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Abstract

Monte Carlo simulations are at the heart of many high-fidelity simulations and analyses for radiation transport systems.
As is the case with any complex computational model, it is important to propagate sources of input uncertainty and
characterize how they affect model output. Unfortunately, uncertainty quantification (UQ) is made difficult by the
stochastic variability that Monte Carlo transport solvers introduce. The standard method to avoid corrupting the
UQ statistics with the transport solver noise is to increase the number of particle histories, resulting in very high
computational costs. In this contribution, we propose and analyze a sampling estimator based on the law of total
variance to compute UQ variance even in the presence of residual noise from Monte Carlo transport calculations.
We rigorously derive the statistical properties of the new variance estimator, compare its performance to that of the
standard method, and demonstrate its use on neutral particle transport model problems involving both attenuation
and scattering physics. We illustrate, both analytically and numerically, the estimator’s statistical performance as
a function of available computational budget and the distribution of that budget between UQ samples and particle
histories. We show analytically and corroborate numerically that the new estimator is unbiased, unlike the standard
approach, and is more accurate and precise than the standard estimator for the same computational budget.

Keywords: Uncertainty quantification, Monte Carlo radiation transport, Stochastic solvers

1. Introduction

As computational modeling becomes more important to scientific and engineering communities, so does the ne-
cessity of quantifying and analyzing model reliability, accuracy, and robustness [1, 2, 3]. These requirements can
be met using uncertainty quantification (UQ), the mathematical characterization of how sources of input uncertainty
affect model output [4]. UQ can be used to assess the confidence of calculations that inform decisions or to moti-
vate experimental or computational work to reduce key uncertainties. It is also an important step in rigorous code
validation, which provides confidence in software’s ability to predict the behavior of new systems [2]. UQ is often
performed in conjunction with sensitivity analysis, a related field which aims to compute the degree to which model
output is sensitive to different inputs or to identify how output uncertainty can be apportioned to different sources
of input uncertainty [5]. However, the scope of this work is specifically UQ to compute output variance and does
not include techniques to compute sensitivities. We focus in particular on forward UQ using Monte Carlo (MC)
sampling [6], in which sources of uncertainty are propagated through the computational model to calculate mean,
variance, and possibly higher-order moments of the model response over the entire range of parameter uncertainty [7]
(as opposed to inverse UQ to characterize input distributions; see [8]). MC UQ satisfies the need for a non-intrusive,
robust, and efficient UQ approach; its convergence rate is independent of both the dimensionality of the problem and
the smoothness of the model’s response to its input variability [3, 6]. Some of the concepts developed here could
be extended to non-MC UQ approaches such as the construction of accurate surrogates for UQ, as demonstrated
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in [9, 10]. Forward UQ often requires a large number of code evaluations corresponding to independent realizations
of the uncertain input, which are then used to compute statistics of interest such as failure probabilities or moments
like mean and variance. In practice, just a single code evaluation for realistic models of complex physics, as is the case
in radiation transport [11, 12], is very computationally expensive. Even if high-performance computing resources are
available, the requirement to perform multiple evaluations for forward UQ compounds this issue. Over the last few
decades, a number of algorithmic advancements have been introduced to reduce the number of required simulations,
for instance with the use of surrogates like polynomial chaos [13, 14], stochastic collocation [15, 16], and Gaussian
process approaches [17]. More recently, multilevel and multifidelity approaches have been developed to optimally
fuse simulations from different approximations of a problem, e.g., combining fine and coarse spatial/temporal res-
olutions in numerical solutions of systems of partial differential equations, for accurate statistics estimation with a
computational cost one or two orders of magnitude lower compared to single fidelity methods [18, 19, 20, 21].

UQ methods typically treat model output variability as being caused exclusively by input variability [4, 22],
implicitly assuming that the underlying solver is deterministic and will produce the same output when queried with the
same input (e.g., the discrete ordinates method [23]). However, non-deterministic methods that produce a stochastic
output with some associated variability are used in a variety of disciplines such as compute networks [24, 25], turbulent
flows [26], financial modeling [27], disease prediction [28], and radiation transport [23]. Monte Carlo radiation
transport (MC RT) solvers, for example, model average particle behavior by sampling probability distributions that
describe physical phenomena and averaging over the behavior of those particles [23]. MC RT methods are well-
suited to handling time-dependent problems with complex geometries, as they do not require discretization across
phase space, and are also valuable for their ability to model physical data continuously as a function of particle
energy [23, 29]. Unfortunately, results of UQ studies applied to problems that use stochastic solvers are in a sense
‘polluted’ by the variability introduced by the solver itself; it is widely known that the overall variance is comprised of
the stochastic solver variance and the MC UQ variance [12, 30]. A brute-force treatment to handle the stochasticity of
the solver when estimating the parametric variance is to increase the number of particle histories N, knowing that the
MC RT variance will approach zero at the limit of an infinite number of particle histories [31, 32]. While a number
of variance-reduction techniques have been introduced for MC RT simulations, the standard error of the result will
still only decrease proportionally with 1/

√
N, leaving some remaining solver uncertainty [29]. The disadvantage of

the brute-force approach is that the stochastic solver’s variance needs to be made much smaller than the parametric
variance in order to accurately estimate the latter, and the high computational cost of doing so must be paid for each
of the multiple code evaluations required for MC UQ.

Nevertheless, MC UQ has been used in conjunction with MC RT simulations to estimate the output uncertainty
caused by the input uncertainty (the combination of MC UQ and MC RT is sometimes referred to as Total Monte
Carlo [33]). SCALE, a comprehensive modeling and simulation suite for nuclear safety analysis and design, includes
the SAMPLER module for performing general uncertainty and sensitivity analysis [34]. However, the uncertainty
of an individual output parameter due to uncertain input parameters is taken to be the variance of the output pa-
rameter over multiple code evaluations, therefore including the ‘pollution’ of the solver variance [35]. The Monte
Carlo N-Particle (MCNP) code, used for general-purpose transport simulations of particles such as neutrons, photons,
electrons, elementary particles, etc. includes mcnp-pstudy, a tool to automate the setup, execution, and collection of
results from a series of MCNP calculations for convenient uncertainty analysis [30]. The theory manual for mcnp-
pstudy points out that the total variance will approach the variance due solely to the uncertain parameter space as the
number of histories increases; in an example problem, the tool uses batch statistics on a problem without parameter
uncertainty to confirm that the solver variance is low relative to the total observed variance of problems with param-
eter uncertainty, in that case an order of magnitude smaller. A number of studies have suggested that rather than rely
on the brute-force approach to ensure that the MC RT variance is a sufficiently small portion of the total variance,
it would be useful to explicitly compute how much the MC RT variance contributes to the total observed variance
when the problem contains uncertain parameters [11, 12, 36, 37, 38]. In [12], the authors present the fast Total Monte
Carlo method to compute the parametric variance by using different random number seeds to remove the average MC
RT variance from the total observed variance so long as the average MC RT variance is less than 50% of the total
observed variance, an important improvement over existing methods. In [36], the authors developed an analytical
method (rather than a MC UQ method) for estimating the MC RT variance using the analysis-of-variance (ANOVA)
approach for uncertainty in geometric configurations and nuclear data.

In this contribution, we study the evaluation of moments of the QoI (namely mean and variance) due only to the
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variability introduced by uncertain parameters when combining MC UQ and stochastic solvers (discussed here as MC
RT solvers). We demonstrate both theoretically and numerically how to correct the UQ statistics by explicitly comput-
ing and removing the variability introduced by the MC RT solver. This approach leads to statistical estimators with a
significantly reduced mean-squared error compared to the brute-force approach of reducing the solver’s variability by
increasing the number of particle histories. Moreover, by deriving the statistical properties of these estimators, we are
able to discuss their statistical performance in terms of resource allocation amongst the number of MC UQ realiza-
tions and the number of MC RT particle histories per realization. We develop analytical solutions for UQ statistics of
transmittance through an attenuation-only 1D slab as a reference radiation-transport problem and use them to verify
numerical results; we also corroborate our findings with numerical results for a problem with scattering, for which we
do not have an analytical solution.

The remainder of this manuscript is organized as follows. In Section 2, we introduce the mathematical background
for Monte Carlo estimation of statistics in UQ. In Section 3 we introduce our novel estimator, named variance de-
convolution, and discuss its statistical properties, including its mean-squared error as a function of the total number
of particle histories. Both Sections 2 and 3 are presented assuming a generic stochastic solver, i.e., our approach is
not limited by the particular stochastic solver employed and, in the context of radiation transport, is applicable to any
MC-based transport solver. In Section 4, we briefly introduce MC RT methods and our numerical problem, including
the verification test case. In Section 5, we provide numerical results and compare to analytical results or a reference
solution. In Section 6, we conclude by discussing current and future research directions.

2. Mathematical background

We focus on quantifying statistics for a scalar quantity of interest (QoI) Q : Rd → R, which is a function of a
vector of uncertain variables ξ ∈ Ξ ⊂ Rd, where the number of uncertain variables d ∈ N can be arbitrarily large.
We consider arbitrary joint distribution functions p(ξ) for the input parameters, including the case of correlated (i.e.,
non-independent) variables. The goal of the analysis is the precise quantification of the first two statistical moments
of Q, i.e., the mean and variance of Q, which are defined as

E [Q] =
∫
Ξ

Q(ξ) p(ξ) dξ and

Var [Q] =
∫
Ξ

(Q(ξ) − E [Q])2 p(ξ) dξ,
(1)

respectively. In particular, we design estimators capable of efficiently resolving the variance of Q for stochastic
solvers. When using stochastic solvers, direct observations of Q as a function of ξ are not possible, either because
the response is corrupted by noise or because the quantity of interest is defined as a statistic of events associated with
the solver [6]. The latter case emerges naturally when using MC RT solvers; without loss of generality, we use the
MC RT application as the motivation for this paper. For each realization of the random uncertainty parameters ξ,
Q is obtained by post-processing statistics associated with individual particle histories. We notionally represent the
stochasticity of the MC RT solver with a random variable η ∈ H ⊂ Rd′ , where the series of random events constituting
a single particle history is represented as a single realization of η. The distribution of η is unknown (i.e., cannot be
directly sampled) but its events f : H → R are observable. For instance, an event f could be defined as a single
particle transmitting through a slab. We can define the QoI in terms of the events f and the conditional variance of f ,
which characterize the solver’s variability, as

Q(ξ(i)) = E
[
f (ξ, η)

∣∣∣ ξ = ξ(i)
] def
= Eη

[
f (ξ(i), η)

]
σ2
η(ξ

(i)) = Var
[
f (ξ, η)

∣∣∣ ξ = ξ(i)
] def
= Varη

[
f (ξ(i), η)

]
.

(2)

From this point forward, we indicate the variable of integration with a subscript. To evaluate the statistics of Q with
respect to the uncertain parameters ξ in Eq. (1), the definitions from Eq. (2) are necessary. Unfortunately, accurate
convergence of Eq. (2) with MC RT solvers requires a large collection of events f , particularly for high-fidelity
simulations of practical applications. UQ requires evaluating Q for multiple realizations of ξ, and the computational
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cost compounds when this is paired with use of MC RT solvers. We illustrate this challenge specifically for UQ using
MC sampling in the next section.

2.1. Monte Carlo sampling estimation

MC sampling estimation is one of several UQ techniques that allow for efficient computation of statistics like
those in Eq. (1). Despite its slow convergence rate, MC sampling is the most robust choice in the presence of large
dimensional spaces and noisy QoIs, like those of interest for MC RT. In the context of this work, MC simply consists
of drawing samples of ξ from p(ξ) and evaluating the corresponding QoI Q(ξ) a total of Nξ times, then post-processing
those values to evaluate the statistics in Eq. (1) as

E [Q] ≈
1

Nξ

Nξ∑
i=1

Q(ξ(i)) def
= Q̂ξ and

Var [Q] ≈
1

Nξ − 1

Nξ∑
i=1

Q(ξ(i)) −
1

Nξ

Nξ∑
k=1

Q(ξ(k))


2

def
= σ̂2

ξ .

(3)

Since the MC estimators depend on a finite number of realizations for Q(ξ), a different set of Nξ realizations would
correspond to a different value for the estimator. Hence, the MC estimators in Eq. (3) are themselves random variables;
as such, it is important to characterize these estimators with their statistical properties of bias and variance, which
correspond respectively to their accuracy and precision. Both estimators presented in Eq. (3) are unbiased, i.e.,
E

[
Q̂ξ

]
= E [Q] and E

[
σ̂2
ξ

]
= Var [Q] (for the variance, Bessel’s correction is introduced to achieve this property;

see [6]).
When using MC RT to evaluate the QoI, we introduce an additional estimator that approximates Eq. (2) using Nη

independent particle histories,

Q(ξ(i)) ≈
1

Nη

Nη∑
j=1

f (ξ(i), η( j)) def
= Q̃Nη

(
ξ(i)

)
. (4)

As the sample mean of f (ξ(i), η), the estimator presented in Eq. (4) is also unbiased, i.e., Eη

[
Q̃Nη

(ξ(i))
]
= Q(ξ(i)).

While this does indicate that the standard error of the estimator will tend to 0 as Nη → ∞, it is also known that the
standard error will converge as Nη

−1/2 [6]. Rather than assume that Nη will be large enough to render the standard
error of the approximation negligible, we include the approximation in evaluating the statistics of Eq. (3). Inserting
Eq. (4) into Eq. (3), we obtain

Eξ [Q] ≈ Eξ

[
Q̃Nη

]
≈

1
Nξ

Nξ∑
i=1

Q̃Nη
(ξ(i)) =

1
Nξ

Nξ∑
i=1

 1
Nη

Nη∑
j=1

f (ξ(i), η( j))

 def
=

〈
Q̃Nη

〉
Nξ

Varξ [Q] ≈ Varξ
[
Q̃Nη

]
≈

1
Nξ − 1

Nξ∑
i=1

Q̃Nη
(ξ(i)) −

1
Nξ

Nξ∑
k=1

Q̃Nη
(ξ(k))


2

def
= S̃ 2,

(5)

where, because Q̃Nη
depends on both ξ and η, we have now specified the variable of integration ξ for clarity. Since

the estimators in Eqs. (5) are based on an approximation of Q using a finite number of Nη evaluations for f , we refer
to these estimators as polluted. Our main focus in this work is to obtain an efficient estimation of Varξ [Q] from
its approximation, the total polluted variance S̃ 2; we introduce our novel estimator to do so in Section 3. First, we
summarize below some statistical properties of

〈
Q̃Nη

〉
Nξ

(previously introduced in [10, 39]).

Proposition 2.1. The polluted estimator
〈
Q̃Nη

〉
Nξ

is unbiased, i.e., E
[〈

Q̃Nη

〉
Nξ

]
= Eξ

[
Q
]
.
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Proof. This result follows directly from the linearity of expected value.

E
[〈

Q̃Nη

〉
Nξ

]
= Eξ

[
Eη

[〈
Q̃Nη

〉
Nξ

]]

= Eξ

Eη

[
1

Nξ

Nξ∑
i=1

( 1
Nη

Nη∑
j=1

f (ξ(i), η( j))
)]

=
1

Nξ

1
Nη

Nξ∑
i=1

Nη∑
j=1

Eξ

[
Eη

[
f (ξ(i), η( j))

]]

=
1

Nξ

1
Nη

Nξ∑
i=1

Nη∑
j=1

Eξ

[
Q(ξ(i))

]

=
1

Nξ

1
Nη

Nξ∑
i=1

Nη∑
j=1

Eξ
[
Q
]

= Eξ
[
Q
]

Proposition 2.2. The variance of
〈
Q̃Nη

〉
Nξ

is equal to

Var
[〈

Q̃Nη

〉
Nξ

]
=

Var
[
Q̃Nη

]
Nξ

, (6)

where

Var
[
Q̃Nη

]
= Varξ [Q] +

Eξ

[
σ2
η

]
Nη

. (7)

Proof. Eq. (6) follows from the definition of
〈
Q̃Nη

〉
Nξ

, a sampling estimator for the mean of Q̃Nη
from Nξ evalua-

tions [40]. The remaining result follows from the law of total variance,

Var [·] = Varξ
[
Eη [·]

]
+ Eξ

[
Varη [·]

]
,

applied to Var
[
Q̃Nη

]
,

Var
[
Q̃Nη

]
= Varξ

[
Eη

[
Q̃Nη

]]
+ Eξ

[
Varη

[
Q̃Nη

]]
= Varξ

[
Q
]
+ Eξ

Varη

 1
Nη

Nη∑
j=1

f (ξ(i), η( j))




= Varξ
[
Q
]
+ Eξ

 1
Nη

2

Nη∑
j=1

Varη
[
f (ξ(i), η( j))

]
= Varξ

[
Q
]
+
Eξ

[
σ2
η

]
Nη

.

Corollary 2.1. Let independent realizations of η, i.e., independent particle histories, require the same computational
effort independent of parameter ξ. Then, for a prescribed total computational budget equal to C = Nξ × Nη, the
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variance of estimator
〈
Q̃Nη

〉
Nξ

is minimized at Nη = 1.

Proof. This follows from Proposition 2.2 (see also [10]), i.e.,

Var
[〈

Q̃Nη

〉
Nξ

]
=

Varξ [Q] +
Eξ

[
σ2
η

]
Nη

Nξ
=

NηVarξ [Q] + Eξ

[
σ2
η

]
NξNη

=
NηVarξ [Q] + Eξ

[
σ2
η

]
C

,

where C = Nξ × Nη.

Given C = constant, Var
[〈

Q̃Nη

〉
Nξ

]
increases with Nη. It follows that its minimum is obtained for Nη = 1.

Corollary 2.1 shows that the sampling estimator for the mean,
〈
Q̃Nη

〉
Nξ

, is most precise when Nη = 1, corre-
sponding to the case in which the UQ parameters are re-sampled for each particle history. This indicates that, when
estimating the mean value, it is more advantageous to invest the computational budget in exploring the UQ parameter
space than it is to invest the computational budget in explicitly controlling the solver noise with a large Nη. We have
obtained this result by considering an ideal cost model in which the costs of data transfer or restart are considered
negligible. In the next section we demonstrate that even for this simplistic cost scenario, this result does not hold for
our novel variance estimator; the variance of the variance deconvolution estimator is not minimized when Nη = 1,
but rather an optimal value of Nη can be selected to minimize the variance of the estimator for a fixed computational
budget C.

3. Variance deconvolution estimator for QoIs from stochastic solvers

3.1. A variance deconvolution estimator

Having explored the statistical properties of the polluted mean estimator
〈
Q̃Nη

〉
Nξ

, we now turn to the polluted

variance estimator S̃ 2. To start, we can draw an important theoretical conclusion from Eq. (7) in the proof of Proposi-
tion 2.2. By applying the law of total variance to Q̃Nη

, we decompose it into Varξ [Q], the contribution from parameter
uncertainty, and Eξ

[
σ2
η

]
/Nη, the contribution from the MC RT variance. Using this relationship, we examine the effect

of using polluted estimator S̃ 2 to estimate Varξ [Q].

Theorem 3.1. The total polluted variance S̃ 2 is an unbiased estimator for Var
[
Q̃Nη

]
, i.e., E

[
S̃ 2

]
= Var

[
Q̃Nη

]
.

Proof. Provided in Appendix A.

Corollary 3.2. Given any finite number of particle histories Nη used at each sample of ξ and Eξ

[
σ2
η

]
> 0, S̃ 2 is a

biased estimator for Varξ [Q].

Proof. This follows from Theorem 3.1 and Proposition 2.2,

E
[
S̃ 2

]
= Var

[
Q̃Nη

]
= Varξ [Q] +

Eξ

[
σ2
η

]
Nη

.

Therefore, E
[
S̃ 2

]
= Varξ [Q] if and only if Eξ

[
σ2
η

]
= 0, which is not the case for any finite Nη.

Corollary 3.2 presents a closed-form representation of the brute-force approach: the bias of S̃ 2 approaches 0 as
Nη increases and σ2

η decreases. We introduce an alternative to the brute-force approach, accounting outright for the
variance introduced by the MC RT simulations and removing it from the polluted variance. This idea was introduced
in a series of prior contributions [39, 41, 42] and was coined variance deconvolution in [42], a designation we adopt
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in this article. Assuming the number of particle histories Nη is constant for each sample of ξ, we estimate the average
solver variance:

Eξ

[
σ2
η

]
Nη

≈
1

Nξ

Nξ∑
i=1

σ̂2
η(ξ

(i))

Nη

def
= µ̂σ2

RT,Nη
, (8)

where

σ2
η(ξ

(i)) ≈
1

Nη − 1

Nη∑
j=1

(
f (ξ(i), η( j)) − Q̃Nη

(ξ(i))
)2 def
= σ̂2

η(ξ
(i)). (9)

We define the variance deconvolution estimator S 2 as

Varξ [Q] = Var
[
Q̃Nη

]
−
Eξ

[
σ2
η

]
Nη

≈ S̃ 2 − µ̂σ2
RT,Nη

def
= S 2, (10)

providing a means to estimate Varξ [Q] without requiring over-resolution of the MC RT simulation.

3.2. Statistical properties of the deconvolution estimator

The statistical properties (mean and variance) of the variance deconvolution estimator are necessary to understand
its behavior. They also allow for comparison between the variance deconvolution estimator and the standard estimator,
i.e., the estimator obtained by explicitly over-resolving the MC RT statistics.

Theorem 3.3. The deconvolution estimator is unbiased, i.e.,

E
[
S 2

]
= Varξ [Q] . (11)

Proof. From the linearity of the expected value,

E
[
S 2

]
= E

[
S̃ 2

]
− E

[
µ̂σ2

RT,Nη

]
.

In Theorem 3.1, we showed that E
[
S̃ 2

]
= Var

[
Q̃Nη

]
. All that remains is to show that

E
[
µ̂σ2

RT,Nη

]
= E

 1
Nη

1
Nξ

Nξ∑
i=1

σ̂2
η(ξ

(i))

 = 1
Nη

E
[
σ̂2
η

]
=

1
Nη

Eξ

[
σ2
η

]
. (12)

Therefore,

E
[
S 2

]
= Varξ

[
Q̃Nη

]
−

1
Nη

Eξ

[
σ2
η

]
= Varξ [Q] . (13)

Theorem 3.4. The variance of the deconvolution estimator is

Var
[
S 2

]
= Var

[
S̃ 2

]
+ Var

[
µ̂σ2

RT,Nη

]
− 2Cov

[
S̃ 2, µ̂σ2

RT,Nη

]
, (14)
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where

Var
[
S̃ 2

]
=
µ4

[
Q̃Nη

]
Nξ

−
σ4

[
Q̃Nη

]
(Nξ − 3)

Nξ(Nξ − 1)
,

Var
[
µ̂σ2

RT,Nη

]
=

1
NξNη

2 Var
[
σ̂2
η

]
, and

Cov
[
S̃ 2, µ̂σ2

RT,Nη

]
= E

[
S̃ 2µ̂σ2

RT,Nη

]
− E

[
S̃ 2

]
E

[
µ̂σ2

RT,Nη

]
.

Proof. Equation 14 follows from the definition of variance. We define Var
[
S̃ 2

]
, Var

[
µ̂σ2

RT,Nη

]
, and Cov

[
S̃ 2, µ̂σ2

RT,Nη

]
here in terms of polluted quantities for brevity, where µ4 indicates the fourth moment and σ4 indicates the second

moment squared. The proof in Appendix B shows Var
[
S̃ 2

]
, Var

[
µ̂σ2

RT,Nη

]
, and Cov

[
S̃ 2, µ̂σ2

RT,Nη

]
in terms of un-

polluted quantities f (ξ, η) and Q(ξ).

Corollary 3.5. The MSE of the variance deconvolution estimator is equal to its variance

MS E
[
S 2

]
= Var

[
S̃ 2

]
+ Var

[
µ̂σ2

RT,Nη

]
− 2Cov

[
S̃ 2, µ̂σ2

RT,Nη

]
. (15)

Proof. This result follows from the definition of the MSE of an estimator,

MS E
[
S 2

]
=

(
E

[
S 2

]
− Varξ [Q]

)2
+ Var

[
S 2

]
(16)

= Bias
[
S 2

]
+ Var

[
S 2

]
(17)

and the results in Theorems 3.3 and 3.4.

3.3. Variance deconvolution algorithm

In Algorithm 1, we show pseudo-code for implementing variance deconvolution to compute parametric variance.
In this pseudo-code, the STOCHASTIC SOLVER function (lines 3-10) represents any stochastic solver that takes
uncertain parameters ξ as input and uses Nη solver samples to compute QoI Q̃Nη

and solver variance σ̂2
η. In our example

problems, the stochastic solver is a MC RT solver and f (ξ(i), η( j)) is a single particle tally. Each execution of the
STOCHASTIC SOLVER must use an independent sequence of random numbers. The variance deconvolution algorithm
can be implemented in software with existing batch-statistic capabilities with a couple modifications: assigning re-
sampled parameters to each batch and adding the computation and removal of the average solver variance from the
total variance once all of the batch executions are complete.

4. Monte Carlo radiation transport methods

While general MC sampling estimation and MC RT solvers were introduced in Section 2, we describe the MC
RT methods used in this paper in more detail here. MC RT simulations treat the physical system of interest as a
statistical process, using nuclear data to construct probability distributions that describe the various ways particles can
behave in the system. Individual particles are simulated and their behavior (e.g., moving through, interacting with, and
exiting the system) is tallied based on user-defined output quantities [29]. Applying the Central Limit Theorem [43],
the tallied behavior of the simulated particles can then be extrapolated as the average behavior of all particles in the
system, with some associated uncertainty on the order of Nη

−1/2, as discussed in Section 2. In contrast, deterministic
radiation transport methods solve an approximation to the transport equation, analytically or numerically, for average
particle behavior across an entire phase space [29]. While deterministic solvers introduce bias via the discretization
scheme or numerical method used, stochastic solvers introduce variability via the use of a finite number of samples.
MC RT methods are useful depending on the information needed by the user, the problem space, or the complexity of
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Algorithm 1 Compute parametric variance with variance deconvolution

1: for i← 1,Nξ do
2: ξ(i) ← Re-sample uncertain parameters

3: function Stochastic solver(ξ(i))

4: for j← 1,Nη do
5: f (ξ(i), η( j))← single-sample response

6: end for
7: Q̃Nη

(ξ(i))← 1
Nη

∑Nη

j=1 f (ξ(i), η( j))

8: σ̂2
η(ξ

(i))← 1
Nη−1

∑Nη

j=1

(
f (ξ(i), η( j)) − Q̃Nη

(ξ(i))
)2

9: return Q̃Nη
(ξ(i)), σ̂2

η(ξ
(i))

10: end function
11: end for
12:

〈
Q̃Nη

〉
Nξ

← 1
Nξ

∑Nξ

i=1 Q̃Nη
(ξ(i)) ▷ Unbiased QoI, Eq. (5)

13: S̃ 2 ← 1
Nξ−1

∑Nξ

i=1

(
Q̃Nη

(ξ(i)) −
〈
Q̃Nη

〉
Nξ

)2
▷ Total polluted variance, Eq. (5)

14: µ̂σ2
RT,Nη
← 1

Nξ

∑Nξ

i=1
σ̂2
η(ξ(i))
Nη

▷ Average solver variance, Eq. (8)

15: S 2 = S̃ 2 − µ̂σ2
RT,Nη

▷ Parametric variance, Eq. (10)

the equations governing the system. For example, because MC RT methods are event-based rather than phase space-
based, they can be used to solve time-dependent problems in complicated geometries without requiring an accurate
discretization scheme or numerical method for a complex system of differential equations [29].

This work uses analog MC RT methods, which use probability distributions constructed directly from physical
data such that a simulated particle’s behavior is directly analogous to the physical behavior of a particle in a real
system [29]. Non-analog methods, in general, forego the exact physics of the problem to reduce computation time,
improve scaling with problem size, or as a variance reduction technique. The variance deconvolution estimator is
equally applicable when non-analog methods are used so long as the definitions introduced in Eqs. (2) and (4) remain
true. Particle behavior is sampled using macroscopic cross sections, material-dependent properties with units of
inverse-distance that define the probability per unit distance that a given reaction will occur [44]. For example, the
total cross section Σt measures the probability per unit distance that any reaction will occur, while the absorption cross
section Σa measures the probability per unit distance that an interacting particle will be absorbed. The random walk
of a neutral particle1 begins with some initial conditions, and the particle is moved through the system by computing
the distance to its next collision2 dc,

dc =
− ln(Γ)
Σt

, Γ ∈ [0, 1) , (18)

where Γ is a randomly sampled number on [0,1) [29]. The computed distance to collision remains accurate as long
as Σt is constant, as in homogeneous media3. The particle will eventually exit the system, either through geometric
boundaries or via absorption, and a new particle history is initiated. Once all particle histories have been terminated,
tallies are averaged over the particle histories. As the systems modeled using MC RT become more complex, a single
simulation of the model becomes more computationally expensive. Even for neutral particles, transport can become
restrictively computationally expensive as higher-fidelity geometries or physics are modeled. For example, if the tally

1Transport for charged-particles like electrons and protons is more complex due to electrostatic interactions, and interested readers can refer
to [45] for more details.

2Readers interested in the derivation of the distance to collision can see ref [29].
3This is a common simplifying assumption, but in reality macroscopic cross section data can vary with energy, temperature, density, or changing

material composition [46].
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of interest is located where few particles end up traveling, it can take a large number of histories to obtain a statistically
significant result [29]. When considering charged-particle transport, accurate simulation requires modeling even more
complex physics and often more computational expense.

4.1. Verification problem

To show applicability of the variance deconvolution estimator, we consider an example radiation transport problem
solved using MC RT methods. We solve the one-dimensional, neutral-particle, mono-energetic, isotropic scattering,
source-free steady-state radiation transport problem with a normally incident beam source of magnitude one:

µ
∂ψ (x, µ)
∂x

+ Σt (x)ψ (x, µ) =
Σs (x)

2

∫ 1

−1
dµ′ψ

(
x, µ′

)
, (19)

0 ≤ x ≤ L; ψ(0, µ > 0) = 1. (20)

Dependence on space and angle are represented by x and µ, respectively; ψ(x, µ) is the angular neutron flux; Σt(x) is
the total cross section; and Σs(x) is the scattering cross section integrated over all angles. Because we only consider
two possible particle interactions, absorption or scattering, the total cross section is the sum of the absorption and
scattering cross sections, Σt = Σa + Σs. The geometry of the problem is a 1D slab sectioned into M material regions,
the boundaries between which are fixed. We consider two quantities of interest: the percentage of incident particles
that exit the system through the opposite surface, transmittance T = ψ (x = L, µ < 0), and the percentage of incident
particles that exit the system through the incident surface, reflectance R = ψ (x = 0, µ). Stochasticity, represented by
ξ4, is introduced to the problem via the total cross section and the scattering ratio c = Σs/Σt. The stochastic total cross
section for material region m is given by

Σt,m (ξm) = Σ0
t,m + Σ

∆
t,mξm, ξm ∼ U [−1, 1] , (21)

where Σ0
t,m represents its mean and Σ∆t,m represents its deviation from the mean. It follows from this definition that

Σt,m ∼ U
[
Σ0

t,m − Σ
∆
t,m,Σ

0
t,m + Σ

∆
t,m

]
. Similarly to the total cross section, we model the scattering ratio as a uniform

random variable cm ∼ U
(
cm − c∆m, cm + c∆m

)
, defined by

cm(ξm+M) = c0
m + c∆mξm+M , ξm+M ∼ U[−1, 1] . (22)

Both QoIs are functions of particle behavior, which is affected by the uncertain material properties. With two uncertain
parameters per material region, a single realization of T (ξ) and R(ξ) corresponds to a single realization of ξ ∈ R2M .
The goal is to estimate the variances of the QoIs induced by uncertainty in the material properties, Varξ [T ] and
Varξ [R]. We also examine an attenuation-only version of this test case, in which Σs = 0. Without a scattering ratio to
consider, our only QoI is T (ξ), ξ ∈ RM .

5. Numerical Experiments on MC RT problems

In this section, we demonstrate use of the variance deconvolution estimator on a MC RT verification problem
and compare its performance to that of a brute-force estimator for variance. In Sec. 5.1 we derive analytic reference
solutions for the attenuation-only case, then in Sec. 5.2 present numerical results for both the attenuation-only and
scattering cases.

5.1. Analytic solution derivations

With Σs = 0, the total cross section and absorption cross section are equivalent and we are able to derive analytic
solutions to serve as verification for numerical results. Because there is no scattering, particle motion is restricted to

4The variable ξ is often used in nuclear engineering texts to represent angular dependence in 2D or 3D problems, so we point out that in our
context, ξ is a vector of random variables. See Sec. 2.
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the forward direction µ = 1. The transmittance T (ξ) = ψ (x = L, µ = 1, ξ) is a function of the optical thickness of each
material region,

T (ξ) = exp

− M∑
m=1

Σt,m (ξm)∆xm

 . (23)

Olson et. al. [47] derived an analytic solution for the pth raw moment of Eq. (23) with respect to ξ,

Eξ
[
T p] = M∏

m=1

exp
[
−pΣ0

t,m∆x
] sinh

[
pΣ∆t,m∆x

]
pΣ0

t,m∆x
. (24)

We verify our variance estimate S 2 by comparing to the standard raw-to-central moment conversion for variance,
Varξ [T ] = Eξ

[
T 2] − Eξ

[
T
]2. We can also verify estimates for µ̂σ2

RT,Nη
and S̃ 2 by deriving a reference solution for the

average solver variance5 and summing it with that of Varξ [T ]. Additionally, we can use the closed-form expression
for the variance of the variance deconvolution estimator from Theorem 3.4 to derive an expression5 for the variance
deconvolution estimator’s MSE as a function of Nη.

5.2. Numerical results

We have arbitrarily chosen a 1D slab with 3 material regions, though our results could be extended to any number
of material regions. In Table 1, we present the width, total cross section average and deviation, and scattering ratio
average and deviation for each material region. UQ is performed using Nξ sample realizations, where each model
realization is a MC RT simulation using Nη histories, for a total computational cost of C = Nξ × Nη. We solved each
problem using an array of total computational costs C = 200, 500, 1000, 2000, and 5000 and also varied the factor
pairs within each C. To generate statistics of estimator performance and distribution of results, we repeated each
experiment 25 000 times.

5.2.1. Attenuation-only
From Eq. (24), the analytic transmittance with the parameters listed in Table 1 is Eξ [T ] = 0.08378. Our variance

deconvolution method does not introduce any novelty in computing the QoI of transmittance; over all estimator
costs and (Nξ,Nη) configurations, we estimate Eξ [T ] within ±8 × 10−5% (using 25 000 repetitions). The brute-

Problem Parameters Scattering Parameters
∆x Σ0

t,m Σ∆t,m c0
s,m c∆s,m

m = 1 2.0 0.90 0.70 0.50 0.40
m = 2 3.0 0.15 0.12 0.50 0.40
m = 3 1.0 0.60 0.50 0.50 0.40

Table 1: Problem parameters.

force approach approximates Varξ [Q] with S̃ 2; the variance deconvolution approach approximates it with S 2. From
Eq. (24), the analytic variance with the parameters listed in Table 1 is Varξ [T ] = 5.504 × 10−3. In Figure 1, we show
the distributions of S 2 and S̃ 2, as well as their means, using a total cost of C = 2000 for selected factor pairs. For all
four factor pairs, we see that the mean of S 2 over 25 000 repetitions overlaps with the analytic Varξ [T ] result; this is
consistent with the fact that this estimator is unbiased. As the number of particle histories per UQ sample increases,
in order from Figure 1(a) to Figure 1(d), we see the bias of the S̃ 2 estimator reduce as it converges to Varξ [T ]. These
distributions are a visualization of the efficiency of the variance deconvolution estimator compared to a brute-force
approach, and we gain insight into how computational resources must be spent on resolving the stochasticity of the
MC RT solver. For the same computational cost, one can instead spend more computational resource on improving
the precision of the S 2 estimator.

5See Appendix C for details.
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(a) C = 2000, Nη = 2. (b) C = 2000, Nη = 10.

(c) C = 2000, Nη = 100. (d) C = 2000, Nη = 1000.

Figure 1: Comparing the variance estimate with a brute-force approach to the estimate with the variance deconvolution approach for an attenuation-
only 1D radiation transport problem (d = 3). PDF created with 25 000 repetitions, averages reported with dashed lines. Exact Varξ [T ] is reported
as solid vertical line. S̃ 2 converges to Varξ [T ] as the number of particles per UQ sample increases, while S 2 is accurate even with Nη = 2.
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In Figure 2, we show the MS E, variance, and bias of both estimators as logarithmic heat maps for all tested total
computational costs. We can see from the MS E and Bias maps that S 2 is a more accurate estimator for Varξ [T ]
than S̃ 2 at every factor pair and every computational cost, only approaching equality as we increase Nη at the expense
of UQ resolution. We see similar profiles and order of magnitude in the variance, therefore the precision, of the
two estimators. This is also visible from the similarity in the shapes of their distributions in Figure 1. As expected,
MS E[S 2] = Var

[
S 2

]
(note that the scale has shifted between the two maps). Additionally, the observed bias is on the

order of 10−10, and has a maximum on the order of 10−9. Though this result is non-zero, it is statistically insignificant
compared to the standard error of the S 2 result, which is on the order of 10−5. The bias of the brute-force estimator,
however, is statistically significant compared to Varξ [T ] itself and we see, as expected, that the bias term is a function
entirely of Nη.

As a final analysis of estimator behavior, we evaluate the behavior of estimator statistics as a function of Nη.
Using the analytic expressions for the statistics derived in Section 5.1, we can explicitly derive the dependency of
Var

[
S 2

]
on Nη and evaluate its minimum in closed-form. In Figures 3 and 4, we show these results for a variety of

total computational costs. The analytic expressions for Var
[
S 2

]
, Var

[
S̃ 2

]
, Var

[
µ̂σ2

RT,Nη

]
, MS E

[
S 2

]
, and MS E

[
S̃ 2

]
are plotted with dashed lines, with numerical results from the 25 000 repetitions and their confidence intervals super-
imposed. The analytic minimum is marked with a star in each plot. We can see clearly here that, unlike the result for
the mean estimator in Corollary 2.1, Var

[
S 2

]
is not minimized at Nη = 1, suggesting there is an efficiency trade-off

between exploration of the parameter space via Nξ and solver noise reduction via Nη for a prescribed computational
cost6. If the statistics of the QoI cannot be evaluated in closed form, one would need to estimate them by employing a
procedure based on pilot runs. Therefore, it is possible to envision a numerical procedure that automatically discovers
and selects the best resource allocation for a fixed computational cost. Developing such a procedure is beyond the
present scope of the manuscript and we leave it to future contributions.

6Incorporating more complex cost dependencies on Nξ and Nη would give different results; see, e.g., [9].
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Figure 2: Comparing statistics of S 2 and S̃ 2 as estimators for Varξ [T ] = 5.504 × 10−3. Logarithmic scales.
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Figure 3: Comparing analytic functions of Var
[
S 2

]
, Var

[
S̃ 2

]
, and Var

[
µ̂σ2

RT,Nη

]
to numerical results. The star indicates the minimum Var

[
S 2

]
.

Note that axes are different for each plot.
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Figure 4: Comparing analytic functions of MS E
[
S 2

]
and MS E

[
S̃ 2

]
to numerical results. Note that axes are different for each plot.
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5.2.2. Scattering
We now move to the scattering case, for which analytical solutions are unavailable for both the QoI and its

statistics. Instead, we generate over-resolved reference solutions of S 2 using (Nξ,Nη) = (105, 20) for comparison. The
reference solution variances are Varξ [T ] = 9.348(7) × 10−3 and Varξ [R] = 8.033(6) × 10−3, where the parenthetical
indicates the standard deviation of the last digit. For both QoIs, the MS E, Var, and Bias of S̃ 2 and S 2 follow the
same trends as those shown in Figure 2. In Figure 5, we show the distributions of S 2 and S̃ 2 over 25 000 independent
repetitions for both the transmittance and reflectance. These results are qualitatively the same as the attenuation-only
case, and we similarly see S̃ 2 converge to the mean of S 2. Finally, in Figures 6 and 7, we evaluate the behavior of
estimator statistics as a function of Nη for both Varξ [T ] and Varξ [R]. The trends of Var

[
S 2

]
and Var

[
S̃ 2

]
for both

QoIs are similar to what we saw in the attenuation-only case. From numerical results, shown in Table 2, Var
[
S 2

]
for

Varξ [T ] appears to be minimized at the same Nη for both the scattering and attenuation-only cases. However, when
approximating Varξ [R], we find that Var

[
S 2

]
is minimized at Nη = 20 rather than Nη = 10. This demonstrates that

the optimal factor pair (Nξ × Nη) can differ between different QoIs even within the same problem, motivating further
investigation to allow the analyst to choose these parameters in an informed way.

Figure 5: Comparing the variance estimates for Varξ [T ] and Varξ [R] from a brute-force approach to the estimates from the variance deconvolution
approach for a 1D radiation transport problem with scattering (d = 6). PDF created with 25 000 repetitions, averages reported with dashed lines.
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Figure 6: Comparing numerical results for Var
[
S 2

]
, Var

[
S̃ 2

]
, and Var

[
µ̂σ2

RT,Nη

]
when approximating Varξ [T ] and Varξ [R]. Note that axes are

different for each plot.
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Figure 7: Comparing numerical results for MS E[S 2] and MS E[S̃ 2] when approximating Varξ [T ] and Varξ [R]. Note that axes are different for
each plot.

19



6. Conclusions

Monte Carlo sampling-based methods for UQ are non-intrusive, robust, and efficient. However, when coupled
with a stochastic computational model such as a Monte Carlo radiation transport solver, Monte Carlo UQ methods
propagate both the intended uncertainty and the additional variance introduced by the stochastic model. In this work,
we applied the law of total variance to present in closed-form how the UQ variance and stochastic solver variance
contribute to the total observed variance. Our primary outcome was the development of a variance deconvolution
approach to accurately and precisely estimate the UQ variance. Rather than the standard method of over-resolving the
stochastic solver for each UQ evaluation, variance deconvolution explicitly computes the stochastic solver variance
and removes it from the total observed variance. We showed both in theory and numerically, with an example neutral-
particle radiation transport problem, that the variance deconvolution estimator is unbiased and more efficient than the
standard approach for the same computational cost. Statistical analysis of the estimator and numerical results suggest
an efficiency trade-off between the number of UQ samples and number of stochastic model samples (e.g., particle
histories) for a prescribed computational budget. We used the analytic solution of the example radiation transport
problem to find the cost-optimal distribution between UQ samples and stochastic model samples, and ongoing work
focuses on constructing a pilot study to numerically estimate the cost-optimal distribution without an analytic solution,
for application to more complex and realistic problems. While the presented test problem applied variance deconvo-
lution to Monte Carlo radiation transport methods, the statistical analysis and theoretical conclusions of the variance
deconvolution estimator are applicable to Monte Carlo UQ coupled with any stochastic computational model. In on-
going work, we incorporate variance deconvolution into Saltelli’s method for global sensitivity analysis [5] to rank
the importance of uncertain random inputs to a MC RT problem, again without having to over-resolve the stochastic
solver [48, 49].
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Scattering Problem
Var

[
S 2

]
, Transmittance Var

[
S 2

]
, Reflectance

Nη
Estimator Cost

Nη
Estimator Cost

200 500 2000 5000 200 500 2000 5000
2 1.757E-04 6.976E-05 1.730E-05 6.973E-06 2 1.809E-04 7.041E-05 1.803E-05 7.222E-06
5 7.512E-05 2.968E-05 7.422E-06 2.891E-06 5 6.617E-05 2.628E-05 6.549E-06 2.612E-06
10 6.411E-05 2.486E-05 6.191E-06 2.439E-06 10 4.837E-05 1.869E-05 4.592E-06 1.840E-06
20 7.283E-05 2.789E-05 6.947E-06 2.714E-06 20 4.639E-05 1.774E-05 4.212E-06 1.686E-06
25 8.030E-05 3.079E-05 7.399E-06 2.967E-06 25 4.935E-05 1.842E-05 4.437E-06 1.773E-06

100 2.891E-04 8.558E-05 1.883E-05 7.525E-06 100 1.682E-04 4.044E-05 8.478E-06 3.287E-06

Table 2: The variance of the estimate of S 2 over 25 000 repetitions for the scattering problems.

20



technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States Government.

Appendix A. Proof of Theorem 3.1

We show that S̃ 2 is an unbiased estimator for Var
[
Q̃Nη

]
.

S̃ 2 =
1

Nξ − 1

Nξ∑
i=1

(
Q̃Nη

(ξ(i)) −
〈
Q̃Nη

〉
Nξ

)2
=

1
Nξ − 1

Nξ∑
i=1

(
Q̃2

Nη
(ξ(i)) − 2Q̃Nη

(ξ(i))
〈
Q̃Nη

〉
Nξ

+
〈
Q̃Nη

〉2

Nξ

)

=
1

Nξ − 1

Nξ∑
i=1

(
Q̃2

Nη
(ξ(i)) −

〈
Q̃Nη

〉2

Nξ

)

E
[
S̃ 2

]
= E

 1
Nξ − 1

Nξ∑
i=1

(
Q̃2

Nη
(ξ(i)) −

〈
Q̃Nη

〉2

Nξ

)
=

1
Nξ − 1

Nξ∑
i=1

E
[
Q̃2

Nη
(ξ(i)) −

〈
Q̃Nη

〉2

Nξ

]
=

Nξ

Nξ − 1

(
E

[
Q̃2

Nη

]
− E

[〈
Q̃Nη

〉2

Nξ

])
. (A.1)

We first handle E
[〈

Q̃Nη

〉2

Nξ

]
. Using combination theory,

〈
Q̃Nη

〉2

Nξ
=

 1
Nξ

Nξ∑
i=1

Q̃Nη
(ξ(i))


2

=
1

Nξ
2

 Nξ∑
i=1

Q̃2
Nη

(ξ(i)) +
Nξ∑
i=1

Nξ∑
k=1,,i

Q̃Nη
(ξ(i))Q̃Nη

(ξ(k))

 .
The distinction between Q̃2

Nη
(ξ(i)) and Q̃Nη

(ξ(i))Q̃Nη
(ξ(k)) becomes apparent when taking the expected value over ξ.

Because ξ(i) and ξ(k) are independent realizations, Eξ

[
Q̃Nη

(ξ(i))Q̃Nη
(ξ(k))

]
= Eξ

[
Q̃Nη

(ξ(i))
]
Eξ

[
Q̃Nη

(ξ(k))
]
. Then,

E
[〈

Q̃Nη

〉2

Nξ

]
=

1
Nξ

2

 Nξ∑
i=1

E
[
Q̃2

Nη
(ξ(i))

]
+

Nξ∑
i=1

Nξ∑
k,i

E
[
Q̃Nη

(ξ(i))Q̃Nη
(ξ(k))

]
=

1
Nξ

2

(
NξE

[
Q̃2

Nη

]
+ Nξ

(
Nξ − 1

)
E

[
Q̃Nη

]2
)

=
1

Nξ

(
E

[
Q̃2

Nη

]
+

(
Nξ − 1

)
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[
Q̃Nη

]2
)

=
1

Nξ
E

[
Q̃2

Nη

]
+

Nξ − 1
Nξ

Eξ
[
Q
]2
. (A.2)

Plugging this result into Eq. (A.1),

E
[
S̃ 2

]
=

Nξ

Nξ − 1

(
E

[
Q̃2

Nη

]
−

1
Nξ

E
[
Q̃2

Nη

]
−

Nξ − 1
Nξ

Eξ
[
Q
]2
)

= E
[
Q̃2

Nη

]
− Eξ

[
Q
]2 (A.3)
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We now handle E
[
Q̃2

Nη

]
by first introducing the variable transformation f (ξ, η) = Q(ξ) + Z(η) such that

Eη
[
f (ξ, η)

]
= Eη

[
Q(ξ) + Z(η)

]
= Q(ξ)

→ Eη
[
Z(η)

]
= 0.

It follows that Q̃Nη
can also be written

Q̃Nη
(ξ) =

1
Nη

Nη∑
j=1

f (ξ, η( j))

=
1

Nη

Nη∑
j=1

(
Q(ξ) + Z(η( j))

)
= Q(ξ) +

1
Nη

Nη∑
j=1

Z(η( j)). (A.4)

Applying this definition and combination theory,

Q̃2
Nη

(ξ) = Q2(ξ) +
2Q(ξ)

Nη

Nη∑
j=1

Z(η( j)) +

 1
Nη

Nη∑
j=1

Z(η( j))


2

= Q2(ξ) +
2Q(ξ)

Nη

Nη∑
j=1

Z(η( j)) +
1

Nη
2

 Nη∑
j=1

Z2(η( j)) +
Nη∑
j=1

Nη∑
k=1,, j

Z(η( j))Z(η(k))

 . (A.5)

Again, because η( j) and η(k) are independent realizations, Eη

[
Z(η( j))Z(η(k))

]
= Eη

[
Z(η( j))

]
Eη

[
Z(η(k))

]
. Finally,

E
[
Q̃2

Nη

]
= Eξ

[
Eη

[
Q̃2

Nη

]]
= Eξ

Q2 + 0 +
1

Nη
2

Nη∑
j=1

Eη

[
Z2

]
+ 0


= Eξ

[
Q2

]
+

1
Nη

Eξ

[
Eη

[
Z2

]]
Plugging in our variable transformation, we see that Eη

[
Z2

]
= Eη

[
( f − Q)2

]
= Eη

[(
f − Eη

[
f
])2

]
= σ2

η. Therefore,

E
[
Q̃2

Nη

]
= Eξ

[
Q2

]
+

1
Nη

Eξ

[
σ2
η

]
. (A.6)

Finally, combining Eq. (A.3) and Eq. (A.6),

E
[
S̃ 2

]
= Eξ

[
Q2

]
+

1
Nη

Eξ

[
σ2
η

]
− Eξ

[
Q
]2

= Varξ [Q] +
1

Nη
Eξ

[
σ2
η

]
, (A.7)

which we recognize from Proposition 2.2 as Var
[
Q̃Nη

]
. Therefore, S̃ 2 is an unbiased estimator for Var

[
Q̃Nη

]
.

22



Appendix B. Proof of Theorem 3.4

Before presenting the derivation for the terms appearing in the previous equations, we introduce some notation for
central moments:

µk [X] def
= E

[
(X − E [X])k

]
µη,k [X] def

= Eη

[
(X − Eη [X])k

]
σ4 [X] =

(
µ2 [X]

)2

σ4
η [X] =

(
µη,2 [X]

)2
.

(B.1)

We refer to the variable transformation from Appendix A and the useful property it gives rise to,

Eη
[
f (ξ, η)

]
= Eη

[
Q(ξ) + Z(η)

]
= Q(ξ)

→ Eη
[
Z(η)

]
= 0,

Eη

[
Zk

]
= Eη

[
( f − Q)k

]
= µη,k.

The following is also useful; we use the notation Z j
def
= Z(η( j)) for brevity. Nη∑

j=1

Z(η( j))


2

=

Nη∑
j=1

Z2
j +

Nη∑
j=1

Nη∑
k=1,
, j

Z jZ

 Nη∑
j=1

Z(η( j))


3

=

Nη∑
j=1

Z3
j + 3

Nη∑
j=1

Nη∑
k=1,
, j

Z2
j Zk +

Nη∑
j=1

Nη∑
k=1,
, j

Nη∑
q=1,
, j,
,k

Z jZkZq

 Nη∑
j=1

Z(η( j))


4

=

Nη∑
j=1

Z4
j + 4

Nη∑
j=1

Nη∑
k=1,
, j

Z3
j Zk + 3

Nη∑
j=1

Nη∑
k=1,
, j

Z2
j Z

2
k + 6

Nη∑
j=1

Nη∑
k=1,
, j

Nη∑
q=1,
, j,
,k

Z2
j ZkZq +

Nη∑
j=1

Nη∑
k=1,
, j

Nη∑
q=1,
, j,
,k

Nη∑
r=1,
, j,
,k,
,,q

Z jZkZqZr.

The variance of the deconvolution estimator S 2 can be written as

Var
[
S 2

]
= Var

[
S̃ 2

]︸    ︷︷    ︸
Term 1

+Var
[
µ̂σ2

RT,Nη

]
︸         ︷︷         ︸

Term 2

−2Cov
[
S̃ 2, µ̂σ2

RT,Nη

]
︸              ︷︷              ︸

Term 3

. (B.2)

Term 1
S̃ 2 is a sampling estimator for the variance of Q̃Nη

from Nξ evaluations. The variance of a sampling estimator for
variance is [40],

Var
[
S̃ 2

]
=

1.1︷   ︸︸   ︷
µ4

[
Q̃Nη

]
Nξ

−

1.2︷    ︸︸    ︷
σ4

[
Q̃Nη

]
(Nξ − 3)

Nξ(Nξ − 1)
. (B.3)
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Expanding Term 1.1,

µ4

[
Q̃Nη

]
= E

[(
Q̃Nη
− E

[
Q̃Nη

])4
]
= E

[(
Q̃Nη
− Eξ

[
Q
])4

]
= E

[
Q̃4

Nη

]
− 4E

[
Q̃3

Nη

]
Eξ

[
Q
]
+ 6E

[
Q̃2

Nη

]
Eξ

[
Q
]2
− 4E

[
Q̃Nη

]
Eξ

[
Q
]3
+ Eξ

[
Q
]4

= E
[
Q̃4

Nη

]
− 4E

[
Q̃3

Nη

]
Eξ

[
Q
]
+ 6E

[
Q̃2

Nη

]
Eξ

[
Q
]2
− 3Eξ

[
Q
]4
. (B.4)

We solved for E
[
Q̃2

Nη

]
in Appendix A, resulting in Eq. (A.6) (repeated below as (B.5)). Applying the same process

to E
[
Q̃3

Nη

]
and E

[
Q̃4

Nη

]
,

E
[
Q̃2

Nη

]
= Eξ

[
Q2

]
+

1
Nη

Eξ

[
σ2
η

]
, (B.5)

E
[
Q̃3

Nη

]
= Eξ

[
Q3

]
+

3
Nη

Eξ

[
Qσ2

η

]
+

1
Nη

2 Eξ

[
µη,3

]
, (B.6)

E
[
Q̃4

Nη

]
= Eξ

[
Q4

]
+

6
Nη

Eξ

[
Q2σ2

η

]
+

4
Nη

2 Eξ

[
Qµη,3

]
+

1
Nη

3 Eξ

[
µη,4

]
. (B.7)

Expanding Term 1.2,

σ4
[
Q̃Nη

]
=

(
σ2

[
Q̃Nη

])2
=

(
Var

[
Q̃Nη

])2

=

(
Varξ [Q] +

1
Nη

Eξ

[
σ2
η

])2
. (B.8)

Term 2

Var
[
µ̂σ2

RT,Nη

]
= Var

 1
Nξ

Nξ∑
i=1

σ̂2
η(ξ

(i))

Nη

 = 1
Nξ

2Nη
2

Nξ∑
i=1

Var
[
σ̂2
η(ξ

(i))
]
=

1
NξNη

2 Var
[
σ̂2
η

]
. (B.9)

Applying the law of total variance and the variance of a sample variance [40],

Var
[
σ̂2
η

]
= Varξ

[
Eη

[
σ̂2
η

]]
+ Eξ

[
Varη

[
σ̂2
η

]]
= Varξ

[
σ2
η

]
+ Eξ

µη,4[ f ]
Nη

−
σ4
η[ f ]

(
Nη − 3

)
Nη

(
Nη − 1

)  .
Combining,

Var
[
µ̂σ2

RT,Nη

]
=

Varξ
[
σ2
η

]
NξNη

2 +
1

NξNη
3 Eξ

µη,4[ f ] −
σ4
η[ f ]

(
Nη − 3

)(
Nη − 1

)  (B.10)

Term 3
From the definition of covariance,

Cov
[
S̃ 2, µ̂σ2

RT,Nη

]
= E

[
S̃ 2µ̂σ2

RT,Nη

]
− E

[
S̃ 2

]
E

[
µ̂σ2

RT,Nη

]
.
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We have shown in Proposition 3.1 that E
[
S̃ 2

]
= Var

[
Q̃Nη

]
, and in Theorem 3.3 that E

[
µ̂σ2

RT,Nη

]
= 1

Nη
Eξ

[
σ2
η

]
. What

remains is to evaluate E
[
S̃ 2µ̂σ2

RT,Nη

]
:

E
[
S̃ 2µ̂σ2

RT,Nη

]
=

(
Nξ − 1

)
NηNξ

2

(
E

[
Q̃2

Nη
σ̂2
η

]
+ Eξ

[
σ2
η

]
Eξ

[
Q
]2
)
−

2(
Nξ − 1

)
NηNξ

2
Eξ

[
Q
]
E

[
Q̃Nη

σ̂2
η

]
+

1 + Nξ

(
Nξ − 1

)
NηNξ

2 Var
[
Q̃Nη

]
Eξ

[
σ2
η

]
.

Combining,

Cov
[
S̃ 2, µ̂σ2

RT,Nη

]
=

(
Nξ − 1

)
Nξ

2Nη

[
E

[
Q̃2

Nη
σ̂2
η

]
−

2(
Nξ − 1

)2 Eξ
[
Q
]
E

[
Q̃Nη

σ̂2
η

]
+ Eξ

[
σ2
η

]
Eξ

[
Q
]2
]

−
Nξ − 1

Nξ
2Nη

Eξ

[
σ2
η

]
Var

[
Q̃Nη

]
,

(B.11)

where

E
[
Q̃2

Nη
σ̂2
η

]
= Eξ

[
Q2σ2

η

]
+

2
Nη

Eξ

[
Qµη,3

]
+

1
Nη

2 Eξ

[
µη,4 +

(
Nη − 3

)
σ4
η

]
,

E
[
Q̃Nη

σ̂2
η

]
= Eξ

[
Qσ2

η

]
+

2
Nη

Eξ

[
µη,3

]
, and

Var
[
Q̃Nη

]
= Varξ [Q] +

1
Nη

Eξ

[
σ2
η

]
.

Appendix C. Analytic Solutions for 5.1

We can derive reference solutions for the average solver variance and total polluted variance by assuming that
elementary event f is valued 1 to indicate transmittance, or 0 to indicate absorption. This assumption excludes
weighted MC RT approaches, but our primary interest here is to develop analytic solutions to verify the estimators
introduced in this work. It follows that f = f 2, from which we can show that

1
Nη

Eξ

[
σ2
η

]
=

1
Nη

Eξ

[
Eη

[
( f − Q)2

]]
=

1
Nη

Eξ

[
Eη

[
f 2 − 2 f Q + Q2

]]
=

1
Nη

Eξ

[
Eη

[
f − 2 f Q + Q2

]]
=

1
Nη

Eξ

[
Q − 2Q2 + Q2

]
=

Eξ
[
Q
]
− Eξ

[
Q2

]
Nη

.

Var
[
Q̃Nη

]
= Varξ [Q] +

Eξ [Q] − Eξ

[
Q2

]
Nη

.

(C.1)

Additionally, we can use the closed-form expression for the variance of the variance deconvolution estimator from
Theorem 3.4 to derive an expression for the variance deconvolution estimator’s MSE as a function of Nη. By adopting
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the same assumption that f = f 2, tedious computations lead us to the following expressions, which simply express all
statistics needed for Eq. (B.2) in terms of raw moments of the transmittance up to the fourth order.

Eξ

[
σ2
η

]
= Eξ [Q] − Eξ

[
Q2

]
Eξ

[(
σ2
η

)2
]
= Eξ

[
Q2

]
− 2Eξ

[
Q3

]
+ Eξ

[
Q4

]
Eξ

[
µη,3

]
= Eξ [Q] − 3Eξ

[
Q2

]
+ 2Eξ

[
Q3

]
Eξ

[
µη,4

]
= Eξ [Q] − 4Eξ

[
Q2

]
+ 6Eξ

[
Q3

]
− 3Eξ

[
Q4

]
Eξ

[
Qσ2

η

]
= Eξ

[
Q2(1 − Q)

]
= Eξ

[
Q2

]
− Eξ

[
Q3

]
Eξ

[
Q2σ2

η

]
= Eξ

[
Q3 (1 − Q)

]
= Eξ

[
Q3

]
− Eξ

[
Q4

]
Eξ

[
Qµη,3

]
= Eξ

[
Q2

]
− 3Eξ

[
Q3

]
+ 2Eξ

[
Q4

]
Varξ [Q] = Eξ

[
Q2

]
−

(
Eξ [Q]

)2
.

(C.2)
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