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ABSTRACT

This report discusses the replacement of water by carbon dioxide in both the quench stream
and the supercritical water oxidation (SCWO) reactor feed in order to reduce the energy utiliza-
tion in the process. FLUENT was used to generate the input requirements and ASPEN PLUS was
used to model the SCWO process. Simulations were made for normal MODAR operating condi-
tions (baseline case) and two other cases replacing water by carbon dioxide. The basis for and
assumptions used in the simulation are given.

Economic evaluations were made and costs were compared with the baseline case and a case
with 60% replacement of water by carbon dioxide. The equipment cost is almost the same. How-
ever, the case with replacement of water by carbon dioxide reduces the energy requirement in the
end process by a factor of three, which is a significant energy savings in the operation.

Also, the injection of carbon dioxide into the SCWO reactor feed is expected to reduce cor-
rosion and makes salt particles non-sticky. However, these advantages need to be confirmed by
experiment.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
c{nployees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,

; manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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ALTERNATE FLUID TO IMPROVE ENERGY
EFFICIENCY OF SUPERCRITICAL WATER OXIDATION
PROCESS

1. INTRODUCTION

Because supercritical water has unique characteristic which makes organics miscible in it,

water at supercritical conditions (Tc=3740C, Pc=218 atm) is used as a solvent for mixing, a heat
transfer media for preheating, a heat sink to control the fluid temperature, and a coolant to quench
the reactor effluents in the supercritical water oxidation process. The extensive use of water to
quench the effluent stream process results in very high energy requirements when separating this
stream at the end process unit because water has a high heat of vaporization. We propose to
replace as much of the water stream as possible by an alternate fluid which has heat transfer char-
acteristics similar to those of water but which can be more economically separated from the haz-
ardous or mixed wastes streams.

The MODAR process uses quench water flowrates that are 1.6 times the reactor effluent

flowrate to quench the effluent to less than 300°C before the first separator. This massive amount
of water used in the quench stream goes into the end process unit where the water must be pro-
cessed to separate wastes from the water. Preliminary ASPEN PLUS calculations indicate that
carbon dioxide, one of the alternate fluid candidates, can be used to replace most of the quench
water stream while adequately cooling the reactor effluents. It is recycled from the first separator,
and is easily separately as a gas from the ppm level impurities in the end process.

This replacement results in significant water reduction in the end process, which reduces the
energy duty by a factor of 3 in the end process unit and makes the supercritical water oxidation
(SCWO) technology more economically viable. In addition, the replacement of water in the reac-
tor feed by carbon dioxide would alleviate much of the sticky salt deposit problem because the
salts remain in a solid form in the carbon dioxide environment due to the lower solubility of salt in
carbon dioxide. In the water environment some salts remain sticky. Also, the higher viscosity of
carbon dioxide at the supercritical conditions would minimize the corrosion problem because of
the lower mass transfer rate of heteroatoms (e.g.,chlorine, sulphur, etc.) to the wall.




2. THE CURRENT SCWO PROCESS

There are three SCWO reactor configurations: tubular reactof, vertical vessel reactor, and
transpiring platelet reactor, a porous wall reactor concept. The flow mixing is strongly coupled

with the chemical kinetics and affects the destruction efﬁciency.l’2 Therefore the flow mixing is
very important and is dependant on the reactor geometry and the mixing device of the waste
stream and air stream. The brief generic descriptions of the reactor concepts are summarized
below.

2.1 Vertical Vessel Reactor

The vertical reactor concept consists of a co-axial nozzle for the feed stream, a brine pool in
the lower conical section to separate salts, a cylindrical space for the oxidation and an outlet pipe
in the upper section. The unique design characteristics of this configuration provide a brine pool
to separate salts at the bottom of the reactor and the reaction effluents are removed through the
pipe located in the upper section. Due to the flow exit at the upper section, the flow generates a
recirculation pattern downstream of the nozzle. The flow entrainment caused by this recircula-
tion provides a backmixing which preheats the incoming waste stream. Also, the nozzle design is
very important for the reactant mixing and salt precipitation behavior.

2.2 Transpiring Platelet Reactor

This configuration is very similar to a straight tubular reactor, but it has a porous liner along
the tube wall. Supercritical water and/or oxidants are injected radially into the axial waste flow to
protect the wall from thermal stress, corrosion, and salt deposition on the wall surface. The reac-
tor configuration consists of three sections: a preheating section, a reaction section, and a
cooldown section. In the preheating section, hot water is injected through the porous wall to pré-
heat the waste stream and to provide a boundary layer to protect the wall from corrosion expected

at 400°C, which is the mixing temperature in the preheating section. In the reaction section, hot
air and supercritical water (SCW) are flowed through the porous wall while cold water is injected
through the cooldown section porous wall to cool down the reaction effluent. In these regions, the
amount of water injected through the porous wall must be processed in the end unit, which is an
evaporator or ion exchange column.

2.3 Tubular Reactor

The simplest design of a SCWO reactor is a thin tubular pipe whose heated initial length

serves as a preacher to bring the high pressure feeds to temperatures above the critical point of

~water. The oxidation then begins in the section in the mid portion of the reactor, in which the reac-
tants are heated by the exothermic heat release to temperatures above the critical temperature and
the reaction rate increases. Because the flow is plug flow, there is no radial mixing to promote
flow mixing. As a result, this configuration requires a lengthy pipe. Since the reactor is long with
a small diameter, salt precipitation on the reactor wall is a plaguing problem, because it can cause
plug up the reactor.




2.4 MODAR Flow Process

Figure 1 shows a schematic of a typical MODAR pilot scale flow sheet. Air and water are
fed through a heat exchanger into the reactor via the outer nozzle and waste and water via the
inner nozzle. If the reaction generates acids, a neutralizing chemical such as NaCl is added to the
waste stream stoichiometrically. The oxidation reaction occurs downstream of the nozzle, gener-
ating reaction products such as carbon dioxide and water. Heteroatoms are converted into inor-
ganic compounds, usually acids, salts or oxides. Sulfur, if present in the feed stream, is converted
into sulfate, phosphorus to phosphate, and halogens to haloacids. The reaction products, carbon
dioxide and water, exit at the upper portion of the reactor and are filtered before they go to a heat
exchanger to cool down. After they flow through another cooler, they enter the first separator, a
medium pressure separator (1500 psia), where gases are removed at the top and liquids are fed
into the second separator, a low pressure separator (100 psia), where the gas and liquid are
removed at the top and bottom, respectively. If the liquid is still contaminated, it is recycled back
to the reactor. If this occurs, it will reduce the waste treatment capacity. In chemical plants, the
contaminated stream is treated in an ion-exchange column and/or evaporator. Precipitated salts
are dissolved in the brine pool and removed at the bottom of the reactor. Then, the brine is sepa-
rated at a third separator, a medium pressure separator (1450 psia). -

Regardless of reactor types used in the SCWO process, the flow process is very similar to
Figure 1 and requires a quenching system. In the vertical vessel reactor and tubular reactor, the
quench stream is mixed with the reactor effluent stream, while the transpiring platelet reactor uses
radial mixing in the reactor through the porous wall.
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Figure 1. Modar’s SCWO flow sheet




3. ENTHALPY CALCULATION AND PROPERTIES
3.1 Adiabatic Reaction Temperatures

We developed a method to calculate the adiabatic reaction temperature so it could be used
to estimate the reactor temperature as a function of flows and temperatures of the input streams;
this was determined to be very helpful in establishing sensitivities of reactor temperature to flow

parameters and fluid properties.>*>

The adiabatic reaction temperature is defined as the temperature that would be reached if the
fuel and oxidant streams mixed and reacted adiabatically. If the heat losses from the reactor are
low, as they are in this pilot scale reactor, the steady state (mixed) outlet temperatures predicted

by FLUENT’ will converge to a value very near the theoretical adiabatic reaction temperature.

FLUENT solves the energy equation in terms of conservation of the static enthalpy, A,
defined as:

where

where m; is the mass fraction, 7,,¢is a reference temperature (300 K in these calculations)
and ¢, ; is the specific heat at constant pressure of species i. This sensible enthalpy does not

include the enthalpy of formation of each species. For chemically reacting flows FLUENT calcu-
lates the instantaneous enthalpy, #*, as:

- 7 o Tref
¢ hF= i
h*= Y m, jcp’idT+M.+ J'cp’idT
; i
t _Tref Trefi
- T )
h,
= Zm c. AT+ =
=" J p i T g
l _Trefi !

where h(i) is the enthalpy of formation of species i obtained at reference temperature 7.,

(298.15 K in these calculations, see enthalpy of formation in 3.2.1), and M,; is the molecular

weight of species i. FLUENT calculates and lists the values of h* for each cell in the computa-
tional domain using the temperatures, compositions, and properties available to it.




We calculate the adiabatic reaction temperature by mixing the instantaneous enthalpies of
the core flow and the annular flow (fuel and oxidant, respectively) to obtain a mass averaged
instantaneous enthalpy which, in the FLUENT representation, includes the heat of reaction, i. .,

* ; * ;
h coremcore+ h annulus™

mixed = ; -
Meore T M

annulus

h*

annulus

where m is the mass flow rate of the core and annulus.

FLUENT calculates the enthalpy at the core and annulus inlets based upon the model input
conditions. Then, using complete oxidation compositions, a temperature is found by trial and
error which results in the same mixed enthalpy as calculated above. This is the adiabatic reaction
temperature. Using FLUENT to perform the enthalpy calculations we were able to ensure that
the properties used and the calculation method matched those in the actual FLUENT runs. Inher-
ent in this calculational method is the assumption of negligible heat transfer from the reaction
zone. This is a good assumption because the reactor is well insulated in the upper regions of the
reactor bounding the reaction zone. Also, since the lower region has very low flows, there is poor
heat transfer between the hot reaction zone and the cold brine region.

Table 1 shows the results of our calculations of hot stream inlet temperatures as a function of
both the core (inner nozzle) and annulus (outer nozzle) stream flowrates in order to achieve the

adiabatic fluid temperature at 600°C. This calculation was iterative assuming the inlet stream tem-

perature and achieving the adiabatic temperature at 600°C. An IPA flowrate of 165 Ib/hr was used
for all the calculations.

Table 1.  Adiabatic reaction temperature

Case Feed rate to nozzle Hot stream inlet
(Ib/hr) temperature (F)
Baseline 3155 H,0 1112
Case-A 2585 H,0 and 930
571 CO; (40% replacement)
Case-B - 2869 H,O and 1012
286 CO, (20% replacement)

3.2 Enthalpies of Formation

The formation enthalpies for all species entering into the chemical reactions, together with




the reference temperatures at which these are defined, are required in the FLUENT model. The
values used in these calculations were obtained from Reference 8 and are shown in Table 2.

Table 2.  Enthalpies of formation for SCWO species.

. Reference
Formation enthalpy temperature
(J/kmol) (K)

C3HgO -3.11E08 298.15
H,0 -2.85E08 298.15
CO, -3.94E08 298.15
0, 0 298.15
N, 0 298.15

In the above table the formation enthalpies of IPA and water were taken to be those of the
liquid state, while that of CO, was taken to be a gas, representing their initial states.

3.3 Thermodynamic and Transport Properties

The critical point of water is at 3206 psia (22.1 MPa) and 374°C. A SCWO reactor is typi-
cally run at a pressure somewhat higher than the critical pressure; the reactor simulated in this
report was operated at a constant pressure of 3500 psia (23.8 MPa).

The five chemical species considered in this application include IPA, water, carbon dioxide,
oxygen, and nitrogen. Properties needed for the calculations include the specie densities, specific
heats, viscosities, and thermal conductivities. These properties were obtained from the Aspen

code? as a function of temperature for the range of 300 K to 1500 K and a constant pressure of
3400 psia. The vessel reactor has a relatively low pressure drop so the approximation of constant
pressure properties will not introduce a significant error into the calculations. Water properties
were calculated using the NBS correlations in the Aspen code, while the properties of the other
fluids were calculated with the SR-Polar option.

Figure 2 through Figure 5 show the specific heat, density, viscosity, and thermal conductiv-
ity of all the species used in this study and also those of ethanol (ethanol was used in the bench
scale study in Reference 5 ).
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FLUENT computes the mixture density from the individual specie densities as:

_ 1
p = ———
’fj
i P i
where m; is the mass fraction and p; is the density of species i.

FLUENT computes the mixture heat capacity, viscosity, and thermal conductivity (shown
for heat capacity) as:

¢ = >m; Cp,i
1

where c,, ; (or W; or k;) are the specie properties.

Figure 6 shows a comparison between the approximations of specific heat of water used in
this study and the values predicted using the ASPEN NBS steam tables in Reference 9 . Figure
A.37 in Reference 10 shows that the NBS steam tables are very accurate in the vicinity of the crit-
ical point .
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Figure 8. Comparison of water specific heat calculated from NBS steam tables with the approximation
used in FLUENT model at 3500 psia and near the critical temperature of 652 K.




4. FLOW SHEET SIMULATION

The SCWO process was simulated using ASPEN PLUS for the baseline and cases replacing
CO, in the quench stream and a feed stream. The baseline case was based on the MODAR flow

sheet with water used in the quench stream. The energy consumption in the baseline is compared
with that for CO, replacement in the quench stream and a partial replacement in the feed stream.

The mass flow used in this simulation was obtained from MODAR and was scaled up by a
factor of 10 because we wanted to evaluate a larger scale than the MODAR’s pilot scale.

The basis for and assumptions used in the simulations presented in Section 4 are given
below. As additional data are obtained for different equipment or should assumptions regarding

operation of the flow sheet be modified, the simulations can easily be rerun.

4.1 Basis for Feeds

4.1.1 Air

2037 Ib/hr (467.2 ACFM, 434.4 SCFM), 21 vol% O,/ 79% N, or 23.2 wt% O,/76.8%N,.

4.1.2 Water

70°F from storage tank, 14.7 psia.
Supercritical water - 155 Ib/hr (Baseline)
- 2585 Ib/hr (Case-A)
- 2869 Ib/hr (Case-B)

Quench water (Baseline) - 5950 Ib/hr to set the reaction effluent temperature at less than
540°F.

Water to brine pool - 265 Ib/hr.

4.1.3 Simulated Waste

Isopropyl Alcohol -.165 Ib/hr, 70°F, 14.7 psia.

4.1.4 Simulated Impurities

Sodium Chloride - 0.1 Ib/hr, 7OOF, 14.7 psia

11




4.1.5 Pressure profile

The outlet pressure of all high pressure pumps and the air compressor was assumed to be
3600 psia, the outlet of the SCWO reactor 3500 psia, the first stage separator 1500 psia, the sec-
ond stage separator 100 psia, and the evaporator 14.7 psia. :

4.1.6 Air Compressor

The air compressor was simulated as 4-stage compressor with intercoolers on the first three
stages only, cooling air to a temperature of 100°E.

4.1.7 Temperatures

Baseline: Inner nozzle - 100°F
Outer nozzle - 1112°F

Case-A: Inner nozzle - 122°F
Outer nozzle - 930°F

Case-B: Inner nozzle - 123°F
Outer nozzle - 1012°F

Reactor outlet: 1112°F (6OOOC)

Evaporator: 2120F

Quench stream: < 540°F

4.1.8 Equation of State Used

The ASME steam table, STEAM-TA, was used for all water streams. The Peng-Robinson
cubic equation of state was used for the SCWO reactor and NRTL-RK, also known as the Renon
model, for the liquid phase, the Redlich-Kwong equation of state for the gas phase, and Henry’s
law for supercritical components. The NRTK-RK was used in all the separators where the pres-
sure is much less than that for the reactor.

4.2 Baseline Simulation

The MODAR pilot scale flow sheet is shown in Reference 7 . Stream 1 is air at 70 F and

ambient temperature., Air then is compressed at 3598 psia and 475%F and is combined with water
from stream 2. These streams are preheated at B13 and enter the SCWO reactor through the outer
- nozzle. Stream 3 is isopropyl alcohol (IPA) and is combined with water from stream 2. They enter
the SCWO reactor through the inner nozzle. The SCWO reactor is operated at 3500 psia and

1112°F. B23 is a splitter where the reaction effluents are removed and fed to B32, the brine is
mixed with cold water injection from stream 4 and is fed to SEP3, the medium pressure separator
via a cooler, B27.

The reaction effluents, CO, and water, are quenched with cold water from stream 5 at B32.

12




MODAR wants to maintain the mixed temperature at less than 572°F (300°C). The quenched
stream then is fed through a heat exchanger to reduce the temperature to 100°F before it enters
SEP1, the first separator. The first separator is a high pressure separator (1500 psia) to separate the
gas and liquid at that condition. Approximately 80% of the CO, is removed from this separator
via the top, which goes to the atmosphere. Most of the water and remaining CO, goes to the sec-
ond separator, the medium pressure separator, where the remaining CO, is removed from the top,
and water and residues are separated from the bottom. If the liquid stream contains impurities,
e.g., NaCl for this simulation, the impurities are separated at the evaporator. In the MODAR pro-
cess, the impurities are recycled back to the SCWO feed stream. However, in this study an evapo-
rator was added to remove the impurities and determine the energy consumption.

4.3 CASE-A Simulation

Case-A is a 60% replacement of water by carbon dioxide in the feed stream, and one of the
reaction products, carbon dioxide, is recycled to quench the reaction effluent stream.

Since the feed composition to the SCWO reactor is different than in the baseline case, the

inlet enthalpy is changed. In order to maintain the reactor temperature at less than 600°C, the inlet
stream temperature needs to be calculated. This enthalpy calculation was performed using the
enthalpy equation as described in Section 3.

As shown in Figure 8 in Section 5, carbon dioxide, a reaction product, is separated at the first

separator, SEP1, and is recycled to quench the hot reaction effluents to 521%F. Before the carbon
dioxide is fed to the first separator, the air and carbon dioxide are separated in block B2. The sep-
aration unit, B2, could be a membrane separator. Parametric studies on removing carbon dioxide
from the air and combustion gases indicate that membrane separation is feasible existing plant
technology.

4.4 CASE-B Simulation

The Case-B simulation is very similar to that of the Case-A simulation. The only difference
is that Case-B condenses a 20% replacement of water by carbon dioxide in the feed stream vs.
40% for Case-A. The Case-B simulation was performed prior to Case-A. However, it is presented
in the later section. The concept of using carbon dioxide in the quench stream is the same as the
Case-A.

13




5. SIMULATION RESULTS

Results for three cases are shown in the following flow sheets, together with tables for each
case. The flow sheets show the unit operations with flow rates, temperatures, pressures, heat/
cooler duties and pump horsepower. Stream component and fow rates are given on material bal-
ance tables following each flow sheet. The cases shown include the baseline case (no CO,), Case-

A (40% CO, in the core feed), and Case-B (20% CO, in the core feed).
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Figure 7. SCWO Flow Sheet for Baseline Case.
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Figure 9.

SCWO Flow Sheet for Case-B.
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6. ECONOMIC EVALUATION

An economic evaluation was performed between the Baseline and Case-A. Tables 3 and 4
show the comparison, in terms of the unit equipment cost.

Table 3. Equipment cost for the baseline.

Units Low Value High Value
Air compressor (S00SCFM) $30,000 $50,000
SCW pump (8 gpm) $70,000 -$100,000
Organic pump (0.5 gpm) $35,000 $50,000
Quench pump (1.59 cfm) $20,000 $30,000
Heater for air/water (1000 kW) $30,000 $50,000
Reactor vessel with two liners $200,000 $300,000
Brine pump (4.25 ft3/hr) $50,000 $70,000
Brine Heater
Quench piping $3,500 $5,000
Feed Heater/Effuent cooler $2,000 $4,000
Cooldown exchanger $1,000 $1,000
Letdown valve 1 (2500 psia) $5,000 $6,000
1st separator (2’OD x 3") $150,000 $200,000
Letdown valve 2 (1500 psia) $2,000 $3,000
2nd separator (1.5°0D x 2°) ' $80,000 $100,000
Offgas collection $2,000 $3,000
Offgas filters $2,000 $3,000
Evaporator (9.87e6 Btu/hr) $20,000 $200,000
Brine cooldown $2,000 $3,000
Brine letdown valve $40,000 $50,000
Brine separator $40,000 $50,000
Total $746,500 $1,231,000




- Table 4. Equipment cost for Case-A

Units Low value High value
Air compressor (500 SCFM) $30,000 $50,000
SCW pump (1cfm) $70,000 $100,000
Organic pump (0.5 gpm) $35,000 $50,000
CO, pump (6¢fm) $20,000 $30,000
Heater for water/air (189 kW) $20,000 $30,000
Reactor vessel with two liners $200,000 $300,000
Brine pump (4.25 ft>/hr) $50,000 $70.000
Brine Heater
Quench piping $3,500 7 $5,000
Feed exchanger/effiuent cooler $2,000 $4,000
Cooldown exchanger $5,000 $7.000
Letdown valve 1 (2500 psia) ' $5,000 $6,000
CO, separator (1st separator) $150,000 $200,000
Letdown valve 2 (1500 psia) $2,000 $3,000
2nd separator $80,000 $100,000
Letdown valve 3 (100 psia) - $500.00 $1,000
3rd separator $1,000 $2,000
CO, condenser (286e3 Btu/hr) $5,000 $10,000
0, offgas collection $2.000 $3,000
Offgas filters $2,000 $3,000
Evaporator (3.06e6 Btu/hr) $20,000 $200,000
: Brine cooldown $2,000 $3,000
Brine letdown valve $2,000 - $3,000
Total $757,000 $1,250,000




The equipment for Case-A is only slightly higher than for the baseline unit. Since the Case-
A replaces the water used in the quench stream, it saves a significant amount of energy in the end

process unit. The flow sheet simulation indicates that the heat duty of the evaporator for the Case-
A is 3.06e6 Btu/hr vs. 9.87e6 Btu/hr for the baseline. '

This is a difference of about 2000 kW for the pilot scale unit. This is a significant energy
savings resulting from the replacement of water by CO, for the quenching process.




7. CONCLUSIONS

Supercritical water oxidation (SCWO) shows promise as an economical, environmentally-
sound technology for effective decontamination of DOE, diverse industrial, military, and munici-
pal wastes. Several process designs are under development to commercialize the technology, and
at least one commercial facility of Eco Waste Technologies, Inc. is presently destroying long-
chain alcohols, glycols, and amines in aqueous wastes from chemical plants in Austin, Texas.

SCWO technology can qualify as a totally enclosed treatment facility. That is, the treated
effluent can be held in reserve and analyzed prior to release to the environment. If the effluent
does not meet the specifications of the relevant regulations it can be recycled to the reactor and
treated again. This feature guarantees that no uncontrolled emissions of environmentally damag-
ing compounds will occur during SCWO treatment. Note that this feature stands in contrast with
incineration where the effluent is emitted continuously.

A mixed waste treatment system will have effluent requirements determined primarily by
environmental regulations and policies. The capability of a process to be known as a “closed sys-
tem”, having a very low release to the environment, no liquid waste and a minimal volume of
solid waste will be an important factor in selecting treatment technologies and use in mixed waste
treatment. The concept of zero discharge, controllable emissions and acceptance by the public is
also very important along with costs and schedule of a mixed waste treatment system that ulti-
mately is built and operated.

In order to make the SCWO technology more viable compared to other technologies, this
study focused on energy efficiency to use CO, as a replacement of water in the quench stream and

also in a feed stream. CO, is one of the reaction products and is recycled in the SCWO process. In

this study, NaCl was simulated as an impurity in the end unit process, that is an evaporator. The
result indicates that case -1, replacement of water by CO,, reduces the energy duty of evaporator

by 6.81e6 Btu/hr based on 5330 Ib/hr reaction effluent rate from the reactor.

In addition, the replacement of water in the reactor feed by carbon dioxide would alleviate
much of the sticky salt deposit problem because the salts remain in a solid form in the carbon
dioxide environment as compared to the water environment due to the lower solubility of salt in
carbon dioxide. Also, the higher viscosity of carbon dioxide at the supercritical conditions would
minimize the corrosion problem because of the lower mass transfer rate of hetroatoms (e.g.,chlo-
rine, sulphur, etc.) to the wall. If we can prove this phenomena by experiments, it will make
SCWO even more advantageous compared to other processes. Due to funding limitations, these
comparison could not be included in this study. Because of the many advantages offered by the
SCWO relative to other technologies, its development should be continued because research is
needed to bridge the gap between the pilot scale and commercialization scale in effectively treat-
ing all wastes including the DOE mixed wastes.

Acknowledgment: The equipment cost shown in Tables 3 and 4 was provided by Karen Gar-
cia. I appreciate her effort for that.
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