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Abstract7

The Designs for Risk Evaluation and Management (DREAM) tool was developed as part8

of the effort to quantify the risk of lack of containment for geologic storage of carbon dioxide9

(CO2) under the U.S. Department of Energy’s National Risk Assessment Partnership (NRAP).10

DREAM is an optimization tool created to identify optimal monitoring schemes that minimize11

the time to first detection of CO2 leakage from a subsurface storage formation. DREAM acts as12

a post-processor on user-provided output from subsurface leakage simulations. While DREAM13

was developed for CO2 leakage scenarios, it is applicable to any subsurface leakage simulation14

of the same output format. The DREAM tool is comprised of three main components: (1) a Java15

wizard used to configure and execute the simulations, (2) a visualization tool to view the domain16

space and optimization results, and (3) a plotting tool used to analyze the results. A secondary17

Java application is provided to aid users in converting common American Standard Code for18

Information Interchange (ASCII) output data to the standard DREAM hierarchical data format19

(HDF5). DREAM employs a simulated annealing approach that searches the solution space by20

iteratively mutating potential monitoring schemes built of various configurations of monitoring21

locations and leak detection parameters. This approach has proven to be orders of magnitude22

faster than an exhaustive search of the entire solution space. The user’s manual illustrates the23

program graphical user interface (GUI), describes the tool inputs, and includes an example ap-24

plication.25

The latest version of the software, DREAMv3.0, introduces the ability to optimize surface26

geophysical surveys taken over various areas of the field site at irregular intervals. This optimiza-27

tion can be run using surface geophysics only, wellbore instruments only, or using a combination28

of surface geophysical surveys and wellbore instruments. These two approaches generally have29

broadly overlapping sensitivities, as a surface geophysical survey detects over a wide area of30

the field but only detects signals that are detectable along the surface at the time the survey31

was conducted, whereas a wellbore sensor can generally detect signals in the subsurface con-32

tinuously the entire time it is in place, but only at one point in space. Therefore a pairing of33

wellbore sensors limited in their spatial coverage with geophysical surveys limited in their tem-34

poral coverage can produce a much improved monitoring plan. This software assumes that a set35

of hypothetical simulated CO2 leaks are available, and that those leaks are representative of the36

underlying risk profile for a site. This allows the software to remain lightweight and functional37

on a typical laptop, and reduces the barrier to entry for users who lack the expertise of budget38

for high performance computing. This also improves compatibility across various application39

domains, allowing the tool to remain independent from any software dependencies related to for-40
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ward modelling or model calibration. Leak scenarios can be provided in the HDF5 file format,41

as NRAP-Open-IAM output files, or as STOMP, NUFT, Tecplot or Tough2 simulation files.42

43
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genetic algorithms45

1. Introduction46

Geological carbon capture and storage is one proposed means of mitigating human-induced47

climate change, by diverting and concentrating anthropogenic point sources of carbon dioxide48

into a supercritical fluid and then injecting it into a permeable underground rock formation for49

long-term storage. One application of this technique is in enhanced oil recovery, where the50

physicochemical properties of supercritical CO2 are used as a solvent to strip oil from mineral51

grain surfaces and mobilize it towards an oil production well. Another financial incentive for52

industry to pursue this technology is 45Q tax credits, which allow private industry to receive53

tax credits for capturing and storing carbon dioxide rather than releasing it into the atmosphere.54

This tax credit is currently priced at $10-20 per metric ton with some proposals to gradually55

increase the price to $35-50 per metric ton, and current CO2 emissions are approximately 556

billion metric tons per year in the US. Therefore if monitoring costs and operational risks are57

sufficiently minimized, geologic carbon storage can potentially become an industry on the order58

of $100 billion/year in the near future.59

One of the main challenges of this endeavor is verifying that the stored carbon dioxide re-60

mains stable and immobilized, as drilling enough monitoring wells near enough to the storage61

reservoir to detect every possible combination of CO2 leaks can be prohibitively expensive. The62

DREAM (Designs for Risk Evaluation and Management) software package was therefore devel-63

oped in order to design optimal arrays of monitoring wells. DREAM accepts an ensemble of64

potential leak scenarios as input, and then develops a Pareto-optimal set of monitoring plans rep-65

resenting the range of possible tradeoffs between cost and risk. DREAM is designed to maintain66

a low technical barrier to entry, and can be run on a typical laptop or workstation rather than a67

supercomputer.68

The latest version of DREAM also incorporates a mix of direct monitoring through wellbores69

as well as remote sensing through gravity surveys conducted along the surface. While incorpo-70

rating gravity surveys can improve the cost and performance of the overall monitoring plan, it71

can also make the optimization problem more challenging. Heuristic algorithms were therefore72

developed to efficiently solve these mixed continuous-combinatorial optimization problems.73

2. Background74

The algorithmic design of optimized sensor networks for environmental monitoring is a well-75

studied area of research [8, 10, 21], with many studies [17, 18, 19] focusing on simulated anneal-76

ing [See Section 3.2.3] while others [5, 6, 7, 12, 14, 20, 24] use genetic algorithms [See Section77
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3.2.4]. The goal of the DREAM software [2, 25, 26, 27] has been to integrate these methods into78

a single, user-friendly interface that uses a modular approach allowing it to be integrated into any79

arbitrary forward modeling and history matching workflow.80

3. Methods81

3.1. Software Application82

This software is written primarily in Java, and has a graphical user interface with a series83

of windows allowing the user to configure the knowns, unknowns and constraints of their mon-84

itoring design problem. The software accepts a set of hypothetical simulated CO2 leakage files85

as inputs, and treats those leakage files as representative of the underlying risk profile for a site.86

Leak scenarios are composed of physical parameters such as pore pressure, CO2 concentration,87

or salinity as a function of x,y,z and time, and can be provided in the HDF5 file format, as88

NRAP-Open-IAM output files, or as STOMP, NUFT, Tecplot or Tough2 simulation files.89

Once the leak ensemble is loaded into DREAM, the user defines leakage thresholds indicating90

the value at which each subsurface parameter constitutes an impact or degradation to the aquifer.91

For some values such as pore pressure, there may not be a value that harms the aquifer, whereas92

other values such as salinity might be based on an MCL (Maximum Contaminant Level) defined93

by a state or federal agency. The user then defines detection thresholds for each parameter, which94

may be based off of the sensitivity of the instrument or the background noise levels particular95

to the site. A distinction is made between leakage thresholds and detection thresholds, as the96

amount of a given contaminant needed to impact an aquifer can be different from the amount97

needed for its presence to become detectable.98

The user can then define a set of weighting coefficients which guide the software in prioritiz-99

ing sensor coverage for each leak. By default these weights are set equal, however they can be100

re-defined based on the volume of aquifer degraded according to the leakage thresholds, or by a101

user-supplied estimate of the relative probability of each leak occurring or the relative magnitude102

or impact of each leak. These values can be defined manually within the GUI, or by reference103

to an external csv file. There is also a collection of Python scripts available which parse the104

csv files along with the input HDF5 files to generate visualizations of the optimization results as105

static images files.106

3.2. Optimization Algorithms107

For each optimization algorithm, we programmatically develop a series of monitoring plans108

each including a variety of wellbores, sensors and gravity surveys as well as their locations and109

timings, and we then assess how each plan performs in terms of our monitoring objectives. The110

five objectives available to consider are111

1. Minimizing the purchasing, labor, installation and operational costs of the monitoring plan.112

2. Maximizing the number of leak scenarios that would be detectable by the monitoring plan.113

3. Maximizing the total mass of CO2 of the leak scenarios that would be detectable by the114

monitoring plan.115

4. Minimizing the time to detect our leak scenarios.116
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5. Minimizing the volume of aquifer degraded at the time of detection.117

These objectives broadly overlap in some cases, however they can also conflict with one118

another to various degrees. For example, objective 1 conflicts strongly with objectives 2-5, as119

improving any of those objectives almost always requires more sensors and boreholes drilled.120

Objectives 2 and 3 also tend to conflict with objective 4, as detecting leak scenarios as early121

as possible requires locating sensors very near their points of origin which tends to preclude122

also detecting a large number of different potential leaks. Objectives 4 and 5 tend to correlate123

strongly with one another, however they can also conflict at times. For example a small, high-124

concentration but slow-moving leak may exceed the lower detection limits of our sensors and125

become detectable very quickly, but may take a long time for the plume to expand and contami-126

nate a large volume of the aquifer. By contrast, a fast-moving but low concentration plume may127

contaminate a large area of the aquifer before finally reaching a high enough concentration to be128

detectable by our sensors.129

A tradeoff surface therefore exists, representing the range of compromises that can be made130

between these five objectives. Some possible monitoring plans would provide a lot of broad131

coverage and would eventually detect most or all of the potential leaks, while others may provide132

more targeted coverage to preferentially detect the largest, most impactful (in terms of volume133

of aquifer degraded) and the most likely leaks as quickly as possible, while others make some134

compromises on coverage to minimize operating costs. Understanding the structure of this five-135

dimensional Pareto-optimal surface is critical to making good site monitoring decisions.136

3.2.1. Grid Search137

An exhaustive grid search requires that we employ some combinatorics to evaluate every pos-138

sible combination of sensor type and sensor location. We consider installing nCr combinations139

of sensors, where n is the number of sensor types we install and r is the number of sensors we140

propose to install. This can be represented by the equation141

nCr =
n!

r!(n − r)!
, (1)

which can itself quickly become computationally intractable if a large array of sensors are142

needed. For example, if we consider employing three distinct sensor types (pressure, satura-143

tion, gravity) and intend to install 5 sensors in total, we get 21 possible combinations144

Sensor Types =



p p p p p
p p p p s
p p p p g
p p p s s
...14 more rows...
s s g g g
s g g g g
g g g g g


, (2)

145

146

however if we consider installing 15 sensors, that leads to 136 possible sensor combinations.147

We then consider the list of possible sensor locations, as discretized by the xyz grid used in our148

ensemble of leak scenario files. Many of these grid nodes can be neglected, as they never see149
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a signal that exceeds the threshold and would never detect any of the leaks from the ensemble.150

However, there may still be thousands to millions of feasible sensor location combinations.151

Node Locations =



0 0 0 0 0
0 0 0 0 1
0 0 0 0 2
...65774 more rows...

20 20 21 21 21
20 21 21 21 21
21 21 21 21 21


, (3)

152

153

performing spatial downsampling on the aquifer simulation files can manage this to some degree,154

but not without sacrificing some spatial resolution. We then compute the Cartesian product of155

the list of possible sensor locations with the list of possible sensor location combinations. This156

can readily lead to millions to trillions of possible monitoring plans, making it an impractical157

approach for most full-reservoir models.158

3.2.2. Monte Carlo159

The Monte Carlo algorithm is a much simpler approach, randomly selecting the number and160

locations of sensors at each iteration. While this is less thorough than the full grid search, it161

tends to search the decision space fairly uniformly with a reasonable amount of computational162

effort. In many cases this may quickly find the same ideal solution that would have eventually163

been found by grid search.164

3.2.3. Simulated Annealing165

The Simulated Annealing algorithm [11, 16] begins by generating a single random moni-166

toring plan, considering how well this plan would perform in terms of cost and leak detection,167

then making a series of small, iterative modifications to this plan. At each iteration, it considers168

whether the most recent change improved or degraded the monitoring plan performance, and169

accepts the change if it was deemed an improvement. If the change degrades performance, a170

random number generator is used to probabilistically accept or reject the change, with the accep-171

tance probability depending on how much the performance was degraded. This encourages the172

algorithm to occasionally ”climb out” of a local minima and explore new areas of the decision173

space. This algorithm can find ”good” solutions very quickly, but often fails to find the best pos-174

sible solution. It should generally be repeated multiple times to ensure that the decision space175

has been adequately explored.176

3.2.4. Non-dominated Sorting Genetic Algorithm II177

The DREAMv3 NSGA-II option is based on the Non-dominated Sorting Genetic Algorithm178

[4], which uses Pareto ranking [Figure 1] to iteratively develop a set of optimal monitoring plans.179

Pareto ranking assigns each monitoring plan a rank based on how well it manages tradeoffs180

between the various objectives, with rank 1 monitoring plans rated the best. In this example,181

monitoring plans are being evaluated based on minimizing two objectives f1 and f2. Monitoring182

plans 1 and 2 [Figure 1a] are superior to monitoring plan 3 in terms of both objectives f1 and183

f2, and therefore they are both a lower (better) rank than plan 3. However, plan 1 and 2 are184
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ambiguous, as plan 1 is better in terms of objective f1 while plan 2 is better in terms of objective185

f2. These two must therefore be assigned the same rank.186

1

2

3

f1

f2

a).
Ranks

1
2
3
4
5
6

f1

f2

b).

Figure 1: Illustration of Pareto optimality. Blue dashed line represents the ’true’ Pareto front. Rank 1 solutions (blue
dots) represent the best currently-available approximation of the Pareto front.

The NSGA-II algorithm uses a Monte Carlo approach to generate an initial population of187

monitoring plans, then semi-randomly selects pairs of monitoring plans from that ensemble.188

Monitoring plans with lower Pareto ranks are preferential selected, and a de-clustering method189

is used to preferentially select monitoring plans that are more unique in terms of their objective190

values. Sensors from these pairs of monitoring plans are then randomly selected and used to191

construct new monitoring plans that often combine the best features of the ”parent” pair. Over192

enough iterations, this generates a set of monitoring plans that evenly explore the Pareto front.193

3.2.5. Heuristic Sampling194

The DREAM heuristic algorithm divides the monitoring design problem into a sequence of195

sensor placement decisions. The first sensor is placed by evaluating the full set of available196

sensor placement locations in terms of the added drilling and installation costs, the number of197

hypothetical leaks that would be detectable at that location [Figure 2], and the average time to198

detection of those leaks. The algorithm then considers the tradeoff relationship between these199

objectives, and randomly selects one of the resulting Pareto-optimal locations as the first sensor200

placement. An example of the tradeoff relationship between two objectives is visualized in 2d in201

Figure 3, and between three objectives in 3d in Figure 4.202

Once the first sensor location has been determined, the set of hypothetical leaks that would203

be detected by that sensor are neglected and the objectives are re-computed considering only the204

set of leaks that would not be detectable by the first sensor. This process is repeated many times205

with various numbers and types of sensors as indicated by the users specifications. Where surface206

geophysical survey methods are being considered, several (1-4, randomly selected) points along207

the surface are sequentially chosen in the manner described above, and a rectangular survey208

geometry is constructed so as to be just large and dense enough to include those points.209
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Figure 2: Color indicates the number of leaks that overlap at each point (x,y), considering only the leaks that as yet would
be undetected by the current monitoring plan.

4. Results210

4.1. NRAP-Open-IAM FutureGen2 Aquifer ROM211

To create a set of leakage scenarios, a model of a hypothetical GCS site was created using the212

NRAP-Open-IAM [22], and integrated assessment model for quantifying the risk of unintended213

migration of CO2 and brine out of a storage reservoir. The hypothetical GCS project considered214

in this study treats the Vedder Sandstone, a sedimentary formation in the Southern San Joaquin215

Valley of CA, as a GCS system. The injection site is located approximately 20 miles northwest216

of Bakersfield, CA in Kern County. The region was previously characterized as part of the West-217

carb Kimberlina Pilot Project [23].218

219

Building on a previous study [13], a 50-year basin-scale injection of CO2 and a 50-year post-220

injection period were simulated. CO2 and brine leakage rates into a USDW were calculated along221

the 1000 wellbores in the study area, the volume of impacted aquifer for each leaky wellbore lo-222

cation determined, and compiled into a time-to-detection map for the entire site. We used the223

Monte Carlo framework of the NRAP-Open-IAM to run stochastic simulations that captured the224

uncertainty associated with the effective permeability of the wellbores in the model. The NRAP-225

Open-IAM represents discrete elements of a GCS system using individual surrogate models. Our226

integrated assessment model of the site consisted of a single reservoir lookup table joined with227

1000 individual multisegmented wellbore models connected to FutureGen2 aquifer models in a228

one-way forward coupling.229

230

In this preliminary example only a few wellbores are found to have detectable leaks, meaning231

only a very few locations are feasible for consideration as monitoring locations. This means that232

a full grid search is computationally possible, requiring only a few minutes to consider the 35,442233

possible combinations (Figure 5, gray dots) of 5 sensor locations. We then use a Monte Carlo234
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Figure 3: Each possible sensor placement is evaluated in terms of average time to detection and the percentage of leaks
detected (weighted by mass of leak). Suboptimal options for the first sensor placement (light gray) are discounted because
they each have worse performance than at least one other sensor location in terms of time to detection, poorer coverage
or both. A single sensor placement is selected (light blue) from along the optimal tradeoff curve (orange). Suboptimal
options (red) for the second sensor are then discounted in the same manner, and the second sensor placement is selected
(blue) from along the new tradeoff curve (red).

approach to generate 10,000 random monitoring plans, and find almost the exact same monitor-235

ing performance (Figure 5a). By reducing the Monte Carlo search another order of magnitude236

(Figure 5b), we see that a fair number of possible monitoring outcomes are missed, however the237

general trend remains the same. The Simulated Annealing and Heuristic Algorithms are also238

compared to the grid search method (Figure 5c,d), and produce similar results.239

240

This demonstrates that in simple cases at least, a relatively modest Monte Carlo sampling can241

nearly fully explore the decision space. For more complex monitoring design problems, how-242

ever, a very large sample size may be required for Monte Carlo to adequately explore the decision243

space. This may become computationally impractical, and therefore the remaining algorithms244

will simply be evaluated by comparison to a ”very large” Monte Carlo sampling rather than a245

full grid search.246

247
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Figure 4: Each possible sensor placement is evaluated in terms of monitoring cost, average time to detection and the
percentage of leaks detected (weighted by mass of leak). Suboptimal options for the first sensor placement (light gray)
are discounted because they each have worse performance than at least one other sensor location in terms of time to
detection, poorer coverage or both. A single sensor placement is selected (light blue) from along the optimal tradeoff
curve (orange). Suboptimal options (red) for the second sensor are then discounted in the same manner, and the second
sensor placement is selected (blue) from along the new tradeoff curve (red).

4.2. NRAP-Open-IAM Generic Aquifer ROM248

The Reservoir component model provides spatial and temporal information on pressure and249

saturation in the storage reservoir. A reservoir simulation look-up table in United States (US)250

Department of Energy (DOE)’s National Risk Assessment Partnership Open-source Integrated251

Assessment Model (NRAP-Open-IAM) [22] is used for this study. The table is based on a set252

of numerical simulation models with varying rock properties for the Kimberlina reservoir in253

southern San Joaquin basin in California, USA. [28] The homogeneous reservoir model No.254

14 (reservoir porosity: 0.276; reservoir permeability: 1.585×10−13 m2; caprock permeability:255

1.995×10−18 m2) for the first 100 years (i.e., 50 years of CO2 injection at a rate of 5 million256

metric tons/year and 50 years of post-injection) was used.257

Coupled to the reservoir model, a wellbore model predicts leakage amount of the injected258

CO2 and formation brine to an overlying aquifer through leaky wells based on input pressure and259

CO2 saturation. A caprock segment wellbore model in NRAP-Open-IAM [22] was adopted [3].260

This model assumes no leakage into caprock layers, and thus it provides a conservative estimate261

for risk evaluation. 74 wells within 5 km from the injection well were analyzed.262

The output leakage rates of CO2 and brine from the wellbore model is fed into a genetic263

aquifer impact reduced-order-model [1] as input to forecast the impacts of the well leakage on264

aquifers. The model generates 3D temporal and spatial datasets of mass fractions of the dissolved265

CO2 and salts throughout the aquifer. The model performs individual calculation for each of266

wells, and once dissolved CO2 or salts plumes from different wells are overlapped, maximum267

value in the cell were used.268

For a stochastic analysis, 200 realizations of input parameters of the wellbore and aquifer269

models were sampled using Latin-hypercube sampling (LHS) [9]. Table 1 shows the paramater270

ranges used. Of these stochastically generated models, 50 represent very small leaks which never271
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Figure 5: Comparison between Monte Carlo searches (for n=10,000 and n=1,000) and an exhaustive grid search of the
decision space using the NRAP-Open-IAM Open Wellbore ROM.

exceed 0.01% CO2 concentration [Figure 6] and are therefore neglected from the analysis.272

This input dataset was run using DREAM’s Monte Carlo, Simulated Annealing and Heuristic273

algorithms described above [Section 3.2], however due to the large size of the input files the grid274

search and genetic algorithm were too computationally intensive to be practical. Each of the275

150 input files were 800-900MB, however DREAM had a peak memory usage of 2.1GB of the276

machine’s 16GB RAM. As working with this dataset was time-intensive, only 100 iterations277

were run for each algorithm. For this example [Figure 7], the Monte Carlo algorithm was able278

to identify one monitoring plan capable of detecting 134/150 leak scenarios using 8 monitoring279

wells, while the heuristic algorithm was able to detect 138/150 leak scenarios using 2 monitoring280

wells.281
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Table 1: Parameter ranges for OpenIAM Generic Aquifer model

Parameter Unit Minimum Maximum
Reservoir salinity % 0.03 0.05
Well permeability m2 1.0 × 10−14 1.778 × 10−12

Aquifer thickness m 25 100
Aquifer top depth m 2,000 2,500
Aquifer porosity % 0.02 0.10

Aquifer horizontal permeability m2 1.0 × 10−13 1.0 × 10−10

Aquifer permeability anisotropy - 0.01 1.0

Figure 6: The maximum CO2 concentration (taken over the entire model space) is shown for each leak in both linear-
linear and linear-log space. Leaks which never exceed 0.01% CO2 are highlighted in red and neglected from the analysis.

4.3. Kimberlina 1.2282

We then ran monitoring plan optimizations based on the Kimberlina 1.2 dataset [15], sup-283

plemented by a gravity model later applied by Xianjin Yang. These optimizations considered284

combinations of pressure and saturation sensors installed within wellbores, as well as gravity285
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Figure 7: Comparison between the performance of Monte Carlo, Simulated Annealing and Heuristric algorithm using
the OpenIAM Aquifer simulation dataset.

surveys. The spatial extent and resolution of this case allows us to consider many more (+3500)286

possible sensor locations, and combinations of as many as 5 sensors were considered. As the287

grid search method would therefore require an astronomical amount of computational effort, a288

large (100,000) set of Monte Carlo iterations were compared to 1,000 iterations of our heuristic289

algorithm. The heuristic algorithm produced much better results than either the Monte Carlo or290

Simulated Annealing algorithms, with some plans detecting more than 99.7% of the total CO2291

leakage potential, while maintaining a relatively low cost and time to detection.292

293

Figure 8: Comparison between the performance of Monte Carlo, Simulated Annealing and the DREAMv3 heuristric
algorithm using the Kimberlina 1.2 leakage simulation dataset.

The best-performing monitoring plans were then identified [blue dots, Figure 10b], having294

greater than 98% detection of CO2 leakage by mass, and minimal monitoring costs and time to295
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detection. This pool of candidates can then be viewed one at a time and examined with an eye296

for practical field deployment. If the optimal monitoring plans are deemed viable for real-world297

application, they can be implemented, otherwise the algorithm can be run for additional iterations298

or using a different algorithm.299

Figure 9: Monitoring plans with >98% mass CO2 detection are highlighted in red

Figure 10: Set of optimal monitoring plan candidates

5. Conclusion300

The DREAM software tool takes as input a set of (unlikely) CO2 leakage scenarios and de-301

signs a monitoring plan tailored to the risk profile of the site. The current generation (version302

3.0) of the software includes a heuristic algorithm which produces much cheaper and more ef-303

fective monitoring plans while still providing a range of possible tradeoffs for the user to decide304

from. This version also includes passive surface geophysics data types such as gravity surveys,305

optimizing the survey size and station density.306
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