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Sea Ice Modeling in
E3SM

Elizabeth Hunke, Andrew Roberts, Darin Comeau and rest of Sea Ice Team
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Sea ice is frozen ocean water
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What’s important? Albedo

High ice/snow albedo reflects solar radiation.

Sea ice insulates atmosphere from ocean,
influencing heat & moisture exchange.

Elizabeth Hunke
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Earth System Model

What do we need in a sea ice model
for climate applications?

Reasonable mean state, variability
* (Concentration, thickness, mass &
energy budgets

« Realistic ice-ocean-atmosphere
exchanges of mass and energy

« Realistic response to climate

perturbations
* Key climate feedbacks
* |ce thickness determines sensitivity to
melting and freezing
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Arctic sea ice, ridges, melt

ponds, open water. D. Perovichd@ E
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Physical processes that affect the area and thickness of sea ice

Solar radiation
M PAS B rSnlg;;ace IMfld dra;g: Precipitation gé}gr;:nve
" — Evaporation
Seaice uses S
I Ce pa C k fo r Sastlr.:]roa:ﬁt’ed Ridges
Mechanical redistributi : -
COI u m n echanical redistribution Melt pon o

p h yS I CS Ecosystem/‘ Bn';;e drainaéé o “b”Percﬂola;orn "

~ Bottom melt/growth

Ocean mixed layer
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E3SM implementation of Icepack from the CICE Consortium

— Thickness Distribution <+ o

— Floe Size Distribution < o
— Snow Distribution <> o

— Ridged Ice Distribution <> o

— Melt Pond Fraction <> o
— Brine & Enthalpy Distribution <> o

@ — Radiative Transfer |1 o

— lce-Atmosphere Turbulent Fluxes |1 o o

— Ice-Ocean Turbulent Fluxes |1 o o

—— Morphology —

3 Physics — Vertical Growth & Melt |1 o
@SM — Lateral Growth & Melt |1 o
€ — Precipitation Hydrology |1 o

Consortium

— Biogeochemistry — Skeletal Layer |1 <> o

—— Data Fusion Altimetric Emulator ¢) o V4

Arrows indicate energy (/1) and mass (/1) flux exchange with the ocean and atmosphere, as well as horizontal advection
(<) using a dynamical core with Icepack. Small circles indicate the location of current (o) lcepack calculations, and
preferred (o) column calculations in the case of a CD grid. O indicates observational emulation in run time.

Andrew Roberts _
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What does MPAS-Seaice do?

* Dynamics * |[ce thickness distribution

* Momentum

* Stress » Other physics

) Tr?nsport * Melt ponds

fracers = * Snow -

* Mechanical redistribution (ridging) » Biogeochemistry MPAS-Seaice
* Thermodynamics * Floe size distribution (new!)

* Radiation : Icepack

* Analysis members

. Mgﬁ%!ﬁ,ﬁer * Driver (coupling interface)
* Top (surface) and bottom (basal) * 1/O
e Growth terms
* Bottom accretion (congelation)
* Frazil formation
* Snow-ice formation
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MPAS-Seaice overview

« MPAS-Seaice is based on Multiple
Prediction Across Scale (MPAS)

framework
* Unstructured mesh, Voronoi tessellation
* Shares mesh with ocean

e Continuum model
* Sea ice occupies a percentage of a grid
cell, individual floes are not resolved.

 Uses a “B-grid”
* Sea ice velocity is defined at cell

vertices
* Seaice concentration, vqume, and Sample from an MPAS mesh showing the primal mesh (solid lines),
tracers defined at cell centers. the dual mesh (dashed), and velocity components aligned with a

locally Cartesian coordinate system (east/north).
Turner et al 2022, GMD




Sea ice dynamics

The sea ice momentum equation is:

Du R

mE=V-0 Te + Ty — kK Xmfu—mgVH,
| | l |

momentum ocean stress Coriolis sea surface tilt

internal stress

) Hibler 1979
wind stress
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Sea ice dynamics

The equation we actually solve (neglecting advective acceleration terms) is:

0
mﬁu :V-a+?a>—|—a—kxmfu—mgVHo

| | l |

ocean stress Coriolis sea surface tilt

momentum internal stress

_ Hibler 1979
wind stress

« The internal stress calculation comprises the bulk of the computational cost and is
where elastic-viscous-plastic (EVP) rheology (Hunke & Dukowicz, 1997) for sea ice
comes in.

0 [O

> U.S. DEPARTMENT OF
WENERGY 10



Esm . ©

Energy Exascale
Earth System Model

Sea ice transport

Transport is done via incremental
remapping (Lipscomb & Hunke 2004,
MWR)

Incremental remapping is designed to be
conservative, i.e.

%+V-c€i=0

And for a tracer h (e.g. ice thickness)

Och .
—— +V-.chu=0
ot
IR is also monotonic, and scales well
with additional tracers

* Turner et al 2022, GMD

Schematic showing transport across a cell edge on an MPAS mesh.
Backward trajectories shown as red arrows to departure points D.
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Sea ice thermodynamics — mushy layer

Top surface heat flux balance

F 4 . . .
Fo Fu w €0t | Seaice is a multi-phase, -
. — — 4 = g—
I I l ] ., multi-component (1~ a@)Fsy + FLW — €oT* + FSH + FLH — k—= q—
material. : :
h 4 Vertical conduction of heat and salt
s | K. dT/dz 1
A aq . a aT aqbr
AT, S4) 5t =37 (K5 T w i+
h; q(T,, S3)
Calculate top, lateral, os _ oasbr
q(Ts, S5) . ot = 0z
internal, and basal
a(T4, Sa) ; ;
fr.eezmg-and melting / . :si K= 6Kbr+(1— B,
q(Ts, Ss) | dissolution o
q(Te, Se) I k dT/dz Bottom surface heat flux balance
T  dh
! a(T7, S7) Fomt ko =40¢
I Focn There are more equations for the brine quantities, forcing terms, etc.
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Ice th|ckness is mfluence’by T -
Thermodynamic growth and melt ;
. Top and bottom melt
- Bottom accretion (congelation)
Frazil formation
Snow-ice formation
N ‘“Mushy layer” with prognostlc sallnlty
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Sea ice thickness distribution

Longwave radiation

g(x, h, t) dh = the fractional area covered by ice in the Joraciation

thickness range (h, h+ dh) at a given time t and location X Heat' I

09 _ L9
E——V'(QU)JMD 8h(fg)+L,

V= (%7 aiy)

u = horizontal ice velocity

1/ = mechanical redistribution function
f = rate of thermodynamic ice growth
L = lateral melting

£ S/ U.S. DEPARTMENT OF
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Sea ice thickness distribution

g(x, h, t) dh = the fractional area covered by ice in the
thickness range (h, h + dh) at a given time t and location x Ice growth

0 0
=V (gu)+ - o (fg)+ L,

Lose open water by growing ice
ot

Gain probability here
g(h)dh
o 0
V= axay) |
u = horizontal ice velocity
1/ = mechanical redistribution function

0 ~1m ~3m h

f = rate of thermodynamlc ice growth Open  First Multiyear
[ = lateral melting water  Year lce
Ice
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Sea ice thickness distribution

Mechanical redistribution: Transfer from thin part of distribution to thicker categories

Lost to
deformation
0 ~Im ~3m h
Hajo Eicken Open First  Multiyear
water Year lce
Ice
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Sea Ice Thickness Distribution
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p]Og(h) h dh

g(h) is used to describe
mass conservation in
sea ice models:

dg :
—_— = \IJ _ .
g +0 —g(V-x)

¥ Dynamic Redistribution,
© Thermodynamic Redistribution
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Fully Coupled High-Resolution E3SM V1

X E3SM-HR

Antarctic

Single annual cycle of sea ice thickness from a 50+ year fully coupled

simulation using the HighResMip 1950 repeated year protocol

Resolution:
« atmosphere, land 25 km

* ocean, sea ice: 6 km near the poles expanding

to 18 km near the equator

E?SM
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—1.5

{10

E3SM-HR V1 0052-09-01

E3SM unstru

143 144 45 e g4 148°

ctured grid surrounding the Mertz

Glacier Polynya in the East Antarctic, colored
according to ice thickness.

Key Contributors: Peter Caldwell, Luke VanRoekel, Azamat
Mametjanov, Adrian Turner, Chris Golaz, Milena Veneziani,
Wuyin Lin, Mat Maltrud, Jon Wolfe, Andrew Roberts
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Documentation & References

https://docs.e3sm.org/E3SM/MPAS-seaice

https://cice-consortium-

icepack.readthedocs.io/en/main/

MPAS-Seaice overview manuscript: Turner, A.K.,
Lipscomb, W.H., Hunke, E.C., Jeffery, N.,
Engwirda, D., Ringler, T.D. and Wolfe, J.D., 2022.
MPAS-Seaice (v1. 0.0): sea-ice dynamics on
unstructured Voronoi meshes. Geoscientific Model
Development, 15(9), pp.3721-3751.
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e3sm.org



