SANDFL-0654
CONF- G406 134 —— |

Techniques for Active Embodiment of Participants in Virtual
Environments

Ron Hightower
Sharon Stansfield
Sandia National Laboratories

Abstract

This paper presents preliminary work in the
development of an avatar driver. An avatar is the
graphical embodiment of a user in a virtual
world. In applications such as small team, close
quarters training and mission planning and
rehearsal, it is important that the user’s avatar
reproduce his or her motions naturally and with
high fidelity. This paper presents a set of special
purpose algorithms for driving the motion of the
an avatar with minimal information about the
posture and position of the user. These
algorithms utilize information about natural
human motion and posture to produce solutions
quickly and accurately without the need for
complex general-purpose kinematics algorithms.
Several examples illustrating the successful
application of these techniques are included.

Introduction

The requirements for representing participants
within virtual environments (VEs) are highly
dependent upon the application area. In the
majority of current Virtual Reality (VR)
systems, the user is not represented at all.
Architectural walk-through or scientific
visualization, for example, require that the user
see, but not that she/he be seen. If the user is
allowed to manipulate aspects of the virtual
environment, for example open doors or pick up
virtual objects, then she/he is provided with a
pointer or disembodied hand to carry out such
functions. In more complex simulation
environments, such as those used by the
military, active participants are usually
represented by a graphical model of the vehicle
which they are operating. So, for example,
SIMNET is populated by air and ground vehicles
representing and controlled by users. More
recently, applications such as dismounted
infantry' and teleconferencing” have begun to
represent users as rudimentary human-like icons.
This provides multiple participants with some

* Presented at the 1996 IMAGE Conference
Scottsdale AZ 23-28 June 1996.

DISTRIBUTION OF THIS DOCU®ENT IS UNLIMITED (ﬂ

RECEIVED

sense of who else is present in their virtual
world. These representations are usually %

¥ 1 5 1996

and quite limited in their capability to represent
a user's body language and actions. (.) S T l

Current research at Sandia National Laboratories
is exploring the use of VR for situational
training and mission planning and rehearsal of
small team, close quarters operations. Areas
requiring such operations include security and
law enforcement (hostage rescue), military (urban
combat) and operations other than war. These
applications require that participants be
represented within the VE with a much higher
fidelity than do those discussed above. It is
important that team members be able to see each
other as full human figures. Position, posture,
gesture and body language are all vital
components of team coordination and
communication. When the mission is a covert
operation, these become even more important,
as verbal communication is kept to a minimum.
Therefore, if VR is to be used to plan and
rehearse such missions, the virtual
representations of team members must be capable
of reproducing motions and actions with
reasonable fidelity. In addition, VR imposes
several additional requirements. First, and most
important, the behavior of the participant's
virtual self, which we call his/her Avatar, must
be updated at near real-time to reflect the
immediate actions of the user. In addition, the
number of sensors/trackers used to obtain
information concerning the participant should be
small to minimize the amount of data which
must be collected and processed, and also to
avoid encumbering the user.

This paper presents work and preliminary results
in the development of techniques for actively
embodying a participant within a VE. The focus
of the work is two-fold. First, it is desired to
have an Avatar reproduce the actions of a user
with enough fidelity to satisfy the close quarters
training application discussed above. Second,
the simulations used for this training will also

MASTER

be populated by virtual actors -- purely
computer-generated humans. The techniques
developed here will also be applied to creating
realistic motions and actions for these virtual
humans.

Related Work

There are many different components to the
problem of representing human figures and their
motions in virtual environments. Solutions
range from traditional animation to capture and
use of motions performed by real people. The
entertainment industry, for example, has
successfully used the latter technique to create
highly realistic actions for virtual humans.
Generally, a large number of landmarks on a
person’s body are tracked using video-based
devices. Proprietary algorithms are then used to
perform kinematic analysis and to create motions
for the virtual actors. Unfortunately, while these
techniques produce very realistic motions, they
have two drawbacks -- the systems used are
generally expensive and the virtual character
motion is not generated real-time. As a result,
these techniques do not lend themselves to
virtual reality applications, where it is necessary
for the position and posture of the virtual actor
to keep pace with that of the user. Another
approach to creating virtual humans is to model
the human figure as a set of joints and to use
motion algorithms to create motions specified by
end, or goal, postures. Examples of such
methods are 3-D keyframing’, kinematics®,
dynamics’, joint-dependent deformations®,
stochastic noise functions’, and combinations of
the above® Many of these techniques are better
suited to generating motions for virtual humans
than to recreating realistic motions of actual
people. Kinematics has been applied most
successfully to this latter problem. Here, the goal
is to make the kinematic model simple enough
to allow solutions to be generated in real-time,
while still ensuring that these motions will be a
reasonable representation of the user’s actions. If
the model is too simple, then the motions will
appear robot-like. If it is too complex, then
multiple solutions may be generated, only one of
which will correctly correspond to the user’s
motion. One way to overcome this problem is to
attach more sensors to the user, thus adding
more constraints to the system. This solution,
however, can be expensive, encumbering, and
slow. Another approach, which we address here,
is to simplify the model and to use knowledge
of natural human motion to generate the most
appropriate solution.

The Avatar Driver

In this section, we present algorithms for driving
the motions of the avatar based upon the actions
of the user to whom it is slaved. The basic
problem of the avatar driver is one of inverse
kinematics -- using data about the position and
orientation of sites on the user's body to
determine the joint angles of the user's graphical
representation, or avatar. If every independent
body part has a unique sensor, the avatar driver
can simply echo the position of each body part.
Reducing the number of sensors makes the task
more difficult, as it results in an under-specified
avatar. In our current setup we have limited
ourselves to four sensors. These sensors are
mounted on the user’s head, lower back (pelvis
sensor) and hands. Each sensor provides
information about its position and orientation (a
frame). From these four frames the avatar driver
must compute 69 joint frames in order to
position the avatar. Because the avatar in this
case is under-specified, many of the joint angles
must be determined based on information other
than the sensor data. Knowledge of human
movement, for example, is used to position the
legs in a natural stance in the absence of direct
sensor data -- the pelvis sensor is used to
constrain the range of possible positions. The
shoulders, which also lack direct sensor tracking,
are also positioned using such heuristics.

Our original avatar driver used a powerful,
general purpose algorithm for solving inverse
kinematics °. Given a target frame for a part of
the body, this software would find appropriate
joint transforms to realize the target position.
The algorithm used information about joint
constraints, but had little or no knowledge about
comfortable or common limb positions/postures.
As a result, when multiple solutions were
possible, the algorithm would often “select” a
solution which was not representative of the
posture of the user. In addition, because of the
general-purpose nature of this algorithm, the
time required for calculating a solution was often
long enough to cause delays in the updating of
the avatar’s position. This would cause the
motions of the avatar to fall behind those of the
user, making it difficult for him/her to maintain
a sense of presence within the virtual world. To
overcome some of these problems, we have
begun developing a special-purpose avatar driver
that will allow us both to incorporate knowledge
about natural body postures and to explore the
use of different paradigms for body positioning.
Incorporating knowledge about postures will
enable the avatar driver to create realistic human

postures given only sparse sensor data. The
current avatar driver replaces the single, general
purpose method mentioned above with a handful
of special purpose algorithms for inverse
kinematics. In the following section, we will
discuss the algorithms for positioning the head
and shoulders; the hands and arms; and for
moving from a standing to a kneeling posture in
the absence of direct sensor input.

Geometry of the Avatar

We are currently (and temporarily) using human
figure geometry derived from the Jack® software
developed at the University of Pennsylvania'.
This figure hierarchy has 68 body segments
(most are in the hands and the upper torso: 32 in
the hands and 17 in the spine.) Each body
segment is represented by a joint frame that must
be computed each time the avatar is repositioned.

The root of the hierarchy is located in the pelvis
segment, and all other parts are in kinematic
chains attached to that root. Sensor S/, worn in
the small of the back, corresponds closely to the
root of the avatar. The frame data from this
sensor can be used directly to position and orient
the figure. However, in typical usage the data
from the pelvis sensor is combined with other
information before being used to position the
avatar relative to the virtual environment of
which it is part.

Head and Shoulders

The algorithm for positioning the head and
shoulders of the avatar is currently an ad hoc
approximation, Over a small range of movement
the head bends and twists correctly, but with
larger movements gross discrepancies appear.
The current method is associated with the spinal
structure of the current avatar hierarchy, which
we plan to redesign in the near future. For this
reason, we have not attempted to correct the
current algorithm for positioning the head and
the upper torso over larger ranges of motion.
Briefly, the head is positioned in the following
fashion. The location of the head (associated
with sensor S0, which is attached to the
headmounted display worn by the user) is
determined with respect to the pelvis frame. The
bend and twist of this relative frame is
distributed evenly among the seventeen spinal
segments of the upper torso. Because the spine
of the avatar hierarchy reflects the double
curvature of the real human spine, this simple
distribution of angular displacement is not very

accurate. It has, however, been sufficient for
current needs.

Hands and Arms

Once the position of the upper torso has been
determined, it is a straightforward process to
accurately place the hands of the figure in the
positions specified by the hand sensors (S2 and
S3, worn on the back of the user’s hands.) The
position of the elbow, however, is under-
specified, since only the shoulder frame and the
hand frame are known. This remains true even
when the angular constraints of the wrist and
shoulder joints are taken into consideration. Four
factors must be considered in determining elbow
position. These are joint constraints, collision
with upper torso, avoidance of unnatural
postures, and continuous solutions across
continuous ranges of sensor data. Only the last
two issues are addressed in the solution
presented below.

The primary purpose of this computation is to
place the wrist frame in the correct position (as
specified by the hand sensor). If the arm was a
single rigid link, of the same length as the
distance from shoulder to wrist, then positioning
that link could be reduced to specifying angles
for azimuth and elevation.

Let w,, w,, and w, denote the component

distances from the shoulder to the wrist, relative
to the shoulder frame (x axis forward, y axis

points right, and z is down along the limb). Let
the elevation angle be given by arccos (w,, w,)

and the azimuth angle be arccos (- Wy, dxz) where
d.xz = -\’w%+w% .

In normal usage *“elevation” gives angular
distance above the horizon and **azimuth” is
similar to a compass heading. Here we modify
the normal orientation of these angles to create a
more continuous solution. Elevation gives the
arm's angular displacement away from the body,
left or right, and **azimuth” gives rotation
around the y axis passing through the shoulder.

These angles would correctly position the arm if
it were a rigid link of the correct length. The
desired length, D, is given by

D= -\’ w%+w§+w%
We can create a rigid link of the desired length
by bending the elbow an appropriate amount.

Figure 1 shows the friangle formed by the upper

arm, the lower arm and a segment of length D.
Using the relevant identity,
¢?=a2+b2-2abcosc
we find these angles:

u?+12-p2?

elbow angle = n ~ arcos —;

w2+D2—12

shoulder angle = —arcos
2uD

These two rotations force the distant from
shoulder to wrist to be the desired D. A
compensating rotation is applied to the shoulder
so the wrist does not experience a net rotation,
and only moves closer to the shoulder. If the
length of the upper arm, u, were equal to the
length of the lower arm, /, then the
compensating shoulder rotation would be exactly
one half the elbow rotation angle.

The final position of the elbow can be adjusted
by rotating the arm about the shoulder's z axis,
after bending the arm but before applying the
elevation and azimuth rotations. Currently we
apply a constant 45 degree rotation, bringing the
elbow out away from the body. We plan to use
this particular rotation to improve the natural
look of the arm position and also to reduce
collisions with the upper torso.

Once the shoulder and elbow joints have been
properly rotated to bring the wrist into the
correct position, a final transform must be
applied to give the avatar's hand the same
orientation as the hand sensor. The sensor frame,
with respect to the universal coordinate system is
denoted Y and the frame of the wrist,

incorporating the rotations of elbow and
shoulder, is g/T .We want to find a transform

from wrist to hand, v}VIT , which we can get by
solving:
Wrir=yr

W Uy U=l
#T=gTyD

Figure 1 Bending the elbow. D distance from
wrist to shoulder. u: length of upper arm, /:
length of lower arm. S3: sensor frame, W: wrist
frame, sh: shoulder frame, a2: joint angle for
elbow, al: compensating angle for shoulder
joint.

Kneeling

The kneeling algorithm was created specifically
for use with a medical training simulation, where
the avatar has to kneel beside a virtual patient.
This type of kneeling is different from the
kneeling position used for firing a weapon, but
the two are indistinguishable in terms of sensor
data. In order to incorporate both kneeling
behaviors into the same avatar driver it would be
necessary for the system itself to choose between
kneeling postures based on the environmental
context, such as the proximity of a virtual
casualty or the drawing of a weapon.

The kneeling behavior for the medical simulation
is a very constrained set of motions. The
assumption is that the user will not move
horizontally once the knees have made contact
with the ground. This prevents intersection
between the avatar knees and the virtual patient.
Unfortunately people do move around on their
knees, which can lead to a discrepancy between
user and avatar position. Once we have
implemented full collision detection we can
allow the avatar to safely move while kneeling
near the virtual patient.

Figure 2 shows the two states of the kneeling
process. When the pelvis sensor drops below a
certain height value the avatar enters the knee
bending state. Upon entering this state the
position of the toe is recorded, and the toe
remains fixed in this location until the avatar
returns to the full standing position. During the
knee bending state the position of the legs is
controlled by the distance from pelvis sensor to
the ground (horizontal displacement is ignored).
The ankle is fixed at a 90 degree angle. Using
the same triangle identity as before we find the
three angles for the leg.

knee angle= _ arcosM
2ul
2 2_;2
. u“+dglc—1]
hw angle = —arcosw
2 2,2
loe angle = —arcos!__j&u_

21dgl

‘When the knee bending state is entered the frame
of the toe, B,, is recorded. The toe frame, B is
computed by traversing the hierarchy from the
root frame through the hip, knee, ankle, and toe

rotations: B = Ryoe Rankle Rknee RhipRoot-

Combining the rotations together gives
B = R, Root. During the knee bending state we

want to force the toe to be at the original toe
frame B, by adjusting the root frame. Hence,

for B= R, Root we want to find Roor so that
Bo= R Root . Solving for Rc¢ and substituting

gives Rootf = Root B~ Bo. Once the joint
angles have been computed, according to the
height of the pelvis sensor, an initial toe frame is
found. This toe frame is then used to find a new
root matrix which guarantees the toe will occupy
the desired position. If, during the knee bending
state, the pelvis sensor drops sufficiently low
then the avatar's knee will come in contact with
the ground plane. At this time the avatar enters
the knee-on-ground state. In this state the lower
legs remain fixed in place, and the upper leg is
only allowed to rotate about the knee joint. The
angle of rotation (the value K in Figure 2) is
determined by the horizontal displacement of the
pelvis sensor and is given by g, = arcsin(X/u).
The rotation of the knee joint is increased by
asand in compensation the rotation of the hip
joint is decreased by 4. The root matrix is

recomputed using Roof = Root B~ B, as
before.

Fixed Toe Position

Figure 2 Bending the knees. dgl: distance from
ground level, u: length of upper leg, I: length of
lower leg. a2: joint angle for knee, al:
compensating angle for hip joint, a3:
compensating angle for toe joint. Kneeling. K:
horizontal displacement of pelvis, a2: additional

angular displacement for knee and hip
compensation.

Preliminary Results

Figures 3 - 7 illustrate the effectiveness of the
techniques presented in this paper. Each figure
shows the user in a different pose and the
respective position of the avatar as determined by
the avatar driver.

Acknowledgments

This work was performed at Sandia National
Laboratories and was supported by the US
Department of Energy under Contract DE-ACO4-
94A1.85000. The authors would like to thank
Dan Shawver and Sudhanshu Semwal for their
input and confributions.

References

1. Granieri, J., Crabtree, J. and Badler, N.,
“Production and playback of human figure
motion for 3D virtual environments,”
Proceedings of the IEEE Virtual Reality Annual
International Symposium, Research Triangle
Park, NC, March 1995.

2. “Sharing cyberspace made easier,” CyberEdge
Journal, 5(4), Nov/Dec 1995.

3. Calvert, T., “Composition of realistic
animation sequences for multiple human
figures,” Making Them Move: Mechanics,
Control and Animation of Articulated Figures,
Badler, Barsky, and Zeltzer, Eds, Morgan
Kaufman, 1991.

4, Badler, N., Phillips, C. and Webber, B.,
Simulating Humans: Computer Graphics,
Animation and Control, Oxford University
Press, 1993.

5. Armstrong, W. and Green, M., “The
dynamics of articulated rigid bodies for purpose
of animation,” The Visual Computer, 1(4),
1985.

6. Magnenat-Thalmann, N. and Thalmann, D.,
“Human body deformations using joint-
dependent local operators and finite-element
theory,” in Making Them Move: Mechanics,
Control and Animation of Articulated Figures,

Badler, Barsky, and Zeltzer, Eds, Morgan
Kaufman, 1991

7. Perlin, K., “Real time responsive animation
with personality,” IEEE Transactions on
Visualization and Computer Graphics, 1(1),
March 1995.

8. Singh, K., Ohya, J. and Parent, R., “Human
figure synthesis and animation for virtual space
teleconferencing,” Proceedings of the IEEE
Virtual Reality Annual International

Figure 3

Figure 4

Symposium, Research Triangle Park, NC, March
1995.

9. Badler, N., Hollick, M. and Granieri, J.,
“Real-time Control of a Virtual Human using
Minimal Sensors,” PRESENCE, 2(1), 1993.

10. Jack 5.0 User’s Guide, Center for Human
Modeling and Simulation, University of
Pennsylvania, Philadelphia, PA, 1992.

Figure 5

Figure 6

Figure 7
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

