to minimize muiti-hop communications, so that-most messages traverse only a single
link between "nearest neighbor" nodes. Hop latency and congestion are reduced at the
expense of more programming effort and inefficient memory use (read-only data
replicated at every node to avoid communication). These mitigating factors will have
less impact with advances in processor power, memory access (SDRAM, RAMBUS,
use of fast cache[6,7]), and shifts to shared memory multiprocessing, as indicated
above. For these reasons, it is therefore important to develop alternative
interconnection media for high-performance multiprocessor and embedded systems.

Fiber optics is an attractive interconnect alternative with high transmission capacity
over long distances, light weight, and no EMI and ground bounce effects. Most
significant is the absence of capacitance and transmission line effects which limit
electronic fanout. Fanout is limited simply by the optical power required to achieve
error-free transmission. Passive optical star couplers provide broadcast capability
analogous to electronic data busses, and could support thousands of nodes for typical 1
GHz transceivers.[8] In addition, wavelength division muitiplexing (WDM) creates
multiple logical busses, one per system wavelength, for a gingle passive star.[8]
Messages can be simuitaneously transmitted on each wavelength without interference.
Thus, an optical WDM bus provides high bandwidth, one-hop communication among
many nodes (high fanout), and high concurrency (simuitaneous transactions on different
WDM channels). Fundamentally, WDM optics enables high connectivity routers by
source routing, which decouples node fanout (degree) from physical pinout restrictions.
A single optical cable can connect a node to multiple destinations, which are chosen by
transmitter wavelength selection. Fanout occurs elsewhere in the network by passive
optic components (star couplers, wavelength filters). Thus, optics decouples fanout
from the pinout and wire density limitations[1] of electronic VLSI technology. In the bus
topology, the number of logical busses can be increased without increasing the physical
pinout of the optoelectronic transcéivers. If multiple wavelengths are received at a
node, however, local electronic pinout and wiring density can become an issue.

Fig. 1 shows an example WDM bus using wavelength tunable transmitters and fixed
wavelength receivers. The advantages of this configuration are fast WDM tuning
(transmitter tuning is currently faster than for receivers) and no requirement for input
‘transmitters to track WDM filter tuning changes.

Passive Star \ T
Coupler _

Fig. 1: Optical bus for multiprocessing using N distributed nodes.

The performance, cost, and complexity of optical bus implementations vary
dramatically with the required bandwidth per wavelength B), number of system

wavelengths A, number of wavelengths detected at each node RA, and method for
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Fig. 2: Simulated system in dance hall configuration (a), and SMP of interest with main
memory distributed among processing nodes (b). Systems with only three processing
elements are shown.

The optical interconnect is operated as a set of A
independent, parallel busses with one bus per system wavelength. Every node has the
capability of transmitting on all system wavelengths, but transmits a message on only
one wavelength at a time. Wavelength-selectable optoelectronic transmitters of this
type have been demonstrated with tuning times of a few nsec.[8,13] Messages can be
simultaneously transmitted on different wavelengths without interference, so that the

maximum concurrency of the interconnect is A. Outgoing messages from a given node
are queued at the bus interface unit, and are sequentially transmitted on a first in, first
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