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ABSTRACT 

Enhanced Geothermal Systems (EGS) offer vast potential to expand the use of geothermal energy. 
Heat is extracted from engineered systems by injecting relatively cold water into subsurface 
fractures, which are in contact with hot dry rock, and brought back to surface through production 
wells. Creating an EGS requires improving the natural permeability of hot crystalline rocks. In this 
short conference paper, we present a reproducible workflow for modeling EGS. Our workflow, 
called the GeoThermalCloud (GTC) for EGS, leverages recent advances in machine learning, deep 
learning, and high-performance computing. This GTC framework is currently being made open-
source, user-friendly, and reproducible through Python scripts as well as Google Colab/Jupyter 
Notebooks. The GTC for EGS modeling scripts are made available at 
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS and will be updated to 
serve  the geothermal community. Current GTC framework provides scripts to train deep learning 
(DL) models for techno-economics and data worth analysis. The Geothermal Design Tool 
(https://github.com/GeoDesignTool/GeoDT.git), a fast and simplified multi-physics solver, is used 
to develop a database for training DL models. This paper provides details on the scripts to curate, 
process, and train DL models. The scripts can easily be modified to train on databases generated 
by other popular open-source simulators such as PFLOTRAN, STOMP, TOUGH, and GEOSX or 
commercial software such as ResFrac and COMSOL. 

1. Introduction 
Enhanced Geothermal Systems (EGS) are engineered geothermal systems, which offer potential 
for dramatically expanding the use of geothermal energy (Brown et al., 2012). In this engineered 
system, cold water is injected into hot dry rock and is allowed to flow through a fracture network. 
The resulting hot fluid is extracted from production wells to generate electricity. The U.S. 
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Department of Energy’s GeoVision (2019) estimates that more than 100GWe of economically 
viable power capacity could be extracted from the southwestern basin and range (GeoVison, 2019 
DOE-MYPP 2022, EarthShot Initiative, 2022). However, high upfront costs and long development 
timelines generally characterize geothermal resource development projects (Hamm et al., 2021). 
This can lead to lengthy investment payback periods relative to many other utility-scale power 
generation projects (e.g., wind, solar). Moreover, projects employing new EGS designs and 
stimulation technologies to harness this renewable resource and produce usable power can have 
higher risks (Becker et al., 2018). To overcome this challenge of reducing costs and improving 
economics for geothermal projects, we need to understand feasible and non-feasible EGS designs 
better. Specifically, a detailed techno-economic analysis is required to successfully expand and 
accelerate EGS deployment in the western U.S. (DOE-MYPP, 2022; Sec-2). A workflow that 
combines geothermal data, multi-physics process models, and economics to assess good and bad 
EGS design parameters will allow us to overcome such a challenge (Sec-2.4 and Sec-2.5 in DOE-
GTO MYPP, 2022). Recent deep learning (DL) advances have shown promise in developing such 
a workflow (Okoroafor et al., 2022). Here, we provide a scalable methodology (laptop to high-
performance computing resources) to curate and analyze EGS datasets. An initial development of 
this scalable methodology, GeoThermalCloud (GTC), is available at 
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS.   

2. GeoThermalCloud (GTC) for EGS workflow 
In this section, we describe the workflow scripts for GTC for EGS techno-economic analysis. First, 
GTC for resource exploration is performed to estimate geothermal energy potential. Then, GTC 
for EGS allows us to evaluate and rank the prospectivity of a site and perform techno-economics 
for resource development. Fig. 1 describes the entire GTC workflow for exploration and EGS 
development. The GTC for exploration can be found in previous publications (e.g., Mudunuru, 
M.K et al., 2022). The GTC techno-economic analysis for EGS is the novelty of this work. The 
Python scripts for the workflow development are available at 
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Python_
Scripts. Equivalent Jupyter Notebooks and Google Colab notebooks will be made available in 
future at this GTC GitHub location.  

2.1 Data processing and curation 

The GeoDT code (https://github.com/GeoDesignTool/GeoDT.git) is used to generate the training 
database (Frash, 2021; Frash, 2022; Frash et al., 2022). The data for DL modeling is available at 
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Data. In 
our study, a total of 4078 realizations are generated. The Python scripts get_inp_out.py and 
get_preprocessed_data.py are used to process the raw data and curate it with various pre-
processing methods such as StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler, 
PowerTransformer (Yeo-Johnson), QuantileTransformer (uniform output), and 
QuantileTransformer (Gaussian output). The Python script  get_train_val_test_splits.py allows us 
to split the curated data into 80% training, 10% validation, and 10% testing. When the DL model 
identifies a promising EGS design, it can then be investigated in greater detail. For example, we 
can use high-fidelity process models and simulation codes such as PFLOTRAN (Lichtner et al., 
2015) to explore promising EGS scenarios. This current study does not include the use of high-
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fidelity codes, but these Python scripts can be leveraged and modified to perform such DL analysis 
with minimal effort. 

 
Figure 1: This figure describes the GTC framework and its two components – exploration and EGS 

development. The exploration component analyzes and curates play fairway analysis datasets to find the 
resource potential within a region. The resource component builds on these potential maps and assesses 
the EGS prospectivity to find and rank the most promising sites for further analysis. 

2.2 Local and global sensitivity analysis 

The data worth analysis is performed using the get_ftest_mi_npv.py and 
get_ftest_mi_npv_others.py scripts. These Python scripts allow us to perform local and global data 
worth analysis. Sensitivity analysis is performed using two different approaches, F-test and mutual 
information (MI). F-test is a univariate linear regression tests returning F-statistic and p-values. It 
provides insights on the linear dependency of a given EGS design parameter with respect to 
economics (e.g., undiscounted cashflow), thereby allowing us to identify potentially predictive 
design parameters for DL model training for undiscounted cashflow. On the other hand, mutual 
information provides insights on non-linear dependency between EGS design parameters and 
undiscounted cashflow. The MI between an EGS design parameter and undiscounted cashflow is 
a non-negative value and is equal to zero if and only if two variables are independent, and higher 
values mean higher non-linear dependency. 

2.3 DL model training and hyperparameter tuning 

This curated data is given as input to deep neural networks, which are trained on multiple cores 
available on high-performance computing machines (HPC). This AI training at scale is performed 
in parallel, allowing us to train and tune various deep neural networks in minimal time. We 
combine Python and AI modules such as mpi4py, multiprocessing, parallel hdf5, and TensorFlow 
to achieve this training at scale. The performance of the trained DL models is compared using the 
validation loss, and a tuned model is then selected. This hyperparameter tuning is computationally 
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intensive and requires a lot of HPC resources. Python scripts such as get_dir_hp_dnn_*.py and 
get_dnn_results_*.py are available to achieve this. They provide specifics on how to run on 
MacOSX, Linuc, and HPC resources. In our case, we trained these models on a HPC resource at 
PNNL using 20,000 CPU cores. Fig. 2 shows a plot of one such DL model training and inference. 

 

Figure 2: This figure provides a preliminary DL model training loss and one-to-one plots for training, 
validation, and test datasets. More than 20,000 DL models are training on HPC resources to estimate the 
EGS economics. This trained deep neural network model has three hidden layers, with neurons = [1000, 
500, 250] in each of these layers. Leaky ReLU is used as an activation function with alpha value = 0.1. 
The dropout value, which allows for minimizing over-fitting during the training process, is assigned a 
value of 0.1. The total number of epochs for training is equal to 100. Batch size, which is the number of 
training samples that a DL model sees for each iteration in an epoch is equal to 64. The resulting DNN 
has approximately 750K trainable weights. 

3. Conclusions and next steps 
In this study, we developed and provided preliminary DL workflow scripts to estimate EGS 
economics from design parameters. The database for DL model training is developed using 
GeoDT, a multi-physics solver. Sensitivity analysis using F-test and mutual information is 
performed on this database to gain insights into the GeoDT parameters. The DL model training 
requires HPC resources as training and hyperparameter tuning is computational expensive. To 
overcome this challenge, we will also provide notebooks and pre-trained ML models in the GitHub 
for the geothermal community. Advanced hyperparameter tuning scripts using open-source 
softwares such as DeepHyper and Keras-Tuner will also be made available at 
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS.   
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