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Abstract

The Designs for Risk Evaluation and Management (DREAM) tool was developed as part
of the effort to quantify the risk of lack of containment for geologic storage of carbon dioxide
(COy) under the U.S. Department of Energy’s National Risk Assessment Partnership (NRAP).
DREAM is an optimization tool created to identify optimal monitoring schemes that minimize
the time to first detection of CO, leakage from a subsurface storage formation. DREAM acts as
a post-processor on user-provided output from subsurface leakage simulations. While DREAM
was developed for CO, leakage scenarios, it is applicable to any subsurface leakage simulation
of the same output format. The DREAM tool is comprised of three main components: (1) a Java
wizard used to configure and execute the simulations, (2) a visualization tool to view the domain
space and optimization results, and (3) a plotting tool used to analyze the results. A secondary
Java application is provided to aid users in converting common American Standard Code for
Information Interchange (ASCII) output data to the standard DREAM hierarchical data format
(HDFS). DREAM employs a simulated annealing approach that searches the solution space by
iteratively mutating potential monitoring schemes built of various configurations of monitoring
locations and leak detection parameters. This approach has proven to be orders of magnitude
faster than an exhaustive search of the entire solution space. The user’s manual illustrates the
program graphical user interface (GUI), describes the tool inputs, and includes an example ap-
plication.

The latest version of the software, DREAMYV3.0, introduces the ability to optimize surface
geophysical surveys taken over various areas of the field site at irregular intervals. This optimiza-
tion can be run using surface geophysics only, wellbore instruments only, or using a combination
of surface geophysical surveys and wellbore instruments. These two approaches generally have
broadly overlapping sensitivities, as a surface geophysical survey detects over a wide area of
the field but only detects signals that are detectable along the surface at the time the survey
was conducted, whereas a wellbore sensor can generally detect signals in the subsurface con-
tinuously the entire time it is in place, but only at one point in space. Therefore a pairing of
wellbore sensors limited in their spatial coverage with geophysical surveys limited in their tem-
poral coverage can produce a much improved monitoring plan. This software assumes that a set
of hypothetical simulated CO, leaks are available, and that those leaks are representative of the
underlying risk profile for a site. This allows the software to remain lightweight and functional
on a typical laptop, and reduces the barrier to entry for users who lack the expertise of budget
for high performance computing. This also improves compatibility across various application
domains, allowing the tool to remain independent from any software dependencies related to for-
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ward modelling or model calibration. Leak scenarios can be provided in the HDFS5 file format,
as NRAP-Open-IAM output files, or as STOMP, NUFT, Tecplot or Tough2 simulation files.

Keywords: carbon sequestration, subsurface monitoring design, gravity surveys, optimization,
genetic algorithms

1. Introduction

Geological carbon capture and storage is one proposed means of mitigating human-induced
climate change, by diverting and concentrating anthropogenic point sources of carbon dioxide
into a supercritical fluid and then injecting it into a permeable underground rock formation for
long-term storage. One application of this technique is in enhanced oil recovery, where the
physicochemical properties of supercritical CO2 are used as a solvent to strip oil from mineral
grain surfaces and mobilize it towards an oil production well. Another financial incentive for
industry to pursue this technology is 45Q tax credits, which allow private industry to receive
tax credits for capturing and storing carbon dioxide rather than releasing it into the atmosphere.
This tax credit is currently priced at $10-20 per metric ton with some proposals to gradually
increase the price to $35-50 per metric ton, and current CO, emissions are approximately 5
billion metric tons per year in the US. Therefore if monitoring costs and operational risks are
sufficiently minimized, geologic carbon storage can potentially become an industry on the order
of $100 billion/year in the near future.

One of the main challenges of this endeavor is verifying that the stored carbon dioxide re-
mains stable and immobilized, as drilling enough monitoring wells near enough to the storage
reservoir to detect every possible combination of CO, leaks can be prohibitively expensive. The
DREAM (Designs for Risk Evaluation and Management) software package was therefore devel-
oped in order to design optimal arrays of monitoring wells. DREAM accepts an ensemble of
potential leak scenarios as input, and then develops a Pareto-optimal set of monitoring plans rep-
resenting the range of possible tradeoffs between cost and risk. DREAM is designed to maintain
a low technical barrier to entry, and can be run on a typical laptop or workstation rather than a
supercomputer.

The latest version of DREAM also incorporates a mix of direct monitoring through wellbores
as well as remote sensing through gravity surveys conducted along the surface. While incorpo-
rating gravity surveys can improve the cost and performance of the overall monitoring plan, it
can also make the optimization problem more challenging. Heuristic algorithms were therefore
developed to efficiently solve these mixed continuous-combinatorial optimization problems.

2. Background

The algorithmic design of optimized sensor networks for environmental monitoring is a well-
studied area of research [8, 10, 21], with many studies [17, 18, 19] focusing on simulated anneal-
ing [See Section 3.2.3] while others [5, 6, 7, 12, 14, 20, 24] use genetic algorithms [See Section
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3.2.4]. The goal of the DREAM software [2, 25, 26, 27] has been to integrate these methods into
a single, user-friendly interface that uses a modular approach allowing it to be integrated into any
arbitrary forward modeling and history matching workflow.

3. Methods

3.1. Software Application

This software is written primarily in Java, and has a graphical user interface with a series
of windows allowing the user to configure the knowns, unknowns and constraints of their mon-
itoring design problem. The software accepts a set of hypothetical simulated CO, leakage files
as inputs, and treats those leakage files as representative of the underlying risk profile for a site.
Leak scenarios are composed of physical parameters such as pore pressure, CO2 concentration,
or salinity as a function of x,y,z and time, and can be provided in the HDF5 file format, as
NRAP-Open-IAM output files, or as STOMP, NUFT, Tecplot or Tough2 simulation files.

Once the leak ensemble is loaded into DREAM, the user defines leakage thresholds indicating
the value at which each subsurface parameter constitutes an impact or degradation to the aquifer.
For some values such as pore pressure, there may not be a value that harms the aquifer, whereas
other values such as salinity might be based on an MCL (Maximum Contaminant Level) defined
by a state or federal agency. The user then defines detection thresholds for each parameter, which
may be based off of the sensitivity of the instrument or the background noise levels particular
to the site. A distinction is made between leakage thresholds and detection thresholds, as the
amount of a given contaminant needed to impact an aquifer can be different from the amount
needed for its presence to become detectable.

The user can then define a set of weighting coefficients which guide the software in prioritiz-
ing sensor coverage for each leak. By default these weights are set equal, however they can be
re-defined based on the volume of aquifer degraded according to the leakage thresholds, or by a
user-supplied estimate of the relative probability of each leak occurring or the relative magnitude
or impact of each leak. These values can be defined manually within the GUI, or by reference
to an external csv file. There is also a collection of Python scripts available which parse the
csv files along with the input HDFS files to generate visualizations of the optimization results as
static images files.

3.2. Optimization Algorithms

For each optimization algorithm, we programmatically develop a series of monitoring plans
each including a variety of wellbores, sensors and gravity surveys as well as their locations and
timings, and we then assess how each plan performs in terms of our monitoring objectives. The
five objectives available to consider are

1. Minimizing the purchasing, labor, installation and operational costs of the monitoring plan.
2. Maximizing the number of leak scenarios that would be detectable by the monitoring plan.

3. Maximizing the total mass of CO, of the leak scenarios that would be detectable by the
monitoring plan.

4. Minimizing the time to detect our leak scenarios.

3
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5. Minimizing the volume of aquifer degraded at the time of detection.

These objectives broadly overlap in some cases, however they can also conflict with one
another to various degrees. For example, objective 1 conflicts strongly with objectives 2-5, as
improving any of those objectives almost always requires more sensors and boreholes drilled.
Objectives 2 and 3 also tend to conflict with objective 4, as detecting leak scenarios as early
as possible requires locating sensors very near their points of origin which tends to preclude
also detecting a large number of different potential leaks. Objectives 4 and 5 tend to correlate
strongly with one another, however they can also conflict at times. For example a small, high-
concentration but slow-moving leak may exceed the lower detection limits of our sensors and
become detectable very quickly, but may take a long time for the plume to expand and contami-
nate a large volume of the aquifer. By contrast, a fast-moving but low concentration plume may
contaminate a large area of the aquifer before finally reaching a high enough concentration to be
detectable by our sensors.

A tradeoft surface therefore exists, representing the range of compromises that can be made
between these five objectives. Some possible monitoring plans would provide a lot of broad
coverage and would eventually detect most or all of the potential leaks, while others may provide
more targeted coverage to preferentially detect the largest, most impactful (in terms of volume
of aquifer degraded) and the most likely leaks as quickly as possible, while others make some
compromises on coverage to minimize operating costs. Understanding the structure of this five-
dimensional Pareto-optimal surface is critical to making good site monitoring decisions.

3.2.1. Grid Search

An exhaustive grid search requires that we employ some combinatorics to evaluate every pos-
sible combination of sensor type and sensor location. We consider installing ,,C, combinations
of sensors, where n is the number of sensor types we install and r is the number of sensors we
propose to install. This can be represented by the equation

n!

nCr=——= (D

rin—r)!’
which can itself quickly become computationally intractable if a large array of sensors are

needed. For example, if we consider employing three distinct sensor types (pressure, satura-
tion, gravity) and intend to install 5 sensors in total, we get 21 possible combinations

T o oo
o Bsc o Mso]
» T T T
» 09 » o

Sensor Types = , (2)

...14 more rows...

«» w»n

g g » To oo o

ugQ 0q 09
ogQ 09 09
ugQ 0Q 09

however if we consider installing 15 sensors, that leads to 136 possible sensor combinations.

We then consider the list of possible sensor locations, as discretized by the xyz grid used in our

ensemble of leak scenario files. Many of these grid nodes can be neglected, as they never see
4
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performing spatial downsampling on the aquifer simulation files can manage this to some degree,
but not without sacrificing some spatial resolution. We then compute the Cartesian product of
the list of possible sensor locations with the list of possible sensor location combinations. This
can readily lead to millions to trillions of possible monitoring plans, making it an impractical
approach for most full-reservoir models.

3.2.2. Monte Carlo

The Monte Carlo algorithm is a much simpler approach, randomly selecting the number and
locations of sensors at each iteration. While this is less thorough than the full grid search, it
tends to search the decision space fairly uniformly with a reasonable amount of computational
effort. In many cases this may quickly find the same ideal solution that would have eventually
been found by grid search.

3.2.3. Simulated Annealing

The Simulated Annealing algorithm [11, 16] begins by generating a single random moni-
toring plan, considering how well this plan would perform in terms of cost and leak detection,
then making a series of small, iterative modifications to this plan. At each iteration, it considers
whether the most recent change improved or degraded the monitoring plan performance, and
accepts the change if it was deemed an improvement. If the change degrades performance, a
random number generator is used to probabilistically accept or reject the change, with the accep-
tance probability depending on how much the performance was degraded. This encourages the
algorithm to occasionally “climb out” of a local minima and explore new areas of the decision
space. This algorithm can find ”good” solutions very quickly, but often fails to find the best pos-
sible solution. It should generally be repeated multiple times to ensure that the decision space
has been adequately explored.

3.2.4. Non-dominated Sorting Genetic Algorithm Il

The DREAMYv3 NSGA-II option is based on the Non-dominated Sorting Genetic Algorithm
[4], which uses Pareto ranking [Figure 1] to iteratively develop a set of optimal monitoring plans.
Pareto ranking assigns each monitoring plan a rank based on how well it manages tradeoffs
between the various objectives, with rank 1 monitoring plans rated the best. In this example,
monitoring plans are being evaluated based on minimizing two objectives f; and f,. Monitoring
plans 1 and 2 [Figure la] are superior to monitoring plan 3 in terms of both objectives f; and
Jf2, and therefore they are both a lower (better) rank than plan 3. However, plan 1 and 2 are

5
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ambiguous, as plan 1 is better in terms of objective f; while plan 2 is better in terms of objective
f>. These two must therefore be assigned the same rank.
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Figure 1: Illustration of Pareto optimality. Blue dashed line represents the ’true’ Pareto front. Rank 1 solutions (blue
dots) represent the best currently-available approximation of the Pareto front.

The NSGA-II algorithm uses a Monte Carlo approach to generate an initial population of
monitoring plans, then semi-randomly selects pairs of monitoring plans from that ensemble.
Monitoring plans with lower Pareto ranks are preferential selected, and a de-clustering method
is used to preferentially select monitoring plans that are more unique in terms of their objective
values. Sensors from these pairs of monitoring plans are then randomly selected and used to
construct new monitoring plans that often combine the best features of the parent” pair. Over
enough iterations, this generates a set of monitoring plans that evenly explore the Pareto front.

3.2.5. Heuristic Sampling

The DREAM heuristic algorithm divides the monitoring design problem into a sequence of
sensor placement decisions. The first sensor is placed by evaluating the full set of available
sensor placement locations in terms of the added drilling and installation costs, the number of
hypothetical leaks that would be detectable at that location [Figure 2], and the average time to
detection of those leaks. The algorithm then considers the tradeoff relationship between these
objectives, and randomly selects one of the resulting Pareto-optimal locations as the first sensor
placement. An example of the tradeoff relationship between two objectives is visualized in 2d in
Figure 3, and between three objectives in 3d in Figure 4.

Once the first sensor location has been determined, the set of hypothetical leaks that would
be detected by that sensor are neglected and the objectives are re-computed considering only the
set of leaks that would not be detectable by the first sensor. This process is repeated many times
with various numbers and types of sensors as indicated by the users specifications. Where surface
geophysical survey methods are being considered, several (1-4, randomly selected) points along
the surface are sequentially chosen in the manner described above, and a rectangular survey
geometry is constructed so as to be just large and dense enough to include those points.

6
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Figure 2: Color indicates the number of leaks that overlap at each point (x,y), considering only the leaks that as yet would
be undetected by the current monitoring plan.

4. Results

4.1. NRAP-Open-IAM FutureGen2 Aquifer ROM

To create a set of leakage scenarios, a model of a hypothetical GCS site was created using the
NRAP-Open-IAM [22], and integrated assessment model for quantifying the risk of unintended
migration of CO2 and brine out of a storage reservoir. The hypothetical GCS project considered
in this study treats the Vedder Sandstone, a sedimentary formation in the Southern San Joaquin
Valley of CA, as a GCS system. The injection site is located approximately 20 miles northwest
of Bakersfield, CA in Kern County. The region was previously characterized as part of the West-
carb Kimberlina Pilot Project [23].

Building on a previous study [13], a 50-year basin-scale injection of CO, and a 50-year post-
injection period were simulated. CO, and brine leakage rates into a USDW were calculated along
the 1000 wellbores in the study area, the volume of impacted aquifer for each leaky wellbore lo-
cation determined, and compiled into a time-to-detection map for the entire site. We used the
Monte Carlo framework of the NRAP-Open-IAM to run stochastic simulations that captured the
uncertainty associated with the effective permeability of the wellbores in the model. The NRAP-
Open-IAM represents discrete elements of a GCS system using individual surrogate models. Our
integrated assessment model of the site consisted of a single reservoir lookup table joined with
1000 individual multisegmented wellbore models connected to FutureGen2 aquifer models in a
one-way forward coupling.

In this preliminary example only a few wellbores are found to have detectable leaks, meaning
only a very few locations are feasible for consideration as monitoring locations. This means that
a full grid search is computationally possible, requiring only a few minutes to consider the 35,442
possible combinations (Figure 5, gray dots) of 5 sensor locations. We then use a Monte Carlo

7
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Figure 3: Each possible sensor placement is evaluated in terms of average time to detection and the percentage of leaks
detected (weighted by mass of leak). Suboptimal options for the first sensor placement (light gray) are discounted because
they each have worse performance than at least one other sensor location in terms of time to detection, poorer coverage
or both. A single sensor placement is selected (light blue) from along the optimal tradeoff curve (orange). Suboptimal
options (red) for the second sensor are then discounted in the same manner, and the second sensor placement is selected
(blue) from along the new tradeoff curve (red).

approach to generate 10,000 random monitoring plans, and find almost the exact same monitor-
ing performance (Figure 5a). By reducing the Monte Carlo search another order of magnitude
(Figure 5b), we see that a fair number of possible monitoring outcomes are missed, however the
general trend remains the same. The Simulated Annealing and Heuristic Algorithms are also
compared to the grid search method (Figure 5c,d), and produce similar results.

This demonstrates that in simple cases at least, a relatively modest Monte Carlo sampling can
nearly fully explore the decision space. For more complex monitoring design problems, how-
ever, a very large sample size may be required for Monte Carlo to adequately explore the decision
space. This may become computationally impractical, and therefore the remaining algorithms
will simply be evaluated by comparison to a very large” Monte Carlo sampling rather than a
full grid search.
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detection, poorer coverage or both. A single sensor placement is selected (light blue) from along the optimal tradeoff
curve (orange). Suboptimal options (red) for the second sensor are then discounted in the same manner, and the second
sensor placement is selected (blue) from along the new tradeoft curve (red).

4.2. NRAP-Open-IAM Generic Aquifer ROM

The Reservoir component model provides spatial and temporal information on pressure and
saturation in the storage reservoir. A reservoir simulation look-up table in United States (US)
Department of Energy (DOE)’s National Risk Assessment Partnership Open-source Integrated
Assessment Model (NRAP-Open-IAM) [22] is used for this study. The table is based on a set
of numerical simulation models with varying rock properties for the Kimberlina reservoir in
southern San Joaquin basin in California, USA. [28] The homogeneous reservoir model No.
14 (reservoir porosity: 0.276; reservoir permeability: 1.585x10713 m?; caprock permeability:
1.995x107'8 m?) for the first 100 years (i.e., 50 years of CO, injection at a rate of 5 million
metric tons/year and 50 years of post-injection) was used.

Coupled to the reservoir model, a wellbore model predicts leakage amount of the injected
CO, and formation brine to an overlying aquifer through leaky wells based on input pressure and
CO; saturation. A caprock segment wellbore model in NRAP-Open-IAM [22] was adopted [3].
This model assumes no leakage into caprock layers, and thus it provides a conservative estimate
for risk evaluation. 74 wells within 5 km from the injection well were analyzed.

The output leakage rates of CO, and brine from the wellbore model is fed into a genetic
aquifer impact reduced-order-model [1] as input to forecast the impacts of the well leakage on
aquifers. The model generates 3D temporal and spatial datasets of mass fractions of the dissolved
CO2 and salts throughout the aquifer. The model performs individual calculation for each of
wells, and once dissolved CO; or salts plumes from different wells are overlapped, maximum
value in the cell were used.

For a stochastic analysis, 200 realizations of input parameters of the wellbore and aquifer
models were sampled using Latin-hypercube sampling (LHS) [9]. Table 1 shows the paramater
ranges used. Of these stochastically generated models, 50 represent very small leaks which never

9
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Figure 5: Comparison between Monte Carlo searches (for n=10,000 and n=1,000) and an exhaustive grid search of the
decision space using the NRAP-Open-IAM Open Wellbore ROM.

exceed 0.01% CO, concentration [Figure 6] and are therefore neglected from the analysis.

This input dataset was run using DREAM’s Monte Carlo, Simulated Annealing and Heuristic
algorithms described above [Section 3.2], however due to the large size of the input files the grid
search and genetic algorithm were too computationally intensive to be practical. Each of the
150 input files were 800-900MB, however DREAM had a peak memory usage of 2.1GB of the
machine’s 16GB RAM. As working with this dataset was time-intensive, only 100 iterations
were run for each algorithm. For this example [Figure 7], the Monte Carlo algorithm was able
to identify one monitoring plan capable of detecting 134/150 leak scenarios using 8 monitoring
wells, while the heuristic algorithm was able to detect 138/150 leak scenarios using 2 monitoring
wells.

10
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Table 1: Parameter ranges for OpenlAM Generic Aquifer model

Parameter Unit  Minimum Maximum
Reservoir salinity % 0.03 0.05
Well permeability m?>  1.0x107"% 1.778 x 1072
Aquifer thickness m 25 100
Aquifer top depth m 2,000 2,500
Aquifer porosity % 0.02 0.10
Aquifer horizontal permeability —m? 1.0 x 10713 1.0 x 10710
Aquifer permeability anisotropy - 0.01 1.0

Max CO, Conc [%]
w

10+1

10+ﬂ

101

1072
10-3

1074

1073

Max CO, Conc (logl0) [%]

Time [years]

Figure 6: The maximum CO, concentration (taken over the entire model space) is shown for each leak in both linear-
linear and linear-log space. Leaks which never exceed 0.01% CO, are highlighted in red and neglected from the analysis.

4.3. Kimberlina 1.2

We then ran monitoring plan optimizations based on the Kimberlina 1.2 dataset [15], sup-
plemented by a gravity model later applied by Xianjin Yang. These optimizations considered
combinations of pressure and saturation sensors installed within wellbores, as well as gravity

11
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Figure 7: Comparison between the performance of Monte Carlo, Simulated Annealing and Heuristric algorithm using
the OpenlAM Aquifer simulation dataset.

surveys. The spatial extent and resolution of this case allows us to consider many more (+3500)
possible sensor locations, and combinations of as many as 5 sensors were considered. As the
grid search method would therefore require an astronomical amount of computational effort, a
large (100,000) set of Monte Carlo iterations were compared to 1,000 iterations of our heuristic
algorithm. The heuristic algorithm produced much better results than either the Monte Carlo or
Simulated Annealing algorithms, with some plans detecting more than 99.7% of the total CO2
leakage potential, while maintaining a relatively low cost and time to detection.

Time to Detection [years]

Figure 8: Comparison between the performance of Monte Carlo
algorithm using the Kimberlina 1.2 leakage simulation dataset.
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The best-performing monitoring plans were then identified [blue dots, Figure 10b], having

greater than 98% detection of CO2 leakage by mass,
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Figure 10: Set of optimal monitoring plan candidates

5. Conclusion

The DREAM software tool takes as input a set of (unlikely) CO, leakage scenarios and de-
signs a monitoring plan tailored to the risk profile of the site. The current generation (version
3.0) of the software includes a heuristic algorithm which produces much cheaper and more ef-
fective monitoring plans while still providing a range of possible tradeoffs for the user to decide
from. This version also includes passive surface geophysics data types such as gravity surveys,
optimizing the survey size and station density.
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