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Abstract. Spin-flip methods applied to excited-state approaches like the Bethe-

Salpeter Equation allow access to the excitation energies of open-shell systems, such

as molecules and defects in solids. The eigenstates of these solutions, however, are

generally not eigenstates of the spin operator Ŝ2. Even for simple cases where the

excitation vector is expected to be, for example, a triplet state, the value of ⟨Ŝ2⟩
may be found to differ from 2.00; this difference is called “spin contamination.” The

expectation values ⟨Ŝ2⟩ must be computed for each excitation vector, to assist with

the characterization of the particular excitation and to determine the amount of spin

contamination of the state. Our aim is to provide for the first time in the spin-flip

methods literature a comprehensive resource on the derivation of the formulas for ⟨Ŝ2⟩
as well as its computational implementation. After a brief discussion of the theory of

the Spin-Flip Bethe-Salpeter Equation and some examples further illustrating the need

for calculating ⟨Ŝ2⟩, we present the derivation for the general equation for computing

⟨Ŝ2⟩ with the eigenvectors from an SF-BSE calculation, how it is implemented in a

Python script, and timing information on how this calculation scales with the size of

the SF-BSE Hamiltonian.
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1. Introduction

Spin-flip methods have been introduced in the electronic structure literature beginning

in 2001 [1], developed for post-Hartree-Fock methods [2] and time-dependent density-

functional theory (TDDFT) [3]. These approaches describe states of an open shell

system via spin-flipping excitations from a high-spin reference state that can be

accurately described by Hartree-Fock or density-functional theory (DFT). The approach

was initially used for open-shell molecules[1], but recently SF-TDDFT has been

successfully applied to defects in solids [4]. An important aspect of these methods

is the evaluation of matrix elements of the spin operator Ŝ2 to assist with analysis

of the computed results, and assess the presence of spin contamination [5] which is

notorious in such approaches [6]. While Ref. [4] does not comment on the spin

contamination of their computed results for energy levels of defected solids, analysis

of the expectation value of S2 for these states would be useful. Ref. [7] presents in its

appendix the necessary equation to calculate Ŝ2 for spin-flip excitations. However, a

detailed derivation is missing, and the authors are not aware of its presence elsewhere in

the literature. Obtaining the end result, beginning from the so-called “super-operator”

approach, is not trivial. In this article, we provide a thorough derivation of this equation,

to complement the derivation of the spin-conserving version presented in Ref. [8]. We

include many steps in working out the normal ordering of the creation and annihilation

operators in the nested commutators to assist any readers interested in working through

the results presented in Ref. [7] and [8], or applying the “super-operator” approach to

previously unconsidered transitions. We additionally include information about the

practical implementation for calculating matrix elements of Ŝ2 with spin-flip excited

states, using examples first considered in Ref. [9] to illustrate results, considerations,

and time performance of the relatively straightforward serial Python scripts.

We briefly review some of the procedure to perform a spin-flip (SF) calculation,

especially as applied to the Bethe-Salpeter Equation (BSE) [10, 11]. The spin-flip

BSE (SF-BSE) approach for open-shell systems has been developed independently by

Monino and Loos [12] and by Barker and Strubbe [9]. Monino and Loos applied the

method to atoms and molecules. Barker and Strubbe applied the method to molecules

but also quantum defects in solids, adding to the available approaches for tackling

these challenging systems [13]. (That work also pointed out the theoretical problems

with using conventional GW calculations with SF-BSE.) In the procedure for an SF-

BSE calculation, first the orbitals (both occupied and unoccupied) of the high-spin

reference state |H.S. Ref⟩ are computed with DFT methods. The screened Coulomb

interaction W is computed using these Kohn-Sham (KS) orbitals and energies as in

GW calculations [14, 15]. The BSE Kernel K is constructed using only transitions from

occupied up-spin states to unoccupied down-spin states, and the SF-BSE Hamiltonian

is then diagonalized. The eigenvalue equation is(︃
E
QP
ā↓ − E

QP
i↑

)︃
AI

i↑,ā↓ +
∑︂
j,b̄

Kj↑b̄↓,i↑ā↓A
I
i↑,ā↓ = ΩIAI

i↑,ā↓ , (1)
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with quasiparticle energies EQP for unoccupied spin-down states ā and occupied spin-up

i, excitation energy ΩI , and excitation eigenvector components AI
i↑,ā↓. (The superscript

“I” is used as the index for some particular excitation.) The eigenvalues ΩI can be

used to calculate observables such as (“vertical,” i.e. ground-state geometry) optical

transition energies by taking differences of these eigenvalues, after identifying the

character of the eigenstates |ΨI⟩. In this way, optical transition energies of open-shell

systems, such as defected solids, may be computed without needing to determine the

complete theory of BSE as applied to open-shell systems.

The eigenstates |ΨI⟩ are linear combinations of “target states,” which are the states

generated from a spin-flip excitation of the high-spin reference state, given by

|ΨI⟩ =
∑︂
i,ā

AI
i,āā

†
↓i↑|N, 0⟩ , (2)

where |N, 0⟩ is the high-spin reference state, i↑ is the annihilation operator for the up-

spin orbital labeled as “i” in the reference determinant, ā†↓ is the creation operator

for the down-spin orbital labeled as “ā” in the reference determinant, and AI
i,ā is the

amplitude for the particular spin flip transition. (The convention with the use of the

overbar is elucidated in Sec. 3.) We note that we are exclusively considering excited

states within the Tamm-Dancoff approximation [16], where our excited states |ΨI⟩ do

not have contributions from de-excitations; Refs. [7, 8, 17] consider non-Tamm-Dancoff

states. The target states ā†↓i↑|N, 0⟩, or “|i ↑, ā ↓⟩”, as with the basis set of single-

particle transitions of ordinary BSE, may be characterized by the pair of states involved

in the single-particle transition. The space of target states |i ↑, ā ↓⟩ form the basis

set to describe multiple configurations associated with the ground and excited states of

open-shell systems.

This article is organized as follows. In Section 2, we discuss details regarding our

previous SF-BSE calculation results for the test systems, ethylene under torsion and

the NV− center in diamond. In Section 3, we discuss why the explicit calculation of

⟨Ŝ2⟩ is necessary. In Section 4, we discuss sources of deviation of the computed value of

⟨Ŝ2⟩ from naive expectation. In Section 5, we provide the derivation of the formula for

⟨Ŝ2⟩ for spin-flip excitations. In Section 6, we use a simple example to illustrate how to

use that formula. Finally, in Section 7, we discuss the scripts and their performance in

calculating ⟨Ŝ2⟩.

2. Summary of example calculations with SF-BSE

The authors have previously calculated the ground and excited states for interesting

open-shell systems in Ref. [9], using an implementation with a modified version of the

BerkeleyGW code [15], revision 7294, roughly equivalent to public release version 2.1.

Among these, first, is the ethylene molecule (C2H4) under torsion (from 0◦ to 90◦). The

second is the NV− center in diamond, a defect in crystalline diamond-structure carbon

in which one carbon atom is substituted with nitrogen (“N”), a neighboring atom is left

vacant (“V”), and the defect bears an overall negative charge (“−”). Here we summarize
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the key states and computational parameters for these previous calculations, which we

further analyze in this work.

The ethylene molecule under torsion is a conventional test system for computational

electronic structure approaches that allow for the description of open-shell states [3].

Under zero torsion, the ethylene molecule is a closed-shell singlet. At 90◦ of torsion

(about the carbon-carbon double-bond), however, the ground-state is an open-shell

triplet. There are four many-body electronic states whose energies give potential surfaces

with respect to the torsion angle. The “N” state is the lowest energy singlet (the ground

state, under zero torsion). The “T” state is the lowest energy triplet (the ground state,

at 90◦ of torsion). The “V” and “Z” states are higher-energy singlets.

The DFT calculation in Ref. [9] of the ethylene orbitals was performed with the

DFT code Octopus [18, 19], version 8.4. We used the Optimized Norm-Conserving

Vanderbilt pseudopotentials [20] from the Pseudo-Dojo pseudopotential database [21],

version 0.2, with the PBE exchange-correlation [22]. The relaxed atomic coordinates

(at 0◦) were calculated with a 0.115 Å real-space grid spacing, roughly equivalent to a

115 Ry planewave wavefunction cutoff, in a box with edge-length 12 Å. A smaller box

size was used in the subsequent calculations, which contains 99% of the charge density

for both the ethylene molecule with no torsion and 90◦ of torsion. The ground- and

excited-state energies were calculated explicitly at torsions of 0, 5, 10, 15, 30, 45, 60,

75, 80, 85, and 90◦. For DFT input to SF-BSE calculations, we used a less stringent

real-space grid spacing for both the wavefunctions and density of 0.18 Å, equivalent to

about 85 Ry planewave cutoff for the wavefunctions. We obtained the MS = 1 reference

state by constraining occupations. Based on [23], we used 860 empty states and 24 Ry

for the calculation of the screened Coulomb interaction. For the SF-BSE Hamiltonian,

5 occupied spin-up (the maximum allowed) and 55 unoccupied spin-down orbitals were

used. In this SF-BSE calculation, and all subsequent SF-BSE calculations referred to in

this work, we use the Kohn-Sham energy eigenvalues in Eq. 1 in place of quasiparticle

energies; this approximation is justified in [9].

For the ethylene molecule under torsion, we then calculate ⟨Ŝ2⟩ for the SF-BSE

excitation vectors for the N, T, V, and Z states. The results are shown in Fig. 1. We

note that a rather high amount of contamination occurs at 85◦, when the singlet N and

triplet T states cross in energy, with the triplet now lower [9]. Otherwise the N and

T states have relatively low contamination. The V and Z states, however, show larger

contamination, and at lower angles. The Z state, for instance, is difficult to discern from

other excitations at these angles and this phenomenon can be understood as a measure

of the incompleteness of the basis of transitions used to describe this state.

The NV− center in diamond is a well-studied open-shell defect in a crystalline solid.

Within its bulk band gap are so-called in-gap single-particle states labeled “v” and

“ex, ey”, the latter being doubly-degenerate. (See, for instance, Ref. [24].) Its ground

state is a triplet, with the S = 1,MS = 1 state having its up-spin v, ex, and ey orbitals

occupied and only its down-spin v̄ orbital occupied. (For SF-BSE calculations, this is

our high-spin reference state.) Its three-fold degenerate triplet ground state is labeled
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Figure 1. The computed values of ⟨Ŝ2⟩ for the high-spin reference state and the N, T,

V, and Z states of ethylene within SF-BSE. T is a triplet while the others are singlets.

The spin of the many-body states is treated with a symmetric (“S”) or antisymmetric

(“A”) combination of the individual spins.

3A2, and its optical excitations, therefore, are not accessible by conventional GW/BSE.

We compute its transition energies to the singlet states 1E, 1A1 and the triplet state 3E

in Ref. [9]. Again, we compute the bands in DFT with the code Octopus [18, 19]. The

defect is placed in a 2×2×2 supercell, with 63 atoms (62 carbon, 1 nitrogen), since the

orbitals of the in-gap states are well-localized [24]. The real-space grid spacing is 0.34

Bohr, again, equivalent to an 85 Ry planewave cutoff. The pseudopotentials are also

Optimized Norm-Conserving Vanderbilt pseudopotentials [20] from the Pseudo-Dojo

pseudopotential database [21] with the PBE exchange-correlation[22]. The dielectric

matrix is calculated with 300 empty states and a cutoff of 12 Ry, consistent with the

choice of parameters in Ref. [25]. The SF-BSE Hamiltonian is constructed from 12

occupied and 11 unoccupied orbitals.

3. Necessity for the explicit calculation of ⟨Ŝ2⟩

With the eigenvectors and eigenvalues from a successful SF-BSE calculation, one may

wonder why the additional step for calculating ⟨Ŝ2⟩ is necessary. With appropriate

mapping of the indices of the up-spin hole and down-spin electron in the excitation

eigenvectors to electronic configurations, one may suppose that signs of the coefficients

read out explicitly from the eigenvector data give us sufficient information to determine
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the spin symmetry of the state.

Let us consider an example: the excitations as computed from SF-BSE for ethylene,

at zero torsion. The single-particle orbitals that describe the HOMO and LUMO (as

a minimal basis set) are |π ↑⟩, |π∗ ↑⟩, |π̄ ↓⟩, and |π̄∗ ↓⟩. The use of the overbars for

the down-spin states denotes the different spatial wavefunction, compared to the up-

spin state, as occurs in a spin-polarized or spin-unrestricted approach. The high-spin

reference state is the triplet |π ↑, π∗ ↑⟩. The excitation vectors of interest describe

the following states[26], with approximately the following numerical coefficients (to two

decimals) and signs[9]:

|N⟩ = 0.98|π ↑, π̄ ↓⟩+ 0.20|π∗ ↑, π̄∗ ↓⟩ , (3)

|T ⟩ = 0.71|π ↑, π̄∗ ↓⟩+ 0.71|π∗ ↑, π̄ ↓⟩ , (4)

|S⟩ = 0.71|π ↑, π̄∗ ↓⟩ − 0.71|π∗ ↑, π̄ ↓⟩ , (5)

|Z⟩ = −0.20|π ↑, π̄ ↓⟩+ 0.98|π∗ ↑, π̄∗ ↓⟩ (6)

In a “spin-restricted” calculation, the eigenstates from a spin-unpolarized

calculation (i.e., disregarding spin entirely), are doubled and placed into two spin

channels, with the occupations made consistent with the magnetization of the system,

post facto. The orbitals in both spin channels are necessarily the same, including the

energies and phase information. However, in spin-polarized calculations, in which the

different spin channels have independent Hamiltonians, the orbitals with the same band

or orbital index but different spins generally have different real-space wavefunctions

and energies. (These are called “spin-unrestricted calculations”). In a spin-unrestricted

calculation, therefore, there will likely be some phase rotation of the orbitals in the

down-spin channel relative to the up-spin channel. If, for example, |π̄∗ ↓⟩ orbital has a
change relative to the |π∗ ↑⟩ orbital (see Fig. 2), a naive reading of the excitation vector

coefficients would swap the interpretation of the |T ⟩ and |S⟩ states.
In general, the introduction of a phase in an orbital |n⟩ → eiϕ|n⟩ is accompanied

with a phase shift in the numerical value of the eigenvector coefficient AI
mn → e−iϕAI

mn.

That is, the wavefunction describing the excitation I computed within SF-BSE |ΨI⟩ =∑︁
iā A

I
iā|iā⟩ is invariant upon change of phase of the orbitals (except for a possible

arbitrary overall phase). However, the values of the particular coefficients of the

eigenvector AI
iā do depend on the phases of the orbitals, and, as we have seen above in

the simple example, can obfuscate the interpretation of the state |ΨI⟩.
Additionally, the particular states one is interested in describing may be most

quickly identified by their ⟨Ŝ2⟩ values. For instance, the Z state of ethylene, under

zero torsion, is the tenth excited state, with several maximally contaminated (i.e., equal

parts singlet and triplet) uninteresting states intermediate in energy between it and the

lower-energy excited singlet V state. While this state at zero torsion may be identified

by reading the coefficients for several excitation eigenvectors, at torsion angles greater

for zero, this laborious brute-force approach will not be productive. In fact, the energy

ordering of the Z state changes as a function of torsion angle, ultimately becoming at

90◦ of torsion the fourth excitation as ordered by energy.
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Figure 2. The frontier orbitals of ethylene under zero torsion, in the high-spin

reference state (up-spin orbitals occupied), plotted with XCrysDen [27]. The down-

spin π̄∗ orbital in this illustration has a reversal of phase relative to the up-spin orbital.

4. Spin Contamination

The eigenvectors computed from SF-BSE may yield an expectation value of Ŝ2 that

differs from proper values of S (S + 1) such as 0 (singlet, S = 0) or 2 (triplet S = 1). One

source of spin contamination that even appears in the high-spin reference state before

any spin-flip excitation is applied is related to the difference in the spatial wavefunctions

for the different spin channels from spin-polarized DFT [28]. In the examples of ethylene

under torsion, or the NV−, this causes deviations of 0.01 or less. A larger source of spin

contamination in SF-BSE comes from the absence of particular transitions from the

set of target states that are required to form an eigenvector of Ŝ2 [6]. For example, if

the complete state is 1√
2
(|r ↑, p̄ ↓⟩+ |p ↑, r̄ ↓⟩), sometimes one of these requisite target

transitions may be inaccessible from a single spin flip from the up-spin channel to the

down-spin channel. This leads to maximally-contaminated states consisting of just one

of the two transitions, where the computed ⟨Ŝ2⟩ ≈ 1.

5. Derivation of ⟨Ŝ2⟩ for spin-flip transitions

Readers interested only in the final result should refer to Eq. 36. The detailed work

that follows may assist readers in following the work in, for example, Refs. [7, 8, 17].

A spin-polarized system will have N total electrons, with N↑ electrons in the spin-

up channel and N↓ electrons in the spin-down channel. We use the convention that our

high-spin reference state (computed from DFT) is polarized such that N↑ > N↓, and the

transitions calculated from the (spin-flip) Bethe-Salpeter Equation remove an electron

from an occupied spin-up state and place it in a previously unoccupied spin-down state.
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Figure 3. The computed ⟨Ŝ2⟩0 for ethylene for torsion angles from 0◦ to 90◦. The

High-Spin Reference state is a triplet, so the values are reported as deviations from

the expected S(S + 1) = 2.

The number of (necessarily spin-down) unoccupied states used in the calculation is

Nunocc. The set of all of the orbitals we consider in the spin-flip calculations are

the up-spin KS orbitals ϕm and down-spin orbitals ϕ̄n, with m ∈ {1, . . . , N↑} and

n ∈ {1, . . . , N↓, N↓ + 1, . . . , N↓ + Nunocc}. The orbitals n ∈ {1, . . . , N↓} are always

occupied, since we do not flip occupied down-spin electrons to unoccupied up-spin

orbitals. For a particular excitation, one of the spin-up orbitals ϕi with i ∈ {1, . . . , N↑}
becomes unoccupied while one of the orbitals ϕ̄a with a ∈ {N↓ + 1, . . . , N↓ + Nunocc}
becomes occupied.

We first compute ⟨Ŝ2⟩0 for the high-spin reference state, |N, 0⟩, via the following

equation from the well-known Löwdin Formula [29]:

⟨Ŝ2⟩0 = ⟨N, 0|Ŝ2|N, 0⟩ =
(︃
N↑ −N↓

2

)︃(︃
N↑ −N↓

2
+ 1

)︃
+N↓−

∑︂
i,j̄

|⟨i|j̄⟩|2.(7)

Using the Löwdin Formula, which is valid for a many-body wavefunction that is a Slater

determinant as in Hartree-Fock, implies approximating ⟨Ŝ2⟩0 via a Slater determinant

formed of the KS states of the high-spin reference state [17]. (More sophisticated DFT

approximations have also been developed [30, 31].) In Fig. 3, we see that ⟨Ŝ2⟩0 deviates
by at most 0.1% from 2.0 for ethylene under any torsion angle, as expected for the

triplet spin symmetry of the high-spin reference state. Likewise, ⟨Ŝ2⟩0 for the triplet

ground state of the NV− center is 2.05. These results are consistent with a DFT study

[32] finding that solids generally have more spin contamination than molecules.

For spin-flip excitations from the high-spin reference state, we compute the

difference “∆⟨Ŝ2⟩” between ⟨Ŝ2⟩ for the I’th spin-flipped excitation and the reference

state: ∆⟨Ŝ2⟩ = ⟨Ŝ2⟩I − ⟨Ŝ2⟩0. (It is standard to subscript ∆⟨Ŝ2⟩ with the label for

the state I for which it is computed; we will be suppressing this subscript throughout.)
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While the formula for ∆⟨Ŝ2⟩ in the context of SF-TDDFT was previously published as

Eq. A10 in [7], was evidently implemented in codes for use in calculations such as [33],

and was used for SF-BSE in [12], the derivation does not seem to have been shown in

detail and so we work through the derivation here.

The eigenvectors of the Bethe-Salpeter Equation are the electron-hole amplitudes

[10] that are required to construct the two-particle reduced difference density matrix

∆Γ [8]:

Γ0
pq,rs = ⟨N, 0|r†s†qp|N, 0⟩ (8)

ΓI
pq,rs = ⟨N, I|r†s†qp|N, I⟩ (9)

∆Γpq,rs = ΓI
pq,rs − Γ0

pq,rs, (10)

where p, q, r, and s are the annihilation operators for one-electron states ϕp, ϕq, ϕr,

and ϕs, respectively; |N, 0⟩ is the many-body high-spin reference state; and |N, I⟩ is the
I’th many-body excited state.

We use the formalism developed in [8], originally for spin-conserving transitions and

obtained from considering time-dependent Hartree-Fock, and apply it to spin-flipping

transitions. Within this formalism, we evaluate the I’th excited-state’s ⟨Ŝ2⟩I indirectly

by adding ⟨Ŝ2⟩0 to ∆⟨Ŝ2⟩, which is computed using from the “super-operator” approach

[7, 8, 17]:

∆⟨Ŝ2⟩ = 1− 2MH.S. Ref
S +∆⟨P̂↑↓⟩ , (11)

∆⟨P̂↑↓⟩ =
∑︂

r,s,p̄,q̄

∆Γr↑,q̄↓,p̄↓,s↑⟨s|q̄⟩⟨p̄|r⟩ , (12)

∆Γr↑,q̄↓,p̄↓,s↑ =
∑︂

i↑,ā↓,j↑,b̄↓

(︂
AI

i↑,ā↓

)︂∗
AI

j↑,b̄↓ × (13)

⟨N, 0|
[︂
i†↑ā↓ ,

[︂
p̄†↓s

†
↑q̄↓r↑ , b̄

†
↓j↑
]︂]︂
|N, 0⟩ .

The constant term 1−2MH.S. Ref
S appears due to the change in the number of up- and

down-spin electrons in the spin-flipped excited state:

1− 2MH.S. Ref
S (14)

=
(︂
M I

S(M
I
S + 1) +N I

↓

)︂
−
(︃
MH.S. Ref(MH.S. Ref + 1) +NH.S. Ref

↓

)︃
,

M I
S = MH.S. Ref − 1 (15)

N I
↓ = NH.S. Ref + 1 .(16)

We use the convention from the quantum chemistry literature that i, j, k are indices for

creation/annihilation operators for occupied orbitals or bands; a, b, unoccupied orbitals

or bands; and p, q, r, and s, either occupied or unoccupied. Again, the over-bar indicates

the possibility of the use of unrestricted orbitals or, equivalently, spin-polarized bands.

The nested commutators were confirmed to be evaluated correctly with the

assistance of the SNEG [34] software, which can perform symbolic evaluation of second-

quantization-operator expressions. The first general result for the matrix element is

⟨N, 0|
[︂
i†↑ā↓ ,

[︂
p̄†↓s

†
↑q̄↓r↑ , b̄

†
↓j↑
]︂]︂
|N, 0⟩ (17)
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(a) (b)

(c) (d)

Figure 4. The four cases (as in Eq. 18) to consider for calculating matrix elements

of the nested commutators of creation/annihilation operators, labelled as O in the

figure, necessary for the calculation of ∆⟨Ŝ2⟩. The indices i and j represent the newly

unoccupied state upon the spin-flipping excitation, for the bra and ket, respectively,

and ā and b̄ represent the newly occupied state for the bra and ket, respectively. (a)

The single-particle transitions for the bra and ket involve the same up-spin orbital

(“i = j” ) and same down-spin orbital (“ā = b̄”), (b) different up-spin orbitals but

the same down-spin orbitals (“i ̸= j” but “ā = b̄” ), (c) the same up-spin orbitals

but different down-spin orbitals (“i = j” but “ā ̸= b̄” ), and (d) different up-spin and

down-spin orbitals (“i ̸= j” and “ā ̸= b̄”).

= ⟨N, 0|i†↑ā↓p̄
†
↓s

†
↑q̄↓r↑b̄

†
↓j↑|N, 0⟩ − ⟨N, 0|i†↑ā↓b̄

†
↓j↑p̄

†
↓s

†
↑q̄↓r↑|N, 0⟩ ,

after recognizing that terms with ā↓|N, 0⟩ = 0. As in [30], we explicitly consider four

cases (see Fig. 4): (1) i = j, ā = b̄, (2a) i ̸= j, ā = b̄, (2b) i = j, ā ̸= b̄, and (3) i ̸= j,

ā ̸= b̄, thus partitioning the expression as follows:

∆⟨Ŝ2⟩ = 1− 2MH.S. Ref
S +

∑︂
i,ā,j,b̄

(︂
AI

i↑,ā↓

)︂∗
AI

j↑,b̄↓ × (18)

{︃
δi,jδā,b̄⟨O⟩i=j,ā=b̄ + (1− δi,j)δā,b̄⟨O⟩i ̸=j,ā=b̄

+ δi,j(1− δā,b̄)⟨O⟩i=j,ā̸=b̄ + (1− δi,j)(1− δā,b̄)⟨O⟩i ̸=j,ā̸=b̄
}︃
,

where

⟨O⟩ =
∑︂

r,s,p̄,q̄

⟨N, 0|
[︂
i†↑ā↓ ,

[︂
p̄†↓s

†
↑q̄↓r↑ , b̄

†
↓j↑
]︂]︂
|N, 0⟩⟨s|q̄⟩⟨p̄|r⟩ . (19)

We consider explicitly the matrix element of the nested commutators in the
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contribution to ∆⟨Ŝ2⟩ for “Case 1,” when i = j and ā = b̄:

⟨N, 0|i†↑ā↓p̄
†
↓s

†
↑q̄↓r↑b̄

†
↓j↑|N, 0⟩ − ⟨N, 0|i†↑ā↓b̄

†
↓j↑p̄

†
↓s

†
↑q̄↓r↑|N, 0⟩ (20)

= ⟨N, 0|i†↑ā↓p̄
†
↓s

†
↑q̄↓r↑ā

†
↓i↑|N, 0⟩ − ⟨N, 0|i†↑ā↓ā

†
↓i↑p̄

†
↓s

†
↑q̄↓r↑|N, 0⟩

= −⟨N, 0|i†↑
(︂
δ(p̄, ā)− p̄†↓ā↓

)︂
s†↑
(︂
δ(q̄, ā)− ā†↓q̄↓

)︂
r↑i↑|N, 0⟩

+ ⟨N, 0|i†↑
(︂
δ(ā, ā)− ā†↓ā↓

)︂
p̄†↓
(︂
δ(s, i)− s†↑i↑

)︂
q̄↓r↑|N, 0⟩

= −⟨N, 0|δ(p̄, ā)δ(q̄, ā)i†↑s
†
↑r↑i↑|N, 0⟩+ ⟨N, 0|δ(p̄, ā)i†↑s

†
↑ā

†
↓q̄↓r↑i↑|N, 0⟩

− ⟨N, 0|δ(q̄, ā)i†↑p̄
†
↓s

†
↑ā↓r↑i↑|N, 0⟩+ ⟨N, 0|i†↑p̄

†
↓s

†
↑

(︂
δ(ā, ā)− ā†↓ā↓

)︂
q̄↓r↑i↑|N, 0⟩

− ⟨N, 0|δ(ā, ā)i†↑p̄
†
↓s

†
↑q̄↓r↑i↑|N, 0⟩+ ⟨N, 0|δ(ā, ā)δ(s, i)i†↑p̄

†
↓q̄↓r↑|N, 0⟩.

Again, terms with a↓|N, 0⟩ = 0 (and likewise with its complex conjugate), which leaves

us with just four terms:

= ⟨N, 0|δ(ā, ā)i†↑p̄
†
↓s

†
↑q̄↓r↑i↑|N, 0⟩ − ⟨N, 0|δ(ā, p̄)δ(ā, q̄)i†↑s

†
↑r↑i↑|N, 0⟩ (21)

− ⟨N, 0|δ(ā, ā)i†↑p̄
†
↓s

†
↑q̄↓r↑i↑|N, 0⟩+ ⟨N, 0|δ(ā, ā)δ(i, s)i†↑p̄

†
↓q̄↓r↑|N, 0⟩.

The first and third terms cancel, giving

δ(ā, ā)δ(s, i)δ(r, i)δ(p̄, q̄)− δ(p̄, ā)δ(q̄, ā)δ(i, i)δ(s, r)(1− δ(r, i)) . (22)

Placing these Kroenecker deltas into Eq. 19, ⟨O⟩ for this first case gives

⟨O⟩i=j,ā=b̄ (23)

=
∑︂

r,s,p̄,q̄

( δ(ā, ā)δ(s, i)δ(r, i)δ(p̄, q̄)− δ(p̄, ā)δ(q̄, ā)δ(i, i)δ(s, r)(1− δ(r, i)) ⟨s|q̄⟩⟨p̄|r⟩ ,

=
∑︂
p̄

⟨i|p̄⟩⟨p̄|i⟩ −
∑︂
r ̸=i

⟨r|ā⟩⟨ā|r⟩ ,

= −

⎛⎝∑︂
k

|⟨k|ā⟩|2 −
∑︂
k̄

|⟨i|k̄⟩|2 − |⟨i|ā⟩|2
⎞⎠ ,

with the convention that k and k̄ are the occupied states from the high-spin reference

state, for either spin channel. (With this definition for k, the term −|⟨i|ā⟩|2 enforces

the condition from the second term in Eq. 22 that the states labeled r are prohibited

from including i.)

We now consider the derivation for “Case 2a,” when i ̸= j and ā = b̄:

⟨N, 0|i†↑ā↓p̄
†
↓s

†
↑q̄↓r↑ā

†
↓j↑|N, 0⟩ − ⟨N, 0|i†↑ā↓ā

†
↓j↑p̄

†
↓s

†
↑q̄↓r↑|N, 0⟩ (24)

= ⟨N, 0|δ(ā, ā)i†↑p̄
†
↓s

†
↑q̄↓r↑j↑|N, 0⟩ − ⟨N, 0|δ(ā, p̄)δ(ā, q̄)i†↑s

†
↑r↑j↑|N, 0⟩

− ⟨N, 0|δ(ā, ā)i†↑p̄
†
↓s

†
↑q̄↓r↑j↑|N, 0⟩+ ⟨N, 0|δ(ā, ā)δ(j, s)i†↑p̄

†
↓q̄↓r↑|N, 0⟩ .

The first and third terms cancel, and the remaining terms are

− ⟨N, 0|δ(ā, p̄)δ(ā, q̄)i†↑s
†
↑r↑j↑|N, 0⟩+ ⟨N, 0|δ(ā, ā)δ(j, s)i†↑p̄

†
↓q̄↓r↑|N, 0⟩ (25)

= δ(ā, ā)δ(j, s)δ(i, r)δ(p̄, q̄)− δ(ā, p̄)δ(ā, q̄)δ(i, j)δ(s, r) .

However, i ̸= j, so we only have one non-zero contribution for the case i ̸= j and ā = b̄:

δ(ā, ā)δ(j, s)δ(i, r)δ(p̄, q̄). (26)
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The “Case 2a” contribution to ∆⟨Ŝ2⟩ is found, then, to be

⟨O⟩i ̸=j,ā=b̄ =
∑︂

r,s,p̄,q̄

δ(ā, ā)δ(j, s)δ(i, r)δ(p̄, q̄)⟨s|q̄⟩⟨p̄|r⟩ , (27)

=
∑︂
k̄

⟨j|k̄⟩⟨k̄|i⟩ .

Similarly, we consider the derivation for “Case 2b,” when i = j and ā ̸= b̄:

⟨N, 0|i†↑ā↓p̄
†
↓s

†
↑q̄↓r↑b̄

†
↓i↑|N, 0⟩ − ⟨N, 0|i†↑ā↓b̄

†
↓i↑p̄

†
↓s

†
↑q̄↓r↑|N, 0⟩ . (28)

We remark immediately that the second term is necessarily zero due to the position of

the b̄†↓ operator. Its commutation with ā↓ gives the Kroenecker delta δ(ā, b̄) which is

zero by definition of Case 2b, and the null
(︂
b̄↓|N, 0⟩

)︂†
. The non-zero portion may be

reduced:

= −⟨N, 0|i†↑
(︂
δ(p̄, ā)− p̄†↓ā↓

)︂
s†↑q̄↓b̄

†
↓r↑i↑|N, 0⟩ (29)

= −⟨N, 0|i†↑
(︂
δ(p̄, ā)− p̄†↓ā↓

)︂
s†↑
(︂
δ(b̄, q̄)− b̄†↓q̄↓

)︂
r↑i↑|N, 0⟩

= −⟨N, 0|δ(p̄, ā)δ(q̄, b̄)i†↑s
†
↑r↑i↑|N, 0⟩

+ ⟨N, 0|δ(p̄, ā)i†↑s
†
↑b̄

†
↓q̄↓r↑i↑|N, 0⟩

− ⟨N, 0|δ(b̄, q̄)i†↑p̄
†
↓s

†
↑ā↓r↑i↑|N, 0⟩

+ ⟨N, 0|i†↑p̄
†
↓s

†
↑ā↓b̄

†
↓q̄↓r↑i↑|N, 0⟩ .

Of these final four terms, only the first is non-zero. The remaining three are zero due

to the conditions ā↓|N, 0⟩ = 0,
(︂
b̄↓|N, 0⟩

)︂†
= 0, and δ(ā, b̄) = 0 for ā ̸= b̄. Thus “Case

2b,” when i = j and ā ̸= b̄, gives as the matrix element

−δ(p̄, ā)δ(q̄, b̄)δ(s, r)δ(i, i)(1− δ(r, i)). (30)

Using this, we find the “Case 2b” contribution to ∆⟨Ŝ2⟩:

⟨O⟩i=j,ā̸=b̄ = −
∑︂

r ̸=i,s,p̄,q̄

δ(p̄, ā)δ(q̄, b̄)δ(s, r)δ(i, i)⟨s|q̄⟩⟨p̄|r⟩ (31)

= −
∑︂
k

⟨k|b̄⟩⟨ā|k⟩ − ⟨i|b̄⟩⟨ā|i⟩ ,

where, again, the contribution from i in the sum over k must be subtracted out for the

same reason as in “Case 1.”

Finally, we derive the contribution for “Case 3,” when i ̸= j and ā ̸= b̄:

⟨N, 0|i†↑ā↓p̄
†
↓s

†
↑q̄↓r↑b̄

†
↓j↑|N, 0⟩ − ⟨N, 0|i†↑ā↓b̄

†
↓j↑p̄

†
↓s

†
↑q̄↓r↑|N, 0⟩ . (32)

As in the previous case, the second term is necessarily zero. We then have

= −⟨N, 0|i†↑
(︂
δ(p̄, ā)− p̄†↓ā↓

)︂
s†↑
(︂
δ(b̄, q̄)− b̄†↓q̄↓

)︂
r↑j↑|N, 0⟩ (33)

= −⟨N, 0|δ(p̄, ā)δ(b̄, q̄)i†↑s
†
↑r↑j↑|N, 0⟩

= ⟨N, 0|δ(p̄, ā)δ(b̄, q̄)s†↑i
†
↑r↑j↑|N, 0⟩

with the other terms necessarily zero, for the same reasons as in the previous case. The

final case, then, gives us for the matrix element

δ(p̄, ā)δ(q̄, b̄)δ(r, i)δ(s, j). (34)
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With this, the “Case 3” contribution to ∆⟨Ŝ2⟩ is

⟨O⟩i ̸=j,ā̸=b̄ =
∑︂

r,s,p̄,q̄

δ(p̄, ā)δ(q̄, b̄)δ(r, i)δ(s, j)⟨s|q̄⟩⟨p̄|r⟩ (35)

= ⟨j|b̄⟩⟨ā|i⟩ .

Collecting all of the contributions from the different cases as per Eq. 18, we arrive

at the complete expression for ∆⟨Ŝ2⟩:

∆⟨Ŝ2⟩ = 1− 2MH.S. Ref
S +

∑︂
i,ā,j,b̄

(︂
AI

i↑,ā↓

)︂∗
AI

j↑,b̄↓ × (36)

{︃
− δi,jδā,b̄

⎛⎝∑︂
k

|⟨k|ā⟩|2 −
∑︂
k̄

|⟨i|k̄⟩|2 − |⟨i|ā⟩|2
⎞⎠

+ (1− δi,j)δā,b̄
∑︂
k̄

⟨j|k̄⟩⟨k̄|i⟩ − δi,j(1− δā,b̄)

(︄∑︂
k

⟨k|b̄⟩⟨ā|k⟩ − ⟨i|b̄⟩⟨ā|i⟩
)︄

+ (1− δi,j)(1− δā,b̄)⟨j|b̄⟩⟨ā|i⟩
}︃
.

This equation has an important property of gauge-invariance which can be explicitly

verified: a phase change of an individual orbital does not affect the final result, provided

that the coefficients A have the counteracting change that keeps the quasiparticle

wavefunction |ΨI⟩ constant.

6. Example application: The defect states of the NV− center

The general equation for ∆⟨Ŝ2⟩ is clarified by considering a simple and illustrative

example. We will consider a by-hand calculation of Eq. 36 for the S = 1,MS = 0

ground state of the NV− center, with a minimal basis set, and with the same orbitals

for the different spin channels (as in a “spin-restricted” calculation).

In a more complete description, the NV− center has four electrons available to

occupy six in-gap orbitals [35]: |v ↑⟩, |v̄ ↓⟩ , |ex ↑⟩, |ēx ↓⟩ , |ey ↑⟩, |ēy ↓⟩, where

ex and ey are degenerate single-particle states. The high-spin (triplet) reference state

|v ↑, v̄ ↓, ex ↑, ey ↑⟩ has S = 1,MS = 1. From this high-spin reference state, we find

from actual SF-BSE calculations the S = 1,MS = 0 triplet state

|3A2⟩ = 0.70|exēy⟩+ 0.70|eyēx⟩ + ... , (37)

omitting the v states as well as the spins (the overbar denoting the down-spin orbital, and

the lack of an overbar denoting the up-spin). While the small deviation of the coefficients

from 1/
√
2 in the presented eigenvector for |3A2⟩ is from minor contributions of other

excitations, these are found to be less than 0.1; we therefore round the coefficients

to 1/
√
2 for an analytic calculation of ⟨Ŝ2⟩ for this triplet state. See Fig. 5 for an

illustration of the high-spin reference state, |3A2⟩, and the degenerate excited triplet

states with maximal spin contamination, |3E⟩.
To first calculate ⟨Ŝ2⟩0 for the high-spin reference state, we reiterate our assumption

in our simple model that we have the same orbitals for the different spin channels, and
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we apply the Löwdin formula (Eq. 7):

⟨Ŝ2⟩0 =
(︃
2

2

)︃(︃
2

2
+ 1

)︃
+ 1− 1 = 2 (38)

since only the v orbitals have both spin channels occupied. The use of spin-unrestricted

orbitals causes only small deviations from the expected value, 2, with the calculated

⟨Ŝ2⟩ ≈ 2.05.

We illustrate the calculation of ∆⟨Ŝ2⟩ for the |3A2⟩ state (with S = 1,MS = 0),

using the simplified spin-restricted orbitals, with the exact coefficients of 1/
√
2. This

state, then, is

|3A2⟩ =
1√
2
|exēy⟩+

1√
2
|eyēx⟩ . (39)

The calculation of ∆⟨Ŝ2⟩ can most readily be thought of in terms of the “four cases”

for ∆Γ in Eq. 11.

In this minimal basis set (where we even ignore the “v” in-gap orbitals), the bra

⟨3A2| and the ket |3A2⟩ each are composed of two spin-flip transitions (with respect to

the high-spin reference state |ex, ey⟩), and each of these transitions has an amplitude

Ai,ā =
1√
2
:

|3A2⟩ =
1√
2
ē†xex|ex, ey⟩+

1√
2
ē†yey|ex, ey⟩, (40)

where ex is the annihilation operator for the ex orbital, etc. Similarly, the bra state can

be written as

⟨3A2| =
1√
2
⟨ex, ey|

(︂
ē†xex

)︂†
+

1√
2
⟨ex, ey|

(︂
ē†yey

)︂†
. (41)

In calculating Eq. 36, we see that we have only have two of the possible four cases:

i = j and ā = b̄, and i ̸= j and ā ̸= b̄. Let us apply the cases individually. When

i = j = ex and ā = b̄ = ēx,(︄
1√
2

)︄∗
1√
2

⎧⎨⎩− ∑︂
k={ex,ey}

|⟨k|ēx⟩|2 + |⟨ex|ēy⟩|2
⎫⎬⎭ (42)

=

(︄
1√
2

)︄∗
1√
2

{︂
−|⟨ex|ēx⟩|2 − |⟨ey|ēx⟩|2 + |⟨ex|ēx⟩|2

}︂
= −1 + 0− 1 = 0 ,

with the terms for “Case 1” involving “k̄” in Eq. 36 being null. Similarly, when

i = j = ey and ā = b̄ = ēy, we also have zero, from just swapping the “x” and

“y” indices in the above expression.

The pair of “middle” terms require “Case 3,” where i ̸= j and ā ̸= b̄:(︄
1√
2

)︄∗
1√
2
⟨ex|ēx⟩⟨ey|ēy⟩ =

1

2
, (43)

and (︄
1√
2

)︄∗
1√
2
⟨ey|ēy⟩⟨ex|ēx⟩ =

1

2
. (44)
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+
1
2

(a)

(b)

(c) ,

Figure 5. The electron configurations and values of ⟨Ŝ2⟩ as calculated in SF-BSE for

(a) the high-spin reference state, (b) the 3A2 (with MS = 0) ground state, and (c) the
3E excited state for the NV− center in diamond. Values of ⟨Ŝ2⟩ are presented for both

the spin-restricted and spin-unrestricted cases.

All together, the four contributions give 0 + 0 + 1/2 + 1/2 = 1. ∆⟨Ŝ2⟩ is obtained
by adding to this 1 − 2MH.S. Ref

S = 1 − 2(1) = −1. ∆⟨Ŝ2⟩ for the 3A2 state in this

model therefore is then just 1− 1 = 0. Since ⟨Ŝ2⟩ for the high-spin reference state was

2, we have, from a simplified version of a minimal description of the SF-BSE computed

excitation eigenvector, ⟨3A2| Ŝ2 |3A2⟩ = 2, as expected.

The reader may verify that a similar approach will give ⟨Ŝ2⟩ = 1 for either of the

|3E⟩ states, since each is missing a “partner” configuration with all of the spins reversed.

These configurations are attainable from so-called “mixed-reference” spin-flip schemes

[6] but are beyond the scope of present work based on a single reference state.

7. Execution and timing information of implementation with BerkeleyGW

The calculation of ⟨Ŝ2⟩ requires the following information: the number of occupied (spin-

up) orbitals used in the SF-BSE calculation; the number of unoccupied (spin-down)

orbitals used in the SF-BSE calculation; the real, imaginary, and modulus-squared of

the overlaps of all of the spin-up occupied orbitals with the same number of spin-down

occupied orbitals as well as all of the specified spin-down unoccupied orbitals; and the

excitation eigenvector coefficients in the basis of single spin-flip transitions.

In practice, the overlaps are calculated from files with potentially many more

orbitals (or bands) than specified for the SF-BSE calculation; these total number of

bands and their occupation values are then also needed. From this latter requirement,

we read as input the wavefunction information calculated for the high-spin reference

state, in which all unpaired electrons are in the spin-up channel. The wavefunction

information, as currently implemented, is provided from an HDF5-format [36] file,

wfn.h5, obtained through BerkeleyGW with HDF5 I/O enabled. In particular, the data

“mnband”, “ifmin”, and “ifmax” from the wfn.h5 file are used. As per the BerkeleyGW
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documentation [37], “mnband”, the total number of bands, is a single integer. “ifmin”

and “ifmax” are integer arrays with two indices; the fast index (first for Python/C,

last for Fortran) is the spin index, and the second is the k-point index. With the

possible exception of defects in two-dimensional materials [38, 39], only the Γ-point in

the Brillouin zone is needed. “ifmin” is the lowest occupied state, while “ifmax” is the

highest occupied state (resolved by spin and, if needed, k-point index). The combination

of the data from “mnband”, “ifmin”, and “ifmax” is used to designate orbitals/bands

in either spin channel as occupied or unoccupied.

The overlap matrices of the spin-up orbitals with the spin-down orbitals are

computed with the BerkeleyGW utility wfn dotproduct.x. The overlaps.dat file

contains the necessary overlap data between the spin-up and spin-down orbitals, e.g.,

⟨r|p̄⟩, that the calculation of ⟨Ŝ2⟩ requires (see Eq. 36). This is calculated by swapping

the spin indices from the wavefunction provided by wfn.h5, copied to a new file

wfn swap.h5. In a directory with wfn.h5 (or a link to it), the following command

outputs a file, wfn swap.h5:

python spin swap.py

The wfn swap.h5 file is a copy of the wfn.h5 file but with the spin channels reversed;

its first spin channel (usually spin-up) is the spin-down channel of wfn.h5, and vice-

versa. Using the BerkeleyGW utility hdf2wfn.x, the wfn.h5 and wfn swap.h5 are

converted into their corresponding WFN and WFN swap files. The overlaps.dat file

is computed from the BerkeleyGW executable wfn dotproduct.x, with the two input

wavefunctions, WFN and WFN swap. The output of the wfn dotproduct.x execution

is piped to a file called overlaps.dat. The eigenvectors.h5 file is generated via a

SF-BSE calculation; the protocol for this can be found in Ref. [9]. The calculation

of ⟨Ŝ2⟩ for the high-spin reference state with the Python script ref s sq.py does not

strictly require the eigenvectors.h5 file, though this calculation is often performed

just before the calculation of ∆⟨Ŝ2⟩ in the same directory.

Once the wfn.h5, overlaps.dat, and eigenvectors.h5 are generated and/or

linked to the desired working directory, the calculations of ∆⟨Ŝ2⟩ can commence. The

Python script ref s sq.py is first executed with the command

python ref s sq.py --wfn {wfn name.h5 } --nv {No. occupied up-spin

orbitals} --nc {No. unoccupied down-spin orbitals}.

The output can be piped to a text file, with the last line providing the calculated

⟨Ŝ2⟩ for the high-spin reference state. The HDF5-format wavefunction file can have a

name different from wfn.h5 and is specified by the --wfn directive. The Python script

delta s sq.py is then executed with the command

python delta s sq.py --wfn {wfn name.h5 } --nv {No. occupied up-spin

orbitals} --nc {No. unoccupied down-spin orbitals}.

The output of this script should be piped to an output text file. The scripts to calculate

⟨Ŝ2⟩ are available publicly in Ref. [40].
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We will outline the most important subroutines of the delta s sq.py script. The

subroutine “determine case” reads in the orbitals involved in the spin-flip transition

for the “bra” and “ket” states and returns the particular case needed. (See Section 6

for a simple illustration.) The subroutine “occ ref” gives lists for the set of occupied

orbitals/bands from the high-spin reference state, as well as the difference of the number

of spin-up and spin-down electrons. The subroutine “occupied alpha” gives a list for

the set of the occupied spin-up orbitals/bands for a given spin-flip transition; likewise,

the subroutine “occupied beta” gives a list for the set of the occupied spin-down

orbitals/bands for that spin-flip transition. The subroutines “case one”, “case two a”,

“case two b”, and “case three” calculate, for the particular case, the relevant portion

in the curly braces of Eq. 36.

By default, delta s sq.py calculates ∆⟨Ŝ2⟩ for all excitations. Additionally, for

each excitation, the calculation of ∆⟨Ŝ2⟩ requires loops over each transition-pair i, ā

and j, b̄. This gives the script a scaling of O(N4
vN

3
c ), with Nv the number of specified

occupied up-spin orbitals and Nc the number of specified unoccupied down-spin orbitals.

The additional factor of Nv comes from the sums over “k” and/or “k̄” that occur for all

cases except when i ̸= j and ā ̸= b̄ for a particular pair of transitions. (When Nv is small

enough such that it includes only the open-shell spin-up states, these sums are not used,

and the scaling is O(N3
vN

3
c ). These results will not likely be converged, however.) For

comparison, the scaling of the diagonalization step of SF-BSE is O(N3
vN

3
c ). In practice,

the pre-factors are typically such that the ∆⟨Ŝ2⟩ calculation will be only a small fraction

of the diagonalization time. The ∆⟨Ŝ2⟩ scaling could be reduced to O(N3
vN

2
c ), less than

that of diagonalization, via an appropriate modification of the script to compute ∆⟨Ŝ2⟩
for only a subset of excitations of interest.

Timing information is provided for the example case of the ethylene molecule under

zero torsion, shown in Fig. 6, with ∆⟨Ŝ2⟩ calculated for all possible excitations. The time

taken for computations, in seconds, was found by using the time command while running

the Python script. In this case, two occupied orbitals are the minimum, and five occupied

orbitals are the maximum (limited by the number of occupied down-spin orbitals in

the high-reference state). The upper-limit of 50 empty orbitals is approximately the

number of empty orbitals required to converge the ethylene torsion barrier [9]. For the

calculations with Nv = 2, the sums over k and k̄ are not performed in Eq. 36, and

the scaling is O(N3
vN

3
c ), with a prefactor of 1.5 × 10−5 s. For Nc = 5, the scaling is

O(N4
vN

3
c ), with a prefactor of 3.1×10−6 s (the same as the Nv = 2 case, after accounting

for the additional factor of Nv = 5.)

As a test for the convergence of ∆⟨Ŝ2⟩ (after already obtaining converged values

of the excitation energies from SF-BSE), we compare the values for the cases (Nv = 5,

Nc = 5) with (Nv = 5, Nc = 50), and find differences, at most, on the order of 0.01.

(See Table 1.) Therefore, one may take ∆⟨Ŝ2⟩ to be computed sufficiently with fewer

unoccupied states than were used to construct the SF-BSE Hamiltonian.
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Figure 6. Timing information for ∆⟨Ŝ2⟩ calculations with various sizes of the SF-BSE

Hamiltonian for the test system of ethylene under zero torsion. Nv is the number of

specified occupied orbitals and Nc is the number of specified unoccupied orbitals. The

size of the SF-BSE Hamiltonian is NvNc. For both choices of Nv, Nc values from 2 to

50 are considered.

Table 1. The computed ∆⟨Ŝ2⟩ values for the states N, T, V, and Z for ethylene

under zero torsion, with two different sizes of the orbital basis set. The last row is the

expected values for pure singlets (-2) and triplets (0).

Nv Nc N T V Z

5 5 -1.985 -0.045 -1.965 -1.957

5 50 -1.998 -0.014 -1.974 -1.983

- - -2 0 -2 -2

8. Conclusion

We showed the necessity of the computation of ⟨Ŝ2⟩ to make meaning of the results

from Spin-Flip Bethe-Salpeter Equation calculations due to ambiguities from phase

differences in orbitals in different spin channels, and ease of rapid identification of desired

excited states. We reviewed the notion of spin contamination and its possible sources

from spin-polarized calculations (generally giving small contamination) and incomplete

transition vectors (possibly giving large contamination). We then derived in great

detail the equation used for calculating ∆⟨Ŝ2⟩ from the “super-operator” approach,

by explicitly considering the four cases possible for the individual transitions in the bra

and ket states. We reviewed the suite of Python scripts written for BerkeleyGW to

calculate ⟨Ŝ2⟩0 for the high-spin reference state and ∆⟨Ŝ2⟩ for the excited states, so

that this approach may be implemented independently for research teams interested in

the spin-flip method. These scripts are available in [40] and will be in a future release

of the BerkeleyGW package. We included timing information for the execution of the

(serial) script for ∆⟨Ŝ2⟩, showing O(N4
vN

3
c ) scaling, when computing for all possible

excitations. The convergence of ∆⟨Ŝ2⟩ for our two examples of ethylene and the NV−
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center in diamond indicated rapid convergence with respect to the number of unoccupied

states, so the serial script with fewer unoccupied states may be performed initially for

the purposes of analysis of states before the full set of unoccupied states are used for

fully-converged results for ∆⟨Ŝ2⟩ values.
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