parasitic reactions at Li-
anode (Pang et al., 2018). Importantly, AIMD simulations indicate that the amount of free (uncoordinated) 
solvent can be carefully tuned with appropriate choice of solvent and concentration of salt in solvate 
electrolytes. For instance, among glyme:LiTFSI solvates, choosing a solvent diglyme (G2) similar in size 
to the salt anion (TFSI–) results in a compact solvation shell, and minimizes the amount of free solvent 
(Figure 3(E,F)). The amount of free solvent is just enough to facilitate reaction kinetics, but not too high 
to promote deleterious reactions with Li-anode. In essence, the solvate electrolytes can address all key 



barriers thwarting commercialization of Li-S batteries. Indeed, G2:LiTFSI (0.8:1) solvate electrolytes have 
enabled long-lived Li-S cells that retain high-capacity (~900 mAh/g) even after 100 cycles at low E/S ratios 
(~5 mL/g) (Pang et al., 2018). Similarly, nominal amount of free solvent have been achieved with 
hydrofluoroether co-solvents to facilitate reaction kinetics in (AN)2-LiTFSI solvates (Shin et al., 2017). 
AIMD simulations have also been used to estimate solubility of Li2O and LiO2 in various organic solvents, 
which is crucial to gain insights into the charge-discharge processes of Li-O2 batteries (Cheng et al., 2017).   
Long-time dynamics of solvation structure, solvent exchange, migration of ion clusters, salt aggregation; 
and their collective impact on conductivity of ionic charge carriers is best described by CMD simulations 
Careful analysis of CMD trajectories reveal two distinct modes of Li+ migration: (a) vehicular diffusion, in 
which Li+ ion moves along with its solvation shell, and (b) structural diffusion, in which Li+ hops from one 
solvation shell to another via frequent exchange of mobile solvent molecules. Among these two modes, 
structural diffusion yields faster ion conduction (Borodin et al., 2020). Competition between these two 
modes of diffusion depends on (a) cation-solvent binding energy, (b) solvent viscosity, and (c) salt 
aggregation. For instance, strong binding of Li+ with ethereal oxygen atoms makes Li+ transport in glyme-
based electrolytes primarily vehicular. In contrast, the weaker interactions between Na+ and ethereal 
oxygens enables frequent exchange of solvent molecules between neighboring solvation shell, rendering 
structural diffusion as the dominant transport mechanism for Na+ ions in glymes (Borodin et al., 2020). 
Weakly bound solvation shell around Al3+ in 1-ethyl-3-methylimidazolium chloride ([emim][Cl]) ionic 
liquid facilitate rapid ion association- dissociation, which allows rapid ion transport. CMD simulations with 
adaptive biasing force show that Al3+ solvation shell in [emim][Cl] (containing 6 Cl– ions) has a free energy 
~35 kcal/molecule lower than the solvation sheath in traditional 1:1 ethyl carbonate (EC): ethyl methyl 
carbonate (EMC) blend electrolyte (containing 3 EC and EMC molecules). The lower solvation free energy 
in [emim][Cl] results in largely structural diffusion, which enables ~3 times faster Al3+ conductivity in as 
compared to that in EC:EMC electrolyte, wherein Al3+ motion is vehicular (Kamath, Narayanan and 
Sankaranarayanan, 2014).  
Polymer Electrolytes 
Computational investigations on polymer electrolytes have been primarily focused on different variants of 
poly (ethylene oxide) (PEO) based electrolytes, including amorphous and crystalline forms, as well as those 
containing tethered anions and ceramic nanoparticles (Franco et al., 2019). CMD simulations based on a 
polarizable FF show that PEOs form coordination loops around Li+, which restrict the range of motion in 
polymer chains slowing down their dynamics. Notably, the slow motion of the polymer chains renders Li+ 
motion sub-diffusive in amorphous PEOs over long times (30 – 40 ns) under ambient conditions, signaling 
the need for long timescales (100’s of nanoseconds) to accurately describe Li+ conduction in polymer 
electrolytes (Borodin and Smith, 2006). A typical approach to access such long timescales involves the use 
of CGMD simulations with interaction parameters derived from DFT or short all-atom CMD simulations.  
CGMD simulations are extensively used to investigate the correlation between chain dynamics, ionic 
association, and structural order in polymer electrolyte. Importantly, these simulations have elucidated that 
percolation networks of polymer chains with ion aggregates preferably form in low dielectric constant 
ionomers (e.g., poly (ethylene-co-acrylic acid)). Such percolation networks enable fast Li+ ion conduction 
through polymer electrolytes either via (a) continuous reformation of the network, or (b) collective motion 
of ion aggregates along the polymer chains (Hall, Stevens and Frischknecht, 2012; Franco et al., 2019). 
Furthermore, CGMD simulations have also been employed to study the effect of solvent dilution and salt 
concentration on order-disorder transitions in block PEO-polystyrene (PS) copolymers. Neutral solvent 
diluents reduce the glass transition temperature by lowering the repulsive interactions between polymer 
blocks. On the other hand, at intermediate concentrations, salt ions stabilize PEO rich domains; and in turn, 
raise the transition temperature (Qin and de Pablo, 2016). These insights offer new principles to design 
block copolymers that feature both (a) stable blocks with high mechanical robustness, and (b) percolation 
networks of ion-aggregates facilitating fast Li+ conduction. 
Several models based on Monte-Carlo approaches have been used to obtain microscopic understanding of 
ion conduction in polymer electrolytes. Among these, the dynamic bond percolation (DBP) theory remains 



the most popular owing to its simplicity. In the framework of DBP, Li+ ion diffusion is treated as a random 
walk process, wherein Li+ ions can hop between neighboring sites in a statistically disordered host lattice 
(polymer chains). The lattice itself undergoes dynamic re-arrangement owing to the orientational motion 
(or configurational entropy) of polymer chains. The model is characterized by two timescales, namely, (a) 
Li+ hopping rate (fast), and (b) lattice renewal (slow) governed by local polymer relaxation dynamics 
(Druger, Nitzan and Ratner, 1983). Microscopic simulations based on DBP have been successfully 
employed to understand the effect of temperature and salt concentration on Li+ conduction though polymer 
electrolytes. Another approach involves modeling the polymer chains as a one-dimensional lattice in which, 
Li+ ions can move either by (a) hopping along a chain, (b) translate with chain segments, or (c) hop between 
chains; with probability of occurrence of each type of Li+ move determined from short CMD runs. This 
microscopic transport model revealed that Li+ hopping along PEO chains and Li+ translation with PEO 
chain segments contribute equally to Li+ conduction, while interchain hops are less important contributing 
merely ~10% to the overall Li+ conduction (Borodin and Smith, 2006). Approaches combining DBP and 
microscopic transport models have also been proposed to understand the effect of polymer chain length on 
Li+ conductivity (Franco et al., 2019). Similarly, kinetic MC models based on key events identified by 
CMD simulations have been used to study the effect of nanoparticle fillers on Li+ conduction in polymers 
(Franco et al., 2019).  
ML approaches have been recently employed to rapidly screen through a vast chemical space to identify 
promising polymer electrolytes. For instance, graph neural networks have been used to identify key 
structural features in polymers; these alongside gaussian process regression models have been used to learn 
the relationship between composition and experimentally measured conductivity for thousands of polymers. 
These newly developed ML models could successfully identify glassy polymers with high Li+ conductivity 
(~10-3 S/cm) (Guo et al., 2021) 
Inorganic Solid Electrolytes 
The growing safety concerns surrounding flammability of traditional organic liquid electrolytes has brought 
the inorganic solid-state superionic conductors, such as LISICON, NASICON, LiPON, garnet oxides, 
sulfides, and perovskites to the forefront (Nolan et al., 2018). Until now, most computational efforts on 
understanding Li+ ion conduction in bulk ceramic electrolytes have primarily focused on first-principles 
methods, including AIMD and DFT calculations. AIMD simulations are employed to sample different types 
of ion jumps, identify effect of temperature on ion-migration pathways, and understand effect of 
structure/composition on ion-migration. Nudged elastic band (NEB) calculations in the framework of DFT 
are employed to understand the physical factors underlying kinetic barriers for specific migration pathways 
(Nolan et al., 2018). Using sulfide electrolytes as a representative class of solid electrolytes (SEs), AIMD 
simulations have elucidated that (a) defects promote Li+ ion transport by reducing activation energy needed 
for hop and increasing charge carrier concentration in Li10GeP2S12, (b) distribution of halogen (X) dopants 
among the available sites in Li6PS5X electrolytes has marked impact on Li+ conductivity owing to subtle 
changes in the Li substructure around halogens or sulfur atoms, and (c) collective motion of Li+ along with 
flexibility of P2S7 ditetrahedrals underlies superionic Li+ conduction in Li7P3S11 (Franco et al., 2019). In 
perovskite oxides, Li+ ion conduction follows a percolation pathway in A-site vacancies and is influenced 
by the structure and concentration of Li+ ions. Interestingly, in a recent study integrating AIMD, DFT, and 
synchrotron experiments revealed that strongly correlated quantum effects can strongly influence Li+ ion 
conduction. Specifically, in strongly correlated perovskite nickelates, Li+ induces electron doping of a 
nearby Ni3+ in the perovskite lattice, which simultaneous causes (a) Mott transition into an electronically 
insulating phase, and (b) lattice expansion, which enables facile Li+ diffusion. Such emergent physics 
provides a promising alternate pathway to design super-ionic conductors for other ions, such as Na+ as well 
(Sun et al., 2018).  
MC and CMD simulations based on non-reactive classical pair potentials (with fixed atomic charges) have 
been used to extend the accessible length/time scales. For instance, MC and CMD simulations revealed the 
effect of grain boundary structure, and its impact on Li+ ion migration in Li7La3Zr2O12 garnet electrolytes. 
These calculations showed that (a) the grain boundaries are enriched with Li, and (b) Li+ diffusivity along 



grain boundaries is lower than that in the bulk, but the extent of this decrease is sensitive to temperature 
and grain boundary structure (Yu and Siegel, 2017). The recent emergence of ML approaches in materials 
science has also enabled rapid computation of ion-diffusion behavior in solid state electrolytes. ML has 
primarily been used for three main purposes, namely (a) developing artificial neural network (ANN) 
potentials to describe atomic interactions from first principles datasets; these potentials are employed to run 
long-time MD simulations in complex solid electrolytes (including amorphous ones), (b) training ML 
models to directly predict conductivity based on structural features, without any MD simulations, and (c) 
developing ML models to identify new candidate materials based on key structural features in existing 
superionic conductors (Guo et al., 2021).  
ELECTRODES 
Electrochemical performance of any battery, including its capacity, operating voltage, cyclability, and rate 
capability depends crucially on the physical properties of the active material used in the positive (cathode) 
and negative (anode) electrodes. Specific materials phenomena of interest include (a) thermodynamics of 
ion adsorption/desorption, (b) phase stability, (c) ion migration, (d) equilibrium voltage, and (e) 
microstructural evolution alongside associated stress distribution during battery cycling (i.e., lithiation/de-
lithiation in lithium-ion batteries). A holistic understanding of these processes requires a combination of 
first-principles calculations, cluster expansion methods, AIMD/CMD simulations, statistical approaches 
(e.g., Monte Carlo), phase field and finite element calculations owing to the wide range of length/time 
scales associated with these processes. Below, we provide a brief discussion on the application of 
electronic-to-mesoscopic modeling techniques for electrode materials using Li-ion technology as a 
representative system. Detailed review of research progress on different aspects of modeling electrodes is 
available elsewhere.(Ma, 2018; Urban, Seo and Ceder, 2016) 
Cathodes  
In Li-ion batteries, typical positive electrodes serve as intercalation hosts for Li+ ion, in which Li+ ions are 
inserted during discharge, and extracted when the battery is charged. Several classes of transition metal 
oxides, including layered (e.g., LiCoO2), spinel (e.g., LiMn2O4), tunneled oxides (e.g., MnO2), and 
polyanionic frameworks (e.g., LiFePO4) have been proposed and investigated as cathode materials (Franco 
et al., 2019; Urban, Seo and Ceder, 2016; Ma, 2018). Ideally, the structure of these hosts should remain 
largely intact during intercalation/de-intercalation of Li+ ions; however, phase changes via lattice distortions 
(beyond certain Li amount) have been observed in most electrodes. Hubbard-corrected DFT+U calculations 
are used to evaluate formation energies for various possible host structures at any given concentration of 
Li; the phases (or linear combination of phases) with the lowest energy at different composition are 
connected to construct the convex hull (Urban, Seo and Ceder, 2016). This convex hull shows the most 
energetically stable structure at any Li-content and provides insight into energetics of structural/phase 
evolution during charge/discharge of Li-ion battery (lithiation/de-lithiation). Convex hull construction 
based on DFT+U was recently used to investigate the effect of stabilizing K+ cations on structural transitions 
in tunneled MnO2 cathodes during lithiation (Figure 4) (Kempaiah et al., 2021). These calculations showed 
that at low K+ concentrations (e.g., KMn8O16), Li+ ions preferentially intercalate into 8h sites in empty 
tunnels (that do not contain K+) to avoid electrostatic repulsive interactions with K+. In fact, convex hull 
analysis indicated that these electrolytes undergo lithiation by first intercalating 4 Li+ ions in the empty 
tunnels, before inserting Li+ ions in the K+ tunnels (Figure 4A,B). Such a lithiation pathway allows the 
tunneled structure to remain stable up to high Li+ insertions (Li/Mn ~0.75), at which point tunneled structure 
begins to transform to layered one (Figure 4B). The ability of KMn8O16 to host more Li+ per transition 
metal without structural change would enable higher capacity, and better cyclability. However, at high K+ 
concentrations, K2Mn8O16, empty tunnels are not available for Li+ to intercalate. Consequent electrostatic 
repulsions between K+ and Li+ ions in the tunnels causes significant structural distortion, causing transition 
to layered form at lower levels of Li insertion (Li/Mn ~0.375) and subsequent amorphization (Li/Mn 
~0.625); these structural transitions hamper cyclability of these cathodes (Figure 4C). Formation energies 
of the stable phases from the convex hull at different Li concentration can be used to predict the cell voltage 



profile (with respect to Li/Li+) in good agreement with experiments (Figure 4D). For KyMn8O16 cathode, 
lithiation can be represented as: KyMn8O16 + xLi àLixKyMn8O16. The cell voltage can be evaluated as:  
𝑉 = −$𝐸!"#!$"%&#'$%(	 −	𝐸!$"%&#'$%(	 − 𝑥. 𝐸{"#}) /(𝑥. 𝑒),  
where 𝐸!"#!$"%&#'$%(	, 𝐸!$"%&#'$%(	, 𝐸{"#} are the ground-state formation energies of the lithiated 
LixKyMn8O16, unlithiated KyMn8O16, and body-centered cubic Li, while e is the charge on an electron. NEB 
calculations in the framework of DFT+U give insights into the kinetic barriers associated Li+ transport 
within the electrode. A more facile Li+ migration is indicative of good rate capability of the electrode. For 
instance, increased K+ doping results in higher Li-migration barriers, which in turn, signifies lower rate 
capability (Figure 4E). Electronic structure calculations show that K+ doping introduces semi-metallicity, 
which could enhance the capacity and rate capability of KyMn8O16 tunneled cathodes (Kempaiah et al., 
2021).  
To understand the effect of temperature on the phase diagram of Li-TM-O (TM: transition metal), cluster 
expansion models are developed using formation energies obtained from DFT+U. These models are then 
used to empower grand-canonical MC or kMC simulations to investigate the effects of finite temperature 
on phase stability, and Li/vacancy ordering (Urban, Seo and Ceder, 2016; Ma, 2018; Franco et al., 2019). 
Similarly, kMC simulations informed by DFT+U energetics have been used to explore the kinetics of phase 
evolution in LiFePO4 cathodes during lithiation/de-lithiation. Integrating DFT+U, cluster expansion. And 
kMC simulations has enabled identifying the effect of temperature, vacancy distribution, and Li 
concentration on the Li+ diffusion in layered LiTiS2. These studies indicated that Li+ migration is (a) 
dominated by hops between neighboring octahedral sites in TiS2, and (b) promoted by presence of 
divacancies (Van der Ven et al., 2008). Additionally, AIMD simulations have also been used to investigate 
Li+ diffusion pathways in several cathode materials. The structural, thermodynamic, and kinetic properties 
deduced from these electronic-to-mesoscopic simulations have been used to evaluate the parameters in 
continuum scale formulations, such as phase-field coupled with mechanics and Butler-Volmer 
electrochemical kinetics (Srinivasan et al., 2018). Such frameworks provide a pathway to investigate the 
relationships between microstructure evolution, stress distribution, and cell voltage. Detailed discussion of 
such continuum approaches is out of scope of this chapter and are available elsewhere (Srinivasan et al., 
2018). 
Recently, ML approaches have been employed to (a) train ANN potentials for complex cathodes (e.g., 
LiNixMnyCo(1−x−y)O2) using training set derived from DFT to predict phase stability, thermodynamics of 
defect ordering, and cell voltage, (b) estimate Li+ migration barriers by learning-on-the-fly, (c) develop 
quantitative structure-property relationships, and (d) develop predictive models that can screen vast number 
of compounds for desired cell voltage based on simple features (Guo et al., 2021). 
Anodes  
Graphitic carbon-based materials remain most popular choice for use as anodes in LiBs owing to their low 
voltage with respect to Li, low cost, abundance, and long cycle life. Like for the cathodes, a combination 
of DFT, cluster expansion, and MC methods have been used to investigate the thermodynamics of Li 
ordering within graphite. Importantly, these studies revealed that Li insertion in graphite is governed by the 
competition between (a) electrostatic repulsion among intercalating Li+ ions, and (b) van der Waals 
attraction between atomic layers of graphite. The tug-of-war between these two opposing factors precludes 
homogeneous insertion of Li+ ions within graphite during lithiation (Persson et al., 2010). Depending on 
the concentration of Li, either one or two empty layers of graphite can exist between Li-filled layers. A 
combination of DFT-NEB and kMC simulations elucidated the effect of Li concentration on Li+ diffusion 
along the graphitic planes. These studies indicated that although Li+ conduction within graphitic planes is 
quite fast (10-7 to 10-6 cm2/s), grain boundaries can drastically impede Li+ diffusion (~10-11 cm2/s) (Persson 
et al., 2010). First-principles simulations have also been employed to understand lithiation behavior in 
beyond-graphene anode materials, such as amorphous SiO1/3. AIMD simulations have shown that high Li/Si 
ratio (~4) can be achieved in oxygen-deficient silica anodes by carefully tuning the O distribution and Si/O 
ratio (Chou and Hwang, 2013). Reactive MD simulations provide an effective route to access the 



length/time-scales necessary to explore the energetics, dynamics, and mechanics associated with 
lithiation/de-lithiation process in low-dimensional (e.g., onion like carbon) or amorphous materials. Grand 
canonical MC and MD simulations based on a reactive force field (ReaxFF) showed that vacancies provide 
energetically preferred sites for Li adsorption in graphitic carbon. As the number of vacancies in graphitic 
carbon increase, the Li/C ratio increases yielding higher cell voltages at all lithiation levels. Additionally, 
these atomic-scale simulations also revealed that zero-dimensional onion-like carbon facilitate fast 
charging/discharging rates by providing numerous sites for Li adsorption/desorption in the outer layers, 
demonstrating the promise of onion-like carbon for anode applications (Raju et al., 2015). Similarly, 
reactive MD simulations have elucidated the atomic-scale mechanisms underlying mechanical response of 
amorphous LixSi alloys under a variety of chemo-mechanical loading conditions, with implications for Si 
anodes (Fan et al., 2013).   
ML models based on gaussian process regression developed using ab initio datasets have been used to study 
amorphization and battery performance in graphitic anodes. Similarly, ANN potentials (alongside 
evolutionary sampling) have been used to (a) identify low-energy atomic configurations over the entire 
range of compositions in amorphous LixSi, which yield average voltage values consistent with experiments, 
and (b) elucidate mechanisms underlying Li diffusion and Si segregation during de-lithiation of amorphous 
Li-Si nanoparticles. Insights from these simulations offer guidelines to design Si-based anodes with 
enhanced rate-capability (Guo et al., 2021).   
ELECTRODE-ELECTROLYTE INTERFACES 
The primary redox reactions underlying the operation (i.e., charge/discharge) of a battery rely on steady 
transfer of ions to and from the electrode across the boundary region (few tens of nanometer thick) between 
electrode and electrolyte, called electrode-electrolyte interfaces. Consequently, the electrochemical 
performance of a battery (i.e., capacity, rate capability, and cycle life) is intimately tied to the 
thermodynamics, reactivity, electron/ion conduction, and mechanics at these interfaces. Evidently, a 
fundamental understanding of structure-property-performance relationships at electrode-electrolyte 
interfaces is crucial to accelerate design of high-performance battery technologies. Computational modeling 
at electronic-to-mesoscopic scales has been instrumental in elucidating such relations by providing insights 
into several interconnected interfacial phenomena, including, chemical reactions, solvation dynamics, 
atomic diffusion, charge transport, and microstructural evolution.  
Anode-Electrolyte Interfaces 
Nominal decomposition of the electrolyte is inevitable at electrified interfaces in any rechargeable battery, 
owing to the metastable nature of electrolytes under typical voltages of battery operation. Especially, at the 
anode-electrolyte interface, products arising from electrolyte decomposition form a passivating layer, called 
the solid electrolyte interphase (SEI), which is widely regarded as the key enabler of rechargeable battery 
technologies (Franco et al., 2019). A perfect SEI should prevent continuous electrolyte decomposition by 
hindering electron flow, while still allowing rapid conduction of primary charge carrying ions (e.g., Li+ in 
Li-ion battery). Realization of such a SEI requires a clear understanding of the elementary steps underlying 
the initial formation of SEI and subsequent growth during cycling, as well as identifying key structure-
property relationships. Specifically, it is necessary to delineate the effect of (a) solvents, co-solvents, salts, 
and additives in the electrolyte, and their relative amounts, (b) chemistry, structure, and morphology of the 
anode, and (c) operating conditions (e.g., voltage, C-rate, temperature) on the structure, composition, and 
physical properties of the SEI.  
AIMD simulations have been successfully used to identify the mechanisms underlying initial stages of 
degradation of liquid electrolytes (up to ~100 ps) upon contact with commonly used anodes, including 
lithium metal, graphite, silicon, and tin (Franco et al., 2019). Most studies have focused on interfaces with 
carbonate electrolytes (primarily EC) due to their prevalence in conventional Li-ion batteries. AIMD 
simulations reveal that EC decomposes on Li (001) to form SEI via a sequential transfer of two electrons 
from anode to EC. This two-electron mechanism can either cause stepwise dissociation of two bonds 
between (a) the carbonyl C and two O atoms of the ring, resulting in a O(C2H4)O2

–/CO pair, which 



subsequently reacts with two CO2 molecules to form ethylene decarbonate;  or (b) ethylene C and ring O to 
form C2H4/CO3

2-pair. Both pathways have similar reaction barriers, indicating that they are equally likely 
(Leung et al., 2011; Brennan et al., 2017). However, AIMD simulations show that EC rearranges into a 
bent geometry near Li or graphite anode, which is more amenable to decomposition via the first pathway 
yielding O(C2H4)O2

–/CO pair (Leung et al., 2011). Similar decomposition of EC has also been reported for 
graphite, silicon, and tin anodes (Franco et al., 2019). Interestingly, AIMD simulations show that the nature 
of edge terminations in graphite control the decomposition products, e.g., (a) edge C=O facilitate EC 
decomposition to form O(C2H4)O2

–/CO or C2H4/CO3
2- pairs, (b) edge C-OH forms  ethylene glycol via EC 

degradation followed by H+ transfer, while (c) edge C-H terminations do not cause breakdown of EC. 
Breakdown of anions (e.g. TFSI–) in electrolyte salt also contributes to SEI formation(Leung and Budzien, 
2010). AIMD simulations indicate that TFSI– salt anions provide sacrificial protection to a range of solvents 
(e.g., glymes, AN, ionic liquids) from reductive decomposition against Li anode by forming an amorphous 
SEI containing LiF, Li2O, as well as  S,  N, and C anions bonded with Li (Merinov et al., 2019).   
Understanding dynamical processes underlying formation, composition, and atomic-structure of SEI 
requires access to larger length/time scales (10’s of nm and few ns) that are afforded by RMD simulations 
in the framework of ReaxFF trained using first-principles datasets. RMD simulations have elucidated the 
distribution of various species in the SEI formed in traditional Li+ ion batteries with carbonate electrolytes 
(EC, and dimethyl carbonate (DMC)). These simulations showed that SEI consists of two layers: (a) an 
outer layer containing organic salts, and (b) an inner layer made up of inorganic salts, consistent with 
experimental reports. Importantly, they indicate that lithium butylene dicarbonate (LiBDC) can form in the 
initial stages by combination of two EC– radicals releasing a C2H4; subsequently, LiBDC decomposes into 
Li2CO3 and Li2O in Li-rich regions. DMC is less reactive against Li than EC, as evidenced by presence of 
partially reduced products, such as LiOCH3 and LiOCO2CH3, in the SEI (Kim, Duin and Shenoy, 2011). 
RMD simulations have also been employed to assess the effectiveness of additives in preventing solvent 
decomposition. Recently, the formalism of ReaxFF has been extended to explicitly describe electron 
transfer events using a pseudo-classical treatment.(Islam et al., 2016) This extended framework, called 
eReaxFF, shows that electron transferred from Li anode to EC localizes between the C and O atoms in the 
ring causing these bonds to break. Subsequent reactions of the EC- radical depend on its concentration;  
presence of several EC– radicals in close proximity results yields Li2BDC or Li2EDC alongside release of 
C2H4 (Islam et al., 2016). Non-reactive CMD simulations are used to investigate ion conduction in as-
formed SEI layers. For instance, CMD simulations using polarizable FFs show that (a) Li+ diffusion in 
ordered SEI made up of Li2EDC is 2-3 times higher than that in amorphous SEI, and (b) presence of long 
alkyl chain spacers between carbonate groups (e.g., in Li2BDC vs Li2EDC) promotes ordered SEI, albeit 
with reduced stiffness, which cannot suppress dendrite growth (Bedrov, Borodin and Hooper, 2017). 
Furthermore, using key reaction paths identified by AIMD/RMD simulations, hybrid MD/MC and kMC 
approaches have been used to investigate growth of SEI during battery cycling over mesoscopic 
length/timescales (Franco et al., 2019).  
The success of emerging solid-state battery technology is also irrevocably tied to the reactivity, and 
ion/electron transport across anode-SE interfaces. Most efforts on solid-state anode-electrolyte interfaces 
have focused on either (a) phase stability of SEs at different lithiation levels using convex hulls constructed 
in the framework of DFT following similar techniques as discussed earlier for electrodes (Schwietert, 
Vasileiadis and Wagemaker, 2021), or (b) AIMD simulations to identify the initial reactions at the interface 
(Galvez-Aranda and Seminario, 2019). The thermodynamics and kinetics of ion/electron transfer across a 
solid anode-electrolyte interface is controlled by a space charge layer made up of point defects, also known 
as the electrical double layer (EDL). To capture spatial variation of (a) defect concentration and (b) 
electrochemical potential across the EDL, a general mathematical model based on Poisson-Fermi-Dirac 
equation has been proposed, which treats electronic band bending and point defect formation energies 
(obtained from DFT) in a self-consistent manner (Swift, Swift and Qi, 2021). This model enables 
determination of optimal thickness for any given interlayer material (e.g., LiF, Li2CO3) to minimize the 
electrostatic barrier for Li-ion transport across anode-SE interface (e.g., interface between Li and 



Li7La3Zr2O12). The key driving forces identified by such models can also be integrated with CMD 
simulations to unravel atomistic details of the EDL (Swift, Swift and Qi, 2021). Recently, ML approaches 
have been employed to (a) identify the structure of energetically stable SEI with complex electrolytes (e.g., 
Li1.3Al0.3Ti1.7(PO4)3), (b) investigate relationship between their structure, ionic-conductivity and mechanical 
properties, and (c) predict promising coating materials with superionic conduction (Guo et al., 2021). 
Cathode-Electrolyte Interfaces 
On the cathode side, an analogous cathode-electrolyte interphase (CEI) forms, whose characteristics vary 
significantly depending on the chemistry of the active material in the cathode. Apart from electrolyte 
decomposition, cathodes introduce a rich variety of unique processes, including structural transitions in 
cathode, transition metal leaching, and gas evolution that govern structural evolution of CEI (as well as its 
physical properties). Owing to the vast array of distinct cathode chemistries used in batteries today, and 
their inherent complexity, computational studies on CEI are relatively scarce (Yu and Manthiram, 2017). 
Most works have focused on using AIMD simulations to understand (a) decomposition of EC, and (b) the 
role of Mn disproportionation in Mn dissolution at interfaces between LixMn2O4 spinel cathodes and 
carbonate electrolytes (Leung, 2012). Additionally, AIMD simulations have also been employed to study 
reactions between sulfur cathodes and various solid state sulfide electrolytes (Camacho-Forero and 
Balbuena, 2018). ML approaches have also been recently employed to study the structure, ionic 
conductivity, and mechanical properties of CEI (similar to SEI), particularly for Li-P-S electrolytes with 
typical cathode LiCoO2 (Guo et al., 2021). 
OUTLOOK 
Computational modeling at electronic-to-mesoscopic scales have elucidated the molecular-scale dynamics 
underlying a wide range of key electrochemical phenomena relevant to batteries, especially for idealized 
electrodes, bulk electrolytes, and electrode/electrolyte interfaces. Equally important, high throughput 
searches based on first-principles have even led to discovery of promising new electrolyte chemistries, 
high-voltage cathode materials, and superionic conducting solid-state electrolytes. Nevertheless, challenges 
still persist with respect to modeling electrode-electrolyte interfaces, especially (a) interfaces between Li-
metal anode, and emerging organic electrolyte chemistries, (e.g., room temperature ionic liquids and solvate 
electrolytes) and complex solid-state electrolytes (e.g., sulfide electrolytes), and (b) cathode-electrolyte 
interfaces. In addition, understanding molecular processes underlying thermodynamics/kinetics of ion de-
solvation at electrified electrode-electrolyte interfaces holds the key for designing materials for fast 
charging rechargeable batteries; yet, such knowledge is still in its infancy. Most efforts till now have 
focused on first-principles based approaches. AIMD simulations have identified key reactions governing 
initiation of SEI/CEI for ideal electrode-electrolyte interfaces (Merinov et al., 2019; Camacho-Forero and 
Balbuena, 2020; Leung, 2012). Similarly, AIMD simulations coupled with rare-event sampling methods 
(e.g., blue moon ensemble) have unraveled (a) transition states, (b) free energy profiles, and (c) activation 
energy associated with de-solvation of Li ions at the interface between Si anode and propylene carbonate 
electrolyte under applied bias (Ohwaki et al., 2018). 
Notwithstanding the key insights provided by first principles approaches, they cannot access the 
length/timescales necessary to understand the effect of salt, additives, and solvents in emerging organic 
electrolytes or stoichiometry of SEs on (a) formation processes, (b) structure, morphology, and 
composition, as well as (c) structure-property relationships of SEI/CEI. Similarly, ab initio techniques 
cannot probe the effect of (a) electrolyte composition, and (b) structure, morphology, and composition of 
SEI/CEI, on ion de-solvation. CMD simulations based on reactive FFs alongside advanced rare-event 
sampling methods provide an effective route to access the necessary length/time scales; however, such FFs 
are not available. ML methods based on gaussian process regression, kernel ridge regression, and artificial 
neural networks, as well as automated FF-development workflows can enable rapid training of these 
classical FFs from first-principles datasets (Patra et al., 2019; Chan et al., 2019b). Such ML-assisted 
bridging of spatiotemporal scales in modeling would also be helpful to investigate lithium-excess cathode 



materials that exhibit partial cation disorder, and non-coherent structural transitions with stoichiometric 
changes (Urban, Seo and Ceder, 2016). 
As ML based techniques become more popular with the battery modeling community, two key issues need 
to be addressed: 1) incorporation of physics into ML models to enhance their transferability, 2) collecting, 
curating, and maintaining an open database of materials properties calculated from first principles and/or 
experiments (similar to Materials Project (Jain et al., 2013)).  
Lastly, another key area that deserves attention is the link between models at electronic-to-mesoscale with 
continuum scale approaches, including phase-field, Butler-Volmer frameworks. Recent works have already 
reported using DFT/AIMD/CMD simulations to extract key materials parameters (e.g., interfacial energies, 
fracture strength, grain boundary energy etc.) needed for these continuum simulations to investigate 
dendrite growth in LLZO electrolyte, and delamination of transition-metal oxide cathodes 
(LiNi0.8Mn0.1Co0.1O2 and LiCoO2) against LLZO, as well as its effect on the capacity fade in battery (Barai 
et al., 2021; Barai et al., 2020). Such efforts become even more meaningful when considered in the context 
of increasing availability of automated or robotic high-throughput synthesis/characterization (Dave et al., 
2020). Continuum scale models informed by atomic-scale simulations can help speed-up Bayesian-
optimization methods to guide the robotic synthesis and drastically reduce the number of experiments. 
 
ACKNOWLEDGEMENT 
This work was supported by the U. S. Department of Energy (DOE), Office of Energy Efficiency and 
Renewable Energy (EERE), Vehicle Technologies Office under Award #EE0008866. The author also 
acknowledges support from Oak Ridge Associated Universities (ORAU) through the Ralph E. Powe Junior 
Faculty Enhancement Award.  
  



FIGURES AND TABLES 
 

 
Figure 1. Schematic representation of the hierarchy of coupled electrochemical phenomena that occur in 
rechargeable batteries over multiple scales. The pictures enclosed in the black rectangle are (Top) Adapted 
with permission from Journal of Electrochemical Society, Barai et al., “The role of local inhomogeneities 
on dendrite growth in LLZO-based solid electrolytes”,167, 100537 (2021) © The Electrochemical Society. 
Reproduced by permission of IOP Publishing Ltd. All rights reserved (Bottom) Reprinted from Cell Reports 
Physical Science, Z. Liu et al., “Dendrite-free Lithium Based on Lessons Learned from Lithium and 
Magnesium Electrodeposition Morphology Simulations”, 2, 100294 Copyright (2021), with permission 
from Elsevier. 

  



 
Figure 2. Length and time scales for various computational materials modeling techniques within the 
electronic-to-mesoscopic regime. 

  



 
Figure 3. AIMD simulations show that glyme based solvate electrolytes form solvation networks around 
Li+. Typical AIMD snapshots are shown for (A) (1.7:1) G1: LiTFSI, (B) (0.9:1) G3:LiTFSI, (C) (0.8:1) 
G2:LiTFSI, and (D) (0.8:1) G4:LiTFSI. Oxygen coordination around Li+ ions in the first solvation shell is 
analyzed to identify (E) number of O neighbors arising from TFSI- and glyme, and (F) fraction of O atoms 
in the glyme that are free, i.e., are not coordinated by any Li+ cation. In panels (A-D), Li+ cations are shown 
in purple, free and coordinated glyme molecules are marked in gray and cyan respectively, while contact-
ion pairs (CIP), and aggregates of TFSI- anions are shown in gold and blue respectively; hydrogen atoms 
are not displayed for the sake of clarity. In panels (E-F), the optimal size of the glyme that leads to minimum 
free solvent is highlighted by the blue rectangle. [Reproduced with permission from Nature Energy, 
“Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium 
dendrite formation in Li–S batteries”, Pang et al., 3, 783–791 (2018), Copyright © 2018, Q. Pang, A. 
Shyamsunder, B. Narayanan, C.Y. Kwok, L. A. Curtiss and L. F. Nazar]  



 
Figure 4. First principles investigation of lithiation behavior of KyMn8O16 cathodes (y = 0-2). Ground state 
structures at different stages of lithiation (as described by Li/Mn content) for (A) LixMn8O16, (B) 
LixKMn8O16, and (c) LixK2Mn8O16 obtained using convex hull construction from DFT calculations. (D) 
Voltage discharge profile predicted by DFT calculations for LixMn8O16 (blue), LixKMn8O16 (green), and 
LixK2Mn8O16 (red) as compared to experiments for LixK0.7Mn8O16 (purple). (E) Activation barrier for Li+ 
ion transport in Mn8O16 (blue), KMn8O16 (green), and K2Mn8O16 (red) obtained using DFT-NEB 
calculations. [Adapted with permission from Kempiah et al., “Impact of Stabilizing Cations on Lithium 
Intercalation in Tunneled Manganese Oxide Cathodes”, ACS Applied Energy Materials, Article ASAP, 
DOI: 10.1021/acsaem.1c01598}. Copyright 2021 American Chemical Society.] 
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