

Idaho
National
Engineering
Laboratory

INEL-96/0113

March 1996

Alternate Fluid To Improve Energy Efficiency of Supercritical Water Oxidation Process

RECEIVED

MAY 22 1996

OSTI

Chang H. Oh

 Lockheed
Idaho Technologies Company

MASTER

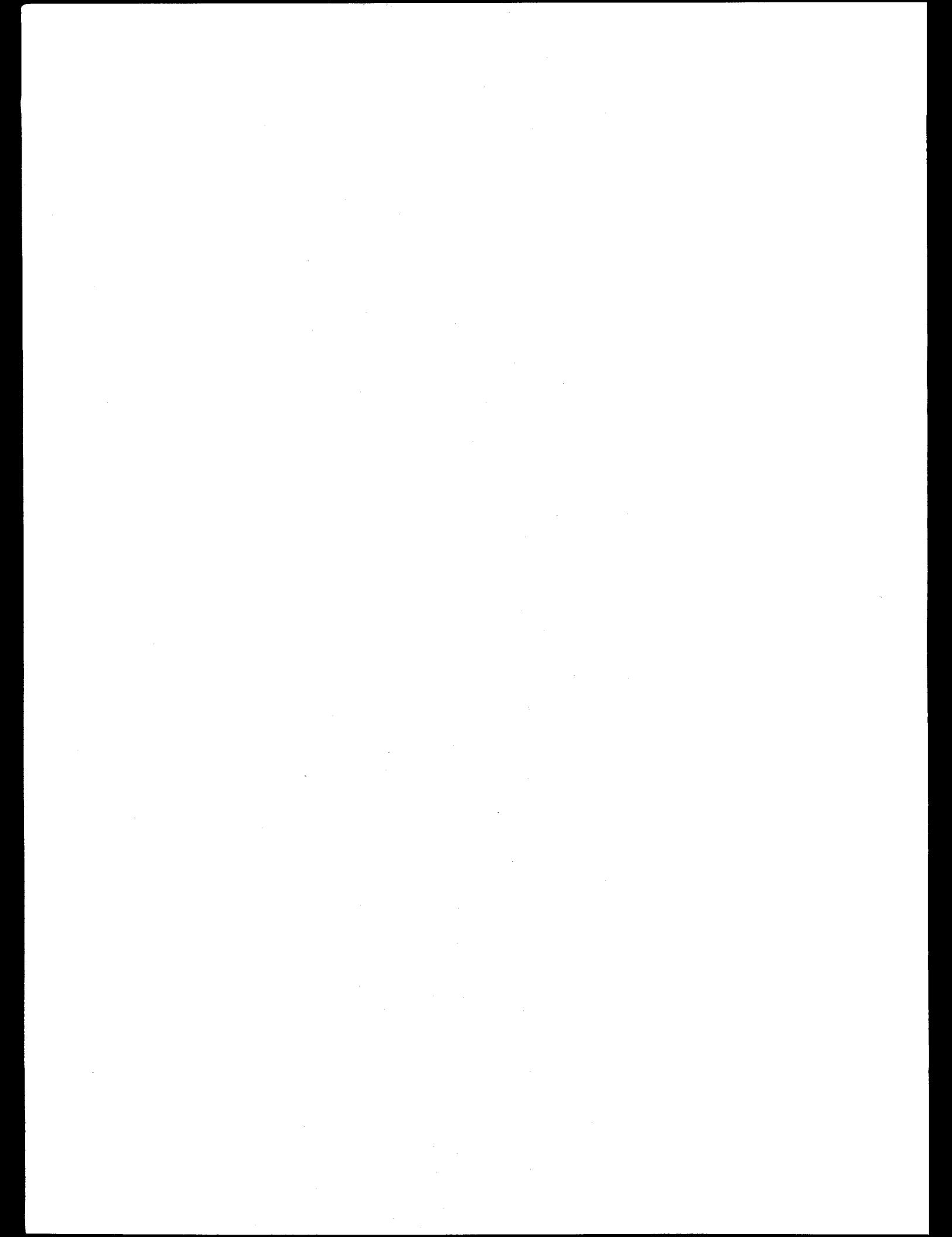
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED *th*

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

INEL-96/0113

INEL-96/0113


ALTERNATE FLUID TO IMPROVE ENERGY EFFICIENCY OF SUPERCRITICAL WATER OXIDATION PROCESS

Chang H. Oh

Published March 1996

**Idaho National Engineering Laboratory
Lockheed Idaho Technologies Company
Idaho Falls, Idaho 83415**

**Prepared for the
U.S. Department of Energy
Assistant Secretary for Environmental Management
Under DOE Idaho Operations Office
Contract No. DE-AC07-94ID13223**

ABSTRACT

This report discusses the replacement of water by carbon dioxide in both the quench stream and the supercritical water oxidation (SCWO) reactor feed in order to reduce the energy utilization in the process. FLUENT was used to generate the input requirements and ASPEN PLUS was used to model the SCWO process. Simulations were made for normal MODAR operating conditions (baseline case) and two other cases replacing water by carbon dioxide. The basis for and assumptions used in the simulation are given.

Economic evaluations were made and costs were compared with the baseline case and a case with 60% replacement of water by carbon dioxide. The equipment cost is almost the same. However, the case with replacement of water by carbon dioxide reduces the energy requirement in the end process by a factor of three, which is a significant energy savings in the operation.

Also, the injection of carbon dioxide into the SCWO reactor feed is expected to reduce corrosion and makes salt particles non-sticky. However, these advantages need to be confirmed by experiment.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTENTS

ABSTRACT	iii
1. INTRODUCTION	1
2. THE CURRENT SCWO PROCESS	2
2.1 Vertical Vessel Reactor	2
2.2 Transpiring Platelet Reactor	2
2.3 Tubular Reactor	2
2.4 MODAR Flow Process	3
3. ENTHALPY CALCULATION AND PROPERTIES	5
3.1 Adiabatic Reaction Temperatures	5
3.2 Enthalpies of Formation	6
3.3 Thermodynamic and Transport Properties	7
4. FLOW SHEET SIMULATION	11
4.1 Basis for Feeds	11
4.1.1 Air	11
4.1.2 Water	11
4.1.3 Simulated Waste	11
4.1.4 Simulated Impurities	11
4.1.5 Pressure profile	12
4.1.6 Air Compressor	12
4.1.7 Temperatures	12
4.1.8 Equation of State Used	12
4.2 Baseline Simulation	12
4.3 CASE-A Simulation	13
4.4 CASE-B Simulation	13
5. SIMULATION RESULTS	14
6. ECONOMIC EVALUATION	28

7. CONCLUSIONS	31
8. REFERENCES	32

FIGURES

1. Modar's SCWO flow sheet	4
2. Specific heats of SCWO fluids.....	8
3. Densities of SCWO fluids.	8
4. Viscosities of SCWO fluids.	9
5. Thermal conductivities of SCWO fluids.	9
6. Comparison of water specific heat calculated from NBS steam tables with the approximation used in FLUENT model at 3500 psia and near the critical temperature of 652 K.	10
7. SCWO Flow Sheet for Baseline Case.	14
8. SCWO Flow Sheet for Case-A.....	18
9. SCWO Flow Sheet for Case-B.....	23

ALTERNATE FLUID TO IMPROVE ENERGY EFFICIENCY OF SUPERCRITICAL WATER OXIDATION PROCESS

1. INTRODUCTION

Because supercritical water has unique characteristic which makes organics miscible in it, water at supercritical conditions ($T_c=374^0\text{C}$, $P_c=218$ atm) is used as a solvent for mixing, a heat transfer media for preheating, a heat sink to control the fluid temperature, and a coolant to quench the reactor effluents in the supercritical water oxidation process. The extensive use of water to quench the effluent stream process results in very high energy requirements when separating this stream at the end process unit because water has a high heat of vaporization. We propose to replace as much of the water stream as possible by an alternate fluid which has heat transfer characteristics similar to those of water but which can be more economically separated from the hazardous or mixed wastes streams.

The MODAR process uses quench water flowrates that are 1.6 times the reactor effluent flowrate to quench the effluent to less than 300^0C before the first separator. This massive amount of water used in the quench stream goes into the end process unit where the water must be processed to separate wastes from the water. Preliminary ASPEN PLUS calculations indicate that carbon dioxide, one of the alternate fluid candidates, can be used to replace most of the quench water stream while adequately cooling the reactor effluents. It is recycled from the first separator, and is easily separated as a gas from the ppm level impurities in the end process.

This replacement results in significant water reduction in the end process, which reduces the energy duty by a factor of 3 in the end process unit and makes the supercritical water oxidation (SCWO) technology more economically viable. In addition, the replacement of water in the reactor feed by carbon dioxide would alleviate much of the sticky salt deposit problem because the salts remain in a solid form in the carbon dioxide environment due to the lower solubility of salt in carbon dioxide. In the water environment some salts remain sticky. Also, the higher viscosity of carbon dioxide at the supercritical conditions would minimize the corrosion problem because of the lower mass transfer rate of heteroatoms (e.g.,chlorine, sulphur, etc.) to the wall.

2. THE CURRENT SCWO PROCESS

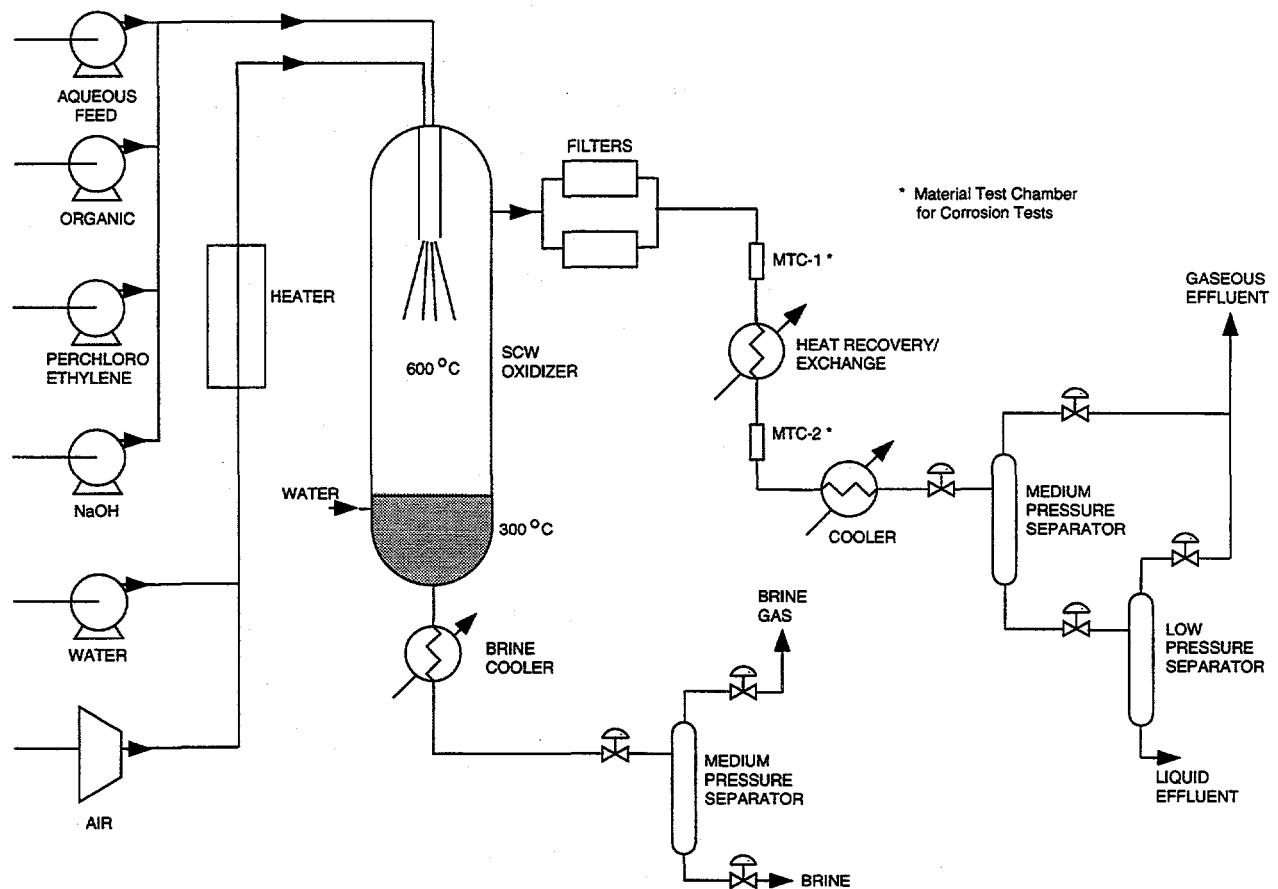
There are three SCWO reactor configurations: tubular reactor, vertical vessel reactor, and transpiring platelet reactor, a porous wall reactor concept. The flow mixing is strongly coupled with the chemical kinetics and affects the destruction efficiency.^{1,2} Therefore the flow mixing is very important and is dependant on the reactor geometry and the mixing device of the waste stream and air stream. The brief generic descriptions of the reactor concepts are summarized below.

2.1 Vertical Vessel Reactor

The vertical reactor concept consists of a co-axial nozzle for the feed stream, a brine pool in the lower conical section to separate salts, a cylindrical space for the oxidation and an outlet pipe in the upper section. The unique design characteristics of this configuration provide a brine pool to separate salts at the bottom of the reactor and the reaction effluents are removed through the pipe located in the upper section. Due to the flow exit at the upper section, the flow generates a recirculation pattern downstream of the nozzle. The flow entrainment caused by this recirculation provides a backmixing which preheats the incoming waste stream. Also, the nozzle design is very important for the reactant mixing and salt precipitation behavior.

2.2 Transpiring Platelet Reactor

This configuration is very similar to a straight tubular reactor, but it has a porous liner along the tube wall. Supercritical water and/or oxidants are injected radially into the axial waste flow to protect the wall from thermal stress, corrosion, and salt deposition on the wall surface. The reactor configuration consists of three sections: a preheating section, a reaction section, and a cooldown section. In the preheating section, hot water is injected through the porous wall to preheat the waste stream and to provide a boundary layer to protect the wall from corrosion expected at 400°C, which is the mixing temperature in the preheating section. In the reaction section, hot air and supercritical water (SCW) are flowed through the porous wall while cold water is injected through the cooldown section porous wall to cool down the reaction effluent. In these regions, the amount of water injected through the porous wall must be processed in the end unit, which is an evaporator or ion exchange column.


2.3 Tubular Reactor

The simplest design of a SCWO reactor is a thin tubular pipe whose heated initial length serves as a preheater to bring the high pressure feeds to temperatures above the critical point of water. The oxidation then begins in the section in the mid portion of the reactor, in which the reactants are heated by the exothermic heat release to temperatures above the critical temperature and the reaction rate increases. Because the flow is plug flow, there is no radial mixing to promote flow mixing. As a result, this configuration requires a lengthy pipe. Since the reactor is long with a small diameter, salt precipitation on the reactor wall is a plaguing problem, because it can cause plug up the reactor.

2.4 MODAR Flow Process

Figure 1 shows a schematic of a typical MODAR pilot scale flow sheet. Air and water are fed through a heat exchanger into the reactor via the outer nozzle and waste and water via the inner nozzle. If the reaction generates acids, a neutralizing chemical such as NaCl is added to the waste stream stoichiometrically. The oxidation reaction occurs downstream of the nozzle, generating reaction products such as carbon dioxide and water. Heteroatoms are converted into inorganic compounds, usually acids, salts or oxides. Sulfur, if present in the feed stream, is converted into sulfate, phosphorus to phosphate, and halogens to haloacids. The reaction products, carbon dioxide and water, exit at the upper portion of the reactor and are filtered before they go to a heat exchanger to cool down. After they flow through another cooler, they enter the first separator, a medium pressure separator (1500 psia), where gases are removed at the top and liquids are fed into the second separator, a low pressure separator (100 psia), where the gas and liquid are removed at the top and bottom, respectively. If the liquid is still contaminated, it is recycled back to the reactor. If this occurs, it will reduce the waste treatment capacity. In chemical plants, the contaminated stream is treated in an ion-exchange column and/or evaporator. Precipitated salts are dissolved in the brine pool and removed at the bottom of the reactor. Then, the brine is separated at a third separator, a medium pressure separator (1450 psia).

Regardless of reactor types used in the SCWO process, the flow process is very similar to Figure 1 and requires a quenching system. In the vertical vessel reactor and tubular reactor, the quench stream is mixed with the reactor effluent stream, while the transpiring platelet reactor uses radial mixing in the reactor through the porous wall.

Figure 1. Modar's SCWO flow sheet

3. ENTHALPY CALCULATION AND PROPERTIES

3.1 Adiabatic Reaction Temperatures

We developed a method to calculate the adiabatic reaction temperature so it could be used to estimate the reactor temperature as a function of flows and temperatures of the input streams; this was determined to be very helpful in establishing sensitivities of reactor temperature to flow parameters and fluid properties.^{3,4,5,6}

The adiabatic reaction temperature is defined as the temperature that would be reached if the fuel and oxidant streams mixed and reacted adiabatically. If the heat losses from the reactor are low, as they are in this pilot scale reactor, the steady state (mixed) outlet temperatures predicted by FLUENT⁷ will converge to a value very near the theoretical adiabatic reaction temperature.

FLUENT solves the energy equation in terms of conservation of the static enthalpy, h , defined as:

$$h = \sum_i m_i h_i$$

where

$$h_i = \int_{T_{ref}}^T c_{p,i} dT$$

where m_i is the mass fraction, T_{ref} is a reference temperature (300 K in these calculations) and $c_{p,i}$ is the specific heat at constant pressure of species i . This sensible enthalpy does not include the enthalpy of formation of each species. For chemically reacting flows FLUENT calculates the instantaneous enthalpy, h^* , as:

$$\begin{aligned} h^* &= \sum_i m_i \left[\int_{T_{ref}}^T c_{p,i} dT + \frac{h_i^o}{M_i} + \int_{T_{ref,i}}^{T_{ref}} c_{p,i} dT \right] \\ &= \sum_i m_i \left[\int_{T_{ref,i}}^T c_{p,i} dT + \frac{h_i^o}{M_i} \right] \end{aligned}$$

where h_i^o is the enthalpy of formation of species i obtained at reference temperature $T_{ref,i}$ (298.15 K in these calculations, see enthalpy of formation in 3.2.1), and M_i is the molecular weight of species i . FLUENT calculates and lists the values of h^* for each cell in the computational domain using the temperatures, compositions, and properties available to it.

We calculate the adiabatic reaction temperature by mixing the instantaneous enthalpies of the core flow and the annular flow (fuel and oxidant, respectively) to obtain a mass averaged instantaneous enthalpy which, in the FLUENT representation, includes the heat of reaction, i. e.,

$$h^*_{mixed} = \frac{h^*_{core}\dot{m}_{core} + h^*_{annulus}\dot{m}_{annulus}}{\dot{m}_{core} + \dot{m}_{annulus}}$$

where \dot{m} is the mass flow rate of the *core* and *annulus*.

FLUENT calculates the enthalpy at the core and annulus inlets based upon the model input conditions. Then, using complete oxidation compositions, a temperature is found by trial and error which results in the same mixed enthalpy as calculated above. This is the adiabatic reaction temperature. Using FLUENT to perform the enthalpy calculations we were able to ensure that the properties used and the calculation method matched those in the actual FLUENT runs. Inherent in this calculational method is the assumption of negligible heat transfer from the reaction zone. This is a good assumption because the reactor is well insulated in the upper regions of the reactor bounding the reaction zone. Also, since the lower region has very low flows, there is poor heat transfer between the hot reaction zone and the cold brine region.

Table 1 shows the results of our calculations of hot stream inlet temperatures as a function of both the core (inner nozzle) and annulus (outer nozzle) stream flowrates in order to achieve the adiabatic fluid temperature at 600°C. This calculation was iterative assuming the inlet stream temperature and achieving the adiabatic temperature at 600°C. An IPA flowrate of 165 lb/hr was used for all the calculations.

Table 1. Adiabatic reaction temperature

Case	Feed rate to nozzle (lb/hr)	Hot stream inlet temperature (F)
Baseline	3155 H ₂ O	1112
Case-A	2585 H ₂ O and 571 CO ₂ (40% replacement)	930
Case-B	2869 H ₂ O and 286 CO ₂ (20% replacement)	1012

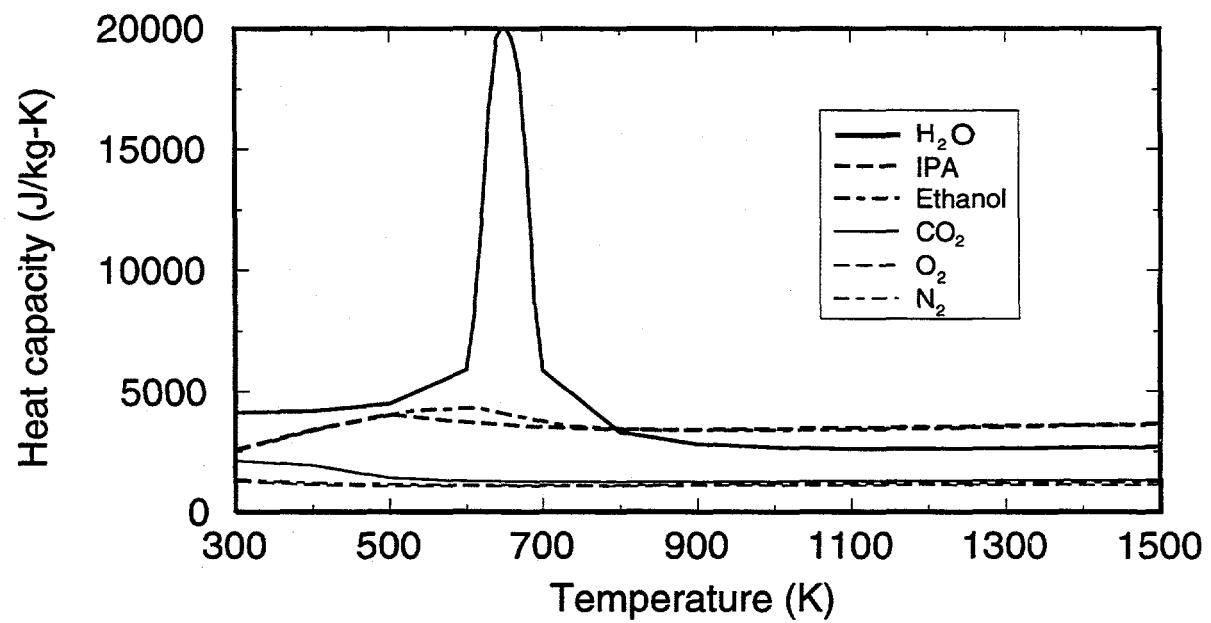
3.2 Enthalpies of Formation

The formation enthalpies for all species entering into the chemical reactions, together with

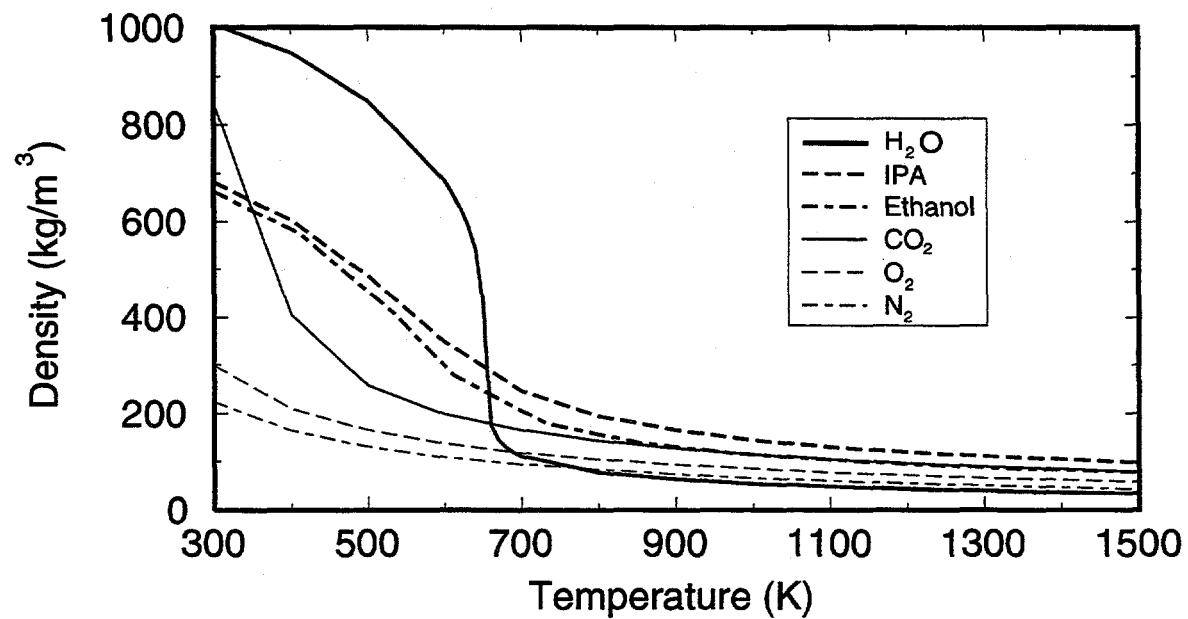
the reference temperatures at which these are defined, are required in the FLUENT model. The values used in these calculations were obtained from Reference 8 and are shown in Table 2.

Table 2. Enthalpies of formation for SCWO species.

	Formation enthalpy (J/kmol)	Reference temperature (K)
C ₃ H ₈ O	-3.11E08	298.15
H ₂ O	-2.85E08	298.15
CO ₂	-3.94E08	298.15
O ₂	0	298.15
N ₂	0	298.15


In the above table the formation enthalpies of IPA and water were taken to be those of the liquid state, while that of CO₂ was taken to be a gas, representing their initial states.

3.3 Thermodynamic and Transport Properties


The critical point of water is at 3206 psia (22.1 MPa) and 374°C. A SCWO reactor is typically run at a pressure somewhat higher than the critical pressure; the reactor simulated in this report was operated at a constant pressure of 3500 psia (23.8 MPa).

The five chemical species considered in this application include IPA, water, carbon dioxide, oxygen, and nitrogen. Properties needed for the calculations include the species densities, specific heats, viscosities, and thermal conductivities. These properties were obtained from the Aspen code⁹ as a function of temperature for the range of 300 K to 1500 K and a constant pressure of 3400 psia. The vessel reactor has a relatively low pressure drop so the approximation of constant pressure properties will not introduce a significant error into the calculations. Water properties were calculated using the NBS correlations in the Aspen code, while the properties of the other fluids were calculated with the SR-Polar option.

Figure 2 through Figure 5 show the specific heat, density, viscosity, and thermal conductivity of all the species used in this study and also those of ethanol (ethanol was used in the bench scale study in Reference 5).

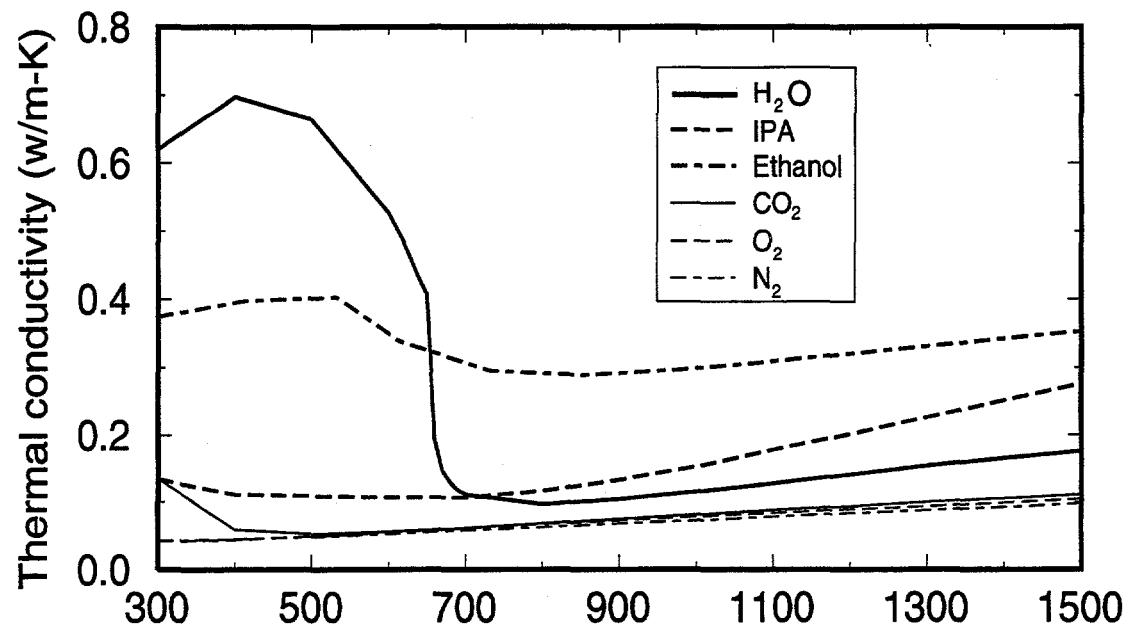

Figure 2. Specific heats of SCWO fluids.

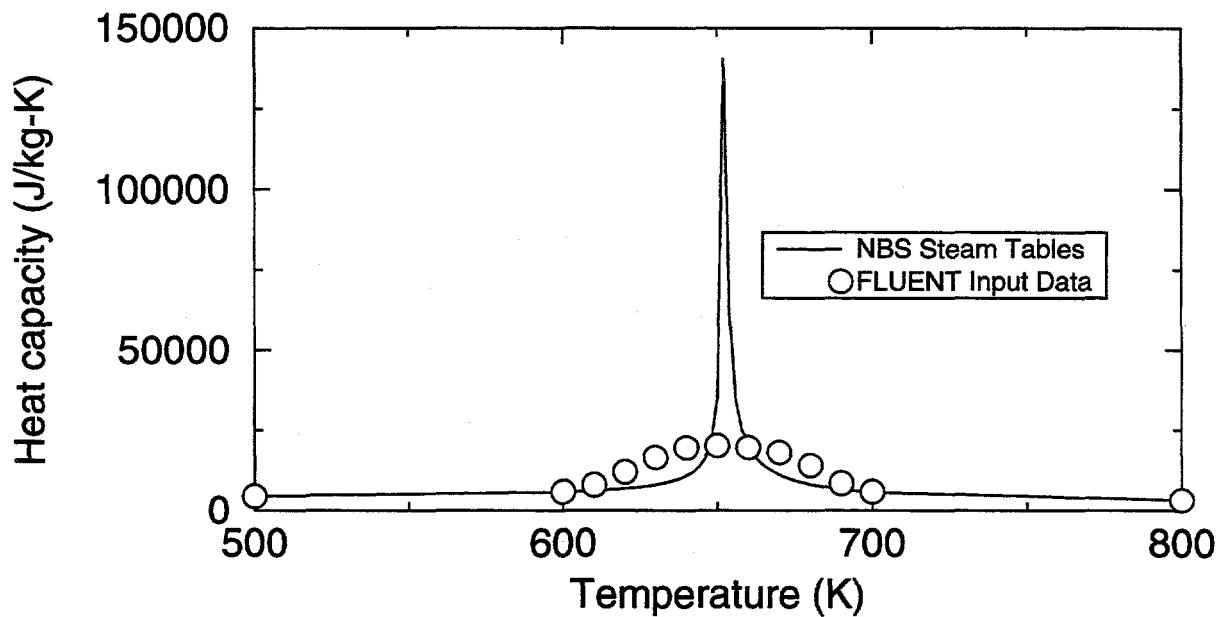
Figure 3. Densities of SCWO fluids.

Figure 4. Viscosities of SCWO fluids.

Figure 5. Thermal conductivities of SCWO fluids.

FLUENT computes the mixture density from the individual specie densities as:

$$\rho = \frac{1}{\sum_i \frac{m_i}{\rho_i}}$$


where m_i is the mass fraction and ρ_i is the density of species i .

FLUENT computes the mixture heat capacity, viscosity, and thermal conductivity (shown for heat capacity) as:

$$c_p = \sum_i m_i c_{p,i}$$

where $c_{p,i}$ (or μ_i or k_i) are the specie properties.

Figure 6 shows a comparison between the approximations of specific heat of water used in this study and the values predicted using the ASPEN NBS steam tables in Reference 9. Figure A.37 in Reference 10 shows that the NBS steam tables are very accurate in the vicinity of the critical point.

Figure 6. Comparison of water specific heat calculated from NBS steam tables with the approximation used in FLUENT model at 3500 psia and near the critical temperature of 652 K.

4. FLOW SHEET SIMULATION

The SCWO process was simulated using ASPEN PLUS for the baseline and cases replacing CO₂ in the quench stream and a feed stream. The baseline case was based on the MODAR flow sheet with water used in the quench stream. The energy consumption in the baseline is compared with that for CO₂ replacement in the quench stream and a partial replacement in the feed stream.

The mass flow used in this simulation was obtained from MODAR and was scaled up by a factor of 10 because we wanted to evaluate a larger scale than the MODAR's pilot scale.

The basis for and assumptions used in the simulations presented in Section 4 are given below. As additional data are obtained for different equipment or should assumptions regarding operation of the flow sheet be modified, the simulations can easily be rerun.

4.1 Basis for Feeds

4.1.1 Air

2037 lb/hr (467.2 ACFM, 434.4 SCFM), 21 vol% O₂ / 79% N₂ or 23.2 wt% O₂/76.8%N₂.

4.1.2 Water

70⁰F from storage tank, 14.7 psia.

Supercritical water - 155 lb/hr (Baseline)
- 2585 lb/hr (Case-A)
- 2869 lb/hr (Case-B)

Quench water (Baseline) - 5950 lb/hr to set the reaction effluent temperature at less than 540⁰F.

Water to brine pool - 265 lb/hr.

4.1.3 Simulated Waste

Isopropyl Alcohol - 165 lb/hr, 70⁰F, 14.7 psia.

4.1.4 Simulated Impurities

Sodium Chloride - 0.1 lb/hr, 70⁰F, 14.7 psia

4.1.5 Pressure profile

The outlet pressure of all high pressure pumps and the air compressor was assumed to be 3600 psia, the outlet of the SCWO reactor 3500 psia, the first stage separator 1500 psia, the second stage separator 100 psia, and the evaporator 14.7 psia.

4.1.6 Air Compressor

The air compressor was simulated as 4-stage compressor with intercoolers on the first three stages only, cooling air to a temperature of 100^0F .

4.1.7 Temperatures

Baseline: Inner nozzle - 100^0F

Outer nozzle - 1112^0F

Case-A: Inner nozzle - 122^0F

Outer nozzle - 930^0F

Case-B: Inner nozzle - 123^0F

Outer nozzle - 1012^0F

Reactor outlet: 1112^0F (600^0C)

Evaporator: 212^0F

Quench stream: $< 540^0\text{F}$

4.1.8 Equation of State Used

The ASME steam table, STEAM-TA, was used for all water streams. The Peng-Robinson cubic equation of state was used for the SCWO reactor and NRTL-RK, also known as the Renon model, for the liquid phase, the Redlich-Kwong equation of state for the gas phase, and Henry's law for supercritical components. The NRTK-RK was used in all the separators where the pressure is much less than that for the reactor.

4.2 Baseline Simulation

The MODAR pilot scale flow sheet is shown in Reference 7. Stream 1 is air at 70^0F and ambient temperature. Air then is compressed at 3598 psia and 475^0F and is combined with water from stream 2. These streams are preheated at B13 and enter the SCWO reactor through the outer nozzle. Stream 3 is isopropyl alcohol (IPA) and is combined with water from stream 2. They enter the SCWO reactor through the inner nozzle. The SCWO reactor is operated at 3500 psia and 1112^0F . B23 is a splitter where the reaction effluents are removed and fed to B32, the brine is mixed with cold water injection from stream 4 and is fed to SEP3, the medium pressure separator via a cooler, B27.

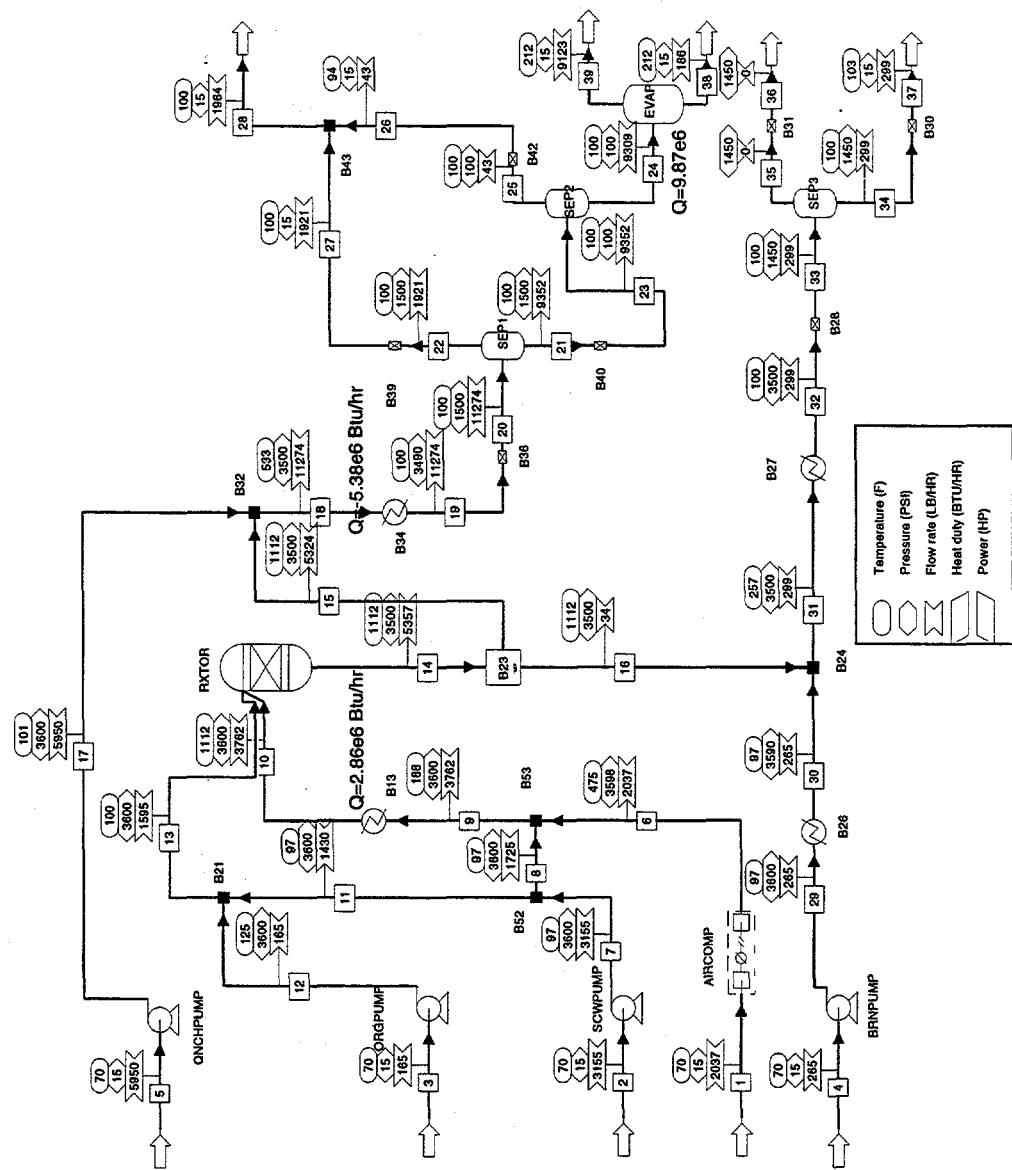
The reaction effluents, CO_2 and water, are quenched with cold water from stream 5 at B32.

MODAR wants to maintain the mixed temperature at less than 572⁰F (300⁰C). The quenched stream then is fed through a heat exchanger to reduce the temperature to 100⁰F before it enters SEP1, the first separator. The first separator is a high pressure separator (1500 psia) to separate the gas and liquid at that condition. Approximately 80% of the CO₂ is removed from this separator via the top, which goes to the atmosphere. Most of the water and remaining CO₂ goes to the second separator, the medium pressure separator, where the remaining CO₂ is removed from the top, and water and residues are separated from the bottom. If the liquid stream contains impurities, e.g., NaCl for this simulation, the impurities are separated at the evaporator. In the MODAR process, the impurities are recycled back to the SCWO feed stream. However, in this study an evaporator was added to remove the impurities and determine the energy consumption.

4.3 CASE-A Simulation

Case-A is a 60% replacement of water by carbon dioxide in the feed stream, and one of the reaction products, carbon dioxide, is recycled to quench the reaction effluent stream.

Since the feed composition to the SCWO reactor is different than in the baseline case, the inlet enthalpy is changed. In order to maintain the reactor temperature at less than 600⁰C, the inlet stream temperature needs to be calculated. This enthalpy calculation was performed using the enthalpy equation as described in Section 3.


As shown in Figure 8 in Section 5, carbon dioxide, a reaction product, is separated at the first separator, SEP1, and is recycled to quench the hot reaction effluents to 521⁰F. Before the carbon dioxide is fed to the first separator, the air and carbon dioxide are separated in block B2. The separation unit, B2, could be a membrane separator. Parametric studies on removing carbon dioxide from the air and combustion gases indicate that membrane separation is feasible existing plant technology.

4.4 CASE-B Simulation

The Case-B simulation is very similar to that of the Case-A simulation. The only difference is that Case-B condenses a 20% replacement of water by carbon dioxide in the feed stream vs. 40% for Case-A. The Case-B simulation was performed prior to Case-A. However, it is presented in the later section. The concept of using carbon dioxide in the quench stream is the same as the Case-A.

5. SIMULATION RESULTS

Results for three cases are shown in the following flow sheets, together with tables for each case. The flow sheets show the unit operations with flow rates, temperatures, pressures, heat/cooling duties and pump horsepower. Stream component and flow rates are given on material balance tables following each flow sheet. The cases shown include the baseline case (no CO₂), Case-A (40% CO₂ in the core feed), and Case-B (20% CO₂ in the core feed).

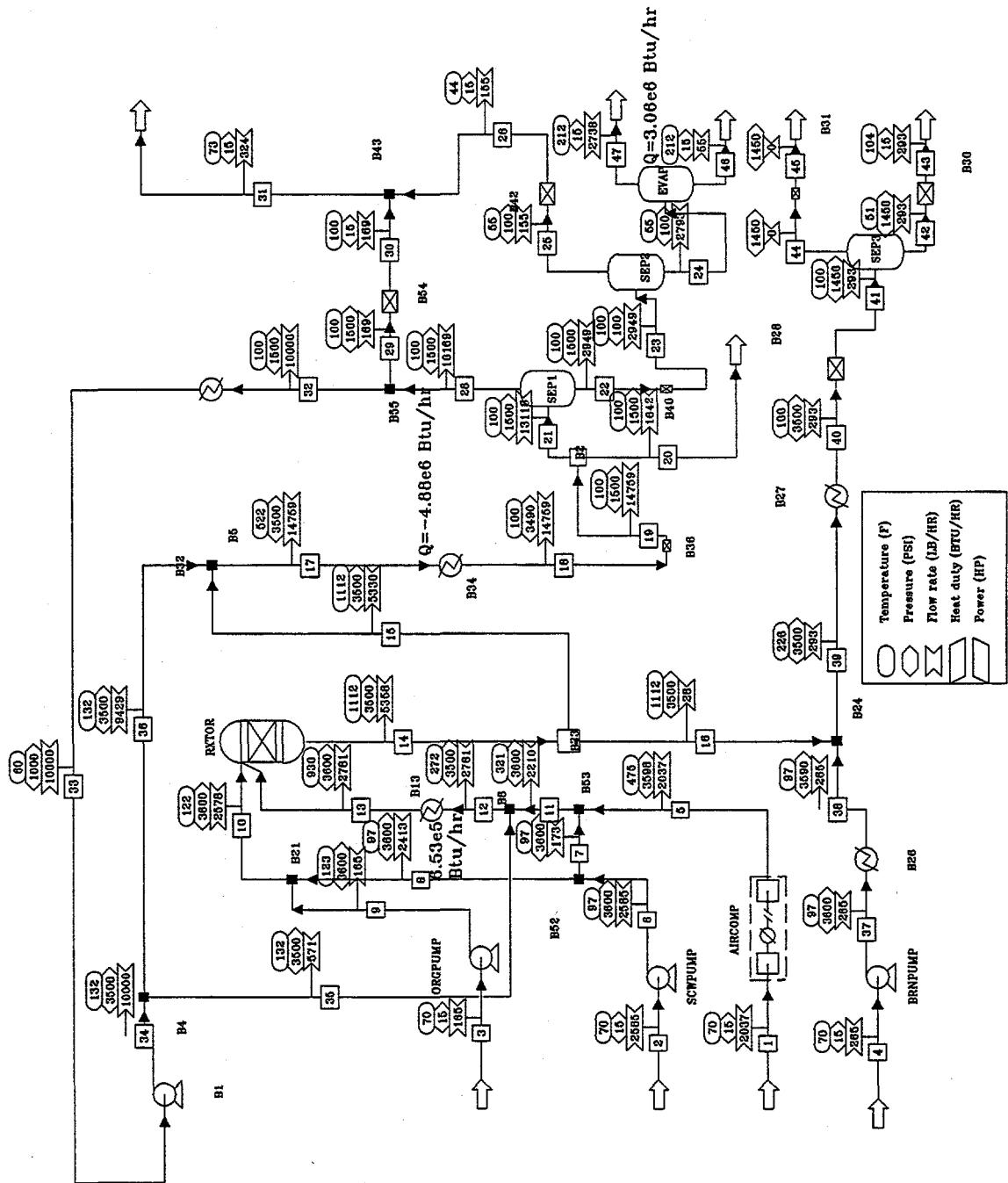
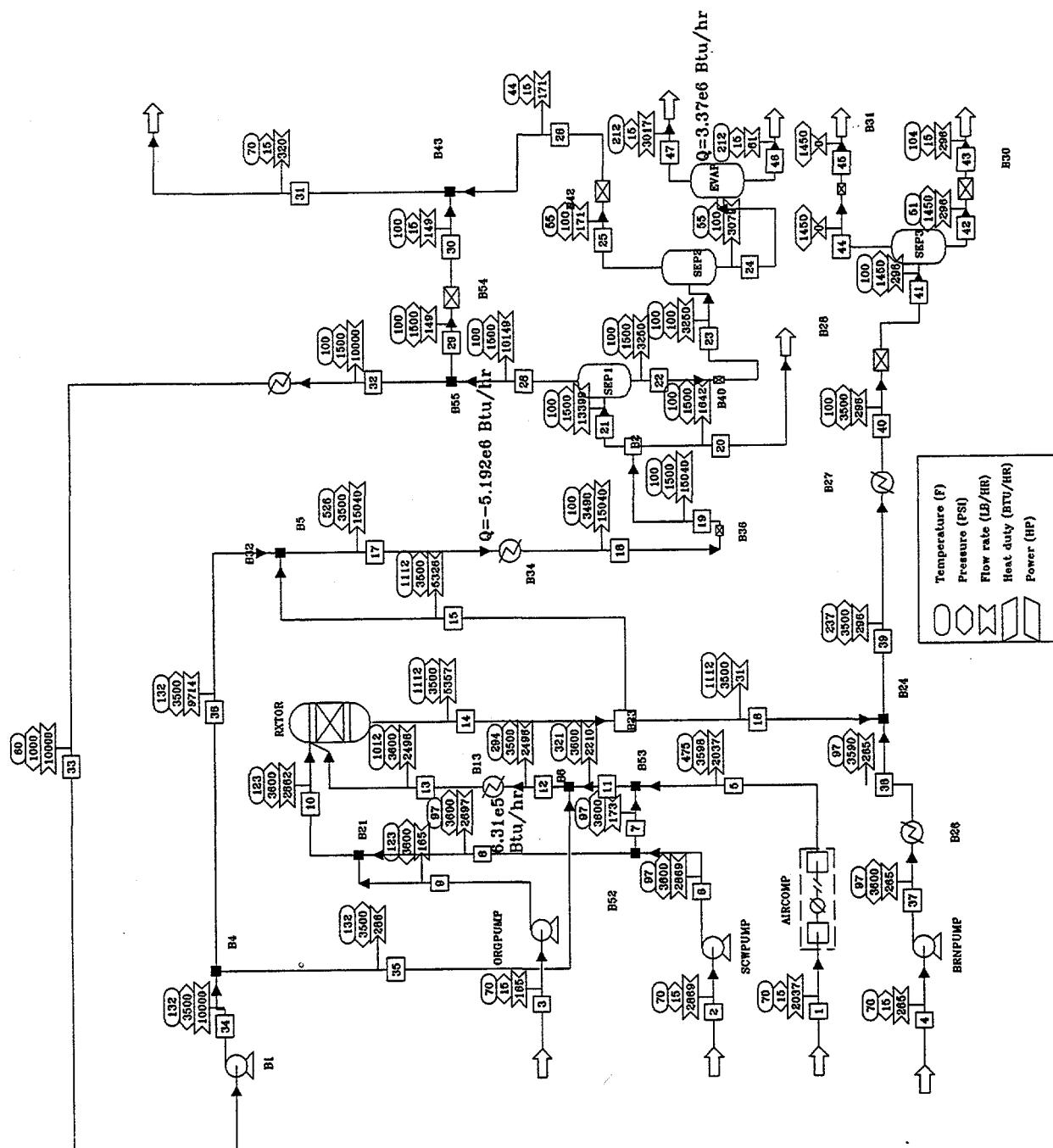


Figure 7. SCWO Flow Sheet for Baseline Case.

MODAR pilot scale run 920												
Stream ID	1	2	3	4	5	6	7	8	9	10	11	12
Temperature	F	70.0	70.0	70.0	70.0	70.0	474.5	96.6	98.6	187.7	1112.0	98.6
Pressure	PSI	14.70	14.70	14.70	14.70	14.70	3598.00	3800.00	3600.00	3800.00	3600.00	3600.00
Vapor Frac					0.000	0.000	0.000	0.000	0.000	0.427	1.000	0.000
Mole Flow	LBMOLAR	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mass Flow	LBMR	70.812	175.128	2.747	14.710	330.275	70.812	175.129	95.752	168.564	79.377	2.747
Mass Flow	CUFT/HR	2037.000	3155.000	165.00	265.000	5950.000	2037.000	3155.000	1725.000	3762.000	1430.000	165.100
Volume Flow	MMBTUHR	27367.639	50.635	3.212	4.253	95.572	213.791	50.317	27.511	175.787	762.788	22.806
Enthalpy	MMBTUHR	-0.004	-21.542	-0.958	-1.809	-40.603	0.193	-21.429	-11.716	-11.523	-8.663	-9.712
Mass Flow	LBHR											
O2		428.000					428.000			428.000	428.000	
N2		1609.000					1609.000			1609.000	1609.000	
IPA			185.000									
WATER			3155.000		265.000	5950.000		3155.000	1725.000	1725.000	1430.000	
CO2												
NaCl				0.100								0.100
Mass Frac												
O2		0.210				0.210			0.114	0.114		
N2		0.790				0.790			0.428	0.428		
IPA			0.999									0.999
WATER				1.000	1.000		1.000	1.000	0.459	0.459	1.000	
CO2						606 PPM						606 PPM
NaCl												

MODAR pilot scale run 920												
Stream ID	13	14	15	16	17	18	19	20	21	22	23	24
Temperature	100.3	1112.0	1112.0	100.9	532.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Pressure	3600.00	3500.00	3500.00	3600.00	3500.00	3490.00	1500.00	1500.00	1500.00	1500.00	1500.00	1500.00
Vapor Frac	0.000	1.000	1.000	0.000	0.188	0.109	0.111	0.000	1.000	0.002	0.000	0.000
Mole Flow	LBMO/HR	282.807	256.946	1.981	330.275	581.221	581.221	516.521	64.700	516.521	516.521	516.521
Mass Flow	LBHR	1595.100	5357.100	5323.571	33.529	5950.000	11273.571	11273.571	9332.322	1921.249	9332.322	9339.240
Volume Flow	CUFT/HR	26.577	1139.452	1131.701	7.621	97.191	500.113	265.031	152.540	251.094	219.130	151.880
Enthalpy	MMBTU/HR	-10.063	-18.780	-18.600	-0.180	-40.389	-58.989	-64.386	-63.249	-1.135	-63.269	-63.159
Mass Flow	LBHR											
O2		32.647	32.647			32.647	32.647		0.445	32.202	0.445	0.025
N2		1609.000	1609.000			1609.000	1609.000		11.973	1597.027	11.973	0.360
IPA		165.000										
WATER	1430.000	3352.852	3319.323	33.529	5950.000	9269.323	9269.323	9267.817	1.506	9267.817	9267.817	9267.817
CO2		362.501	362.501			362.501	362.501		71.987	290.515	71.987	41.146
NaCl		0.100	0.100			0.100	0.100		0.100		0.100	0.100
Mass Frac												
O2		0.006	0.006			0.003	0.003		48 PPM	0.017	48 PPM	3 PPM
N2		0.300	0.302			0.143	0.143		0.011	0.831	0.001	39 PPM
IPA		0.103										
WATER		0.896	0.626	0.624	1.000	0.022	0.822	0.822	0.891	784 PPM	0.891	0.896
CO2		0.068	0.068			0.032	0.032		0.008	0.151	0.008	0.004
NaCl		63 PPM	19 PPM			9 PPM	9 PPM		11 PPM	11 PPM	11 PPM	11 PPM

MOCAR pilot scale run 20										
Stream ID	25	26	27	28	29	30	31	32	33	34
Temperature F	100.0	93.6	100.0	89.9	96.6	256.6	10.0	10.0	10.0	10.0
Pressure PSI	100.00	14.70	14.70	14.70	350.00	350.00	1450.00	1450.00	1450.00	1450.00
Vapor Frac	1.000	1.000	1.000	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Wt. Flow LB/MIN/HR	1.140	1.140	64.700	65.840	14.710	14.710	16.571	16.571	16.571	16.571
Mass Flow LB/HR	43.063	43.063	182.249	186.331	265.000	265.000	298.329	298.329	298.329	298.329
Volume Flow	67.270	452.242	28119.370	28077.906	4.226	4.319	5.588	4.874	4.874	4.863
Enthalpy	-0.120	-0.120	-1.115	-1.125	-1.800	-1.800	-1.980	-2.027	-2.028	-2.028
Mass Flow	N2R									
O2		0.421	0.421	32.222	32.622					
N2		11.613	11.613	159.027	160.640					
IPA										
WATER	0.238	0.238	1.506	1.714	255.000	255.000	298.329	298.329	298.329	298.329
CO2			30.841	30.841	298.515	221.355				
NaCl										
Mass Frac										
O2		0.010	0.010	0.017	0.017					
N2		0.270	0.270	0.831	0.839					
IPA										
WATER	0.005	0.005	794 PPM	813 PPM	1.000	1.000	1.000	1.000	1.000	1.000
CO2	0.716	0.716	0.151	0.164						
NaCl										


Figure 8. SCWO Flow Sheet for Case-A.

60% SCW and 40% CO2 in the Core Feed												
Stream ID	1	2	3	4	5	6	7	8	9	10	11	12
From					AIRCOMP	SCWPUMP	SCWPUMP	B52	ORGPUMP	B21	B53	B6
To					ORGUMP	BRNPUMP	B53	B21				
Phase					Liquid	VAPOR	Liquid	Liquid				
Substream: MIXED												
Mass Flow												
O2	428.0000	0.0	0.0	0.0	428.0000	0.0	0.0	0.0	0.0	0.0	428.0000	428.0000
N2	1609.000	0.0	0.0	0.0	1609.000	0.0	0.0	0.0	0.0	0.0	1609.000	1609.000
IPA	0.0	0.0	165.000	0.0	0.0	0.0	0.0	0.0	165.000	0.0	0.0	0.0
WATER	0.0	0.0	2585.000	0.0	265.000	2585.000	1725.000	2412.500	0.0	2412.500	1725.000	1731389
CO2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5703611
NaCl	0.0	0.0	1000000	0.0	0.0	0.0	0.0	0.0	1000000	0.0	0.0	0.0
Mass Frac												
O2	2101129	0.0	0.0	0.0	2101129	0.0	0.0	0.0	0.0	0.0	1837090	-1539291
N2	7898871	0.0	0.0	0.0	7898871	0.0	0.0	0.0	0.0	0.0	7292190	5786829
IPA	0.0	0.0	9893943	0.0	0.0	0.0	0.0	0.0	9893943	0.0	0.0	0.0
WATER	0.0	0.0	1000000	0.0	1000000	0.0	1000000	0.0	1000000	0.0	1000000	0.0
CO2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2061290
NaCl	0.0	0.0	6.0589E-4	0.0	0.0	0.0	0.0	0.0	6.0589E-4	3.3758E-5	0.0	0.0
Total Flow	LBN01/HR	70.81213	143.4898	2.747322	14.70973	70.81213	149.4693	9.575205	133.9141	2.4747322	80.38734	90.38637
Total Flow	LBHHR	2037.000	2585.000	165.000	2037.000	2585.000	1725.000	2412.500	185.000	2577.600	2205.500	2730.500
Total Flow	CUT1/HR	27985.48	41.48676	3.212387	4.252895	215.4203	41.24850	2.751091	38.47541	3.342847	43.15127	166.4909
Temperature	F	70.00000	70.00000	70.00000	474.5000	96.84977	96.84977	123.9087	121.5794	351.1481	271.6769	
Pressure	PSI	14.70000	14.70000	14.70000	3598.000	3600.000	3600.000	3600.000	3600.000	3600.000	3600.000	3500.000
Vapor Frac		1.00000	0.0	0.0	1.00000	0.0	0.0	0.0	0.0	0.0	9220318	
Liquid Frac		0.0	1.00000	1.00000	0.0	1.00000	0.0	1.00000	1.00000	1.00000	0.750428	0.779882
Solid Frac		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Enthalpy	BTU/LBMOl	-52.34120	-1.2301E-5	-1.2301E-5	2723.120	-1.2236E-4	-1.2236E-4	-1.2236E-4	-1.2236E-4	-1.2236E-4	-1.2236E-4	-34534.51
Enthalpy	BTU/LB	-8627.949	-21.56184	-6827.949	94.66570	-6791.935	-6791.935	-6791.935	-6791.935	-6791.935	-6492.209	-442.9865
Enthalpy	BTU/HR	-3706.392	-1.7850E-7	-3.5598E-5	-1.8094E-6	-1.92830E-5	-1.7507E-7	-1.1716E-6	-1.6388E-7	-1.6734E-7	-9.7878E-5	-3.2249E-6
Entropy	BTU/LBMOlR	-9847316	-39.20159	-106.5672	-39.20159	-6.306702	-38.36061	-38.36061	-103.3147	-39.54467	-9.820050	9.631158
Entropy	BTU/LB	0.000606	-2.78019	-1.773316	-2.176019	-2.192395	-2.128338	-2.128338	-1.719193	-2.096813	-3.3572789	-3.324610
Density	LBN01/CUFT	2.88768E-3	3.458677	8853227	3.458677	3287162	3.480512	3.480512	8218508	3.167031	4.310523	4.624628
Density	LB/CUFT	0.0744368	62.30904	51.39461	62.30904	9.456533	62.70240	62.70240	49.36903	59.73405	11.84776	13.76598
Average MW		28.76826	18.01528	60.00469	18.01528	28.76626	18.01528	18.01528	60.00469	18.86121	27.48567	28.77533

60% SCW and 40% CO ₂ in the Core Feed										
Stream ID	13	14	15	16	17	18	19	20	21	24
From	B15	RNTR	B23	B32	B34	B36	B2	B2	B40	SEP2
To	B23	B32	B34	B36	B2	SEP1	SEP2	SEP1	SEP2	EVAP
Phase	VAPOR	MIXED	VAPOR	MIXED	MIXED	VAPOR	MIXED	MIXED	MIXED	LIQUID
Substream: Mixed										
Mass Flow										
CO ₂	428,000	32,64889	0.0	32,44689	32,44689	32,44689	0.0	0.0	0.0	0.0
N ₂	1699,000	1699,000	1699,000	1699,000	1699,000	1699,000	1699,000	0.0	0.0	0.0
IPA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER	1781,389	2783,481	2783,481	2783,481	2783,481	2783,481	2783,481	2783,481	2783,481	2783,481
CO ₂	670,3611	612,4625	925,8625	0.0	10351,31	10351,31	10351,31	10351,31	10351,31	10351,31
NaCl	0.0	1000000	0.0	1000000	1000000	1000000	1000000	1000000	1000000	1000000
Mass Frac										
CO ₂	.1589281	.099000E-3	.0124282E-3	0.0	2.21198E-3	2.21198E-3	2.21198E-3	0.0	0.0	0.0
N ₂	.5789729	.3002930	.3018812	0.0	.1090163	.1090163	.1090163	.0901133	.0901133	0.0
IPA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER										
CO ₂	.205280	.1741032	.1750124	0.0	.7013434	.7013434	.7013434	.701153	.701153	.701153
NaCl	0.0	1.86583E-5	1.87608E-5	0.0	6.77541E-6	6.77541E-6	6.77541E-6	7.62334E-6	7.62334E-6	7.62334E-6
Total Flow	B2,39267	234,1625	2352,8174	1,545072	447,2111	447,2111	447,2111	58,45649	58,45649	58,45649
Total Flow	LBHR	2760,600	5358,100	5350,265	27,63481	14759,26	14759,26	13117,62	13117,62	27046,628
Total Flow	CUTTHR	412,3932	1096,070	6,513201	1102,758	114,904	114,904	303,6548	303,6548	305,7128
Temperature	F	600,0000	1112,000	1112,000	1112,000	1112,000	1112,000	100,0000	100,0000	100,0000
Pressure	PSI	3600,000	3500,000	3500,000	3500,000	3500,000	3500,000	1500,000	1500,000	1500,000
Vapor Frac		1,000000	.9999925	1,000000	.9999950	.9999950	.9999950	1,000000	1,000000	1,000000
Liquid Frac		0.0	7.13192E-4	7.124207E-4	0.0	3.930315E-6	3.926253	0.0	0.0	0.0
Solid Frac		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Enthalpy	BTU/LB/MOL	-27547,80	-75890,30	36858,50	-1.2238E-15	-1.3339E-15	-1.3230E-15	.9822088	.9822088	-1.2452E-15
Enthalpy	BTU/LB/MOL	295,1898	-3115857	-5398,983	-5398,983	-5398,983	-5398,983	-4008,943	-4008,943	-452,985
Enthalpy	BTU/LB/MOL	-2,5725E-5	-1,7781E-7	-1,4955E-5	-5,8607E-7	-5,8607E-7	-5,8607E-7	-5,8605E-7	-5,8605E-7	-1,9893E-7
Enthalpy	BTU/LB/MOL.R	-2,544060	-7,587775	-13,21078	-9,163911	-22,23990	-19,81704	-9,162892	-23,69824	-39,45335
Enthalpy	BTU/LB/R	-0,654416	-3,050378	-7,3505095	-1,241065	-6,738772	-6,001684	-1,255684	-7,100272	-2,041250
Density	LB/MOL.CUT	2284463	2123428	2122285	2098100	1,352501	.5982076	.2504143	.1,271632	.5214701
Density	LB/CUT	6,742615	4,853070	4,273874	12,89127	44,63947	19,67989	7,023295	42,90311	.9773898
Average MW		26,71753	22,81817	18,01626	33,00261	33,00261	33,00261	33,74271	33,74271	18,18459

60% SCW and 40% CO2 in the Core Feed									
Stream ID		25	26	28	29	30	31	32	33
From		SEP2	B42		B55	B34	B43	B55	B5
To		B42	B43		B54	B43	B55	B1	B1
Phase		VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	LIQUID	LIQUID
Substream: MIXED									
Mass Flow	LBO/HR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Q2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPA		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER		.1472212	.1472212	.1137772	.1890765	.3862937	.11.18864	.11.18864	.6388716
CO2		154.9831	154.9831	10157.61	168.8024	323.7854	9888.812	9888.812	570.3811
NACL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mass Frac									
Q2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPA		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER		9.48955E-4	9.48955E-4	1.11886E-3	1.11886E-3	1.03764E-3	1.11886E-3	1.11886E-3	1.11886E-3
CO2		.8990510	.8990510	.8990512	.8990512	.8990525	.8990525	.8990525	.8990525
NACL		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Flow	LBO/HR	3.5289556	3.5289556	231.4350	3.846059	7.376016	227.5890	227.5890	12.99533
Total Flow	LBNR	155.1403	155.1403	10168.99	168.9914	324.1317	10000.00	10000.00	9429.000
Total Flow	CUT/HR	187.2278	1288.934	513.0027	8.625237	1583.710	285.346	194.4409	340.2165
Temperature	F	54.74942	43.90178	100.0000	100.0000	73.44510	100.0000	60.00000	131.6183
Pressure	PSI	100.0000	14.70000	1500.000	1600.000	14.70000	1500.000	1000.000	3500.000
Vapor Frac.		1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	0.0	0.0
Liquid Frac.		0.0	0.0	0.0	0.0	0.0	0.0	1.000000	1.000000
Solid Frac.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Enthalpy	BTU/BMOL	-1.6834E-5	-1.7098E-5	-1.6881E-5	-1.6800E-5	-1.7088E-5	-1.7088E-5	-1.7284E-5	-1.7284E-5
Enthalpy	BTU/LB	-3853.011	-3891.371	-3891.371	-3841.982	-3841.982	-3891.371	-3891.371	-3893.706
Enthalpy	BTU/HR	-5.9776E-5	-3.9571E-7	-6.5761E-5	-6.4926E-5	-1.2470E-6	-3.8914E-7	-3.9612E-7	-2.2461E-6
Entropy	BTU/BMOL	-3.6314E8	-10.68097	-10.68097	-1.056977	6.12321	-10.68097	-16.1874	-14.74262
Entropy	BTU/LB	-2.49782E-3	-2.433147	-2.433147	-0.238190	0.139480	-2.433147	-3.684014	-3.355258
Entropy	BTU/CUFT	0.188538	2.73887E-3	451.1380	2.45657E-3	2.58414E-3	451.1380	1.170749	66889534
Density	BTU/CUFT	82.886177	1203.633	19.82249	1080.708	113.5573	19.82249	51.42951	29.38305
Average MW		43.94962	43.94962	43.939887	43.939887	43.94401	43.93887	43.93887	43.93887

60% SCW and 40% CO2 in the Core Feed									
Stream ID	37	38	39	40	41	42	43	44	45
From	BRNPUMP	B24	B27	B28	SEP3	B30	SEP3	B31	EVAP
To	B26	B24	B27	SEP3	B30	LIQUID	LIQUID	MISSING	EVAP
Phase	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID
Substream MIXED									
Mass Flow	LB/HR								
O2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER	285,0000	285,0000	292,8349	292,8349	292,8349	292,8349	292,8349	0.0	55,38022
CO2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.52451E-4
NaCl	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38,70770
Mass Frac									
O2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	.9885628
CO2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.74783E-6
NaCl									.01411371
Total Flow	LB/MOL/HR	14,70973	16,25481	16,25481	16,25481	16,25481	16,25481	0.0	0.0
Total Flow	LB/HR	285,0000	292,8349	292,8349	292,8349	292,8349	292,8349	0.0	0.0
Total Flow	CUF/HR	4,328314	5,165236	4,781085	4,781085	4,657805	4,790844	0.0	0.0
Temperature	F	96,64977	96,60000	225,50382	100,0000	100,0000	51,40759	103,5749	212,0000
Pressure	PSI	3600,000	3500,000	3500,000	1450,000	1450,000	147,0000	1460,000	1460,000
Vapor Frac		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Liquid Frac		1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000
Solid Frac		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Enthalpy	BTU/LB/MOL	1,22236E-5	1,23144E-5	1,23095E-5	1,23195E-5	1,23195E-5	1,23195E-5	1,23195E-5	1,23195E-5
Enthalpy	BTU/LB	-6791,935	-6835,546	-6832,148	-6837,843	-6837,843	-6837,843	-6837,843	-6837,843
Enthalpy	BTU/HR	-1,7939E-6	-1,8114E-6	-1,9611E-6	-2,0007E+6	-2,0024E+6	-2,0024E+6	-2,0024E+6	-2,0024E+6
Entropy	BTU/LB/MOL-R	-38,36061	-39,48794	-35,43946	-39,31899	-39,68880	-39,15815	-39,15815	-34,88838
Entropy	BTU/LB-R	-2,128358	-2,191914	-1,987189	-2,185259	-2,185259	-2,17908	-2,17908	-2,17908
Density	LB/MOL/CFUFT	3,480512	3,406209	3,153068	3,309816	3,469949	3,392890	3,184942	2,06316E-3
Density	LB/CFUFT	62,70240	61,36380	56,80339	61,24683	62,87242	61,12386	57,44634	.0374616
Average MW		18,01528	18,01528	18,01528	18,01528	18,01528	18,01528	18,01528	18,03780
									18,16598

Figure 9. SCWO Flow Sheet for Case-B.

90% SCW and 20% CO2 in the Core Feed												
Stream ID	1	2	3	4	5	6	7	8	9	10	11	12
From					AIRCOMP	AIRCOMP	SCWPUMP	SCWPUMP	B21	ORGUMP	B21	B6
To					SCWPUMP	ORGUMP	B53	B52	B21	RXTOR	B6	B13
Phase					LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	MIXED	MIXED
Substream: MIXED												
Mass Flow	LBHR											
O2	428.0000	0.0	0.0	0.0	428.0000	0.0	0.0	0.0	0.0	0.0	428.0000	428.0000
N2	1609.000	0.0	0.0	0.0	1609.000	0.0	0.0	0.0	0.0	0.0	1609.000	1609.000
IPA	0.0	0.0	165.0000	0.0	0.0	0.0	0.0	0.0	165.0000	0.0	0.0	0.0
WATER	0.0	2889.000	0.0	285.0000	2889.000	172.5000	2866.500	0.0	2898.500	172.5000	172.5000	172.5000
CO2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	285.6800
NaCl	0.0	0.0	1000000.0	0.0	0.0	0.0	0.0	0.0	1000000.0	0.0	0.0	0.0
Mass Frac												
O2	2101129	0.0	0.0	0.0	2101129	0.0	0.0	0.0	0.0	0.0	1937090	1715087
N2	7698671	0.0	0.0	0.0	7698671	0.0	0.0	0.0	0.0	0.0	7282190	8447605
IPA	0.0	0.0	89383943	0.0	0.0	0.0	0.0	0.0	89383943	0.0	0.0	0.0
WATER	0.0	1000000.0	0.0	1000000.0	0.0	1000000.0	1000000.0	0.0	9423060	0.0	0.0	0.0
CO2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1144761
NaCl	0.0	0.0	6.0659E-4	0.0	0.0	0.0	0.0	0.0	6.0659E-4	3.49655E-5	0.0	0.0
LBMOUHR	70.81213	159.2537	14747322	147.0973	70.81213	159.2537	9.575205	148.6785	152.4258	80.38734	86.89839	
LBHR	2037.000	165.1000	295.0000	2037.000	2869.000	172.5000	2866.500	165.1000	2861.600	2209.500	2495.500	
CUFT/HR	27385.46	46.04469	3.212387	4.262895	45.755683	2751091	43.00474	3.312847	47.886859	186.4509	196.7384	
F	70.00000	70.00000	70.00000	474.5000	98.64977	96.64977	123.087	123.0739	321.1481	284.4542		
Pressure	PSI	14.70000	14.70000	3598.000	3600.000	3600.000	3600.000	3600.000	3600.000	3600.000	3500.000	
Vapor Frac		1.00000	0.0	0.0	1.00000	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Liquid Frac		0.0	1000000.0	1000000.0	0.0	1.000000	1.000000	1.000000	1.000000	1.000000	0.0	0.0
Solid Frac		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Enthalpy	BTU/LBMO	-52.34120	-1.2301E+5	-1.2858E+5	2723.120	-1.2236E+5	-1.2236E+5	-1.2236E+5	-1.2236E+5	-1.2234E+5	-1276.78	-2421.068
Enthalpy	BTU/LB	-1.811655	58927.949	2158.194	-5827.949	94.66370	-6791.935	-6791.935	-2112.522	-4521.56	-442.9895	-843.0450
Enthalpy	BTU/HR	-3706.352	-1.9585E-7	-3.6598E-5	-1.8094E-4	1.92839E-5	-1.9486E+7	-1.17165E+8	-1.8141E+7	-3.48776E-5	-1.86639E-7	-2.1038E-6
Entropy	BTU/LBMO-LR	8847.7316	-39.20159	-106.6872	-6.306702	-38.38061	-38.38061	-103.3147	-103.3147	-39.39546	-9.588554	
Entropy	BTU/LB-R	3300566	-2.176019	-1.773316	-2.176019	-2.128239	-2.128239	-1.719193	-2.098446	-3.377259	-3.339201	
Density	LBMO/CFUT	2.86765E-3	3.458677	8552276	3.458677	3.287162	3.480512	.82.18508	3.183059	.4310523	4416849	
Density	LB/CFUT	.0744358	62.30904	51.39461	62.30904	9.455933	62.70240	62.70240	49.39003	69.75787	11.84776	12.68436
Average MW		28.76826	18.01658	60.05469	18.016528	18.016528	18.016528	18.016528	60.05469	18.77372	27.48567	28.71611

80% SCN and 20% CO2 in the Core Feed												
Stream ID	13	14	15	16	17	18	19	20	21	22	23	24
From	B13	RXTOR	B23	B23	B32	B34	B36	B2	B2	SEP1	B40	SEP2
To	B23	RXTOR	B32	B24	B34	B36	B2	SEP1	B40	SEP2	B40	EVAP
Phase	VAPOR	MIXED	VAPOR	MIXED	VAPOR	MIXED	VAPOR	MIXED	LIQUID	MIXED	LIQUID	LIQUID
Substate/MIXED												
Mass Flow	LBHR											
Q2	428,0000	32,64689	0,0	32,64689	32,64689	32,64689	32,64689	0,0	0,0	0,0	0,0	0,0
N2	1609,0000	1609,0000	0,0	1609,0000	1609,0000	1609,0000	1609,0000	0,0	0,0	0,0	0,0	0,0
IPA	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
WATER	172,8200	3067,172	3036,500	30,67172	3047,369	3047,369	3047,369	0,0	3047,369	3036,011	3036,611	3035,849
CO2	285,6800	648,1813	648,1813	0,0	10351,31	10351,31	10351,31	0,0	10351,31	213,4715	42,65723	
NaCl	0,0	1000000	1000000	0,0	1000000	1000000	1000000	0,0	1000000	.0989898	.0989898	.0989898
Mass Frac												
Q2	.1715087	6,09419E-3	6,12923E-3	0,0	2,17061E-3	2,17061E-3	2,17061E-3	.01868866	.01868866	0,0	0,0	0,0
N2		.8447805	.3063491	.3020786	0,0	.1069783	.1069783	.1069783	.9801133	0,0	0,0	0,0
IPA		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
WATER		.0628226	.5700818	1000000	.2026118	.2026118	.2026118	0,0	.2274863	.9342772	.9342772	.9342772
CO2	.1144781	.1203948	.1216316	0,0	.6882226	.6882226	.6882226	0,0	.7725653	.0656919	.0656919	.0138560
NaCl	0,0	1.89858E-6	1.97773E-5	0,0	6.64876E-6	6.64876E-6	6.64876E-6	0,0	7.48337E-6	3.07732E-5	3.07732E-5	3.24822E-5
Total Flow	LBMOUHR	86,98639	243,4406	241,7381	1,702559	462,8180	462,8180	58,45689	404,3811	173,3765	169,4822	
Total Flow	LBHR	249,5,600	5357,100	6328,428	30,67172	15040,43	15040,43	1641,647	15398,76	3249,562	3249,562	3078,606
Total Flow	CUFTHR	408,6512	1138,785	1129,447	7,176988	1174,517	335,2434	764,5478	233,4406	310,2872	52,38719	332,4761
Temperature	F	1012,000	1112,000	1112,000	625,6860	100,0000	100,0000	100,0000	100,0000	100,0000	100,0000	64,78034
Pressure	PSI	360,000	350,000	350,000	3490,000	1500,000	1500,000	1500,000	1500,000	1500,000	1500,000	100,0000
Vapor Frac		1,00000	.98989828	.98989828	1,000000	.9959861	.6871513	.6855882	1,000000	.58,63891	0,0	.0281232
Liquid Frac		0,0	7,09776E-6	0,0	3,084428E-6	.3828947	.3844118	0,0	.4158109	1,000000	.9718768	1,000000
Solid Frac		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Enthalpy	BTU/L-BMOL	-168,50,47	-76,12,7,06	-74,975,40	-96856,50	-1,2172E-6	-1,3284E-6	-1,3200E-6	-1,5211E-6	-1,2390E-5	-1,2453E-5	-1,2350E-5
Enthalpy	BTU/L-B	-59,0,2363	-34,13,971	-30,2,732	-53,76,353	-3745,567	-4090,882	-4061,700	-3,428288	-4890,324	-4610,282	-684,14,146
Enthalpy	BTU/HR	-1,4729E+6	-1,8289E+7	-1,8124E+7	-1,8486E+6	-5,63326E+7	-6,1528E+7	-6,1090E+7	-5,624,772	-2,1607E+7	-2,1481E+7	-2,159,1E+7
Enthalpy	BTU/L-BMOLR	-2,5533908	-8,238831	-8,209482	-13,21078	-8,432018	-22,81701	-20,47440	-3,1124882	-24,65066	-37,66201	-39,43336
Enthalpy	BTU/L-BR	-0,6828238	-3745940	-2,141483	-214023	-2372216	-2561035	-702,158	-6300299	-3255684	-7,409132	-2,041255
Density	LBMOUCLFT	2197,961	4,715863	4,2793614	12,00583	44,86421	19,93303	7,032395	1,303141	3,309520	.5214704	3,485534
Average MW		28,71811	22,03388	18,01628	32,49750	32,49750	32,49750	28,08304	33,13568	18,74253	18,74253	18,1635

60% SCW and 20% CO2 in the Core Feed										
Stream ID	25	26	28	29	30	31	32	33	34	35
From	SEP2	B42	SEP1	B55	B54	B40	B55	B5	B1	B4
To	B42	B43	B55	B54	B43		B5	B1	B4	B4
Phase	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	VAPOR	Liquid	Liquid	B32
Substream: MIXED										Liquid
Mass Flow	LB/HR									
O2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER	.1622805	.1622805	11.35580	.1622805	.1622805	.1622805	.1622805	.1622805	.1622805	.1622805
CO2	170.8142	170.8142	10137.85	149.0356	149.0356	319.8498	9868.812	9868.812	285.8800	9703.181
NaCl	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mass Frac										
O2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER	9.49022E-4	1.11687E-3	1.11687E-3	1.11687E-3	1.11687E-3	1.02817E-3	1.11687E-3	1.11687E-3	1.11687E-3	1.11687E-3
CO2	.3990510	.3990510	.3990510	.3990510	.3990510	.3990510	.3990510	.3990510	.3990510	.3990510
NaCl	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Flow	LB/MOLAR	3.890284	230.9846	3.395684	3.395684	7.295568	227.5890	227.5890	6.509044	221.0798
Total Flow	LB/HR	170.9765	10149.20	149.2025	149.2025	320.1790	10000.00	10000.00	286.0000	9714.000
Total Flow	CLIFT/HR	208.3403	1420.510	512.0043	7526929	1380.689	2802.782	504.4774	340.2165	330.1863
Temperature	F	43.76334	100.0000	100.0000	100.0000	70.34032	100.0000	60.00000	131.6163	131.6163
Pressure	PSI	100.0000	14.70000	150.000	150.000	14.70000	160.000	160.000	350.000	350.000
Vapor Frac		1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	0.0	0.0	0.0
Liquid Frac		0.0	0.0	0.0	0.0	0.0	0.0	1.00000	1.00000	1.00000
Solid Frac		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Enthalpy	BTU/LB/MOL	-1.6824E+5	-1.7098E+5	-1.6861E+5	-1.6861E+5	-1.6903E+5	-1.7240E+5	-1.7284E+5	-1.7284E+5	-1.7284E+5
Enthalpy	BTU/LB	-3853.010	-3891.371	-3891.371	-3891.371	-3841.962	-3847.882	-3861.166	-3933.706	-3933.706
Enthalpy	BTU/HR	-6.5877E+5	-3.949E+7	-6.8060E+5	-5.7323E+5	-1.2320E+6	-3.8914E+7	-3.9812E+7	-3.9812E+7	-3.9812E+7
Entropy	BTU/LBMOL-R	-3.631954	1.081716	-10.98997	1.050977	.5808588	-10.68987	-16.18714	-14.74262	-14.74262
Entropy	BTU/LB-R	-0.0826276	2.49617E-3	-2.453147	-2.453147	.0239190	.0127628	-2.2453147	-3.5684014	-3.5684014
Density	LBMOLE/CFIT	.01886537	2.75985E-3	.4511380	2.45957E-3	2.59954E-3	.4511380	1.170479	.6688554	.6688554
Density	LB/CFIT	.0286141	.1203638	1.9.32249	.1080708	.1112257	19.82249	.51.42951	.28.38305	.28.38305
Average MW		43.94962	43.93887	43.93887	43.93887	43.9461	43.93887	43.93887	43.93887	43.93887

80% SCW and 20% CO2 in the Cote Feed										
Stream ID	37	38	39	40	41	42	43	44	45	46
From	BRNPUMP	B26	B24	B27	B28	SEP3	B30	SEP3	B31	EVAP
To	B26	B24	B27	SEP3	B30		B31			EVAP
Phase	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	LIQUID	MISSING	MISSING	VAPOR
Substream: MIXED										
Mass Flow	LBO/HR									
O2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER	265.0000	285.0000	285.6717	285.6717	285.6717	285.6717	285.6717	285.6717	285.6717	285.6717
CO2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NaCl	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mass Frac										
O2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IPA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
WATER	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
CO2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NaCl	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Flow	LBO/HAR	14.70973	14.70973	16.41227	16.41227	16.41227	16.41227	16.41227	16.41227	16.41227
Total Flow	LBO/HR	265.0000	285.0000	285.6717	285.6717	285.6717	285.6717	285.6717	285.6717	285.6717
Total Flow	CLFT/HAR	4226314	4316507	5.245198	4.827442	4.827442	4.827442	4.827442	4.827442	4.827442
Temperature	F	96.64977	96.60000	237.1190	100.0000	100.0000	51.40759	103.0749		
Pressure	PSI	3600.000	3590.000	3500.000	3500.000	3500.000	1450.000	1450.000	1450.000	1450.000
Vapor Frac		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Liquid Frac		1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
Solid Frac		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Enthalpy	BTU/LBMOL	-12236E-5	-12042E-5	-12308E-5	-12319E-5	-12319E-5				-12046E-5
Enthalpy	BTU/LB	-4791.935	-4835.548	-4884.176	-4882.148	-4887.843	-4887.843			-4887.570
Enthalpy	BTU/HAR	-1.7898E-6	-1.8114E-6	-1.9763E-6	-2.0201E-6	-2.0218E-6	-2.0218E-6			-4.0830E-5
Entropy	BTU/LBMOL-R	-38.38061	-39.48734	-35.10914	-39.38805	-39.31989	-39.68800	-39.16815		-34.89125
Entropy	BTU/LB-R	-2.129388	-2.191614	-1.948853	-2.182591	-2.203063	-2.175608	-2.184584		-4.776717
Density	LBO/LCUTT	3.480512	3.062029	3.128009	3.399816	3.489949	3.928890	3.184557		2.05298E-3
Density	LB/CLUTT	62.70240	61.36380	56.36986	61.24863	62.87242	61.12386	57.43577		6374836
Average MW		18.01658	18.01658	18.01658	18.01658	18.01658	18.01658	18.01658	18.01658	18.16897

6. ECONOMIC EVALUATION

An economic evaluation was performed between the Baseline and Case-A. Tables 3 and 4 show the comparison, in terms of the unit equipment cost.

Table 3. Equipment cost for the baseline.

Units	Low Value	High Value
Air compressor (500SCFM)	\$30,000	\$50,000
SCW pump (8 gpm)	\$70,000	\$100,000
Organic pump (0.5 gpm)	\$35,000	\$50,000
Quench pump (1.59 cfm)	\$20,000	\$30,000
Heater for air/water (1000 kW)	\$30,000	\$50,000
Reactor vessel with two liners	\$200,000	\$300,000
Brine pump (4.25 ft ³ /hr)	\$50,000	\$70,000
Brine Heater		
Quench piping	\$3,500	\$5,000
Feed Heater/Effluent cooler	\$2,000	\$4,000
Cooldown exchanger	\$1,000	\$1,000
Letdown valve 1 (2500 psia)	\$5,000	\$6,000
1st separator (2'OD x 3')	\$150,000	\$200,000
Letdown valve 2 (1500 psia)	\$2,000	\$3,000
2nd separator (1.5'OD x 2')	\$80,000	\$100,000
Offgas collection	\$2,000	\$3,000
Offgas filters	\$2,000	\$3,000
Evaporator (9.87e6 Btu/hr)	\$20,000	\$200,000
Brine cooldown	\$2,000	\$3,000
Brine letdown valve	\$40,000	\$50,000
Brine separator	\$40,000	\$50,000
Total	\$746,500	\$1,231,000

Table 4. Equipment cost for Case-A

Units	Low value	High value
Air compressor (500 SCFM)	\$30,000	\$50,000
SCW pump (1cfm)	\$70,000	\$100,000
Organic pump (0.5 gpm)	\$35,000	\$50,000
CO ₂ pump (6cfm)	\$20,000	\$30,000
Heater for water/air (189 kW)	\$20,000	\$30,000
Reactor vessel with two liners	\$200,000	\$300,000
Brine pump (4.25 ft ³ /hr)	\$50,000	\$70,000
Brine Heater		
Quench piping	\$3,500	\$5,000
Feed exchanger/effluent cooler	\$2,000	\$4,000
Coldown exchanger	\$5,000	\$7,000
Letdown valve 1 (2500 psia)	\$5,000	\$6,000
CO ₂ separator (1st separator)	\$150,000	\$200,000
Letdown valve 2 (1500 psia)	\$2,000	\$3,000
2nd separator	\$80,000	\$100,000
Letdown valve 3 (100 psia)	\$500.00	\$1,000
3rd separator	\$1,000	\$2,000
CO ₂ condenser (286e3 Btu/hr)	\$5,000	\$10,000
O ₂ offgas collection	\$2,000	\$3,000
Offgas filters	\$2,000	\$3,000
Evaporator (3.06e6 Btu/hr)	\$20,000	\$200,000
Brine cooldown	\$2,000	\$3,000
Brine letdown valve	\$2,000	\$3,000
Total	\$757,000	\$1,250,000

The equipment for Case-A is only slightly higher than for the baseline unit. Since the Case-A replaces the water used in the quench stream, it saves a significant amount of energy in the end process unit. The flow sheet simulation indicates that the heat duty of the evaporator for the Case-A is $3.06e6$ Btu/hr vs. $9.87e6$ Btu/hr for the baseline.

This is a difference of about 2000 kW for the pilot scale unit. This is a significant energy savings resulting from the replacement of water by CO_2 for the quenching process.

7. CONCLUSIONS

Supercritical water oxidation (SCWO) shows promise as an economical, environmentally-sound technology for effective decontamination of DOE, diverse industrial, military, and municipal wastes. Several process designs are under development to commercialize the technology, and at least one commercial facility of Eco Waste Technologies, Inc. is presently destroying long-chain alcohols, glycols, and amines in aqueous wastes from chemical plants in Austin, Texas.

SCWO technology can qualify as a totally enclosed treatment facility. That is, the treated effluent can be held in reserve and analyzed prior to release to the environment. If the effluent does not meet the specifications of the relevant regulations it can be recycled to the reactor and treated again. This feature guarantees that no uncontrolled emissions of environmentally damaging compounds will occur during SCWO treatment. Note that this feature stands in contrast with incineration where the effluent is emitted continuously.

A mixed waste treatment system will have effluent requirements determined primarily by environmental regulations and policies. The capability of a process to be known as a "closed system", having a very low release to the environment, no liquid waste and a minimal volume of solid waste will be an important factor in selecting treatment technologies and use in mixed waste treatment. The concept of zero discharge, controllable emissions and acceptance by the public is also very important along with costs and schedule of a mixed waste treatment system that ultimately is built and operated.

In order to make the SCWO technology more viable compared to other technologies, this study focused on energy efficiency to use CO₂ as a replacement of water in the quench stream and also in a feed stream. CO₂ is one of the reaction products and is recycled in the SCWO process. In this study, NaCl was simulated as an impurity in the end unit process, that is an evaporator. The result indicates that case -1, replacement of water by CO₂, reduces the energy duty of evaporator by 6.81e6 Btu/hr based on 5330 lb/hr reaction effluent rate from the reactor.

In addition, the replacement of water in the reactor feed by carbon dioxide would alleviate much of the sticky salt deposit problem because the salts remain in a solid form in the carbon dioxide environment as compared to the water environment due to the lower solubility of salt in carbon dioxide. Also, the higher viscosity of carbon dioxide at the supercritical conditions would minimize the corrosion problem because of the lower mass transfer rate of hetroatoms (e.g.,chlorine, sulphur, etc.) to the wall. If we can prove this phenomena by experiments, it will make SCWO even more advantageous compared to other processes. Due to funding limitations, these comparison could not be included in this study. Because of the many advantages offered by the SCWO relative to other technologies, its development should be continued because research is needed to bridge the gap between the pilot scale and commercialization scale in effectively treating all wastes including the DOE mixed wastes.

Acknowledgment: The equipment cost shown in Tables 3 and 4 was provided by Karen Garcia. I appreciate her effort for that.

8. REFERENCES

1. C.H. Oh, R.J. Kochan, and T.R. Charlton, "Thermal-Hydraulic Modelling of Supercritical Water Oxidation of Ethanol," *Energy & Fuels*, Vol.10, No.2, pp.326-332, 1996.
2. C.H. Oh, R.J. Kochan, and T.R. Charlton, "Modelling of Thermal Characteristics in Super-critical Water Oxidation Reactors," Proceedings of ASME Heat Transfer, HTD-Vol.317-2, pp.311-320, 1995
3. R.J. Kochan and C.H. Oh, *Preliminary Analytical Modeling Requirements for Thermal Hydraulic Analysis of SCWO Pilot Plant*, EG&G Idaho, Inc., EGG-WTD-10985, November 1993.
4. R.J. Kochan and C.H. Oh, "Preliminary CFD Computer Code Comparison for Thermal-Hydraulic Analysis of SCWO Reactor," INEL TDF #ID121217/1020, May 26, 1994.
5. R.J. Kochan and C.H. Oh, *CFD Code Selection and Preliminary Validation for Thermal-Hydraulic Analysis of SCWO Benchscale Reactor*, Idaho National Engineering Laboratory, INEL-94/0224, December 1994.
6. R.J. Kochan and C.H. Oh, *CFD Model Development and Data Comparison for Thermal-Hydraulic Analysis of HTO Pilot Scale Reactor*, Idaho National Engineering Laboratory, INEL-95/0445, September 1995.
7. FLUENT User's Guide Version 4.3 and FLUENT Code Release of Version 4.3.1, January 1995.
8. D.M. Himmelblau, *Basic Principles and Calculations in Chemical Engineering, 5th Edition*, Prentice Hall, New Jersey, 1989.
9. ASPEN Technology, Inc., *ASPEN PLUS Release 9 Manual*, 1994.
10. L. Haar et. al., *NBS/NRC Steam Tables*, Hemisphere Publishing Corporation, New York, 1984.