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This presentation was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference therein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed therein do
not necessarily state or reflect those of the United States Government or any agency

thereof.
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 Recent Progress in SOFC/SOEC/R-SOC
Systems Analysis Efforts at NETL

« Techno-Economic and Market Assessment of
Hydrogen-Fueled SOFC

« Techno-Economic Analysis of Modularized
SOFC Technology

» Large-Scale Hydrogen Production with Solid
Oxide Electrolysis Cell Technology
* Future Work
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* The objective of this study is to quantify of the cost and performance
impacts associated with operating SOFC technology on pure hydrogen
fuel

« Approach
« Execute an analysis of hydrogen-fueled solid oxide fuel cell configurations

* Investigate the impact of increased heat generation resulting from the use of pure
hydrogen fuel

« Assess at a smaller scale - Preferred for comparison, given the expense and role that
hydrogen may play in power generation

« The analysis should consider system configurations that aim to mitigate the increased
parasitic losses associated with the exothermic hydrogen oxidation reaction

« Assess the impact of operating these devices in combined heat and power (CHP)
configurations to cost and performance

« Develop market assessment for CHP applications
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« Using energy market models (MARKAL and TIMES), NETL assessed several
scenarios to examine the potential deployment of H, fueled SOFC

« Scenarios examined:
« State-of-the-art reference case

« Reference with SOFC technology available
* Net-zero by 2050 (CO, emissions economy wide reach net-zero)

* Net-zero by 2050 with SOFC technology available

* Found significant deployment potential for SOFC in the net-zero scenario
since it provides an opportunity to mitigate hard-to-decarbonize industrial

areds
* This technology pathway has the potential to reduce the marginal price of
CO, in the net-zero scenario by almost 50%
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SOFC in Industrial Processes by Industry
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 Modern grid dynamics have elucidated the need for a more modular,
flexible approach for development of electric generation units.

« Prior NETL analyses have focused on large-scale (>500 MWe) SOFC systems. When
considering a dynamic grid with increased VRE penetration, the pathway toward
SOFC commercialization will likely leverage smaller scale SOFC systems

* NETL is developing a techno-economic assessment of SOFC systems at the
10-250 kWe scale to evaluate the applicability of current programmatic
’rChOSt ’rqrgelts of $225-250/kWe per stack and $900-1000/kWe per system at

ese scales

« Approach
« Use the NGFC-DG (distributed generation) model from prior work
« Performance models run at 250 kWe, gross
« Performance characteristics will be nearly identical between cases
« Run Aspen simulations for material and energy balances for scaling
« SOFC vendor information will be used to change performance points, equipment

costs, stack/module sizes, efc.
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Preliminary Results - Perfformance

Perfformance Summary MOD-250 MOD-250-CHP
Total Gross Power Output, kWe 250 250
Recovered Thermal Power, kWth - 96
Total Auxiliaries, kWe 3.5 3.5
Net Power, kWe 2446.5 2446.5
Net Plant Electrical Efficiency (HHV) 60.2% 60.2%
Net Plant Thermal Efficiency (HHV) - 23.4%
Net Plant Combined Efficiency (HHV) 60.2% 83.6%
Natural Gas Feed Flow, kg/h (lb/h) 28.1 (62.0) 28.1 (62.0)
Net Plant Heat Rate (HHV), kJ/KWh (Btu/kWh) 5,980 (5,670) 5,980 (5,670)
HHV Thermal Input, kWth 410 410
Carbon Dioxide Capture Rate, % NA NA

HHV = Higher heating value ouee e
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Large-Scale Hydrogen Production with
Solid Oxide Electrolysis Cell Technology
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* The objective of this study is to establish a detailed TEA to assess the
effectiveness of incremental technology improvements needed for solid

oxide electrolysis cell (SOEC) technology to achieve the U.S. DOE’s
Hydrogen Shot goal of hydrogen production at less than $1 per kilogram.

 Approach:

» A literature review on long-duration SOEC stack tests informed the state-of-the-art basis
for the techno-economic pathway.

« The pathway considers incremental technology improvements to key system
parameters, with system performance and cost assessed for each pathway step.

« Each step is assessed at both atmospheric and pressurized operating conditions

« Sensitivity studies are conducted to understand the relative impact of each parameter
and identify avenues for additional cost reductions.

« System efficiency and levelized costs of hydrogen (LCOH) for each case are
presented.
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Large-Scale H, Production via SOEC

System Design Basis

« SOEC H, production facility sized
to an electrolysis load of 1 GWp-
* Produces ~250,000 metric tons

annually, about 2.5% of annual Electric
U.S. H, production

« Stacks operated near the
thermoneutral voltage (=1.28V)
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Preliminary Cost Results - Atmospheric & Pressurized LCOH without Electricity
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* Current Status:
« Market Assessment of H, Fueled SOFC
 Finalize/Publish Results — May/June 2024
« Techno-Economic Analysis of Modularized SOFC Technology
» Finalize Results — Summer 2024
» Large-Scale Hydrogen Production from SOEC Technology
* Finalize/Publish Results — May/June 2024
« Abstract submitted for full presentation at ECS PRIME — October 2024
* Future Work:
« Re-engage NETL IDAES/PSE Team (dynamic operation/business case)
 Enhance R-SOC analysis with additional configurations
» Alfernate fuels for SOFC operation modes
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Integrated Energy Systems for Power and H, ¥

<> : :
A Thermal
. Energy : ELECTRICAL GRID
GENERATORS w Delivery '

: System POWER GENERATION §
. * Electrical
:  Energy

N STORAGE | FUEL CELL
AE. PEM. SOEC |
OR REVERSIBLE :
ELECTROLYSIS/FUEL CELL :

NATURAL GAS PIPELINE UTILITY GAS
l TURBINE C.C.

E“" " IDAES AN =

Institute for the Design of
® ® ) Advanced Energy Systems
> HYDROGEN USER TRANSPORTATION SECTOR

The IDAES platform is being applied to explore whether tightly coupled integrated energy systems that have the flexibility to
produce both power and hydrogen should play a role in DOE's goals of decarbonizing the power sector by 2035 and
broader economy by 2050.
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Questions/
Comments

VISIT US AT:

@NETL_DOE

@NETL_DOE

@NationalEnergyTechnologylLaboratory

CONTACT:
« Gregory Hackeftt
« Gregory.Hackett@netl.doe.gov
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