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Abstract. Spin-flip methods applied to excited-state approaches like the Bethe-
Salpeter Equation allow access to the excitation energies of open-shell systems, such
as molecules and defects in solids. The eigenstates of these solutions, however, are
generally not eigenstates of the spin operator S2. Even for simple cases where the
excitation vector is expected to be, for example, a triplet state, the value of (32)
may be found to differ from 2.00; this difference is called “spin contamination.” The
expectation values (5’2> must be computed for each excitation vector, to assist with
the characterization of the particular excitation and to determine the amount of spin
contamination of the state. Our aim is to provide for the first time in the spin-flip
methods literature a comprehensive resource on the derivation of the formulas for (52)
as well as its computational implementation. After a brief discussion of the theory of
the Spin-Flip Bethe-Salpeter Equation and some examples further illustrating the need
for calculating <§2>, we present the derivation for the general equation for computing
(52) with the eigenvectors from an SF-BSE calculation, how it is implemented in a
Python script, and timing information on how this calculation scales with the size of
the SF-BSE Hamiltonian.
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1. Introduction

Spin-flip methods have been introduced in the electronic structure literature beginning
in 2001 [1], developed for post-Hartree-Fock methods [2] and time-dependent density-
functional theory (TDDFT) [3]. These approaches describe states of an open shell
system via spin-flipping excitations from a high-spin reference state that can be
accurately described by Hartree-Fock or density-functional theory (DFT). The approach
was initially used for open-shell molecules[l], but recently SF-TDDFT has been
successfully applied to defects in solids [4]. An important aspect of these methods
is the evaluation of matrix elements of the spin operator 52 to assist with analysis
of the computed results, and assess the presence of spin contamination [5] which is
notorious in such approaches [6]. While Ref. [4] does not comment on the spin
contamination of their computed results for energy levels of defected solids, analysis
of the expectation value of S? for these states would be useful. Ref. [7] presents in its
appendix the necessary equation to calculate 52 for spin-flip excitations. However, a
detailed derivation is missing, and the authors are not aware of its presence elsewhere in
the literature. Obtaining the end result, beginning from the so-called “super-operator”
approach, is not trivial. In this article, we provide a thorough derivation of this equation,
to complement the derivation of the spin-conserving version presented in Ref. [§]. We
include many steps in working out the normal ordering of the creation and annihilation
operators in the nested commutators to assist any readers interested in working through
the results presented in Ref. [7] and [§], or applying the “super-operator” approach to
previously unconsidered transitions. We additionally include information about the
practical implementation for calculating matrix elements of 52 with spin-flip excited
states, using examples first considered in Ref. [9] to illustrate results, considerations,
and time performance of the relatively straightforward serial Python scripts.

We briefly review some of the procedure to perform a spin-flip (SF) calculation,
especially as applied to the Bethe-Salpeter Equation (BSE) [10, 11]. The spin-flip
BSE (SF-BSE) approach for open-shell systems has been developed independently by
Monino and Loos [I2] and by Barker and Strubbe [9]. Monino and Loos applied the
method to atoms and molecules. Barker and Strubbe applied the method to molecules
but also quantum defects in solids, adding to the available approaches for tackling
these challenging systems [I3]. (That work also pointed out the theoretical problems
with using conventional GW calculations with SF-BSE.) In the procedure for an SF-
BSE calculation, first the orbitals (both occupied and unoccupied) of the high-spin
reference state |H.S. Ref) are computed with DFT methods. The screened Coulomb
interaction W is computed using these Kohn-Sham (KS) orbitals and energies as in
GW calculations [14], [15]. The BSE Kernel K is constructed using only transitions from
occupied up-spin states to unoccupied down-spin states, and the SF-BSE Hamiltonian
is then diagonalized. The eigenvalue equation is

QP QPY 1 I Il
(Em —EF ) Aja + Z Kb itarAira, = Ajray (1)
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with quasiparticle energies EQP for unoccupied spin-down states a and occupied spin-up
i, excitation energy !, and excitation eigenvector components A{m . (The superscript
“I” is used as the index for some particular excitation.) The eigenvalues ! can be
used to calculate observables such as (“vertical,” i.e. ground-state geometry) optical
transition energies by taking differences of these eigenvalues, after identifying the
character of the eigenstates |U7). In this way, optical transition energies of open-shell
systems, such as defected solids, may be computed without needing to determine the
complete theory of BSE as applied to open-shell systems.

The eigenstates |U!) are linear combinations of “target states,” which are the states
generated from a spin-flip excitation of the high-spin reference state, given by

) = 32 ALalis|N,0), 2)

where |V, 0) is the high-spin reference state, iy is the annihilation operator for the up-

(19

spin orbital labeled as “/” in the reference determinant, C_LI is the creation operator
for the down-spin orbital labeled as “a” in the reference determinant, and A is the
amplitude for the particular spin flip transition. (The convention with the use of the
overbar is elucidated in Sec. ) We note that we are exclusively considering excited
states within the Tamm-Dancoff approximation [I6], where our excited states |¥7) do
not have contributions from de-excitations; Refs. [7, &, [17] consider non-Tamm-Dancoff
states. The target states dIiT]N, 0), or “li t,a |)”, as with the basis set of single-
particle transitions of ordinary BSE, may be characterized by the pair of states involved
in the single-particle transition. The space of target states |i T,a |) form the basis
set to describe multiple configurations associated with the ground and excited states of
open-shell systems.

This article is organized as follows. In Section [2, we discuss details regarding our
previous SF-BSE calculation results for the test systems, ethylene under torsion and
the NV~ center in diamond. In Section |3] we discuss why the explicit calculation of
(S?) is necessary. In Section , we discuss sources of deviation of the computed value of
(S” 2) from naive expectation. In Section , we provide the derivation of the formula for
(§2> for spin-flip excitations. In Section , we use a simple example to illustrate how to
use that formula. Finally, in Section [7], we discuss the scripts and their performance in
calculating (5?).

2. Summary of example calculations with SF-BSE

The authors have previously calculated the ground and excited states for interesting
open-shell systems in Ref. [9], using an implementation with a modified version of the
BerkeleyGW code [15], revision 7294, roughly equivalent to public release version 2.1.
Among these, first, is the ethylene molecule (CoH,) under torsion (from 0° to 90°). The
second is the NV~ center in diamond, a defect in crystalline diamond-structure carbon
in which one carbon atom is substituted with nitrogen (“N”), a neighboring atom is left
vacant (“V”), and the defect bears an overall negative charge (“~”). Here we summarize
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the key states and computational parameters for these previous calculations, which we
further analyze in this work.

The ethylene molecule under torsion is a conventional test system for computational
electronic structure approaches that allow for the description of open-shell states [3].
Under zero torsion, the ethylene molecule is a closed-shell singlet. At 90° of torsion
(about the carbon-carbon double-bond), however, the ground-state is an open-shell
triplet. There are four many-body electronic states whose energies give potential surfaces
with respect to the torsion angle. The “N” state is the lowest energy singlet (the ground
state, under zero torsion). The “T” state is the lowest energy triplet (the ground state,
at 90° of torsion). The “V” and “Z” states are higher-energy singlets.

The DFT calculation in Ref. [9] of the ethylene orbitals was performed with the
DFT code Octopus [I8, [19], version 8.4. We used the Optimized Norm-Conserving
Vanderbilt pseudopotentials [20] from the Pseudo-Dojo pseudopotential database [21],
version 0.2, with the PBE exchange-correlation [22]. The relaxed atomic coordinates
(at 0°) were calculated with a 0.115 A real-space grid spacing, roughly equivalent to a
115 Ry planewave wavefunction cutoff, in a box with edge-length 12 A. A smaller box
size was used in the subsequent calculations, which contains 99% of the charge density
for both the ethylene molecule with no torsion and 90° of torsion. The ground- and
excited-state energies were calculated explicitly at torsions of 0, 5, 10, 15, 30, 45, 60,
75, 80, 85, and 90°. For DFT input to SF-BSE calculations, we used a less stringent
real-space grid spacing for both the wavefunctions and density of 0.18 A, equivalent to
about 85 Ry planewave cutoff for the wavefunctions. We obtained the Mg = 1 reference
state by constraining occupations. Based on [23], we used 860 empty states and 24 Ry
for the calculation of the screened Coulomb interaction. For the SF-BSE Hamiltonian,
5 occupied spin-up (the maximum allowed) and 55 unoccupied spin-down orbitals were
used. In this SF-BSE calculation, and all subsequent SF-BSE calculations referred to in
this work, we use the Kohn-Sham energy eigenvalues in Eq. [I| in place of quasiparticle
energies; this approximation is justified in [9].

For the ethylene molecule under torsion, we then calculate <§2) for the SF-BSE
excitation vectors for the N, T, V, and Z states. The results are shown in Fig. [l We
note that a rather high amount of contamination occurs at 85°, when the singlet N and
triplet T states cross in energy, with the triplet now lower [9]. Otherwise the N and
T states have relatively low contamination. The V and Z states, however, show larger
contamination, and at lower angles. The Z state, for instance, is difficult to discern from
other excitations at these angles and this phenomenon can be understood as a measure
of the incompleteness of the basis of transitions used to describe this state.

The NV~ center in diamond is a well-studied open-shell defect in a crystalline solid.
Within its bulk band gap are so-called in-gap single-particle states labeled “v” and
“es,€,”, the latter being doubly-degenerate. (See, for instance, Ref. [24].) Its ground
state is a triplet, with the S = 1, Mg = 1 state having its up-spin v, e,, and e, orbitals
occupied and only its down-spin o orbital occupied. (For SF-BSE calculations, this is
our high-spin reference state.) Its three-fold degenerate triplet ground state is labeled
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Figure 1. The computed values of <§ 2) for the high-spin reference state and the N, T,
V, and Z states of ethylene within SF-BSE. T is a triplet while the others are singlets.
The spin of the many-body states is treated with a symmetric (“S”) or antisymmetric
(“A”) combination of the individual spins.

3 Ay, and its optical excitations, therefore, are not accessible by conventional GW /BSE.
We compute its transition energies to the singlet states 'F, ' A; and the triplet state 3E
in Ref. [9]. Again, we compute the bands in DFT with the code Octopus [I8] 19]. The
defect is placed in a 2x2x2 supercell, with 63 atoms (62 carbon, 1 nitrogen), since the
orbitals of the in-gap states are well-localized [24]. The real-space grid spacing is 0.34
Bohr, again, equivalent to an 85 Ry planewave cutoff. The pseudopotentials are also
Optimized Norm-Conserving Vanderbilt pseudopotentials [20] from the Pseudo-Dojo
pseudopotential database [21] with the PBE exchange-correlation[22]. The dielectric
matrix is calculated with 300 empty states and a cutoff of 12 Ry, consistent with the
choice of parameters in Ref. [25]. The SF-BSE Hamiltonian is constructed from 12
occupied and 11 unoccupied orbitals.

3. Necessity for the explicit calculation of <32)

With the eigenvectors and eigenvalues from a successful SF-BSE calculation, one may
wonder why the additional step for calculating (§2> is necessary. With appropriate
mapping of the indices of the up-spin hole and down-spin electron in the excitation
eigenvectors to electronic configurations, one may suppose that signs of the coefficients
read out explicitly from the eigenvector data give us sufficient information to determine
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the spin symmetry of the state.

Let us consider an example: the excitations as computed from SF-BSE for ethylene,
at zero torsion. The single-particle orbitals that describe the HOMO and LUMO (as
a minimal basis set) are |7 1), [7* 1), |7 {), and |7* |). The use of the overbars for
the down-spin states denotes the different spatial wavefunction, compared to the up-
spin state, as occurs in a spin-polarized or spin-unrestricted approach. The high-spin
reference state is the triplet |7 1,7 1). The excitation vectors of interest describe
the following states[26], with approximately the following numerical coefficients (to two
decimals) and signs[9):

|INY = 0.98]7 1,7 1) + 0.20|7* T, 7" ), (3)
Ty =0.71x T, 7" ) + 0.71|x" 1,7 ), (4)
|S) =0.71x 1,7 }) —0.71|x" 1,7 ]), (5)
1Z) = —0.207 1,7 1) + 0.98|7* 4,7 1) (6)

In a “spin-restricted” calculation, the eigenstates from a spin-unpolarized
calculation (i.e., disregarding spin entirely), are doubled and placed into two spin
channels, with the occupations made consistent with the magnetization of the system,
post facto. The orbitals in both spin channels are necessarily the same, including the
energies and phase information. However, in spin-polarized calculations, in which the
different spin channels have independent Hamiltonians, the orbitals with the same band
or orbital index but different spins generally have different real-space wavefunctions
and energies. (These are called “spin-unrestricted calculations”). In a spin-unrestricted
calculation, therefore, there will likely be some phase rotation of the orbitals in the
down-spin channel relative to the up-spin channel. If, for example, |7* |) orbital has a
change relative to the |7* 1) orbital (see Fig. [2), a naive reading of the excitation vector
coefficients would swap the interpretation of the |T') and |S) states.

In general, the introduction of a phase in an orbital |n) — €*|n) is accompanied
with a phase shift in the numerical value of the eigenvector coefficient AL — e~ AL .
That is, the wavefunction describing the excitation I computed within SF-BSE |¥7) =
s ALJia) is invariant upon change of phase of the orbitals (except for a possible
arbitrary overall phase). However, the values of the particular coefficients of the
eigenvector AL do depend on the phases of the orbitals, and, as we have seen above in
the simple example, can obfuscate the interpretation of the state [¥1).

Additionally, the particular states one is interested in describing may be most
quickly identified by their (32> values. For instance, the Z state of ethylene, under
zero torsion, is the tenth excited state, with several maximally contaminated (i.e., equal
parts singlet and triplet) uninteresting states intermediate in energy between it and the
lower-energy excited singlet V' state. While this state at zero torsion may be identified
by reading the coefficients for several excitation eigenvectors, at torsion angles greater
for zero, this laborious brute-force approach will not be productive. In fact, the energy
ordering of the Z state changes as a function of torsion angle, ultimately becoming at
90° of torsion the fourth excitation as ordered by energy.
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Figure 2. The frontier orbitals of ethylene under zero torsion, in the high-spin
reference state (up-spin orbitals occupied), plotted with XCrysDen [27]. The down-
spin 7* orbital in this illustration has a reversal of phase relative to the up-spin orbital.

4. Spin Contamination

The eigenvectors computed from SF-BSE may yield an expectation value of 52 that
differs from proper values of S (S + 1) such as 0 (singlet, S = 0) or 2 (triplet S = 1). One
source of spin contamination that even appears in the high-spin reference state before
any spin-flip excitation is applied is related to the difference in the spatial wavefunctions
for the different spin channels from spin-polarized DFT [28]. In the examples of ethylene
under torsion, or the NV~ this causes deviations of 0.01 or less. A larger source of spin
contamination in SF-BSE comes from the absence of particular transitions from the
set of target states that are required to form an eigenvector of 52 [6]. For example, if
the complete state is \/ig (Ir t,pd) +1p 1,7 1)), sometimes one of these requisite target
transitions may be inaccessible from a single spin flip from the up-spin channel to the
down-spin channel. This leads to maximally-contaminated states consisting of just one
of the two transitions, where the computed (5’2) ~ 1.

5. Derivation of (5?) for spin-flip transitions

Readers interested only in the final result should refer to Eq. The detailed work
that follows may assist readers in following the work in, for example, Refs. [7], 8, [17].
A spin-polarized system will have N total electrons, with N} electrons in the spin-
up channel and N, electrons in the spin-down channel. We use the convention that our
high-spin reference state (computed from DFT) is polarized such that Ny > N, and the
transitions calculated from the (spin-flip) Bethe-Salpeter Equation remove an electron
from an occupied spin-up state and place it in a previously unoccupied spin-down state.
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Figure 3. The computed <5‘2>0 for ethylene for torsion angles from 0° to 90°. The
High-Spin Reference state is a triplet, so the values are reported as deviations from
the expected S(S + 1) = 2.

The number of (necessarily spin-down) unoccupied states used in the calculation is
Nyunocc. The set of all of the orbitals we consider in the spin-flip calculations are
the up-spin KS orbitals ¢,, and down-spin orbitals ¢,, with m € {1,...,N;} and
ne{l,...,N,N +1,...,N, + Nunocc}. The orbitals n € {1,..., N} are always
occupied, since we do not flip occupied down-spin electrons to unoccupied up-spin
orbitals. For a particular excitation, one of the spin-up orbitals ¢; with i € {1,..., N4}
becomes unoccupied while one of the orbitals ¢, with a € {N, +1,...,N, + Nunocc}
becomes occupied.

We first compute (S2)o for the high-spin reference state, |N,0), via the following
equation from the well-known Lowdin Formula [29]:

(820 = (¥, 0871N,0) = (1) (T 1) 4N =S 1)

Using the Lowdin Formula, which is valid for a many-body wavefunction that is a Slater
determinant as in Hartree-Fock, implies approximating <S2>0 via a Slater determinant
formed of the KS states of the high-spin reference state [I7]. (More sophisticated DFT
approximations have also been developed [30,31].) In Fig. [3| we see that (52), deviates
by at most 0.1% from 2.0 for ethylene under any torsion angle, as expected for the
triplet spin symmetry of the high-spin reference state. Likewise, (52)o for the triplet
ground state of the NV~ center is 2.05. These results are consistent with a DFT study
[32] finding that solids generally have more spin contamination than molecules.

For spin-flip excitations from the high-spin reference state, we compute the
difference “A(S’Z)” between (S2> for the I'th spin-flipped excitation and the reference
state: A(S?) = (5§2); — (S%)y. (It is standard to subscript A(S?) with the label for
the state I for which it is computed; we will be suppressing this subscript throughout.)
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While the formula for A(S’2> in the context of SF-TDDFT was previously published as
Eq. A10 in [7], was evidently implemented in codes for use in calculations such as [33],
and was used for SF-BSE in [12], the derivation does not seem to have been shown in
detail and so we work through the derivation here.

The eigenvectors of the Bethe-Salpeter Equation are the electron-hole amplitudes
[10] that are required to construct the two-particle reduced difference density matrix
AT [8]:

[0 = (N,0lrsTgp|N,0) (8)
Dpors = (N, I|rlstqp| N, T) 9)
Alpgrs = Tpors = Dpgrss (10)

where p, ¢, r, and s are the annihilation operators for one-electron states ¢,, ¢4, ¢,
and ¢, respectively; |N,0) is the many-body high-spin reference state; and |N, I) is the
I'th many-body excited state.

We use the formalism developed in [§], originally for spin-conserving transitions and
obtained from considering time-dependent Hartree-Fock, and apply it to spin-flipping
transitions. Within this formalism, we evaluate the I'th excited-state’s ($2); indirectly
by adding (S2)o to A(S?), which is computed using from the “super-operator” approach
[, 18, 17]:

A(8?) =1 — opHS- Ref f Avp ) (11)
A(Pry) = > Alwpapsi(sla)olr), (12)
TS,pq
Al guprst = Z (Al']‘,ai) AJIT bl (13)
itadtb)

(.0 [ifay . [plsfaurs . 0Ls]| IV.0).

The constant term 1 —2M E'S' Ref appears due to the change in the number of up- and
down-spin electrons in the spin-flipped excited state:

We use the convention from the quantum chemistry literature that ¢, 7, k are indices for
creation/annihilation operators for occupied orbitals or bands; a, b, unoccupied orbitals
or bands; and p, ¢, r, and s, either occupied or unoccupied. Again, the over-bar indicates
the possibility of the use of unrestricted orbitals or, equivalently, spin-polarized bands.
The nested commutators were confirmed to be evaluated correctly with the
assistance of the SNEG [34] software, which can perform symbolic evaluation of second-
quantization-operator expressions. The first general result for the matrix element is

(V.0 [ifa, . [plstaury. Bl3:]] IN.0) (17)
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Figure 4. The four cases (as in Eq. to consider for calculating matrix elements
of the nested commutators of creation/annihilation operators, labelled as O in the
figure, necessary for the calculation of A<5'2>. The indices ¢ and j represent the newly
unoccupied state upon the spin-flipping excitation, for the bra and ket, respectively,
and @ and b represent the newly occupied state for the bra and ket, respectively. (a)
The single-particle transitions for the bra and ket involve the same up-spin orbital
(“ = j7 ) and same down-spin orbital (“@ = b”), (b) different up-spin orbitals but
the same down-spin orbitals (“i # j” but “@ = b” ), (c) the same up-spin orbitals
but different down-spin orbitals (“i = 57 but “@ # b” ), and (d) different up-spin and
down-spin orbitals (“i # j” and “@ # b”).

= (N, 0lifayp|siq,ribljs| N, 0) — (N, 0lita,b j1p] siagyri |V, 0)
after recognizing that terms with a;|/N,0) = 0. As in [30], we explicitly consider four
cases (see Fig. {)): (1)i=j,a=0b, (2a)i#j,a=0, (2b)i=7,a#b, and (3) i # j,
a # b, thus partitioning the expression as follows:
A(82) =1 — 205 Ref 57 (4l ) AL (18)
i,d,5,b
{6i,j5d,b<o>i:j T (1= 0,5)855(0) 0
(1= 80N 4 (1= 6,)(1 = 6,5){O) )
where

(0) = > (N, 0| [ifay, [p]slarr, || IV, 0)(s]g) (pIr) (19)

T"S,ﬁ’g

We consider explicitly the matrix element of the nested commutators in the
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contribution to A(S?) for “Case 1,” when i = j and @ = b:
(N, 0lifa,p! stqribljt|N, 0) — (N, 0lila,b! jrpl slqr | N, 0) (20)
= (N, 0lila,p|s}q,rralir|N, 0) — (N,0|ita,alirp|s}q,r| N, 0)
= —(N,0li} (6(p, a) — play) s} (8(q,a) — alq,) ryis| N, 0)
+ (N, 0li} (6(a, a) — ala,) p} (3(s,4) — slir) g4 |V, 0)
= (N, 010(5. @)0(7. @)l slris N, 0) + (N, 0/8(5, )]sl gyryir V. 0)
— (N,0/(q,a )ZTMSTCW’TZHN 0) + (N, O\ﬂpisi (6(a, a) —aicu) q,r+i4|N, 0)
— <N,O|5(a,a)2Tp¢qu¢rTzT\N, 0) + (N,0[d(a,a)d (s,z’)ﬂﬁiq‘yﬂ]\ﬁ 0).

Again, terms with a;|NV,0) = 0 (and likewise with its complex conjugate), which leaves
us with just four terms:

= (N,06(a,a)ilp! slq,ryis| N, 0) — (N,06(a, p)é(a, q)ilsiris|N,0)  (21)
- <N7 Old(dv a)@%piﬂqﬁ‘ﬂﬂ]\f O> <N7 0|5(da EL) (Z S)ZT]%,QJ,THN O>
The first and third terms cancel, giving

6(a,a)d(s,)(r,1)0(p, q) — 6(p,a)d(q, a)o(i,1)o(s, r)(L = d(r, 1)) . (22)
Placing these Kroenecker deltas into Eq. |19 . (O) for this first case gives
<O>17],a7b

- (ka [(Kla)* = > [Glk)* — |<i!d>l2> :

k
with the convention that k and k are the occupied states from the high-spin reference
state, for either spin channel. (With this definition for %, the term —|(i|a)|* enforces
the condition from the second term in Eq. that the states labeled r are prohibited
from including i.)
We now consider the derivation for “Case 2a,” when i # j and a = b:

(N, 0lita,p|stq rialjr|N,0) — (N,0lila,aljip|slq,r| N, 0) (24)

= (N,0[6(a, a)i\p|s}q,rj+|N, 0) — (N,05(a, p)é(a, q)its}ryj| N, 0)

— (N, 0[6(a, a)ilp! sLq,ryjt| N, 0) + (N,0(8(a, a)d(4, s)ilp|q,r| N, 0) .

The first and third terms cancel, and the remaining terms are
— (N, 0[6(a, p)5(a, q)i}skrjr|N, 0) + (N, 016(a, @)d(j, s)itp,q,r+| N, 0) (25)
= d(a,a)d(j, s)o(i,r)0(p, q) — 6(a, p)o(a, q)o(i, j)o(s,r)

However, i # j, so we only have one non-zero contribution for the case i # 7 and a = b:

6(a,a)o(j, s)o(i,r)8(p, q)- (26)

(23)

= Z ((S(C_L, (_1)5(87 i)(S(T, 2)5(]57 (I) - 5(]37 d)5(q_, (_1)5(i, i)5(8, T)(l - 5(T7 Z)) <S|q_> <]5|T’> )
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The “Case 2a” contribution to A(S’2> is found, then, to be

(0yF= = 37 5(a, a)8(j, $)8(i,r)3(p, @) (sla) (plr) . (27)

7,5,0,d
= > (jlk)(klD)
k
Similarly, we consider the derivation for “Case 2b,” when i = j and a # b:
(N, 0itap! sl rdlir| N, 0) — (N, 0lila,blirp] stq,rs| N, 0) . (28)

We remark immediately that the second term is necessarily zero due to the position of
the l_)I operator. Its commutation with a; gives the Kroenecker delta d(a,b) which is

zero by definition of Case 2b, and the null (l_)¢|N , O>)T. The non-zero portion may be

reduced:
= —(N,0li} (6(p,a) — pla, ) slq,b]rsi| N, 0) (29)
= —(N,00i} (3(p,a) — pla,) s} (3(b,q) — bla,) ryi4| N, 0)
(N,016(p,a)6(q, b)ilslryis| N, 0)
+ (N, 05(p, a)ilskb]q,rsis| N, 0)

— (N, 0[5(b, q)szisTaJTzﬂN 0)

+ <N,O]i$p ST%bﬂiTTZT’N 0).
Of these final four terms, only the first is non-zero. The remaining three are zero due
to the conditions a;|N,0) = 0, (l_)¢|N, O})T =0, and 6(a,b) = 0 for @ # b. Thus “Case
2b,” when i = j and a # b, gives as the matrix element

—0(p,a)d(q, b)d(s,1)d (i, 1) (1 — 8(r,7)). (30)
Using this, we find the “Case 2b” contribution to A(S?):
(O)=97# = — 37 5(p,a)5(g,b)8(s,7)8(i, 1) (s]q) (plr) (31)
%#1,5,0,q

= —>_(klb){alk) — (ilb)(ali),
k
where, again, the contribution from 7 in the sum over £ must be subtracted out for the
same reason as in “Case 1.”
Finally, we derive the contribution for “Case 3,” when i # j and a # b:

(N, 0lita,p!slqridl iy | N, 0) — (N, 0ila,b]jsp! slq | N, 0) . (32)
As in the previous case, the second term is necessarily zero. We then have

= —(N,0li} (6(p, a) — pjay) st (3(b,q) — b]ay) reit| N, 0) (33)

= —(N,0[8(p, a)3(b, q)ilslryji| N, 0)

= (N, 006(p, @)8 (b, a)s}itrjr|N, 0)
with the other terms necessarily zero, for the same reasons as in the previous case. The
final case, then, gives us for the matrix element

3(p, a)d(q,b)o(r,1)d(s, j)- (34)
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5%) is
)a(r,i)d(s, 7){s|a)(pIr) (35)

With this, the “Case 3” contribution to A(
O = 5 5(5,2)5(a, 55
7,8,0,d
= (jlb)(ali) -
Collecting all of the contributions from the different cases as per Eq. we arrive
at the complete expression for A(S?):

A(8?) =1 — 205 Ref 57 (Al Y Al
4,a,5,b
{—QﬂM(ZH% - IR )
k

(36)

(= 8605 SR — 6,1 — 0, (§kw i@wm)

k
+ (1= 6)(1 = ) Gl ali |

This equation has an important property of gauge-invariance which can be explicitly

verified: a phase change of an individual orbital does not affect the final result, provided

that the coefficients A have the counteracting change that keeps the quasiparticle
wavefunction |\IJ]) constant.

6. Example application: The defect states of the NV~ center

The general equation for A(S?) is clarified by considering a simple and illustrative
example. We will consider a by-hand calculation of Eq. for the S = 1, Mg = 0
ground state of the NV~ center, with a minimal basis set, and with the same orbitals
for the different spin channels (as in a “spin-restricted” calculation).

In a more complete description, the NV~ center has four electrons available to
occupy six in-gap orbitals [35]: |v 1), [0 1) , lex 1), ez ), ley 1), |é, ), where
e, and e, are degenerate single-particle states. The high-spin (triplet) reference state
v 1,0 |,e; T,e, T) has S = 1, Mg = 1. From this high-spin reference state, we find
from actual SF-BSE calculations the S = 1, Mg = 0 triplet state

?Ag) = 0.70e,e,) + 0.70]e,&,) + .., (37)

omitting the v states as well as the spins (the overbar denoting the down-spin orbital, and
the lack of an overbar denoting the up-spin). While the small deviation of the coefficients
from 1/4/2 in the presented eigenvector for [3A4,) is from minor contributions of other
excitations, these are found to be less than 0.1; we therefore round the coefficients
to 1/4/2 for an analytic calculation of (52 for this triplet state. See Fig. for an
illustration of the high-spin reference state, |>A,), and the degenerate excited triplet
states with maximal spin contamination, |*E).

To first calculate <S 2)o for the high-spin reference state, we reiterate our assumption
in our simple model that we have the same orbitals for the different spin channels, and
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we apply the Léwdin formula (Eq. :
- 2\ /2
(S2>0=<2) <2+1)+1—1=2 (38)

since only the v orbitals have both spin channels occupied. The use of spin-unrestricted
orbitals causes only small deviations from the expected value, 2, with the calculated
(S?) ~ 2.05.

We illustrate the calculation of A(S?) for the |3A,) state (with S = 1, Mg = 0),
using the simplified spin-restricted orbitals, with the exact coefficients of 1/ V2. This
state, then, is

*As) = (39)

|ex€y) + 71 |ey€z)
€€ €y€s) -
\/_ \/§ v

The calculation of A<52> can most readily be thought of in terms of the “four cases”

for AT in Eq. [1}

In this minimal basis set (where we even ignore the

“ 7

in-gap orbitals), the bra
(3As| and the ket [*A,) each are composed of two spin-flip transitions (with respect to
the high-spin reference state |e;, e,)), and each of these transitions has an amplitude

— 1.
Ag =5

’5142) \/— xew,ew7€y> \/— yey|6x’ ey) (40)

where e, is the annihilation operator for the e, orbital, etc. Similarly, the bra state can
be written as
ol = —={eaeyl (ehe) + —mtens ey (Ele,) (41)
\/g zy Gy €z \/5 Ty Y-y
In calculating Eq. [36] we see that we have only have two of the possible four cases:
i=janda=>b and i # j and @ # b. Let us apply the cases individually. When
1=7=¢e,and a =b=e,,

A/~

{— S (ke + |<e$|ey>|2} (42)

k={ez,ey}

Sl

1 *
V2) V2
1\ 1 B ) )
- \/§> 2 {_’<€z‘6x>|2 — eylex)]* + |<ex\eaj)|2}
—140-1=0,
Wlth the terms for “Case 17 involving “k” in Eq. [ being null. Similarly, when

44 2

=j =¢ and a = b = €y, we also have zero, from just swapping the and

LL 2

indices in the above expression.
The pair of “middle” terms require “Case 3,” where i # j and a # b:

1\" 1 B - 1
(55) Jsteretala) =, (43)

and
1 1

(55) Jptelenteden = 5 (44
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(a) |H S Ref State) = _gx__;}y_ & §, <S2>0:{2-00,restricted

2.05 , unrestricted

1 e =2 X i
(b) |3A2> - = —!X— ] 5 5 )4 _ex__g_ _gx_ 5 (8?) = {1.99,restrlctod

\/E _!_y _!_ _'_y _!_ 1.56 , unrestricted
v v v
(©) |3E> — RS ++ P 52y = [097  restricted
Tnt -+ , o’ —+ 1.04 , unrestricted
v v v v

Figure 5. The electron configurations and values of <,§ 2} as calculated in SF-BSE for
(a) the high-spin reference state, (b) the 34y (with Mg = 0) ground state, and (c) the
3E excited state for the NV~ center in diamond. Values of <5‘ 2) are presented for both
the spin-restricted and spin-unrestricted cases.

All together, the four contributions give 0+ 0+ 1/2+1/2 = 1. A(S2) is obtained
by adding to this 1 — QME‘S' Ref _ 1 _92(1) = —1. A(S?) for the 3A, state in this
model therefore is then just 1 — 1 = 0. Since (S2) for the high-spin reference state was
2, we have, from a simplified version of a minimal description of the SF-BSE computed
excitation eigenvector, (34,| S22 A4,) = 2, as expected.

The reader may verify that a similar approach will give (S’2> = 1 for either of the
|>E) states, since each is missing a “partner” configuration with all of the spins reversed.
These configurations are attainable from so-called “mixed-reference” spin-flip schemes
[6] but are beyond the scope of present work based on a single reference state.

7. Execution and timing information of implementation with BerkeleyGW

The calculation of (S’ %) requires the following information: the number of occupied (spin-
up) orbitals used in the SF-BSE calculation; the number of unoccupied (spin-down)
orbitals used in the SF-BSE calculation; the real, imaginary, and modulus-squared of
the overlaps of all of the spin-up occupied orbitals with the same number of spin-down
occupied orbitals as well as all of the specified spin-down unoccupied orbitals; and the
excitation eigenvector coefficients in the basis of single spin-flip transitions.

In practice, the overlaps are calculated from files with potentially many more
orbitals (or bands) than specified for the SF-BSE calculation; these total number of
bands and their occupation values are then also needed. From this latter requirement,
we read as input the wavefunction information calculated for the high-spin reference
state, in which all unpaired electrons are in the spin-up channel. The wavefunction
information, as currently implemented, is provided from an HDF5-format [36] file,
win.h5, obtained through BerkeleyGW with HDF5 1/O enabled. In particular, the data
“mnband”, “ifmin”, and “ifmax” from the wfn.h5 file are used. As per the BerkeleyGW
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documentation [37], “mnband”, the total number of bands, is a single integer. “ifmin”
and “ifmax” are integer arrays with two indices; the fast index (first for Python/C,
last for Fortran) is the spin index, and the second is the k-point index. With the
possible exception of defects in two-dimensional materials [38, [39], only the I'-point in
the Brillouin zone is needed. “ifmin” is the lowest occupied state, while “ifmax” is the
highest occupied state (resolved by spin and, if needed, k-point index). The combination
of the data from “mnband”, “ifmin”, and “ifmax” is used to designate orbitals/bands
in either spin channel as occupied or unoccupied.

The overlap matrices of the spin-up orbitals with the spin-down orbitals are
computed with the BerkeleyGW utility wfn dotproduct.x. The overlaps.dat file
contains the necessary overlap data between the spin-up and spin-down orbitals, e.g.,
(r|p), that the calculation of (§2> requires (see Eq. . This is calculated by swapping
the spin indices from the wavefunction provided by wfn.h5, copied to a new file
wfn_swap.h5. In a directory with wfn.h5 (or a link to it), the following command
outputs a file, wfn_swap.h5:

python spin_swap.py

The wfn_swap.h5 file is a copy of the wfn.h5 file but with the spin channels reversed;
its first spin channel (usually spin-up) is the spin-down channel of wfn.h5, and vice-
versa. Using the BerkeleyGW utility hdf2wfn.x, the wfn.h5 and wfn_swap.h5 are
converted into their corresponding WFN and WFN _swap files. The overlaps.dat file
is computed from the BerkeleyGW executable wfn_dotproduct.x, with the two input
wavefunctions, WFN and WFN _swap. The output of the wfn_dotproduct.x execution
is piped to a file called overlaps.dat. The eigenvectors.h5 file is generated via a
SF-BSE calculation; the protocol for this can be found in Ref. [9]. The calculation
of <§2) for the high-spin reference state with the Python script ref_s_sq.py does not
strictly require the eigenvectors.h5 file, though this calculation is often performed
just before the calculation of A(S %) in the same directory.

Once the wfn.h5, overlaps.dat, and eigenvectors.h5 are generated and/or
linked to the desired working directory, the calculations of A(S?) can commence. The
Python script ref_s_sq.py is first executed with the command

python ref s sq.py --wfn {wfnname.h5 } --nv {No. occupied up-spin
orbitals} =-nc {No. unoccupied down-spin orbitals}.

The output can be piped to a text file, with the last line providing the calculated
(S?) for the high-spin reference state. The HDF5-format wavefunction file can have a
name different from wfn.h5 and is specified by the --wfn directive. The Python script
delta_s_sq.py is then executed with the command

python delta s sq.py --wfn {wfn name.h5 } --nv {No. occupied up-spin
orbitals} --nc {No. unoccupied down-spin orbitals}.

The output of this script should be piped to an output text file. The scripts to calculate
(52) are available publicly in Ref. [40].
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We will outline the most important subroutines of the delta_s_sq.py script. The
subroutine “determine_case” reads in the orbitals involved in the spin-flip transition
for the “bra” and “ket” states and returns the particular case needed. (See Section [f]
for a simple illustration.) The subroutine “occ_ref” gives lists for the set of occupied
orbitals/bands from the high-spin reference state, as well as the difference of the number
of spin-up and spin-down electrons. The subroutine “occupied_alpha” gives a list for
the set of the occupied spin-up orbitals/bands for a given spin-flip transition; likewise,
the subroutine “occupied beta” gives a list for the set of the occupied spin-down
orbitals/bands for that spin-flip transition. The subroutines “case_one”, “case_two_a”,
“case_two_b”, and “case_three” calculate, for the particular case, the relevant portion
in the curly braces of Eq.

By default, delta_s_sq.py calculates A(SQ) for all excitations. Additionally, for
each excitation, the calculation of A<S2> requires loops over each transition-pair 7, a
and 7,b. This gives the script a scaling of O(N*N?), with N, the number of specified
occupied up-spin orbitals and /N, the number of specified unoccupied down-spin orbitals.
The additional factor of N, comes from the sums over “k” and/or “k” that occur for all
cases except when i # j and @ # b for a particular pair of transitions. (When N, is small
enough such that it includes only the open-shell spin-up states, these sums are not used,
and the scaling is O(N2N?). These results will not likely be converged, however.) For
comparison, the scaling of the diagonalization step of SF-BSE is O(N2N3). In practice,
the pre-factors are typically such that the A<S2> calculation will be only a small fraction
of the diagonalization time. The A(S?) scaling could be reduced to O(N?*N2), less than
that of diagonalization, via an appropriate modification of the script to compute A<§ 2)
for only a subset of excitations of interest.

Timing information is provided for the example case of the ethylene molecule under
zero torsion, shown in Fig. @, with A(S‘ 2) calculated for all possible excitations. The time
taken for computations, in seconds, was found by using the time command while running
the Python script. In this case, two occupied orbitals are the minimum, and five occupied
orbitals are the maximum (limited by the number of occupied down-spin orbitals in
the high-reference state). The upper-limit of 50 empty orbitals is approximately the
number of empty orbitals required to converge the ethylene torsion barrier [9]. For the
calculations with N, = 2, the sums over k and k are not performed in Eq. and
the scaling is O(N2N3), with a prefactor of 1.5 x 107° s. For N, = 5, the scaling is
O(NAN3), with a prefactor of 3.1 x 1079 s (the same as the N, = 2 case, after accounting
for the additional factor of N, =5.)

As a test for the convergence of A<32> (after already obtaining converged values
of the excitation energies from SF-BSE), we compare the values for the cases (N, = 5,
N, = 5) with (N, = 5, N. = 50), and find differences, at most, on the order of 0.01.
(See Table ) Therefore, one may take A(S2) to be computed sufficiently with fewer
unoccupied states than were used to construct the SF-BSE Hamiltonian.
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Figure 6. Timing information for A(S2) calculations with various sizes of the SF-BSE
Hamiltonian for the test system of ethylene under zero torsion. N, is the number of
specified occupied orbitals and N, is the number of specified unoccupied orbitals. The
size of the SF-BSE Hamiltonian is N, N.. For both choices of N,,, N, values from 2 to
50 are considered.

Table 1. The computed A(S’2> values for the states N, T, V, and Z for ethylene
under zero torsion, with two different sizes of the orbital basis set. The last row is the
expected values for pure singlets (-2) and triplets (0).

N, [N.] N T V Z
5 | 5 |-1.985 | -0.045 | -1.965 | -1.957
5 | 50 | -1.998 | -0.014 | -1.974 | -1.983
N 0 2 2

8. Conclusion

We showed the necessity of the computation of (S2> to make meaning of the results
from Spin-Flip Bethe-Salpeter Equation calculations due to ambiguities from phase
differences in orbitals in different spin channels, and ease of rapid identification of desired
excited states. We reviewed the notion of spin contamination and its possible sources
from spin-polarized calculations (generally giving small contamination) and incomplete
transition vectors (possibly giving large contamination). We then derived in great
detail the equation used for calculating A(§2> from the “super-operator” approach,
by explicitly considering the four cases possible for the individual transitions in the bra
and ket states. We reviewed the suite of Python scripts written for BerkeleyGW to
calculate (52)q for the high-spin reference state and A(S?) for the excited states, so
that this approach may be implemented independently for research teams interested in
the spin-flip method. These scripts are available in [40] and will be in a future release
of the BerkeleyGW package. We included timing information for the execution of the
(serial) script for A(S?), showing O(NAN3) scaling, when computing for all possible
excitations. The convergence of A(5‘2> for our two examples of ethylene and the NV~
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center in diamond indicated rapid convergence with respect to the number of unoccupied
states, so the serial script with fewer unoccupied states may be performed initially for
the purposes of analysis of states before the full set of unoccupied states are used for
fully-converged results for A(S?) values.
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