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ABSTRACT 

Advanced nuclear reactors are a promising option for aiding the world in achieving its net-zero 

carbon emission goals, however, there are significant challenges to attaining and maintaining 

economic competitiveness with other sources of electricity. To improve the economic 

competitiveness of advanced reactor designs, a project was initiated to explore the use of Markov 

Decision Processes (MDPs) to guide asset-management decision-making during advanced reactor 

operation. MDPs are a powerful tool for optimizing decision-making in complex environments and 

their application to advanced reactors can aid in planning maintenance and repair activities to 

minimize downtime and maximize generation. The described approach expands on previous work 

regarding the use of MDPs for operational decision-making through the direct incorporation of real-

time plant information. The integral MDP analysis includes information from online component 

diagnostic tools and the plant’s real-time generation risk assessment (GRA) and probabilistic risk 

assessment (PRA), which evaluate plant risk from both an economic and safety perspective. The 

result is an asset-management optimization framework that is based on real-time data regarding 

plant component status and the current best-estimate of plant risk. The paper presents an overview 

of the theoretical framework to incorporate the different information pathways into an integral MDP 

analysis, along with example analyses.  

Keywords: Probabilistic Risk Assessment, Generation Risk Assessment, Asset-Management, 

Diagnostics 

1. INTRODUCTION 

There has been a recent resurgence of interest in advanced reactors designs as a potential avenue for 

addressing rapid climate change. However, advanced reactors face an increasingly challengingly economic 

environment in countries with competitive energy markets. Approaches are necessary to reduce the cost of 

advanced reactors, including both upfront investments and the costs associated with operation and 

maintenance. The objective of the current project is to improve the economic competitiveness of advanced 

reactors through the optimization of cost and plant performance, which can be achieved by coupling online 

monitoring with intelligent asset-management decision-making. The effort reviewed here is a multi-year 

collaboration between Argonne National Laboratory (Argonne), the Ohio State University (OSU), and 

Framatome, funded by the U.S. Department of Energy (USDOE) Nuclear Energy Enabling Technologies 

(NEET) program.  

As advanced reactors are early in the development life-cycle, online monitoring systems and associated 

sensor networks can be incorporated directly into the design without the constraints related to retrofitting 

and system upgrades. Due to their innovative designs and lack of operating experience, advanced reactors 

have large uncertainties regarding component reliability, potential failure modes, and long-term 

maintenance needs. The project has focused on two objectives for the optimization of advanced reactor 



operation and asset management using online monitoring and diagnostics. First, during the reactor design 

phase, it is necessary to develop a sensor network that can properly detect and diagnose important faults 

and component degradation. This is a difficult task as there are many unknowns regarding long-term 

operational reliability and the associated costs of additional sensors and system penetrations can be 

prohibitive. Secondly, once reactor operation begins, the asset management approach must seamlessly 

integrate online monitoring information and the plant’s risk profile to develop an optimized plant operation 

and maintenance plan. The challenges of this task include cost-benefit decision-making in multivariate 

space while ensuring the plant does not approach risk or safety limits.  

The current paper focuses on the latter objective, which is optimization of asset-management decision-

making during operation using an integrated Markov decision process (MDP) analysis. This approach 

directly incorporates information from the following: 

- Markov component models utilizing degradation and failure rates from past experience 

- Online monitoring and diagnostic information from the Argonne tool PRO-AID 

- Analyses from a real-time plant Generation Risk Assessment (GRA) 

In addition, the approach also includes an analysis of the potential impact on plant safety and licensing 

acceptability through an assessment utilizing a real-time Probabilistic Risk Assessment (PRA). Section 2 

provides background information on MDPs and their solution methods, while Section 3 details the 

incorporation of each of the above factors into the MDP framework. The approach discussed here is 

currently # 

2. MARKOV DECISION PROCESSES 

A central aspect of the project is the utilization of an intelligent decision-making approach to optimize asset-

management strategies. The system of interest (an advanced nuclear power plant) can be in any of a finite 

number of states, and the transitions between system states follow a Markov process. At discrete time steps, 

the decision-maker can take actions to influence system state transition. So, the transitions between system 

states depend not only on “nature,” i.e., the inherent randomness in system state transition, but also on 

decision-maker actions. At each time step, different decision-maker actions and different system state 

transitions lead to varying rewards for the decision-maker. The decision-maker’s objective is to maximize 

the sum of the rewards that will be received from the current time step into the future. For the current project, 

this problem is formally formulated as and solved by an MDP.  

A Markov decision process can be formally defined by the following five elements, i.e., 𝕊, 𝔸, 𝑇, 𝑅, 𝛾. 

- 𝕊: a discrete and finite space for the states of a system under study. A specific state in 𝕊 at time 

step 𝑡 is denoted by 𝑠𝑡. 

- 𝔸: a discrete and finite space for decision-maker actions. A specific action in 𝔸 at time step 𝑡 is 

denoted by 𝑎𝑡. 

- 𝑇: 𝕊 × 𝔸 × 𝕊 → [0,1], the system state transition probability function, where [0,1] is the interval 

between 0 and 1. For example, 𝑇(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) denotes the probability of system state 𝑠𝑡+1 ∈ 𝕊 at 

time step 𝑡 + 1 given the system is in state 𝑠𝑡 ∈ 𝕊 at time step 𝑡 and the decision-maker takes action 

𝑎𝑡 ∈ 𝔸 at time step 𝑡. 

- 𝑅: 𝕊 × 𝔸 → (−∞, +∞), the reward function. For example, 𝑅(𝑠𝑡 , 𝑎𝑡) denotes the reward that the 

decision-maker receives at time step 𝑡 if the system is in state 𝑠𝑡 ∈ 𝕊 and the decision-maker takes 

action 𝑎𝑡 ∈ 𝔸. 

- 𝛾 ∈ (0,1): the discount factor used in the calculation of the cumulative rewards. 

Take the application to the maintenance of a valve used in nuclear power plants as an example to illustrate 

the above notations, with decisions regarding the maintenance of the component made on a monthly basis. 

The state space describes the performance level of the valve, i.e., perfect, degraded, and failed. At each 



time step, the possible actions that maintenance staff can take may include do nothing and repair. The 

transition between system states depends on both the inherent randomness of the degradation of the valve, 

and the action taken by the maintenance staff. For example, if at time step 𝑡 the valve is in the degraded 

state and the maintenance staff decides to do nothing, then the valve will be in the failed state at time step 

𝑡 + 1 with probability 10−2. However, for this same situation, if the maintenance staff takes action repair, 

the transition probability may be reduced to 10−3. Depending on the system state and the decision-maker 

action at time step 𝑡, the decision-maker will receive a certain reward. For example, for the same decision-

maker action, the reward in the case of a perfect state will typically be higher than the one in the case of a 

failed state. The discount factor 𝛾 may be determined as the real number that discounts future rewards back 

to the present value by referring to financial models used in maintenance management. 

The decision-maker actions not only influence the reward for the current time step, but there are also the 

long-term repercussions of the action. In an MDP, given the system state 𝑠0 at time step 0, the decision-

maker aims to develop a policy 𝜎  that maximizes the expected discounted cumulative reward, i.e., the 

objective function. 

The expectation in the objective function is over the possible transitions between system states. At each 

time step 𝑡, action 𝑎𝑡 is taken according to the policy 𝜎. The policy 𝜎 is defined as a mapping from the state 

space to the action space, i.e., 𝜎: 𝕊 → 𝔸. The objective function takes into account both the reward to be 

gained for the current time step 𝑡 = 0, but also the rewards to be received in future time steps. The discount 

factor 𝛾 is used to account for future versus current costs/rewards. The policy that maximizes the objective 

function is denoted by 𝜎∗. The maximum expected discounted cumulative reward following the optimal 

policy 𝜎∗ is denoted by 𝐽∗(𝑠0) for the starting state 𝑠0. This maximum number is also called the value for 

state 𝑠0, which is a key concept in algorithms for obtaining 𝜎∗. 

Dynamic programming serves as one of the most promising methods for solving an MDP problem, i.e., to 

obtain the optimal policy 𝜎∗. Dynamic programming methods can typically be classified into two categories, 

value iteration based methods, such as the Bellman equation, and policy iteration based methods.  

In the above discussion, the system state is fully observable or known. In practical applications however, 

the actual system state may only be partially observable, and can only be inferred through observations, 

such is often the case with equipment monitoring at nuclear power plants. Decision optimization under such 

situations can be formulated as and solved by partially observable Markov decision processes (POMDPs). 

A POMDP can be formally defined by the following seven elements, i.e., 𝕊, 𝔸, 𝕆, 𝑃, 𝑂, 𝑅, 𝛾. The only 

differences between a basic MDP and a POMDP is the addition of 𝕆  and 𝑂 , as below, with the other 

elements defined in the same way. 

- 𝕆: the observation space. The observations can be either discrete and finite, or continuous. A 

specific observation in 𝕆 at time step 𝑡 is denoted by 𝑜𝑡. 

- 𝑂 : the observation probability function. It can be defined as either 𝕊 → [0,1]  for discrete 

observations where [0,1] denotes the space of all possible probability mass values for discrete 

observations, or 𝕊 → [0, +∞) for continuous observations where [0, +∞] denotes the space of all 

possible probability density values for continuous observations. 

In a POMDP, the actual system state is not directly observable. So, the objective function in a POMDP is 

defined based on the belief in the system states. Denote the observations collected from time step 0 to time 

step 𝑡 by 𝑜0:𝑡. The belief 𝑏𝑡(𝑠𝑡) in system state 𝑠𝑡 at time step 𝑡 is defined as the posterior probability of 

system state 𝑠𝑡 at time step 𝑡, i.e., 𝑝(𝑠𝑡|𝑜0:𝑡). 

The objective function for a POMDP problem is also defined as the expected discounted cumulative reward 

with initial belief 𝑏0 at the beginning time step 0, i.e., the probability distribution over system states at time 

step 0. The expectation in the objective function is over the possible observations at each time step which 

in turn affect belief 𝑏𝑡(𝑠𝑡) at each time step. In an MDP, a policy is defined as a mapping from the system 

state space to the action space, i.e., 𝜎: 𝕊 → 𝔸. But in a POMDP, a policy is defined as a mapping from the 



belief state space 𝔹 to the action space 𝔸, i.e., 𝜎: 𝔹 → 𝔸. In the above objective function, 𝜎(𝑏𝑡) denotes 

the action 𝑎𝑡 provided by the policy 𝜎 for belief state 𝑏𝑡. Similar to the notations in an MDP, the optimal 

policy is denoted by 𝜎∗  and the maximum expected cumulative reward 𝐽(𝑏0)  following policy 𝜎∗  is 

denoted by 𝐽∗(𝑏0), and is called the value for belief state 𝑏0. 

The optimal policy in a POMDP can also be obtained using value iteration or policy iteration, similar to the 

methods for an MDP. However, the major difference between solving an MDP and solving a POMDP is 

that in a POMDP the policy is a function of the belief state, i.e., the posterior probability distribution over 

system states, instead of the actual system state. In a value iteration algorithm for an MDP, the key to 

obtaining the optimal policy is to obtain the values for all system states. In the case of an MDP, the system 

state space is discrete and finite, so the values for system states can be enumerated. However, in the case of 

a POMDP, even for discrete and finite system state space, the belief state space is continuous. So, it is not 

feasible to enumerate the values for an effectively infinite number of belief states. A typical solution to this 

problem is to sample the belief state space and use these samples in the value iteration algorithm. The details 

of such algorithms are not provided in this paper, but can be found in the literature [1]. 

3. INTEGRATED MARKOV DECISION PROCESS APPROACH 

As mentioned in Section 1, the approach for asset-management decision-making during plant operation 

requires the incorporation of multiple factors into the MDP/POMDP optimization framework. The steps 

before the MDP are necessary to supply the MPD calculation with the information required to form a real-

time assessment of plant conditions. Fig. 1 provides an overview of the inputs and outputs of the different 

analysis segments.  

First, sensor information from the operating plant is provided to the Argonne online diagnostic tool PRO-

AID [2], which assesses component status based on the sensor data and physical system models. To inform 

this calculation, Markov component models provide additional insights regarding component behavior 

(component state probabilities based on estimated degradation/failure rates). Both PRO-AID and the 

Markov component models work in tandem to assess the condition of components within the system. The 

output of PRO-AID are real-time probabilities regarding current component status (healthy, degraded, 

failed, etc.). The output from PRO-AID and the Markov component models are utilized to develop a real-

time plant risk profile, which consists of a PRA and a GRA. The PRA assesses plant risk from a safety 

perspective, while the GRA assesses economic risk. The output from PRO-AID, the Markov component 

models, and the real-time GRA are fed to the MDP analysis. The MDP analyzes different operational 

strategies to determine the optimal asset-management strategy to maximize revenue (in green). The selected 

asset-management strategy(ies) is assessed by the real-time PRA to ensure acceptability from a safety and 

licensing perspective. How these differing aspects are integrated into the integrated MDP analysis is 

detailed in the following subsections.  

3.1. Integration of Markov Component Models 

In probability theory, a Markov model is a stochastic model used to model randomly changing systems. It 

is assumed that future states depend only on the current state, not on the events that occurred before it (that 

is, it assumes the Markov property). For any given component, a Markov model consists of a list of the 

possible states the component could be at any specific time, the transition paths between those states, the 

rate parameters of those transitions, and the initial conditions describing the chance of the component to be 

in the states at some initial time point.  

The Markov model of a real component typically includes a fully operational state (Healthy) and a set of 

intermediate states representing partially failed condition (Degraded), leading to the fully failed state, i.e., 

the state in which the component is unable to perform its design function (Failed). The model may include 



repair transition paths as well as failure transition paths. An example of how Markov analyses can be used 

to model nuclear reactor components can be found in ref [3].  

 
Figure 1: Overview of Integrated MDP Analysis Approach 

The ability of Markov models to estimate the future state(s) of components is an important factor in the 

MDP asset-management framework, as the change in component status will impact the likelihood of being 

in different plant states in the future. As outlined in Section 2, MDPs include a set of transition probabilities 

(T) that depict the likelihood of the system transitioning from one state to another during the next time 

interval. In the developed approach, the Markov component models are utilized to develop the transition 

probabilities. While the Markov component models only assess a single component in the plant, the results 

of the individual component models can be combined to provide a comprehensive assessment of the 

likelihood of the plant transitioning states. To complete this analysis, each individual Markov component 

model is solved for the next time interval under consideration, in a manner consistent with the assumptions 

of that action. For example, if the action is to repair that component, then that is reflected in the state of the 

Markov component model. It is important to note that the individual Markov component models can be 

developed using a variety of techniques, such as the use of historical operating data or mechanistic 

component models. This allows users to leverage pre-existing component models within the framework in 

a plug-and-play manner. 

Within the overall framework, the derived state probabilities for each component at each time interval are 

integrated into a total plant model to become the transition probabilities in the MDP framework (transition 



function T in Section 2). In this way, the likelihood of the plant being in a future state is directly integrated 

with the associated Markov component models.  

3.2. Integration of Generation Risk Assessment 

Nuclear power plant operators require tools to help make decisions involving the operation and maintenance 

of equipment whose failure can cause reactor trips or down-power events. A GRA is the process of 

predicting the risk of generation loss during future operation by estimating the probability and duration of 

plant trip or derate due to equipment degradation or failure [4]. A GRA model is an important element of 

nuclear asset management risk-informed tools for analyzing effects of equipment reliability and availability 

on plant value and resource allocation decision-making.  

Central to the assessment of generation risk is the development of a trip model. A trip model is similar in 

function and construction to that used for PRA with the exception that the end-state of the trip model is the 

frequency of plant trip as opposed to the frequency of core damage or offsite dose consequence. The trip 

model is generally used to estimate the frequency of instantaneous trip based on actual plant configuration 

and condition. Another model important for a GRA analysis is a derate power model, i.e., a model where 

the end-state is the frequency of plant to operate at decreased (derated) power level. When built, the two 

models help to identify different plant states and the awards (generation) associated with them which are 

key input parameters for any asset management decision at the plant level.  

For the MDP asset-management decision-making framework, the integration of the GRA provides insight 

into the potential reward associated with different plant states (variable R in Section 2), in terms of 

generation and revenue. Consider a K-state plant that consists of N subsystems. At any particular time t the 

plant can be in any one of K plant states with corresponding probability Pk(t) and the reward associated 

with kth state rk. The overall plant reward at time t can in general be estimated as 

𝑅(𝑡) = ∑ 𝑟𝑘 ∙ 𝑃𝑘(𝑡)

𝐾

𝑘=1

 

where, 

    rk – plant reward for being in state k, k = 1, 2, …, K 

 Pk(t) – probability for the plant to be in state k.  

Strictly speaking, Pk is a function of not only time t, but also of pi(t) – probability for subsystem i (i = 1, 

2, .., N) to be in a state that would allow the plant to be in state k. The exact formula to calculate Pk(t) is 

strongly dependent on configuration and arrangement of the plant subsystems and is derived from that 

knowledge for each particular case. The aforementioned trip and derate models can help with estimating 

plant state probabilities. In the approach proposed in this project, the fault tree method to build the 

derate/trip model is applied (i.e., one fault tree for each plant state so, that probability of the plant to be in 

a particular derate/trip state would be the top event probability of fault tree corresponding to that state). One 

of the benefits of such approach is that such models can be constructed rather easily, and once built, are 

straightforward to use.  

A real-time GRA is developed utilizing the component status information derived from the combination of 

the Markov component models and real-time diagnostic tool (discussed in the Section 3.3). The function 

Pk can be found from the Markov component models discussed in Section 3.1 and the associated reward 

with each state, rk, is known from the real-time GRA. Therefore, R(t) can be found for each time interval 

and integrated into the MDP framework.  



3.3. Integration of Real-time Diagnostic Information 

Optimized asset-management decision-making relies on an accurate, real-time picture of plant conditions. 

In the developed methodology, this process begins with the sensor network within the operating plant. The 

sensor network provides information to PRO-AID, which assesses the data and diagnoses component 

operating states. By combining sensor data with physics-based models, PRO-AID has the capability to 

discriminate sensor-level from component-level faults. A brief overview of the PRO-AID method and 

linking to the Markov component models is provided here, with further detail to be provided in future 

publications.  

The PRO-AID framework consists of quantitative model-based diagnosis, statistical change detection and 

probabilistic reasoning that allows detecting both component faults and sensor faults. The use of physics-

based diagnostic models provides high detection sensitivity and allows noise and measurement uncertainty 

to be incorporated robustly. For each component model, there are two major sources of uncertainty that 

need to be taken into account, i.e., (1) the measurement uncertainty (uncertainty in the reading value of 

each sensor), and (2) the modeling uncertainty (uncertainty in the output of each component model). As a 

result, the computed residuals, i.e., difference between the model predictions and the measurements, will 

be affected by uncertainty. To this aim, Bayesian inference is used to detect and localize possible faults 

starting from the observed fault symptoms, i.e., the relation between the posterior probability and prior 

probability of a fault can be written as the following equation. A generalized version of this formula is 

implemented to account for multiple-fault event scenarios. 

𝑃(𝑆|𝑂) =
𝑃(𝑂|𝑆) ∙ 𝑃(𝑆)

𝑃(𝑂)
 

where, 

𝑂: The set of observed zero/non-zero residuals 

𝑃(S): The prior state probabilities  

𝑃(𝑂|𝑆):  The likelihood of the observed data, i.e.  the probability to have observations described 

by𝑂for state S to occur 

𝑃(𝑂):  The probability to have the observations in 𝑂 regardless of whether any faults occurred 

𝑃(𝑆|𝑂): The posterior probability of the fault, i.e., the probability that state S has occurred given 

the observed residuals 𝑂 

As a result of the online monitoring process, at every time-step, PRO-AID evaluates the conditions of 

sensors and components, i.e., operating, faulted, degraded. In case inconsistencies between the set of 

observations and the fault-free system model are detected, the compatible fault scenarios are identified. For 

each one of them, the posterior probabilities are calculated by using the Bayesian network method. Possible 

diagnoses are then ranked in a meaningful order so that unlikely events can be eliminated. 

As was outlined in the Section 3.1, the probability of the component to be in a given state at a future time 

can be calculated from the Markov component model. The obtained component state probabilities are 

passed to PRO-AID to be utilized as the prior probabilities for its internal Bayesian models. PRO-AID then 

utilizes sensor readings to perform a Bayesian update and return posterior state probabilities to the Markov 

component models. The component state probabilities are then used within the Markov models to predict 

the state probabilities at the next time-step. The component status information is then passed to the real-

time GRA and PRA, which are updated to reflect the real-time risk profile of the plant, and can then be used 

to estimate the risk profile of the plant at a future time. 

The linking of PRO-AID and the Markov component models provides a real-time estimate of the status of 

plant components. This information can be utilized in the MDP to inform the current plant state (𝑠𝑡 in 



Section 2). The result is a POMDP, since the current state is not known but only estimated. As described in 

Section 2, in a POMDP, observations O of the system state are made but are uncertain. This directly aligns 

with the estimated state probabilities that are obtained through the utilization of PRO-AID. The POMDP 

can still be solved to identify an optimal policy. However, now the policy is also dependent on the 

uncertainty regarding the current system state.   

3.4. Integration of Probabilistic Risk Assessment Information 

Incorporation of the PRA into the intelligent asset-management decision-making approach is a necessary 

step to ensure that plant operations remain within acceptable safety bounds. The insights from the PRA 

provide critical insights into the acceptability of proposed asset-management strategies. To accomplish this 

task, the real-time PRA is utilized in conjunction with the risk-informed performance-based licensing 

approach of the Licensing Modernization Project (LMP) [5]. 

The use of PRA in reactor licensing has evolved since its introduction in the 1970s. As the use of risk-

informed decision-making in regulatory matters has gradually expanded, a new risk-informed performance-

based licensing approach (the LMP approach) has been developed and recently endorsed by the NRC for 

use by advanced reactor vendors [6]. The LMP approach utilizes risk information to inform key licensing 

decisions, such as the identification and categorization of licensing basis events (LBEs), the safety 

classification of structures, systems, and components (SSCs), and the evaluation of the adequacy of defense-

in-depth.  

As the current project focuses on the economics of advanced reactors, the implementation approach 

assumes the utilization of the LMP process for reactor licensing. Of particular importance for the current 

work is the LMP’s use of the frequency versus consequence (F-C) curve, shown in Fig 2. When utilizing 

the LMP approach, event sequences or event sequence families from the PRA are plotted on the F-C curve. 

The frequency of the event sequences is utilized for LBE categorization (anticipated operational occurrence 

– AOO, design basis event – DBE, beyond design basis event – BDBE). In addition, the event sequences 

and their associated offsite dose are compared to a consequence target, which is developed based on 

applicable regulation and guidance. The distance from the event sequences to the consequence target helps 

demonstrate the available safety margin of the design. The F-C curve also has a designated “risk significant” 

region, which identifies LBEs that may be located close to the consequence target. The F-C curve is also 

utilized to aid in the safety classification of SSCs. The importance of different SSCs is determined through 

PRA sensitivity studies, such as not crediting an SSC (i.e., assuming it is in the failed state) and assessing 

the impact of event sequence placement on the F-C curve. For example, if not crediting an SSC results in 

an event sequence exceeding the consequence target, then that SSC may be designated as “Safety Related,” 

the highest safety classification for SSCs.  

For the project approach, the results of the real-time PRA provide important insights into plant safety and 

licensing. The real-time PRA incorporates online monitoring and diagnostic information to provide updates 

of failure probabilities and component status. At a high-level, the real-time PRA provides an avenue for 

assessing the safety impact of different operational strategies. Since the LMP approach to licensing is 

fundamentally risk-informed, changes to the PRA and the associated plant risk profile can provide direct 

insights into the status of the plant within its licensing basis.  

With the real-time PRA established, different asset-management strategies are assessed throughout reactor 

operation utilizing the MDP approach described in the previous sections. The result of the MDP analysis is 

one or more asset-management strategies that are optimized to maximize revenue for the plant. However, 

the MDP calculation itself does not provide a bound on available actions from a safety perspective. 

Therefore, after the optimization process has taken place, the strategy must be analyzed by the real-time 
PRA to assess whether safety/licensing constraints would be violated over the next operating window. The 

frequency and consequence of potential event sequences is updated based on the planned status of 



components and systems in the plant. This includes actions taken immediately but also those planned in the 

future. The full list of impacted parameters includes: 

- Mission time of analysis (i.e., operating period of the reactor, includes planned downtime 

associated with strategy under examination) 

- Status of components (in service, out of service, degraded state, repaired, etc.) 

- Failure rate of components (depending on state, repair/maintenance, etc.) 

 
Figure 2: LMP Frequency versus Consequence Curve1 

Each asset-management strategy is modelled in the real-time PRA for the future operational period, such 

as the time until next plant shutdown. The locations of LBEs on the F-C curve is tracked to ensure that no 

LBEs exceed the consequence target of the curve and therefore may violate the operational bounds of the 

reactor. In addition, the change in the frequency and consequence of LBEs is also assessed to gauge any 

potential impact on SSC classification, as this could have ramifications on plant technical specifications.  

4. CONCLUSION AND NEXT STEPS 

Advanced reactors offer a promising pathway to address rapid climate change but large-scale deployment 

faces a challenging economic environment in competitive energy markets. To improve the economic 

competitiveness of advanced reactors, an effort was undertaken to develop an approach to optimize asset-

management strategies during reactor operation. The result is an integrated MDP analysis, which directly 

incorporates key information from Markov component models, online monitoring and diagnostics, and a 

real-time GRA. In addition, a real-time PRA provides an avenue for assessing the safety and licensing 

acceptability of the proposed strategies.  

 

1 Derived from ref [5]. 



The developed approach benefits from its integrated nature, which incorporates multiple streams of 

available information into the decision-making process to conduct a comprehensive assessment. However, 

the approach is also flexible and scalable, as it can be tailored to focus on individual systems or plant-wide 

behavior. Similarly, the approach can directly incorporate any available model for system/component 

behavior, such as reliability analysis based on historical data or mechanistic system analysis, or 

combinations of models.  

A comprehensive demonstration problem utilizing an advanced reactor design has been completed, with a 

high-level summary provided in ref [7]. The demonstration problem conducted each step of the developed 

approach for a steam-cycle HTGR design, with a focus on operational strategies of the feedwater system. 

The operational flexibility of the steam-cycle HTGR provides a promising but also challenging setting for 

asset-management decision-making, given the numerous potential options and complexity of the analysis. 

Complete detail on the demonstration problem will be provided in future publications. 
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