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Foreword

The U.S. Department of Energy (DOE) Building America Program has spurred
innovations in building efficiency, durability, and affordability for more than 25
years. Elevating a clean energy economy and skilled workforce, this world-class
research program partners with industry to leverage cutting-edge science

and deployment opportunities to reduce home energy use and help mitigate
climate change.

In cooperation with the Building America Program, the University of Oklahoma
Team is one of many Building America teams working to drive innovations that
address the challenges identified in the Program’s Research-to-Market Plan.

This report, Development and Validation of Home Comfort System for Total
Performance Deficiency/Fault Detection and Optimal Comfort Control, explores
the potential of using smart thermostat data for optimal control and performance
degradation detection for home ACs.

As the technical monitor of the Building America research, the National
Renewable Energy Laboratory encourages feedback and dialogue on the
research findings in this report as well as others. Send any commments and
questions to building.america@ee.doe.gov.
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EXECUTIVE SUMMARY

As stated in the Building America Research to Market Plan
(Werling 2015), homes present 27% to 42% energy savings
opportunities by using advanced monitoring of residential
loads and fault detection and diagnosis (FDD). Moreover,
heating savings of 5% to 15% were observed from simply
setting back home thermostat set points by 10°F to 15°F
for 8 hours per day in the fall and winter (DOE 2021).

There is substantial energy- and cost-saving potential

in advancing home air-conditioning (AC) systems for
automated fault detection and optimal operation.

Meanwhile, although the smart thermostat industry has increasingly provided
data specific to advanced AC controls and energy management in homes,
there is a lack of a systematic framework that can connect data on comfort,
occupancy, weather, energy use, and time-of-use (TOU) electricity pricing

to generate meaningful information for advanced home comfort system
diagnosis and optimal control (Rotondo et al. 2016).

In this project, we developed and tested a learning-based home thermal
model that facilitates the operation of a model predictive control (MPC)-
based optimization agent and an automated fault detection and diagnosis
(AFDD) agent. The home thermal model was constructed using a two-

node resistor-capacitor model. Moreover, two accompanying parameter
identification methods were introduced, least-squares and optimization.
Based on the home thermal model, the MPC-based optimization agent was
developed to optimize residential HVAC operation. Using two FDD methods, the
AFDD agent was constructed to detect and diagnose two prevalent residential
AC faults, airflow reduction and refrigerant undercharge. The home thermal
model, along with the MPC-based optimization agent and AFDD agent, were
tested at the Norman Test House, Miami Test House, Pacific Northwest National
Laboratory (PNNL) Test House A, and PNNL Test House B. Finally, they were also
field tested in nine demonstration homes with real occupants. Photo from Getty 1124228019
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Oklahoma house floor plan with locations of the sensors. Figure by the authors

In conclusion, the home thermal model and

its two parameter identification methods were
successfully verified. Results from the Norman Test
House and Miami Test House show that the model
can accurately predict 12-hours-ahead space

air temperature, achieving 1.96°F error at 95%
confidence, which surpasses the success criterion of
2°F error at 90% confidence defined in the statement
of project objectives. However, an error of 2.6°F at 90%
confidence was observed at PNNL Test House A, and
an invalid model was obtained at PNNL Test House B.
A closer data examination revealed that erroneous
sensor measurements in the PNNL datasets were the
root cause of these issues. Therefore, sensor/data
quality control is necessary before performing
model identification.

In addition, both the MPC-based optimization

agent and AFDD agent were successfully developed
using data collected from the four test houses and
implemented at the nine demonstration homes. An
online, cloud-based data management platform was
also created to facilitate data collection from smart
thermostats and smart meters and enable remote
control of AC units. The MPC-based optimization
agent was found to possess the capability of making
optimal AC operation decisions that leverage
information from various sources such as the users’
preferred comfort temperature, weather and weather
forecasts, home thermal condition, and utility TOU
rate. Field tests at the demonstration homes have

shown that with MPC, up to 51% and 62% cost savings
can be obtained on hot and mild summer days,
respectively.

For the AFDD agent, two methods were developed
and tested to detect and diagnose two prevalent
faults in residential AC units: incorrect refrigerant
charge level (RCL) and airflow reduction (AFR).
Method 1 compares actual enthalpy changes across
an evaporator with baseline enthalpy changes and
uses their differences to signal a possible fault. While
the baseline enthalpy changes can be obtained from
manufacturer data for installation fault detection
(Phase 1) and from operational data for degradation
fault detection (Phase 2), the actual enthalpy
changes are obtained from data collected by a
smart thermostat and a node sensor placed in a
diffuser, along with engineering assumptions. The
method was validated to be effective in detecting
and diagnosing RCL and AFR faults when the fault
severity reached 30%. However, when both faults
occur simultaneously, Method 2, which uses two
fault indices—enthalpy changes and indoor fan
power—is required. The method first uses indoor fan
power measurements to diagnose AFR and then
uses enthalpy changes to diagnose overcharge,
undercharge, and occurrent faults with AFR. Through
laboratory and field tests, the method was shown

to be capable of catching less severe (around 15%)
AFR faults. Overall, the AFDD agent was found to

be effective.
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1 Introduction

As stated in the Building America Research to Market Plan (Werling 2015), homes
present 27% to 42% energy savings opportunities by using advanced monitoring of
residential loads and fault detection and diagnosis (FDD). Moreover, heating savings of
5% to 15% were observed from simply setting back home thermostat set points by 10°F
to 15°F for 8 hours per day in the fall and winter (DOE 2021). There is substantial
energy- and cost-saving potential in advancing home air-conditioning (AC) systems for
automated fault detection and optimal operation. The savings potential is in line with the
mission of the Building Technologies Office’s Residential Buildings Integration Program,
i.e., reduce the energy used for space conditioning and water heating in single-family
homes by 40% in 2025, compared to its 2010 level. However, only a few automated
controls, sensors, diagnostics, and fault correction systems exist for residential comfort
systems (DOE 2016). The tools available for residential HVAC in the market include
Sensi Predict, which requires 10 additional sensors to be installed alongside the HVAC
(Emerson 2021), Comfort Alert diagnostics, which use data from Copeland scroll
compressors (Emerson 2017), and ComfortGuard, which also requires 10 additional
sensors to be installed (Cericola 2015). Although innovative and shown to be efficient,
these products incur additional costs, such as for installation and additional sensors,
and as with ComfortGuard, a monthly or annual monitoring fee.

With the advent of smart thermostats, which record and store data such as space
temperature, relative humidity, and HVAC on/off times, residential AC FDD without
installation of additional sensors has recently received attention. Although the smart
thermostat industry has increasingly provided data specific to advanced HVAC controls
and energy management in homes, there is a lack of a systematic framework that can
connect data on comfort, occupancy, weather, energy use, time-of-use (TOU) electricity
pricing, design of the home and its systems, and code compliance benchmarks to
generate meaningful information for advanced home comfort system diagnosis and
optimal control. Home thermal loads, which bridge weather impacts with a home’s
unique thermal properties and internal gains, provide ground truthing for energy use by
residential HVAC systems. A self-learning home thermal model that calculates thermal
loads and automatically learns the unique thermal properties of a home is key to model-
based optimal control and performance degradation detection without the need for
intervention by homeowners.

Our proposed home comfort system for total performance deficiency/fault detection and
optimal control (“SYSTEM?” hereafter) is aimed at constructing such a framework. The
SYSTEM uses a computationally efficient, self-learning, validated home thermal model,
along with performance deficiency/fault detection and optimal control. The overall goal
of the project is to commercialize an affordable smart SYSTEM that fills the gap in the
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market for a product that provides a systematic framework for data connection. The
connected data will generate meaningful information for advanced home comfort
system diagnosis and optimal control, and consequently help achieve or exceed the
Building Technologies Office savings target. The SYSTEM will revolutionize current
smart thermostats by adopting a home thermal model and a set of performance
deficiency/fault detection and optimization rules built upon relevant data. The project will
also include necessary testing and validation of the proposed technology. Specifically,
our project objectives are to:

Objective 1: Validate the hypothesis that the home thermal model can be
applied to accurately capture home thermal properties and predict space
temperature dynamics.

Objective 2: Validate the hypothesis that data collected from smart thermostats
and smart meters can be applied to detect both the deficiencies in system design
and construction, and the faults during residency.

Objective 3: Validate the hypothesis that real-time optimization can be achieved
to balance space temperature and energy costs based on occupants’
preferences, home thermal properties, weather forecasts, occupancy schedules,
and TOU energy pricing.

Objective 4. Demonstrate the cost and performance benefits of the technology
at homes with different ages, sizes, and household incomes.

Objective 5: Disseminate the technology through a public domain and/or on a
website so that potential users, developers, and vendors can download
pseudocode, publications, and presentations, and identify a minimum of one
vendor as the technology licensee to commercialize the technology at the end of
this funded project.

The following research questions are designed to address the project objectives.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy

Question 1: Can the thermal model effectively predict energy use of an HVAC
system (extracted heat) with less than 15% mean absolute error at 90%
confidence?

Question 2: Can the thermal model effectively predict the space air temperature
within 2°F error at 90% confidence?

Question 3: Can the MPC-based optimization agent be executed in real time
with given weather forecasts and parameters identified automatically through
data training?

Question 4: To what extent (severity of AC faults) can the SYSTEM detect faults
using data collected through smart thermostats?
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In this project, the University of Oklahoma project team first instrumented four laboratory
test houses for laboratory-scale technology development and validation. To cover the
impact from different climates, three locations were chosen: the Norman Test House,
Miami Test House, and Pacific Northwest National Laboratory (PNNL) Test House.
Meanwhile, the project team developed and tested a learning-based second-order
home thermal model that facilitates the operation of a model predictive control (MPC)-
based optimization agent and an automated fault detection and diagnosis (AFDD) agent
and successfully answered the four research questions. The second-order home
thermal model, along with its two parameter identification schemes—the least-squares
method and optimization method—were successfully developed and tested. Results
from the Norman Test House and Miami Test House show that the model can
accurately predict 12-hours-ahead space air temperature, achieving 1.96°F error at 95%
confidence, which surpasses the success criterion of 2°F error at 90% confidence
defined in the statement of project objectives. However, an error of 2.6°F at 90%
confidence was observed at PNNL Test House A, and an invalid model was obtained at
PNNL Test House B. A closer data examination revealed that erroneous sensor
measurements in the PNNL datasets were the root cause of these issues. Therefore,
sensor/data quality control is necessary before performing model identification.

In addition, both the MPC-based optimization agent and AFDD agent were successfully
developed using data collected from the four test houses. The MPC-based optimization
agent has been found to possess the capability of making optimal AC operation
decisions that leverage information from various sources such as users’ preferred
comfort temperature, weather and weather forecasts, home thermal condition, and utility
TOU rate. For the AFDD agent, two methods have been developed and tested to detect
and diagnose two prevalent faults in residential AC units: incorrect refrigerant charge
level (RCL) and airflow reduction (AFR). Method 1 compares actual enthalpy changes
across an evaporator with baseline enthalpy changes and uses their differences to
signal a possible fault. While the baseline enthalpy changes can be obtained from
manufacturer data for installation fault detection (Phase 1) and from operational data for
degradation fault detection (Phase 2), the actual enthalpy changes are obtained from
data collected by a smart thermostat and a node sensor placed in a diffuser, along with
engineering assumptions. The method was validated to be effective in detecting and
diagnosing RCL and AFR faults when the fault severity reached 30%. However, when
both faults occur simultaneously, Method 2, which uses two fault indices—enthalpy
changes and indoor fan power—is required. The method first uses indoor fan power
measurements to diagnose AFR and then uses enthalpy changes to diagnose
overcharge, undercharge, and occurrent faults with AFR. Through the test in the
Norman Lab House, Method 2 was shown to be capable of catching less severe
(around 15%) AFR faults.
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An online, cloud-based data management platform was created to facilitate data
collection from smart thermostats and smart meters and enable remote control of AC
units to prepare for field testing in 10 demonstration houses. The field tests were
conducted in the third year of the project. The results at the demonstration homes have
shown that with MPC, up to 51% and 62% savings in cost—compared with normal
space air temperature control without the demand respond operation—can be obtained
on hot and mild summer days, respectively. The AFDD method was shown to be
capable of catching installation faults—mismatching of indoor and outdoor units—in two
houses, along with a dirty filter fault. The AFDD agent that was purely constructed using
the data collected from smart thermostats was found to be effective for identifying a
single occurrence of two prevalent faults—flow rate reduction and undercharge—with
30% severity; the AFDD agent with additional data collected by smart meters was found
to be effective at detecting an AFR fault with 15% severity. Thus, residential AC
performance efficiency can be improved and cost savings can be obtained for
homeowners, with no additional hardware needed, by using the data readily available
through smart thermostats and cloud-based computing and the validated technologies
in this project, including the learning-based thermal model, the optimization agent, and
AFDD agent.

This report is organized as follows. Section 2 introduces the four laboratory test
facilities. In Section 3, we explain the physics-based home thermal model and two
parameter identification methods. This modeling approach and the parameter
identification methods are verified using the four lab test facilities in Section 4. In
Section 5, we introduce a developed MPC-based optimization agent for optimal AC
operation and partially validate its feasibility of implementation using a lab-installed
smart thermostat. Similarly, we introduce development and verification of an FDD agent
in Section 6. In Section 7, we include field test results from running the agents in
participating demonstration homes. In Section 8, we provide a summary of technology
transfer and commercialization activities. Lastly, Section 9 provides our conclusions.

In terms of the project objectives and research questions, Objective 1 and Questions 1
and 2 on effectiveness of the home thermal model are specifically addressed in
Sections 4.1, 4.2, and 4.3. Objective 2 and Question 4 concerning viability of the fault
detection methods are answered in Sections 6.5, 6.6, and 6.7. Objective 3 and Question
3 on performance of the MPC-based optimization agent are discussed in Sections 5.2
and 7.2. Objective 4 concerning costs and benefits of the technology is examined in
Sections 7.1, 7.2, and 7.3. Finally, Objective 5 on dissemination and commercialization
of the technology is discussed in Sections 8.1 and 8.2.
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2 Laboratory Test Home Instrumentation

In the technology development phase, we used four lab houses: the Norman Test
House, Miami Test House, PNNL Test House A, and PNNL Test House B. The Norman
Test House was the main test bed, where the project team conducted experiments to
collect a massive amount of operational data for the model development. The test
houses at PNNL and in Miami, Florida, are intended only for model validation. In the
field testing phase, we recruited 11 participating houses for technology verification. This
section includes the introduction of the four laboratory test houses. The field testing
houses will be introduced in Section 7.

2.1 Lab House in Norman, Oklahoma

The lab house located in Norman, Oklahoma, is shown in Figure 2.1 (a). It is a single-
family, one-story home with a floor area of 1,658 ft?, built in 1940. The home is
equipped with 3.5 tons (42,000 Btu/h) of cooling capacity and 1,400 cfm of airflow rate
and includes three bedrooms and one living room. The thermostat is in the living room.
A data acquisition system was installed in the house, which measured the entering and
leaving air temperature from the outdoor unit of the HVAC system, indoor and outdoor
air temperature, indoor wall surface temperature, supply and return air temperatures
from the air duct, air temperatures from the supply and return air diffusers, wind speed,
normal direct irradiation, return airflow rate, power consumption for the indoor and
outdoor unit, and the total power use for the entire house. These data were measured
using T-type thermocouples, a velocity sensor, an anemometer, a pyranometer, and
power meters, respectively, as shown in Figure 2.1 (b)—(j). The data were logged using
the connected Raspberry Pi and its associated thermocouple hat, as shown in Figure
2.1 (k) and (I). All the thermocouples were calibrated according to the ASTM standard
E220 (ASTM 2019). An outdoor weather station, shown in Figure 2.1 (m), was set up for
outdoor temperature, wind, and total solar measurements at thirty-second intervals,
which were compared with data downloaded from Mesonet (Brock et al. 1995;
McPherson et al. 2007) at five-minute intervals.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 5



Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 6



Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

0] (k)

Figure 2.1. Oklahoma test home and data acquisition device location and information

(a) Outside view of the front of the test home; (b) Indoor unit with measurements of the relative humidity and
temperature from the supply and return air duct; (c) Outdoor unit with measurements of the entering and leaving air
temperatures; (d) Thermocouples for indoor air temperature measurements; (e) Thermocouples for interior wall
surface temperature measurements; (f) Thermocouples for exterior wall surface temperature measurements; (g)
Thermocouple for air temperature measurements from one supply diffuser; (h) Thermocouples for air temperature
measurements from two return diffusers; (i) Power meters for the indoor unit and outdoor unit of the HVAC system
and total power for the house; (j) Flow rate sensor; (k) and (I) Raspberry Pi and its associated thermocouple hats; and
(m) Outdoor weather station.

All photos in report by the authors, unless noted otherwise.

To further illustrate the sensors and their measurements and locations in the house, a
floor plan was drawn and is shown in Figure 2.2. Specifications of all measurements
and locations of the sensors with their Pi for the data acquisition system are shown in
Appendix A (Tables A.1 and A.2). Because the combination of the indoor air
temperature T7 and interior wall surface temperature T11 showed most consistent
results, T7 and T11 were used in the study. Moreover, weather data from the data
acquisition system were compared with data downloaded from Mesonet (Brock et al.
1995; McPherson et al. 2007) at five-minute intervals. The comparison shows that
Mesonet data provided similar results. Considering that Mesonet data quality is routinely
maintained by the National Weather Center, Mesonet data were used in the study.
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Figure 2.2. Oklahoma house floor plan with locations of the sensors

2.2 Test House in Miami, Florida

The test house in Miami, Florida, is shown in Figure 2.3(a). It is a single-family, two-
story home with a floor area of 2,757 ft?, built in 2002. The first floor is equipped with a
4-ton AC with an airflow rate of 1,600 CFM. The second floor is equipped with a 3-ton
AC with an airflow rate of 1,113 CFM. The home includes three bedrooms on the
second floor and one bedroom, one living room, one family room, a dining room, and a
kitchen on the first floor. A thermostat is in the hallway on each floor. Hobo data loggers
were installed in the house, which measured the temperature and humidity of the indoor
air, outdoor air, supply air from one diffuser, and return air inside the AC cabinet, as well
as the interior surface temperature of an interior wall and a north-side exterior wall in the
dining room. A power meter was installed to measure the power of the indoor unit and
outdoor unit of the two AC systems. The airflow rate was measured from all diffusers
and applied to obtain the airflow rate of the two indoor units using a one-time
measurement. An irradiation sensor was installed outside one south side window on the
second floor to measure the solar irradiation. The locations of the sensors and power
meter are shown in Figure 2.3(b)-(m). The measurement interval is set at one minute.
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(n) (0)

Figure 2.3. Florida test home and data acquisition device location and information

(a) Back view of the test home; (b) Interior wall with temperature measurements; (c) Exterior wall with temperature
measurements; (d) outdoor air temperature measurements far away from the house; (e) outdoor air temperature
measurements close to the pool; (f) air temperature measurement in the living room (entrance); (g) temperature

measurement in the family room; (h) temperature measurement at one supply diffuser on the first floor; (i)
temperature measurement at one supply diffuser on the second floor; (j) temperature measurement in the return
cabinet on the first floor; (k) temperature measurement in the return cabinet on the second floor; (I) outdoor air
temperature in front; and (m) power meters for the indoor unit and outdoor unit of the two AC systems; (n)
temperature measurement in a bedroom on the second floor; (o) temperature measurement in the master bedroom
on the second floor.

To further illustrate the sensors and their measurements and locations in the house,
floor plans were drawn and are shown in Figure 2.4. Because the combination of the
indoor air temperature from Front OA was found to show more consistent results, it was
used in the study.
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2.3 Test Houses in Richland, Washington

The PNNL laboratory homes located in Richland, Washington, are shown in Figure
2.5(a) and Figure 2.5(b) with the floor plan in Figure 2.6. The homes are identically
constructed manufactured single-family homes with floor areas of 1,493 ft? on a single
floor over a crawl space, assembled in place circa 2011. Each home has three

bedrooms, two baths, a dining room, and a living room (see floor plan in Figure 2). The

floors are insulated to R-22 and finished with carpet and vinyl flooring. The walls are
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insulated to R-11 and the ceiling to R-22. Wood siding covers the exterior walls, and
windows represent 195.7 ft? of the total exterior wall area.

(a) (b)

Figure 2.5. Two views of PNNL's identical lab homes viewed from (a) the northeast and (b) the northwest.
The second sits in the background.
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Figure 2.6. Lab homes floor plan with locations of heating/cooling registers, pyranometer, and
thermocouples measuring air temperatures
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(i) ) (k)

Figure 2.7. Washington lab homes, heating/cooling equipment, and data acquisition systems

(a) outdoor heat pump unit, (b) indoor heat pump unit showing the return air entrance on the top section, (c) indoor
unit with front covers removed showing the coil in the top section and the blower and electric resistance heater unit in
the lower section, (d) a close-up of the coil and filters using electrical and duct tape to block airflow to represent dirty
or clogged filters, (e) return air temperature sensor located above the coil inside the upper section, (f) thermocouple

and humidity sensor to measure room conditions, (g) rooftop weather station measuring wind speed and direction

and shaded outdoor temperature sensor, (h) blue pyranometer (inside red circle) measuring solar irradiation and
shaded outdoor temperature sensor, (j) flexible conduits through which wires run from current transducers in the
electrical box behind the front electrical panel and the Campbell Scientific enclosure, (k) open Campbell enclosure
showing wiring, logger, power supply, multiplexers, and Campbell Scientific CR1000 logger, and (I) another open
enclosure showing sensor wiring, thermocouple amplifier and multiplexer, power supply, and Campbell CR1000X
logger.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 13



Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

The homes have all electric equipment and appliances with heating and cooling
provided by identical thermostatically controlled 13 seasonal energy efficiency ratio / 8.0
heating seasonal performance factor ducted central heat pumps with a rated cooling
capacity of 29,400 Btu/hour (nominally 2.5 tons) and a nominal supply airflow rate of
850 scfm. Each heat pump has a rated heating capacity of 30,000 Btu/hour with 16 kW
(approximately 54,590 Btu/hour) of electric resistance auxiliary heat. The thermostat is
located in the hallway between the primary bedroom, bedrooms two and three,
bathroom two, and the utility room. Heat is also available from Cadet fan-powered wall
heaters throughout each home. The baths and kitchen have exhaust fans. The homes
also include water heaters, refrigerators, washers and dryers, and dishwashers.

Instrumentation and a data acquisition system were installed in each house.
Instrumentation includes energy metering with 42 individually monitored breakers, half
of which are controllable or whole-house meters and a smart billing meter. Fifteen
thermocouples measure indoor air temperatures, and two sensors measure indoor
relative humidity. Twenty-two thermocouples measure the temperatures of the interior
and exterior surfaces of window glazing. Two locatable mean radiant temperature
sensors on tripods are available in the homes, and a “handheld” air velocity meter has
been used for measuring flow rate and temperature of supply air flowing through the
indoor air handler, which was in the project to determine the impact of blocked filters on
flow rate and heat pump performance. Two Campbell Scientific data loggers are used
for collecting and logging most of the data. Portable temperature sensors with onboard
logging capability have also been used occasionally to supplement the main sensors
(e.g., the temperatures of interior wall surfaces at various positions). Temperature and
humidity data have been collected down to 1-minute time intervals, and power
measurements as frequently as once every 10 seconds. Weather variables and solar
irradiance are also measured on-site. Figures 2.7(a) through 2.7(x) provide photos of
instrumentation and the heating and cooling equipment.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 14



U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy

Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

3 Home Thermal Model and Parameter
Identification Development

3.1 Home Thermal Model

In this section, a home thermal model, which is built upon the energy conservation law,
is formulated through the analysis of heat transfer processes between indoors and
outdoors. The model represented by a second-order dynamic equation is used to
capture the thermal dynamics of the indoor space and wall of a home.

3.1.1 Heat Transmissions Through Temperature Differences

For a 3R2C model application (Ogunsola, Song, and Wang 2014; Ogunsola and Song
2015), the exterior wall needs to be replaced by a wall for all exterior walls having
different orientations, i.e., different orientations of the walls require them to be modeled
individually. However, homes usually have one thermal zone (the entire house in most
cases, and generally not more than two zones). Therefore, the home envelope (for a
home with one zone) may be consolidated into one virtual envelope with the orientation-
dependent wall temperature (T;.) represented by the weighted average of the impacts
on envelope elements having different orientations, as shown in Figure 3.1. The thermal
properties of the virtual envelope are the weighted average of the thermal resistance
and heat capacity, i.e., R, and C,, ;, of all the envelope components. For internal
space, the indoor air is represented by one uniform air temperature (T;;;,) in a thermal
zone and its associated air thermal capacity (C,;,-) and thermal resistance (R,;,).
Therefore, heat transmissions through all the envelope components and internal space
can be represented by two heat transfer relationships. The first relationship is driven by
the temperature difference between the outdoor air temperature (T,) and the wall
temperature (T;.). The second one is driven by the temperature difference between the
interior wall surface temperature (T;,) and indoor air temperature (T;,,). Both
relationships take into account the consolidated thermal properties of all the envelope
components and internal spaces and contain parameters to be estimated using home
operational data. The two relationships are shown in Equations (3.1) and (3.2),
respectively.

.. dT; =T0_Tie+Tin_Tie (3.1)
v de Rye Rair
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Figure 3.1. One virtual envelope
3.1.2 Solar Impacts

Solar radiation transfers heat inside a home through an envelope that consists of all the
structural elements that separate the conditioned indoor spaces from unconditioned
indoor spaces and the outdoors. The heat transfer takes place through two
mechanisms. One is to heat the exterior opaque surfaces of the home. The heat
received by the opaque envelope elements is first absorbed by the total heat capacity of
the opaque envelopes and then released into the indoor air through conduction and
convection. The other mechanism is to heat the indoor structural components and
furnishings through which solar radiation is transmitted via glazing, such as windows
and skylights. Some of the solar heat gain absorbed by the interior furnishings and
structural components (e.g., walls) is immediately transferred to the indoor air by
convection, and the rest is conducted into the structure or furnishings and gradually
released later, thus heating the indoor air. In a traditional RC thermal model, the two
mechanisms are described separately. The heat transfer of solar radiation on the
exterior surfaces of opaque structural components is described by the sol-air
temperature, which is orientation-dependent, while the solar gain through fenestration is
separately described as radiative heat gains (McQuiston, Parker, and Spitler 2004). In
this home model, however, a third-order polynomial, shown in Equation (3.3), is used to
describe the overall attenuation from the normal direct irradiation that includes direct
irradiation and diffuse irradiation to the solar heat received by all the envelope
components, including the opaque and fenestration components, and eventually
contributed to the internal space. The coefficients of the polynomial in Equation (3.3),
representing the home thermal responses to solar inputs, are estimated using a
parameter estimation scheme to be introduced in Section 3.2.

Qs501(G) = a,G + a,G* + a;3G3 (3.3)

where G is the global horizontal irradiation (W/m?); Q,,,;(G) is the space air temperature
increase that represents solar impacts on a home; and a,, a,, and a5 are coefficients
determined empirically from home operational data.
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3.1.3 Wind Impacts

Wind impacts home thermal load through two mechanisms: changes in convection heat
transfer coefficient and infiltration. To investigate the wind impacts, a preliminary study
was carried out in March 2016 in an unoccupied home, and distinctive heat losses were
observed for different wind speeds for the same outdoor air temperature. As shown in
Figure 3.2, when the wind speed was at 1.34 m/s, the heat loss rate was approximately
10% higher than the loss rates at 0.67 m/s wind speed and more than 50% higher than
the loss rates at close to 0 m/s. This showed that wind impacts cannot be ignored for
home thermal load studies and suggested that the amount of heat gains or losses can
be related to wind speeds. The heat loss rates were calculated using operational data of
a gas heater logged over 1-minute intervals.

y =-0.096x + 18.602
R2=10.8658

—_ ¥ =-0.0957x + 16.965
; R?=10.9005
*__

, ¥=-0.0915x + 12.856

) Outdoor air temperature (°C)

Heat loss@wind 0.67 Heat loss@wind 1.34 « Heat loss@wirnd 0 Ri=0:0901
10 — Linear (Heat loss@wind 0.67) —Linear (Heat loss@wind 1.34) —Linear (Heat loss@wind 0)
0 50 100 150 200 250

Home heat loss rate (W)

Figure 3.2. Home heat loss rate vs. outdoor air temperature for three different wind speeds

Due to the difficulties in directly calculating the infiltrated airflow rate (Gowri, Winiarski,
and Jarnagin 2009; Waite and O’Brien 2010) and quantifying changes in the convection

heat transfer coefficient, in this study the quadratic equation b; W + b, W2 is used to
capture the wind impacts for each specific house with the values of its parameters
estimated through data training. Therefore, the rate of heat transfer by wind effects can
be expressed by

Ty = Tin Ty = Tin
/(bW + b,W2) Ry,

Qo = (3.4)
where q,,, is the heat transfer rate due to wind effects; W is the wind speed; b; and b,
are the empirically determined coefficients; and R,,,, is a variable resistance dependent
on the wind speed and airtightness of a specific home.

3.1.4 Internal Heat Gain Impacts

For homes, the dominant thermal mass (i.e., product of the mass and the specific heat
capacity) comes from the envelopes (Kosny et al. 2001; Johra and Heiselberg 2017).
This is because the heat capacity per specific volume of concrete, glass, wood/plastic,
and materials for envelope elements is 1,000 times higher than the heat capacity per
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volume of air. It is also because the interior structure of a house is much smaller than
that of a commercial building given the need for corridors, stairs, and elevators, in
addition to interior zones, in a building. Meanwhile, for residential buildings, the volume
of the envelope is significantly larger than the volume of partition walls and furnishings.
On the other hand, internal heat gains have relatively small impacts compared with
envelope heat gains/losses (Kim and Moon 2009). Herein, our hypothesis is to treat the
internal heat gains as one input, Q;,,;, in this study. We have conducted two experiments
to validate the hypothesis, one by introducing moderate heat using an electric heater
(5,118 btu/hr) and the other one by introducing intensive heat using two electric heaters
(total 10,236 btu/hr). Through the experiments, we found out that the errors caused by
treating the internal gain as a constant throughout a day is within the model uncertainty
(a success criterion).

3.1.5 Formulate Heat Transfer Processes

By integrating the contributions of Sections 3.1.1-3.1.4, the governing equation for the
home thermal model can be expressed as

dT; _ To=Tie | Tin —Tie (3 5)
Cve,in dt ~ R + R.. .
ve air
dT; Tie — T;
air_l = =+ Gow + Qsor + Qine + Qsys (3-6)
dt Rair

where Q;,; represents the sum of all the internal heat gains and Q;,, is the HVAC
output. The circuit diagram for Equations (3.5) and (3.6) are shown in Figure 3.3.

The internal space
The virtual envelope R

Qint Qo .
S0 Tw !
" Te Rve Tie Rair Tin sts i
|
oA, W 0 Rw., T
| N
| |
| |
| Cyve,in —— Cair i
| i
! 1
! |

Figure 3.3. Schematic diagram of the 2R2C network

3.1.6 Summary
Substituting Equations (3.3) and (3.4) into Equation (3.6) and rearranging Equations
(3.5) and (3.6), we obtain a continuous-time model

dT(t) 1
a 1,

1
[To(®) = Tee (O] + [(Tin () — Tie(®))] (3.7)
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Ty, (1) 1
- _gTin(t) o8
1 .
o [Tie(®) + (To(®) — Tin () (DLW () + b,W2(L))

+ (a,G () + a,G?(6) + a3G3 (1)) + (Quwy (1) + Qsus ()],

where 7; = Cpe inRye and 73 = Cy;-Ry; are the time constants of the envelope and
indoor air of a home, respectively; t, = Cye inRair» @1 = a1Rgir, Az = a3R4ir, a3 = a3Rg;yr,
b, = biR,ir, and b, = byR,;,- are the corresponding coefficients associated with R;,-;
and Q; = QintRyir and Qs = QsysRqir, Where the internal heat gain Q;,; and HVAC
system output Qs are treated as constants associated with the internal activity
schedules u; and HVAC system on/off signal u,, respectively.

All the coefficients in Equations (3.7) and (3.8), which represent the thermal responses
of the envelope and indoor air of a home to the inputs of outdoor air temperature,
interior wall surface temperature, wind, solar, internal heat gains, and HVAC system
output, are estimated using a parameter estimation scheme introduced next in Section
3.2. Note: Equations (3.7) and (3.8) only consider sensible heat transfer for temperature
prediction. The latent load impacts space humidity and therefore is not considered in the
model.

3.2 Parameter ldentification Methods

The formulated home thermal model in Equations (3.7) and (3.8) includes several
unknown parameters that need to be estimated. In this section, a parameter estimation
scheme is introduced using Euler’s approximation and two different methods, namely,
the least-squares method and the optimization method for different implementation
scenarios. The two different methods are developed for the data collected from different
seasons. In general, if the algorithm starts with the HVAC (including both heating and
cooling) season, the optimization method needs to be applied for a better result. In
contrast, in the transition season, the least-squares method needs to be adopted. We
will explain in more detail in Section 4 the benefits of the two different methods. In this
section, we focus only on introducing them.

3.2.1 Model Discretization

Because the home thermal model in Equations (3.7) and (3.8) is a continuous-time
model, it needs to be discretized in order to use measured input and output data for
parameter estimation. The continuous-time model is converted into a discrete-time
model by applying Euler’'s method. With this method, the left-hand side of Equations
(3.7) and (3.8) becomes

dTie(t) _ Tie(t) - Tie(t - 1) (39)
dt At
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dTin(t) T (6) — Tin(t — 1) (3.10)
dt At

where At is the sampling interval between two consecutive measurements.

By substituting Equations (3.9) and (3.10) into Equations (3.7) and (3.8), respectively,
the continuous-time model becomes a discrete-time model of the form

T (k) = Too(k — 1) = f—f[ro () — T ()] + ? [(Tin () — Tik)] (3.11)
Tin(k) - Tin(k - 1)
At
= __Tin(k)
T3 (3.12)

A
+ T—: [Tie (k) + (T, (k) — Ty (k) (bW (k) + b,W?2(k))
+ (a1 G (k) + azG*(k) + asG3(k)) + (Qaw; (k) + Qsus(K))]

where k denotes discrete time. Although Equations (3.11) and (3.12) contain polynomial
terms, the equations are linear in the unknown parameters. Therefore, in principle, the
least-squares method may be used to optimally estimate these unknown parameters. It
is, however, possible to improve the estimation performance by taking advantage of the
fact that during certain periods, some of the terms in Equations (3.11) and (3.12) are
naturally zero. For example, the solar term in Equation (3.12) should be zero at night,
while the term containing the HVAC on/off signal should be zero whenever the AC is off.
These observations suggest that instead of estimating all the unknown parameters at
once, we could achieve a better estimation performance by applying the least-squares
method in multiple steps, with each step devoted to estimating only a subset of the
unknown parameters since some of the terms are naturally absent. This gives rise to
what we called a stepwise parameter estimation scheme, to be described in Section
3.2.2. Herein, as an illustration, Equation (3.11) in the first step of the parameter
estimation can be written in matrix form as

XB=Y (3.13)

where X and Y are matrices containing the measured variables representing the inputs
and output of the home thermal model, and S is the vector of unknown parameters to be
estimated.

Assuming that X has full column rank, the least-squares solution to Equation (3.13) is:
B — (XTX)—lXTY (314)

where S is the optimal estimate of the unknown parameters, and
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X110 Xim V1
X:(S §>; ﬁ:[_l; y:[sl_ (3.15)
Xn1 7 Xam ﬁm Yn

where n represents the number of time steps used for estimation and m represents the
number of unknown parameters to be estimated. The detailed definitions of X, Y, and 3
can be found in Equations (B.1)—(B.8) in Appendix B.

3.2.2 Parameter Estimation Scheme Using the Least-Squares Method

The home thermal model in Equations (3.7) and (3.8) requires estimation of 10
parameters using a dataset of 7 known inputs: indoor air temperature (T;,,), outdoor air
temperature (T,), interior wall surface temperature (T;.), wind speed (W), normal direct
irradiation (G), internal activity schedules (u;), and HVAC system on/off signal (u,). Of all
the parameters to be estimated, the time constants (r; and t3)in Equations (3.7) and
(3.8) are most important in ensuring an accurate representation of the thermal
properties of a home, which include the home envelope and internal space. The values
of these two parameters do not change just because the HVAC system is turned on or
off. Therefore, to minimize errors introduced by the indoor air and wall surface
temperatures during HVAC on/off, we proposed a stepwise parameter estimation
scheme based on the least-squares method described earlier in Equations (3.13)-
(3.15). The parameter estimation process consists of two steps:

(1) Identify t; and 7, by solving a least-squares problem formed by Equation (3.11) and
measurements of the indoor air temperature T;,,(k), outdoor air temperature T,(k), and
interior wall surface temperature T;.(k), focusing only on time periods when the HVAC
system is off;

(2) Identify 75, by, b,, a4, a,, as, Q;, and Q, by solving another least-squares problem
formed by Equations (3.12) and all the measurements, thus completing the parameter
estimation process.

Figure 3.4 shows a schematic diagram describing the parameter estimation process.
Details of the parameter estimation are presented in Appendix B.
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Figure 3.4. A schematic diagram describing the parameter estimation

3.2.3 Parameter Estimation Scheme Using the Optimization Method

An alternative way to estimate the unknown parameters of the model is what we called
the optimization method. With this method, the input and output are the same as before.
However, the parameter estimation process consists of the following two steps:

(1) Identify 7, and 7, by solving an optimization problem formed by Equation (3.1) and
measurements of the indoor air temperature T;,(k), outdoor air temperature T,(k), and
interior wall surface temperature T;.(k), covering all time steps regardless of whether
the HVAC system is on or off. The objective function of the optimization problem is the
sum of the squares of the differences between the measured and modeled interior wall
surface temperatures when the unknown parameters take on a specific set of values:

N
minimize 2
p /= Z(Ti’;mml ~T£)" , where P = |t1, 72, TS, Tinpmeqsure (3.16)
k=1

This objective function can be minimized using the SLSQP (Kraft 1988) or Nelder-
Mead’s algorithm (Nelder and Mead 1965). The SLSQP algorithm is used in the
simulation results presented in Section 4. The benefit of using SLSQP is that one can
set up the constraints and bounds for the unknown parameters, in this case 7, and t,.
Although the values of these two parameters may be different for different houses and
different surrounding environments, it is reasonable to assume that they fall in certain
ranges. Based on our experiments, we found that r; € (2000,8000) and 7, € (20,5000)
are realistic bounds. We also impose an additional constraint on their ratio since it is
known that the values of 7; and 7, are typically proportionally related. Specifically, in the
simulation result, the constraint is taken to be 5 < :—: < 20. Finally, as required by the

SLSQP algorithm, we let the initial guess of the values of 1,7, be given by the result
from Step 1 of the least-squares method described in the previous section.

(2) Identify 3, by, by, a4, a,, as, Q;, and Q, by solving a least-squares problem formed
by Equation (3.14) and all the measurements, regardless of whether the HVAC system
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is on or off, thus completing the parameter estimation process. A detailed description of
these two steps can be found in Appendix B.

In general, to estimate the parameters of a second-order differential/difference equation,
one may use the optimization method to train all parameters in the two equations
simultaneously. However, due to the complexity of the home thermal model and the
sensitivity of the resulting parameter estimates, we instead proposed the two-stage
parameter estimation scheme.
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4 Home Thermal Model Verification

The data collected from the four laboratory testing houses were used to verify the model
and parameter identification methods. For model verification purposes, we collected
data at 30-second time intervals using thermocouples we installed.

4.1 Model Verification Using Data From the Norman Test House

To run the algorithm, the first step is to identify the parameters of the thermal model
using the first set of available data. However, we found that the parameter training
method is sensitive to the data collected in different seasons, namely, a transition
season and an HVAC season. Because the algorithm can start running at any season of
the year, we have developed different methods—least-squares and optimization—to be
applied to different seasons for best results.

In this section, we show the differences between the two methods when the parameter
training algorithm starts with data collected in different seasons. A total of four tests are
considered: the least-squares method with transition season data, the least-squares
method with HVAC season data, the optimization method with transition season data,
and the optimization method with HVAC season data. At the end of this section, we
include a study on how the length of the data impacts the model training results using 6-
day and 14-day data.

4.1.1 Tests Using the Least-Squares Method
4.1.1.1 Tests Using Model Trained by Transition Season Data

Table 4.1 shows the results of estimating the home thermal model parameters using the
first 14 consecutive days of training data collected in May, which is considered a
transition season. The trained model is then applied to the operational data collected in
June, July, and August to predict 24-hours-ahead space air temperature. The predicted
space air temperature is compared with measured space air temperature to verify the
effectiveness of the model. Our success criterion for this verification, as indicated in the
first section, is that the absolute errors between the measured and predicted space air
temperatures are less than 2°F at a 90% confidence level.
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Table 4.1. Estimated Parameters

First 14 consecutive days 2383 262.6 7.897 0.005447 -0.0002832
Length of training data a; a; as Qs
First 14 consecutive days 5422 -9.487 5.568 -2.086

Figure 4.1 to Figure 4.3 present the verification results for the model trained using the
14-day transition data, and Table 4.2 presents the statistics. As can be seen, the
absolute errors are less than 2°F at a 95% confidence level, exceeding the success
criterion except for the result in August, which shows an absolute error of 2.47°F at a
95% confidence level, slightly above the 2°F error at a 90% confidence level. This
finding has been reported in the progress report at the end of the first budge period.

Therefore, the least-squares method has passed the performance verification when the

transition season data are used to train the thermal model.
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Figure 4.1. Validation using data from June 18-July 1, 2020 (total of 14 days when AC is on)
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Figure 4.2. Validation using data from July 2-9, 17-20, and 24-26, 2020 (total of 15 days when AC is on)
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Table 4.2. Absolute Error Comparison Using Thermocouple Temperature for Different Months

June 0.77 3.34 1.96
July 0.83 3.28 1.85
August 0.99 3.95 2.47

4.1.1.2 Tests Using Model Trained by HVAC Season Data

Figure 4.4 shows the predicted and measured space air temperature when the model is
trained using data from August, which is considered a heavy HVAC season. The results
are obviously not acceptable. The heavy HVAC season data predominantly contain
information about AC impact and therefore are not effective in training building
parameters in the thermal model that require heat transfer impacts through envelope.
This is why the optimization method is developed to improve model performance for
situations such as when the first set of data comes from the HVAC season.

100

95 A f .I | | |

Temperature (°F)

Tdata Tsimu
65
0 0.5 1 1.5 2 2.5
Time (minute) x10*

Figure 4.4. Data from August 1-10 and 12-16, 2020 (total of 15 days) for training and validation

4.1.2 Tests Using the Optimization Method
4.1.2.1 Tests Using Model Trained by Transition Season Data

As shown in Figure 4.4, the least-squares method may not achieve satisfactory
temperature prediction if the training data are from the HVAC season, motivating us to
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propose the optimization method. In this section, we present the validation of this new
training method. Following the same procedure as the least-squares method, we start
from the transition season, i.e., using May data for training, and validate the model
using data from other months. Then we change the training data to the HVAC season
and, again, validate the performance using training data from other months.

Table 4.3 shows the results of estimating the home thermal model parameters using 13
consecutive days of training data.

Table 4.3. Training Results of Optimization Method Using May Data
Length of training data T4 Ty T3 b4 b,
May 22—-June 3 (total 13 days) 5078.520 397.118 7.897 0.005447 -0.0002832
Length of training data a,; a, as Q,

May 22—June 3 5.422 -9.487  5.568 -2.086

The top subplot of Figure 4.5 shows the measured and 24-hours-ahead predicted
indoor air temperatures using the home thermal model with trained parameters from
Table 4.3. As can be seen, the predicted temperatures match the measured
temperatures quite well, with a mean absolute error of 0.65°F and a maximum absolute
error of 2.54°F. Compared to the least-squares method, the optimization method
performs better. The bottom subplot of Figure 4.5 displays a histogram of the absolute
errors. A red marker is added to emphasize that 95% of the absolute errors are within
1.57°F. This suggests that the model is effective at capturing the home thermal
dynamics by learning the properties of the test home.
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Figure 4.5. Simulation result using data from May 22-June 3, 2020 (total of 13 days). The red markers
indicate the mean error and the error at 95% deviation.
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Using the parameters trained in Table 4.3, we validate our model using data from June,

July, and August. The simulation results and a histogram of the absolute errors are
shown in Figure 4.6 to Figure 4.9. Table 4.4 states the mean absolute error, maximum
absolute error, and absolute error at a 95% confidence interval. Compared with the

least-squares method, the model trained by the optimization method shows a relatively

better result for validation using data from those three months.

Table 4.4. Absolute Error Comparison Using Thermocouple Temperature for Different Months for the

Optimization Method

May 28—June 11 0.62
June 18—July 1 0.61
July 2-9, 17-20, 24-26  0.58
August 1-August 16 0.70
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Figure 4.6. Validation results on May 28—June 11, 2020 (total of 15 days)
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Figure 4.7. Validation results on June 18-July 1, 2020 (total of 14 days)
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Figure 4.8. Validation results on July 2-9, 17-20, and 24-26, 2020 (total of 15 days)
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Figure 4.9. Validation results on August 1-16, 2020 (total of 15 days)

4.1.2.2 Tests Using Model Trained by HVAC Season Data

To better understand the efficacy of the optimization method, we also used it to train our
model based on data from the HVAC season. Table 4.5 shows the results of estimating
the home thermal model parameters using 15 consecutive days of training data.
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Table 4.5. Training Results of Optimization Method Using August Data

August 1-10, 12-16
(total 15 days)

7820.103 438.877 5.644 0.0148 -0.0009237

Length of training data a, a, as Qs

August 1-10, 12-16 -0.7219 2.579 -1.643 -1.102

Figure 4.10 shows the measured and 24-hours-ahead predicted indoor air temperatures
using the home thermal model with trained parameters from Table 4.5. Again, the
predicted temperatures match the measured temperatures very well, with a mean
absolute error of 0.83°F and a maximum absolute error of 3.2°F. Compared to the least-
squares method above, the optimization method achieves a better performance. A
histogram of the absolute errors is also shown in the figure. A red marker is added to
indicate that 95% of the absolute errors are within 1.76°F. This implies that the model is
once again effective in capturing the home thermal dynamics.
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Figure 4.10. Simulation results using data from August 1-16, 2020 (total of 15 days). The red markers
indicate the mean error and the error at 95% deviation.

Using the parameters identified in Table 4.5, we validate our model based on data from
June, July, and August. The simulation results, along with a histogram of the absolute
errors, are shown in Figure 4.11 to Figure 4.14. Table 4.6 summarizes the mean
absolute error, maximum absolute error, and the absolute error at a 95% confidence
interval. Compared with the least-squares method, the optimization method performs
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notably better. Indeed, all the absolute errors are lower than 1.96°F, even at a 95%
confidence level, thus exceeding the success criterion. Therefore, we can conclude that
the optimization method works well for both scenarios, i.e., either with the transition
season data or HVAC season data. However, since the least-squares method is
computationally much less demanding while providing satisfactory results for the
transition season data, we recommend using the least-squares method when transition
season data first become available, and using the optimization method when HVAC
season data first become available.

Table 4.6. Absolute Error Comparison Using Thermocouple Temperature for Different Months for the
Optimization Method

May 22—June 3 0.77 2.83 1.96
May 28—June 11 0.66 2.64 1.57
June 18-July 1 0.71 3.00 1.67
‘zjlé'y e M 3.13 1.86
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Figure 4.11. Validation results on May 22—June 3, 2020 (total of 13 days)
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Figure 4.14. Validation using data from July 2-9, 17-20, and 24-26, 2020 (total of 15 days)

4.1.3 Tests Using Different Lengths of Training Data

All the tests we have described so far are based on training the model using two weeks’
worth of data (14 days). To understand how the length of data affects the results, we
conducted another set of tests by varying the training data length, one with 6 days and
the other with 14 days, as in previous sections. Here, for simplicity we consider only the
least-squares method.
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Table 4.7 shows the results of estimating the home thermal model parameters using the
first 6 and first 14 consecutive days of training data collected in May, which is
considered a transition season. The first 6 and first 14 consecutive days of training data
are chosen because they are the earliest available data. Because two distinct sets of
training data are used, we obtain two distinct home thermal models with different
parameters, which are then used to perform simulations.

Table 4.7. Estimated Parameters for the Two Identified Models

Length of training data T4 T T3 by b,
First 6 consecutive days 2636 278.6 7.584 0.01272 -0.0002349
First 14 consecutive days 2383 262.6 7.897 0.005447 -0.0002832
Length of training data a, a, as Q;

First 6 consecutive days 4331 -8.457 5.218 -2.200

First 14 consecutive days 5422 -9.487 5.568 -2.086

Figure 4.15 shows the measured and 24-hours-ahead predicted indoor air temperatures
using the two models. From the figure, we see that the predicted temperatures follow
the measured temperatures reasonably well, achieving mean absolute errors of 0.82°F
and 0.80°F and absolute errors of 1.85°F and 1.90°F at a 95% confidence interval,
respectively. Figure 4.16 compares the histograms of the absolute errors for the two
models, from which we can see that the two models are equally effective in capturing
the home thermal dynamics.
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Analyzing Figure 4.15 and Figure 4.16, we observe that the simulation results for the
two models, trained using the first 6 and first 14 consecutive days of data, are very
close to each other. In addition, as shown in Table 4.8, the mean, maximum, and
absolute errors at a 95% confidence interval for the model trained using the latter are
slightly better than that using the former, but not by much. Therefore, it is fair to say that
the two models have similar accuracy in predicting indoor air temperature 24 hours into
the future. In other words, having longer training data does not actually bring significant
advantages.

Table 4.8. Absolute Error Comparison for the Two Identified Models

First 6 consecutive
days

First 14 consecutive

0.70 3.56 1.62
days

4.2 Model Verification Using Data From the Miami Test House

To investigate how the proposed model and parameter estimation methods perform in a
region with a climate different from Oklahoma, we collected thermocouple data from the
Miami test house for 15 days during the 2021 cooling season, from November 24 to
December 9, at 1-minute intervals. In this section, we describe how we used the first 6
consecutive days of data to train the model and the last 6 days of data to validate its
performance. The least-squares method is adopted throughout.

4.2.1 Model Verification Using the Least-Squares Method
4.2.1.1 Tests Using HVAC Season Data

Table 4.9 shows the results of estimating the home thermal model parameters using the
first 6 days of data collected in November, which is considered an HVAC season.

Table 4.9. Training Results of Least-Squares Method Using November Data

November 25—-November 30 1416.4677 1416.8466 2654775 1320.1172
Length of training data a; a, a; Q,
Total 6 days 1.01990 -0.1289 0.006195 -10.8866

In Table 4.9, the two coefficients b, and b,, which represent the wind impact on a house,
have been replaced by a new coefficient called 7, due to the lack of wind speed
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measurements at the Miami house. To carry out the replacement, recall that the second
part of the governing equation of the home thermal model is:

daT; T, — T;
air = = = =+ Gow + Qso1 + Qine + sts' (4.17)
dt Ruir

where q,,, is the rate of heat transfer due to wind, which can be expressed by

qr — To—Tin — To—Tin
W WA nWE) | Ry

Although wind speed measurements are not available, we still would like to account for

the impact of q,,, using the variable resistance R,,, instead of . Dividing Cy;,- on

biW+byw?2
both sides of Equation (4.1), a new equation representing the second part of the home
thermal model can be obtained as follows:

AT, 1

__T
dt T3 ln(t) +

%[Tie () + (a16(8) + a,G%(8) + azG3(0)) + (Qiwi (D) + Qsus ()]

. (4.18)
o [(T,(®) — T ()],

where 7, = Cyi-Ryw-

Figure 4.17 shows the measured and 24-hours-ahead predicted indoor air temperatures
using the home thermal model with trained parameters from Table 4.9. Note that the
predicted temperatures are able to closely follow the measured temperatures, achieving
a mean absolute error of 0.30°F and a maximum absolute error of 1.23°F. The second
part of Figure 4.17 shows a histogram of the absolute errors, where it can be seen that
90% of the absolute error are within 0.56°F. This encouraging result suggests that
despite being applied to a different house in a different geographical region, the
proposed model is capable of capturing the home thermal dynamics.
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Figure 4.17. Simulation results using data from November 25-30, 2020 (total of 6 days)

Using the parameters identified in Table 4.9, we validate the model using data from
December, which is considered a transition season. The simulation result and a
histogram of the absolute errors are shown in Figure 4.18. Table 4.10 lists the mean
absolute error, maximum absolute error, and the absolute error at a 90% confidence
interval. Observe that 90% of the absolute errors are lower than 1.42°F, thus

satisfying the success criterion.
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Table 4.10. Absolute Error Comparison Using Thermocouple Temperature
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Figure 4.18. Validation results on December 1-8, 2020 (total of 8 days)
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4.2.2 Tests Using Transition Season Data
Table 4.11 shows the results of estimating the home thermal model parameters using 8
days of data collected in December, which is considered a transition season in Miami.

Table 4.11. Training Results of Least-Squares Method Using December Data

December 1 — December 8 979.6927 529.7334 656.9250 1513.3107
Length of training data a, a, as Qs
Total 8 days 0.3426 0.09117 -0.007995 -24.2813

Figure 4.19 shows the measured and 24-hours-ahead predicted indoor air temperatures
obtained using the home thermal model with trained parameters from Table 4.11.
Observe that the predicted temperatures track the measured temperatures well,
achieving a mean absolute error of 0.48°F and a maximum absolute error of 1.46°F.
The second part of Figure 4.19 shows a histogram of the absolute errors, where it is
seen that 90% of the absolute errors are within 1.20°F. This adds to the evidence that
the model is able to accurately capture the home thermal dynamics.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 51



Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

Temp. (°F)
Zs

_Tdala _Tsimu \‘\f
—=—80
9_"', ?g e
7 _____E___,d_..:r——-—“"——‘——n:____w,/
a
£ 74
@
=4
gl 0:00AM 11:55PM
& 78 —w Time
a8 ﬁmﬁ::::::::::::ht
£ 74
[} E——
- |
0:00AM 11:55PM 0:00AM 11:55PM

Time Time

1500 s= T T .

1000

500

Distribution count (min)

0 |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 4.19. Simulation results using data from December 1-8, 2020 (total of 8 days)

Finally, using the parameters identified in Table 4.11, we validate the model based on
data from November, which is considered an HVAC season in Miami. The simulation
results and a histogram of the absolute errors are shown in Figure 4.20. Table 4.12
displays the mean absolute error, maximum absolute error, and the absolute error at a
90% confidence interval. Because 90% of the absolute errors are lower than 0.68°F,
the performance surpasses the success criterion.
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Table 4.12. Absolute Error Comparison Using Thermocouple Temperature for the Least-Squares

Method
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Figure 4.20. Validation results using data from November 25-30, 2020 (total of 6 days)

4.3 Model Verification Using Data From the PNNL Test Houses

Data from the two PNNL test houses were collected in a cooling season and used in
model validation. The first set of data recorded the AC operation and building
temperature at PNNL’s Home A for a total of 14 days from July 3 to July 17, 2020, at
30-second intervals (July 15 has missing data). The second set of data contains the
same information but is for PNNL’s Home B. In Section 4.3.1, we use the first 6
consecutive days of data to estimate the model parameters for Home A and the last 6
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consecutive days of data to validate the model prediction performance. In Section 4.3.2,
we do the same for Home B. At the end of each section, we discuss data issues
observed at both homes. The optimization method is applied throughout.

4.3.1 Test Results Using Data Collected From PNNL Home A

Table 4.13 shows the results of estimating the home thermal model parameters using
the first 6 days of data collected in July from PNNL Home A.

Table 4.13. Training Results of Optimization Method Using PNNL Home A Data

July 3—July 8 4694.8809 804.1474 4679.1909 168.7959 59.3138
Length of training data a; a, as Q,
Total 6 days -190.9453  3.7499 -0.2754 -247.62

Figure 4.21 shows the measured and 24-hours-ahead predicted indoor air temperatures
using the home thermal model with trained parameters from Table 4.13. As can be
seen, the predicted and measured temperatures are close to each other for the most
part, and the mean absolute error is merely 0.94°F. However, the maximum absolute
error is 4.99°F, which is quite large. The second part of Figure 4.21 displays a
histogram of the absolute errors, from which one can see that the large maximum
absolute error is a rare outlier. Indeed, 90% of the absolute errors are within 2.09°F.
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Figure 4.21. Simulation results using data from July 3-8, 2020 (total of 6 days)

Using the parameters identified in Table 4.13, we validate the model using the last 6
days of data, from July 9 to July 14, 2020. The simulation results and a histogram of the
absolute errors are shown in Figure 4.22. Table 4.14 indicates the mean absolute error,
the maximum absolute error, and the absolute error at a 90% confidence interval.
Notice that the maximum absolute error of 6.12°F is very large.
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Table 4.14. Absolute Error Comparison Using Thermocouple Temperature at PNNL Home A

July 9—July 14
o \M
R =
2 66
74
& B =AW
£ WW
© 66 .
‘QQ?“‘& ‘00?&1\ Time ‘QQP‘\\!\ Time
»\'\'-“)6 .\’\'-“)‘J ,\\‘56
Time Time Time

3000 . 1 | . | | .

2500 [ -

2000 .

1000

Distribution count (min)
o
(=]
o

500

0.0%  0.0% 0%

0 0.5 1 1.5 2 25 3 35 4 45 5 55

Figure 4.22. Validation results using data from July 9-14, 2020 (total of 6 days)

From the above simulation and validation results, we observe that the home thermal
model is capable of capturing a building’s thermal dynamics. However, its performance
at PNNL’s Home A is worse than that at both the Norman Test House and Miami Test
House. In the following text, we provide an explanation of the discrepancy in
performance. Physics-based gray box models such as our home thermal model could
generate reasonably accurate predictions based on a relatively small amount of data.
Therefore, data quality is important because it can significantly affect prediction
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accuracy. Figure 4.23 shows the two days of AC and building temperature data for
PNNL Home A, from the training dataset of July 3 to July 8, 2020. The red curve is the
indoor air temperature, the blue curve is the wall surface temperature, and the gray-
shaded step plot is the AC on/off signal. As can be seen in Figure 4.23, the wall surface
temperature went below the indoor air temperature when the AC was turned on,
indicated by the green arrows. This is physically impossible. The wall surface
measurement is between the outdoor air and indoor air and therefore impacted by the
heat transfers with both. When the outdoor air temperature (the gray curve) was
consistently high at above 80°F (in fact, it was above 90°F on July 3, 2020 and 85°F on
July 4, 2020), the only reason for the wall surface temperature (blue curve) to drop
below 68°F is by heat loss to the indoor air (red line). However, the indoor air
temperature was either close to the wall surface temperature or above it. Therefore,
there is a chance that the sensors for Home A measurements have errors. PNNL Home
A did not originally have a wall surface temperature sensor installed. The wall surface
temperature was measured using an add-on, portable temperature data logger.
Because the home thermal model was trained using the PNNL Home A data, which had
relatively low quality due to the errors, the prediction accuracy suffered as a result.
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Figure 4.23. Indoor air temperature issue at PNNL Home A; data are from July 3-4.

4.3.2 Test Results Using Data Collected From PNNL Home B

Table 4.15 shows the results of estimating the home thermal model parameters using
the optimization method. Figure 4.24 shows the measured and 24-hours-ahead
predicted indoor air temperatures using the home thermal model with trained
parameters from Table 4.15. It can be observed from the figure that the predicted
temperatures match the measured temperatures very well. In fact, the histogram of
absolute errors in Figure 4.24 shows that the mean absolute error is 0.7°F, the
maximum absolute error is 2.9°F, and 90% of the absolute errors are within 1.6°F.
However, although the simulation results look good, one of the parameters, t3, turns
out to be negative when it is expected to be positive. This is likely a consequence of
problematic data, which will be explained in the following text.
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Table 4.15. Training Results of Optimization Method Using PNNL Home B Data

July 3—July 8 5332.76626 624.23289 -1589.3526 -1.1128 0.14402
Length of training data a; a, as; Q,
Total 6 days -53.9853 70.5305 -29.2909 80.3441
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Figure 4.24. Simulation results using data from July 3-8, 2020 (total of 6 days)

Figure 4.25 shows the two days of AC operation and building temperature data for
PNNL Home B in the training set from July 3 to July 8, 2020. The red curve is the
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indoor air temperature, the blue curve is the wall surface temperature, the gray
dashed curve is the outdoor air temperature, and the AC signal is shown using a gray
shaded step plot. From this figure, we see similar but more severe errors compared to
PNNL Home A. The wall surface temperature went much lower than the indoor air
temperature when the AC was turned on, indicated by the green arrow. This severe
sensor error, however, led to 7; being negative. These factors suggest that data
quality control is necessary before performing model identification.
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Figure 4.25. Temperature measurement issue at PNNL Home B; data are from July 3-July 4, 2020.
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5 Development and Verification of Optimal
Operation Algorithm

An MPC-based optimization agent has been developed to achieve optimal AC operation
for cost savings. The MPC-based optimization agent adopts the second-order home
thermal model developed in Section 3. A schematic that represents the MPC-based
optimization agent is shown in Figure 5.1. The agent makes use of a set of thermal
comfort criteria, the utility rate, and the HVAC system power use.
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Figure 5.1. Schematic of MPC-based optimization agent

5.1 MPC-Based Optimization Methodology

Consider a home equipped with an HVAC system. Let At, i, N,,, and H; =

{k, k+1,..,k + N, — 1} denote the sampling period, discrete time, total number of
discrete-time slots over a prediction horizon, and the set of time indices in a prediction
horizon at the current time k, respectively. In addition, let P[i], E[i], Ti.[i], and T;,[i]
denote the utility rate, HVAC system power use, interior wall surface temperature, and
indoor air temperature of the home, respectively. The HVAC on/off control signal u,[i]
(i.e., ug[i] = 1 if on and u4[i] = 0 if off) is treated as an optimization variable.
Specifically, at each time k, u[i] for i € #, is chosen to minimize the objective function

J@) = ) PLIELTus[i] (5.19)
=
subject to the HVAC control constraint
ug[i] € {0,1} (5.20)
the temperature-based thermal comfort criteria
(5.21)

Tip[i] < Tinlil < Tupli]
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and the discretized second-order thermal network model (Wang et al. 2022)
Tieli +1] = (1 — a3 — @)Tielil + @y T, [i] + @, Tin 1] (5.22)
Tinli + 1] = (1 — a3) T[]

+ a3 (T [1] + (To[i] = Tin[i]) (0, WIi] + b,W2[i]) (5.23)
+ (a;G[i] + ayG?[i] + a3G3[i]) + Que[iluime [i] + Qs[ilus[il)

At At At , ,
where a; = = and a; = T and t; are time constants of the virtual envelope
1 2 3

and indoor air of a home, respectively; 7, is a parameter representing the combined
effect of the virtual envelope and indoor air; T, [i] is the outdoor air temperature; T;,[i]
and Ty, [i] are lower and upper bounds on T;,[i] that ensure thermal comfort; a,, a,, and
a; are parameters representing the effect of solar radiation; b; and b, are parameters
representing the effect of wind; G[i] is the global horizontal solar irradiation; W[i] is the
wind speed; Q;,¢[] is the internal heat gain; Q,[i] is the HVAC system output (also
known as scaled cooling capacity); and u;,.[i] is the home occupancy signal (i.e.,

Uine[i] = 1 if occupied and u;,:[i] = 0 otherwise). The home thermal model in Equations
(5.4) and (5.5) can also be expressed in the form

Tie [l]
[Ti [i]

] — o[i,1] ;nﬁﬂ + Z o[i, ] (Bl — 1Juglj — 1] + d[j — 1]) (5.24)
&

where T;.[1] and T;,[1] are initial values, which are given; ®[i, j] = ;,;1]-A [p] is the
state transition matrix (Brogan 1991); and A[i], B[i], and d|[i] are matrices given by

_ [1—a; —a, a,
A =" T i + byw#)
. 0
Blil =140,
dlil = a1 Toli]
W= (1, [0 W L] + b, WD) + (axGLE) + apG2[i] + asG2 i) + QuueliTusne D))

The optimization problem is an integer linear program (ILP) (Schrijver 1998) that may be
solved using, for example, the CVX framework (i.e., a MATLAB-based modeling system
for convex optimization (Grant and Boyd 2014; MathWorks 2020) along with a GUROBI
solver (Gurobi Optimization 2021)). A solution to the optimization problem in Equations
(5.1)—(5.5) is a sequence of optimal HVAC control signals u;[i] fori € #;, =

{k, k+1,..,k + N, — 1} that minimizes energy costs while maintaining an acceptable
level of temperature-based thermal comfort over a prediction horizon. As the prediction
horizon keeps being shifted forward, a new sequence of control signals, namely AC
on/off command, is obtained at each time k. However, only the first element u;[k] of this
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sequence is applied, and the rest of the elements ug[k + 1], ug[k + 2], ..., ug[k + N, —
1] are disregarded.

5.2 MPC-Based Optimization Agent Validation in Norman Test House

Voltron-based application code has been developed to test the MPC-based optimization
agent in the Norman Test House. This lab test was conducted between October and
November 2021, when the cooling season was almost finished. Therefore, the purpose
of the lab test was to verify that the agent was implementable before we deployed the
agent in 10 participating homes for field testing in Summer 2022. It was not intended for
energy performance evaluation because it was not a typical HVYAC season.

For testing purposes, we created different pricing signals throughout the day to see if
the MPC-based optimization agent was able to run AC heavily in lower priced hours and
reduce/eliminate AC operations during higher priced hours for cost savings. Figure 5.2
presents the initial test results. The test started the evening of October 10, 2021. As can
be seen from the blue shaded areas, we intentionally made the price higher, at 42 cents
per kWh from 11:30 p.m. to 4:30 a.m., and set it to 24 cents during other hours.
Meanwhile, the indoor air temperature band was set between 62°F and 72°F to allow
temperature to float within 10°F for testing purposes. The outdoor unit power
measurement (the brown line in Figure 5.2) represents the AC on/off operation. When
the outdoor power was close to 2 kW, it indicated that the AC was on. When the power
measurement was close to zero, it indicated that the AC was off. Although the AC
indeed did not turn on for most of time during higher priced hours, it was not obvious
that the reduction/elimination of the AC operation in the higher priced hours was due to
the MPC agent. Because the outdoor air temperature experienced a sudden decrease
the night of October 10, 2021, the AC did not need to turn on in the lower priced hours
or the following day, October 11, 2021. Therefore, the test was allowed to continue.
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Figure 5.2. Initial MPC agent test results on October 11, 2021
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Figure 5.3 shows the MPC agent test results on November 11, 2021. In Figure 5.3, the
weather continued to get cold, with temperature ranging between 45°F and 65°F. To

force a cooling operation so that the MPC agent would operate, the indoor temperature

band was reduced to between 58°F and 66°F. The higher priced hours were also
adjusted from 4 p.m. to 10 p.m. With these changes, AC operation in the higher priced
hours was completely eliminated. In addition, the AC ran intensively prior to the higher
priced hours to cool the indoor air down to approximately 58°F, which was the lower
bound of the temperature band, so that it could take advantage of the lower electricity
price. The MPC agent operation is therefore proven to be effective by integrating the
electricity price signal into its optimal decision-making.
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Figure 5.3. Additional MPC agent test results on November 11, 2021
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6 Development and Verification of FDD Algorithm

6.1 Faults Considered

Figure 6.1 shows the various typical faults in residential HVAC systems and the extent
to which they have been studied as expressed in the form of percentages. The
information is obtained by analyzing 35 relevant publications we reviewed (Ejenakevwe
and Song 2021). Incorrect refrigerant charge levels (RCL) and incorrect airflow rate are
the most researched, as noted in related work (Chintala, Winkler, and Jin 2021; Cetin
and Kallus 2016). Refrigerant leakage, which is the third most researched topic, can be
classified with low RCL. Duct leakage is included as a common fault (Rogers, Guo, and
Rasmussen 2019; Chintala, Winkler, and Jin 2021), but it can also be considered under
incorrect airflow since it leads to low airflow. Also, from the chart, sensor fault is the
least studied for residential HVAC systems. This is because residential HVAC systems
typically have far fewer sensors compared to commercial HVAC systems. Thus,
incorrect RCL and AFR are the two most dominant residential AC faults, and both
contribute to changes in evaporator performance, which can be monitored by enthalpy
changes between return air (RA) and supply air (SA). However, when both faults occur
at the same time, enthalpy changes between RA and SA would not be an effective
indicator for diagnosing and differentiating the two faults. In this case, we propose to
use an indoor power meter to diagnose the AFR fault from indoor fan power
measurements. Therefore, we have developed two different FDD methods for situations
with and without power meter measurements.

HVAC sizing BN
NC gases
Sensorfault H
Duct leakage I
Ref. leakage
Incorrect AFR |
Incorrect RCL |

0 20 40 bl 40 100

PERCENTAGE OF STUDIES

Figure 6.1. Level of studies on typical faults in residential HYAC systems

6.2 FDD Methodology

Figure 6.2 gives an illustration of the proposed Internet of Things (loT)-based AFDD
approach. Based on the aim of the proposed AFDD, which is to check for both
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installation and degradation faults, the FDD agent is implemented and investigated in
two phases. In Phase 1, testing is performed to identify possible installation
issues/faults, while Phase 2 is used to check for faults resulting from system
degradation. Because Phase 2 checks for degradation, it commences only after the
completion of Phase 1. Also, during Phase 1, the data collected and used for installation
fault check are then used as baseline data for Phase 2. Before testing, the AFDD
algorithm was developed.

Real Time Evaporator
Performance Monitoring

Ouldogfr\,\_\
temperature

-

Return air
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Figure 6.2. Schematic representation of proposed AFDD

6.3 Algorithm Development
6.3.1 Overview of Proposed FDD Methods

As mentioned, we have developed two different methods for FDD purposes with and
without power meter measurements.

Method 1: For units without smart meter installation, enthalpy changes between return
air (RA) and supply air (SA) can be used to diagnose the RCL and AFR faults. When an
AC unit experiences the RCL fault, in general it is due to charge leaks. Therefore,
dominant RCL faults are undercharged. With undercharged AC units, the fault can be
detected by enthalpy changes between RA and SA, which are smaller than their normal
values according to the theoretical vapor compression cycle. In this case, their normal
values can be determined from manufacturer data (Phase 1) or collected baseline data
at the beginning of the FDD installation (Phase 2). On the other hand, RCL faults can
also be detected and differentiated by enthalpy changes between RA and SA because
they show larger values than normal operation for the AC units with a constant-speed
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indoor fan. This study focuses on constant-speed, belt-driven fans as they are one of
the most popular types of AC units used in U.S. homes. In this method, enthalpy
changes between RA and SA can be measured/calculated using smart thermostat data
and additional smart node sensors along with some reasonable engineering
assumptions. A detailed discussion of this method is provided in Section 6.3.2.

Method 2: For units with smart meter installation along with smart thermostats, power
measurements are particularly useful when both RCL and AFR faults occur at the same
time. In this method, indoor fan power measurements are used to diagnose the AFR
fault because for residential AC configuration (no moving dampers to cause resistance
changes), fan power can directly reflect the flow rate variations caused by flow rate
related faults for the most prevalent typical residential AC units driven by a conventional
induction motor, which is the scope of this study. Then, enthalpy changes between RA
and SA are used to diagnose the RCL fault. By evaluating the AFR fault first using fan
power measurements, enthalpy changes between RA and SA can be used to diagnose
overcharge, undercharge, and occurrent faults with AFR.

6.3.2 Proposed FDD Method 1

The approach illustrated in Figure 6.2 uses the enthalpy change across the evaporator
coil as a fault detection index. The measured enthalpy change (Ai) is compared with the
predicted enthalpy change (Af), as shown in Equation (6.1):

Spi = AT — A (6.1)

With this approach, if §,; exceeds a set deviation threshold, &,,, a fault is suspected.
The predicted At is calculated using a regression model with two measured inputs,
namely the coil entering wet-bulb temperature and the outdoor air-dry bulb temperature,
which have the most impact on AC cooling output. The regression model is given by

_at a2 Towp + a3Top + a4Toap + asTaqp + asTewn Toan
60p5a Qsa

Al

(6.2)

where Al is the predicted enthalpy difference, in Btu/lbm (J/kg), across the evaporator,
ai, a,, as, s, as, e, are the regression coefficients, T,,,;, is the entering wet-bulb
temperature obtained from space air temperature/relative humidity measurements at
smart thermostats, T,,;, is the outdoor dry-bulb temperature obtained from an online
weather station, and p,, and Q, are the density and flow rate of the supply air,
respectively.

Two phases are considered for the proposed AFDD algorithm, namely: Phase 1, which
involves an installation fault check, and Phase 2, which involves a degradation fault
check. For Phase 1, the model is trained using manufacturer data, such as rated data
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collected from the expanded performance table (EPT) of the HVAC system provided by
the manufacturer. The trained model is then used to predict the enthalpy change across
the evaporator in daily operation. In the prediction, the indoor wet-bulb temperature is
obtained from space air temperature/relative humidity measurements at smart
thermostats, while the outdoor dry-bulb temperature and relative humidity are obtained
from an online weather station. For Phase 2, since the Q,, data, which is required in
Equation (6.2), is not available due to cost implications, the equation is slightly modified
to give

AL = by + by Ty + b3Thyy + baToap + bsTagn + bTewn Toan (6.3)

and trained using data collected during Phase 1.

Next, the measured enthalpy change, Ai, across the evaporator, with which the
performance of the evaporator performance is then monitored in real time, is obtained
by taking the difference between the return air enthalpy and supply air enthalpy, i.e.,

Al = lpq = isq (6.4)

Equations (6.2)—(6.4) are for wet cooling. For dry cooling, T,,,;, in Equations (6.2) and
(6.3) is replaced with T,y (i.e., the entering dry-bulb temperature) while the measured
enthalpy change is calculated from the following equation:

Ai = Cpsa(Tra — Tsa) (6.5)

which is the sensible enthalpy change across the coil, where T, is the supply air
temperature (SAT), and ¢,__ is the specific capacity of the supply air, assumed to be
constant.

The smart thermostat provides space air temperature and humidity measurements,
which can be used to obtain the enthalpy of the air entering the evaporator, simply
called the return air (RA) enthalpy, i,,. In addition to the smart thermostat, a smart node
sensor that is linked to the thermostat is strategically mounted on a diffuser to aid easy
access for SAT measurements. The SAT is measured at the diffuser rather than at the
exit of the evaporator due to the technical difficulty of installing a sensor right after the
evaporator. However, the node sensor used to measure the SAT can only measure
temperature. To obtain the SA enthalpy, i,,, a second property is needed. This second
property can be estimated from the consideration that for wet cooling, the SAT after the
coil is almost saturated, thus suggesting a relative humidity, ¢,,, of about 90%—95%.
Then, for dry cooling, the SA dew point (SADP) would be the same as the RA dew
point, and RA dew point can be computed from T,, and ¢,,. But, as the SAT is
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measured at the diffuser, ¢., can significantly vary between the coil exit and the
diffuser, thus making it more challenging to estimate ¢,, at the diffuser. So, instead of
¢sq, an estimated SADP after the coil is used because the SADP at the diffuser is the
same as that at the evaporator exit. To estimate SADP after the coil, the following
assumptions are required. The validation of these assumptions is presented in Section
6.5. Note that there is only a slight difference between the SAT at the diffuser and the
SAT after the coil. This is ensured by using the diffuser closest to the indoor unit.

For residential units, the SADP is assumed to be around 55+2°F. This assumption is
adopted based on the consideration that to maintain the indoor humidity in commercial
HVAC systems, most HYAC manufacturers target an SADP of 55> 55°F. This can be
extended to residential HVAC systems, especially for SAT > 55°F. For SAT < 55°¢,, =
100%. Thus, SADP ~ SAT. It follows that the SADP is estimated using:

55F, if SAT>55F

SADP :{SAT, if SAT < 55 F

(6.6)

with a +2°F uncertainty. Other assumptions made in the proposed AFDD algorithm are:

First, the thermostat data accurately represents the RA condition. This relies on the
assumption that the thermostat is well located in the space, close enough to the return
air ducts. Second, the EPT data used for training the model in Phase 1 is accurate and
representative of the expected behavior of the AC based on specifications. Third,
infiltration is the main source of outdoor air intake in residential buildings, and this
contributes significantly to the return air humidity. This assumption is based on the need
to classify the evaporator coil condition as either wet or dry. The outdoor air dew point is
thus used to make this classification.

Next, to forestall false fault alarms due to some disturbances in the system, the
probability of a fault based on §,; in Equation (6.1) exceeding J,, is subject to further
scrutiny using the CUSUM (cumulative sum) control strategy used in related work
(Grigg, Farewell, and Spiegelhalter 2003; Jain et al. 2019). The method involves taking
cumulative sums, t, of times when &,; > 6,,. If T continues to increase and eventually
reaches a set duration threshold, T, then and only then will a fault alert be sent. This t is
a sum of consecutive times and is intended to avoid having a cumulative sum from
disturbances over an extended period of time eventually lead to a false fault alarm.
Thus, if for a given time step, 8,; > 8,,, then t increases by a time step. But if for the
next time step, 8,; < 8,,, then T decreases by a time step. The flow chart in Figure 6.3
illustrates how the AFDD process works, in which the grayed flow path is inactive for
this method. So, whenever 6,; < 8,,, the system is considered to be fault-free. But, even
if 85; > 84, but 7 < T, the system is still considered to be fault-free, as it is assumed that
such deviations could possibly be due to some exogenous uncertainties/disturbances,
rather than a true fault.
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6.3.3 Proposed FDD Method 2

Figure 6.3 illustrates the procedure for this method. The method is similar to Method 1,
but with the incorporation of power measurements from a smart power meter. The
power measurements are primarily used to diagnose RCL faults from AFR faults.
Hence, two AFDD indices are employed for this method, i.e., enthalpy change and
indoor fan power. The algorithm for enthalpy change is the same as that for Method 1.
However, for indoor fan power, a baseline is first established using the manufacturer’s
specified indoor fan/blower power for the case of installation check (Phase I). An
average of the indoor fan power consumption from data collected during Phase 1 is
then obtained for Phase 2. The average indoor power is used because for HVACs with
constant-speed fans (found in most residential units and within the proposed scope for
this project), the fan power consumption remains constant and depends almost entirely
on the indoor airflow rate through the system. However, the indoor fan power
measurement experiences oscillations caused by signal noises and/or motor and fan
dynamics. To address any possible uncertainty introduced into the AFDD algorithm due
to such disturbances, a suitable threshold has been chosen and used in the algorithm.
Details of this are provided in Section 6.4. Hence, the averaged indoor power from the
normal operation dataset is believed to be appropriate for constant-speed HVAC
systems. For the systems installed with ECM motors, the proposed method would be
ineffective for AFDD; as a result, a machine learning technique can be employed to help
predict the indoor fan power consumption. This study focuses on constant-speed, belt-
driven fans, as they are one of the most popular types of AC units used in U.S. homes.
Therefore, the measured indoor power (p) is compared with the predicted fan power (p)
and the deviation is calculated using a percentage as follows:

Sip = ? x 100 (6.7)

With a baseline of the expected indoor power consumption obtained from the product
manual or Phase 1 data, subsequent power measurements are compared to this
baseline and deviations above a set fault threshold are identified as faulty behavior,
specifically related to incorrect indoor airflow. In the case where such indoor power
deviations are below the set threshold, the enthalpy change across the evaporator is
further used to check for the presence of incorrect charge fault following the process
described for Method 1. Again, the CUSUM algorithm is used to forestall possible false
alarms by monitoring for faulty behavior and triggering a fault alarm whenever the set
duration threshold is exceeded.
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Figure 6.3. AFDD algorithm for loT-based method

6.4 Determination of Fault Threshold Through Uncertainty Propagation
Analysis
The selected feature, enthalpy change, cannot be measured directly and thus must be
calculated from independent variables such as temperature and humidity or dew point,
etc., using suitable packages such as CoolProp (Bell et al. 2013), an open-source
database of fluid and humid air properties. However, because these independent
variables are measured using sensors with built-in uncertainties, an uncertainty
propagation analysis needs to be conducted to better understand the uncertainty in the

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 70



Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

enthalpy difference. This will help ensure that deviations caused by such uncertainty are
not misjudged as a fault. The uncertainty propagation analysis is carried out based on
the root sum square (RSS) method:

Y ;) 4 2 )4 2
5Y = <ax15X1) +<ax25X2> o (ax 5X) (6.8)

where §Y is the uncertainty in the dependent variable Y and §X,, is the uncertainty in the
independent variable X,,.

For wet coil operation, where Ai = i,, — is, according to Equation (6.4), i, = f(Trq, $ra)
and ig, = f(Tsq, Tap)- Thus, Ai = f(Trq, $ra, Tsa Tap ), Which can be computed from the
physics-based model

ki +k ki + kT,
Ai = 0.24(Tyq — Tsg) + (ks . Tra)bra —~ LA (6.9)
ksTro% . _ & ksTap — ¢
exp <k4 + k5 rak — Tij) exp (k4_ + kSpoK - %)

where k; — k¢ are constants, while T,.,x and T, are the RA and dew-point

temperatures in degrees Kelvin. The uncertainty for Ai in wet coil operation, based on
Equation (6.8), then becomes:

0= [(907,) (W, (M0, + (W, ) 10
ra ra sa P

where the uncertainties for T, ¢,,, and Ty, are provided by the manufacturer, while that
for Ty, is assumed. Their values are shown in Table 6.1.

For dry coil operation, Ai = ¢, (T4 — Ts,) according to Equation (6.5). Thus, Ai =
f (Tra, Tsq) since ¢, = 0.244 Btu/lbma is a constant. The uncertainty for Ai for dry coil
operation, based on Equation (6.8), can therefore be written as:

2
5(A0) = \/(E;(T‘) 6Tm> +(‘;(Tl) 5Tsa> (6.11)

The results for the uncertainties computed for both wet coil and dry coil operation are
shown in Table 6.1.
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Table 6.16. Uncertainties in Sensor Measurements

Wet Dry
Tra,°F(°C) ¢, (%) Tsa,°F(°C) Tap,°F(°C) Ai (Btu Ai (Btu
/lbm) /lbm)

+1.0(0.6) +3 +1.0(0.6)  +2.0(1.2) +1.2 +0.34

Next, to ensure that there is no false fault alarm resulting from uncertainties, a £1.2
Btu/lbm deviation threshold, &,,, is used for wet coil operation and a +0.34 Btu/lbm
deviation is used for dry coil operation. Also, a duration threshold, 7, of 24 hours is
chosen. The choice of 24 hours as the duration threshold is made based on the
consideration that, presumably, if due to severe fault conditions, the AC runs for an
entire day during a hot summer, such a fault can be detected by the end of the day. If a
homeowner’s preference and the weather conditions are such that the AC does not run
throughout the day, early fault detection is still possible. For instance, if AC runs for only
4 hours per day on average, a fault can be detected in 67 days’ time.

For the fan power measurement, the smart meter used has an accuracy of about +2%
(Emporia 2021). Factoring in the uncertainties discussed in Section 6.3.3, a threshold of
10% is thus used in Phase 1, while a 5% threshold is used in Phase 2 for the AFDD
with this method. A bigger threshold is used for Phase 1 because of the notable
uncertainties that are present in the measured data, which are most likely due to a
different installation configuration in an actual home, rather than the one generating the
EPT data in a manufacturer’s test bed. However, for Phase 2, since operation data from
Phase 1 is used as a baseline, uncertainties generated by a different installation
configuration would be consistent in both the training and testing datasets, so a smaller
threshold is acceptable. More so, a larger threshold would lead to loss of AFDD
potential to detect less severe degradation faults.

6.5 Validation of the Proposed FDD Algorithm in the Norman Test House

The Norman Test House has a 3.5-ton heat pump. For proof-of-concept purposes, a set
of portable data loggers were installed and used to collect return and supply air
temperature and humidity inside the test AC unit, as shown in Figure 6.4.
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(b)

(d)

Figure 6.4. Norman Test House and data acquisition devices: (a) outdoor unit, (b) smart thermostat, (c)
indoor unit, (d) RA hobo logger, and (e) SA hobo logger.

First, the model described in Equation (6.2) was trained using EPT data from the AC
manufacturer. The EPT data for the Norman Test House is shown in Table 6.2. The
model parameters are obtained using the least-squares method with a maximum
absolute error (MAE) of 0.002 and a mean-square error (MSE) of 6.318e-06, shown in

Table 6.3.
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Table 6.17. Data From EPT of Test System

Model NO 14HPX-042-230-17 - CBX26UH-042
Entering wet  Total air Outdoor air temperature entering outdoor coil

bulb volume 65 °F 75 °F 85 °F 95 °F 105°F 115°F
temperature Total cooling capacity

cfm kBtuh

59 °F 1450 47 45 43 41 39 36.6
63 °F 1450 a7 45 43 41 39 36.6
67 °F 1450 50 48 46 43.5 41 38.5
71°F 1450 52.5 50.5 48.5 46 435 41

Table 6.18. Parameters of Cooling Capacity Model

Parameter a, a, as a, as ag

Value 4.0015350 -0.0972891 0.0008632 0.0011720 -0.0000128  -0.0000568

6.5.1 Validation of the Trained Model Using Normal Operation Data

Data under normal operating conditions were collected from October 7-12, 2021, for
validating the model. For the training, validation, and testing of the AFDD algorithm, only
times when the AC was on were considered. Also, because steady-state operation is
important in a general FDD process (Rogers, Guo, and Rasmussen 2019), the first 4 to
5 minutes and the last 2 minutes of each on-cycle were filtered out. Only about 5
minutes of AC start data for each cycle were removed to ensure that sufficient data
were collected for this proof-of-concept phase. However, for implementation and real-
life application, it is recommended to remove data from the first 10 minutes, which is the
typical time it takes most residential units to get to steady state.

First, the SA enthalpy calculation method was validated. For verification purposes, the
actual SA dew point was measured using the data logger in the test. The estimated SA
dew point was calculated using Equation (6.6). A comparison of the measured SA dew
point with the estimated SA dew point is shown in Figure 6.5 along with the measured
RA dew point temperature. The data covers the period of normal operation as well as
the period when a fault is introduced. The testing data show a typical wet coil operation,
whereby the measured RA dew point was always higher than the measured SA dew

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 74



Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

point, and the estimated SA dew point matched the measured SA dew point within the
+2°F error. This result thus validates the proposed method for obtaining the SA enthalpy
from just temperature measurement.
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Figure 6.5. Comparison of measured and estimated SA dew points
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Figure 6.6. Validation of model trained with rated data

Figure 6.6 shows the validation results. The validation was done mainly with just the
return air temperature, return air relative humidity, and SAT data collected with the hobo
loggers. Equation (6.6) is used to calculate the SADP, which is then combined with the
SAT to obtain the SA enthalpy for the calculation of Ai,,.,s5. The quantity Aiyoqepr is

the enthalpy change predicted using the model trained with EPT data. The deviation §,;
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is the difference between Aiy,..qppr @and Aip.qs5 (Equation (6.1)). From the figure, one
can see that for the most part there is a close match between the actual enthalpy
difference and the predicted enthalpy difference, and the deviation stays within the
threshold band except for a few outliers. Using the CUSUM control strategy, the
proposed AFDD tool can safely infer that such outliers are not necessarily because of a
fault but most likely due to disturbances/noises in the system. Meanwhile, the reason for
the slightly significant disparity (which is, however, still below the threshold for the most
part) is due mainly to the estimates used, especially for SADP. A comparison of Ai,,.4s5
with Ai,,.., which is computed using actual SADP from the hobo logger shows a closer
match with Ai,,.qzpr- A deviation threshold, &,, = £1.2 Btu/lbm (2.79 kJ/kg), is chosen
based on the uncertainty propagation analysis. Also, to check for model uncertainty, the
three-sigma rule is applied. However, to eliminate other factors such as the SADP
estimate contributing to the calculated model uncertainty, Ai,,., and Ai,,cqgpr are used.
With the results in Figure 6.6, for 68% of the deviation, §,; is between 0.07 Btu/lom (0.2
kJ/kg) and 0.32 Btu/lbm (0.7 kJ/kg); for 95%, 6,; < 0.45 Btu/lbm (1.0 kJd/kg); and for
99%, 6,; < 0.58 Btu/lbm (1.3 kJ/kg). So, for a 95% confidence level, a model uncertainty
of 0.45 Btu/lbm is obtained, which is well below the value of +1.2 Btu/lbm from the
uncertainty propagation analysis. Therefore, +1.2 Btu/lbm is a safe threshold to ensure
that the algorithm produces no false fault alarms.

6.5.2 Validation of the Effectiveness of Fault Detection Using Operational Data
With an Introduced Fault
To test the effectiveness of the algorithm in fault detection, an AFR fault is considered
as an initial case study. The AFR fault is considered because it is one of the dominant
faults in residential HVAC systems. Also, it is relatively easy to create both technically
and cost-wise. The AFR is introduced purposely by partially blocking the return air duct.
Again, for proof-of-concept purposes, and from flow rate reduction simulated in previous
studies, a 30% drop in the airflow is chosen for the tests. The tests were conducted
from October 20—-22, 2021. The results shown in Figure 6.7 indicate a clear disparity
between the actual enthalpy difference and the predicted no-fault enthalpy difference,
leading to significant deviations, which mostly fall outside the threshold band (brown
shaded area). Furthermore, in line with the physics of heat transfer, where reducing
airflow would increase 4i, the measured enthalpy difference is seen to be larger than
the predicted enthalpy difference, i.e., an enthalpy change rises (so that the deviations
are negative). As will be seen later for low charge fault, the reverse is the case. This
way, two common faults in residential HVAC systems can be successfully detected and
diagnosed. As this is primarily for proof of concept, the AC only ran for about 8 hours
during the 2 days. So, the CUSUM algorithm could not be implemented for this test
considering that the duration threshold is 24 hours. However, the large deviations
demonstrate the potential of the algorithm to detect faults. In the field tests, the CUSUM
algorithm was implemented. Meanwhile, Figure 6.8 reveals about a 5%—15% increase
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in energy consumption (kWh), with an average increase of about 9% due to the 30%
low indoor airflow fault, thus showing the energy and cost savings potential of the
proposed AFDD algorithm once the 30% AFR fault is detected and corrected.
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Figure 6.8. Energy consumption increase due to low indoor airflow fault

Figure 6.9 shows the results for the same AFR fault check conducted using indoor
power consumption. The results show a 12%-16% drop in the indoor power compared
with the predicted indoor power using measured data (blue markers in Figure 6.9). As
seen from the plot, the deviation stays clearly outside the threshold band for this case.
This suggests that the indoor power is more sensitive than Ai for the detection of low
indoor airflow faults. This is also because the indoor power requires none of the
assumptions introduced for the Ai method, except that it is only limited to detection of
incorrect airflow faults and by a higher cost than with Ai. Also, as noted in Section 6.3.3,
other factors that could potentially affect the indoor power consumption turn out to have
minimal impact, hence the slight variation observed in the measured indoor power
consumption, IP.
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Figure 6.9. Detection of low indoor airflow using indoor fan power

6.6 Validation of the Effectiveness of Fault Detection Using the Miami
House
For further validation of the AFDD algorithm, two other test homes were used, one of
which is in a wet climate (humid) region while the other is in a dry climate region. Such
diversity is considered to further investigate the robustness of the proposed AFDD
algorithm and to discover possible limitations in its applications. This section is focused
on the tests conducted in the Miami house experiencing a humid climate. A one- to
three-year-old 3-ton AC unit, installed in a single-family home in Miami, Florida, was
used in this test. Again, for proof-of-concept purposes, a set of portable data loggers
was installed to collect return and supply air temperatures and humidity inside the test
AC unit. The weather data are obtained from a local weather station. The design
parameters of the test AC unit in Miami are shown in Table 6.4.

Table 6.19. EPT Data for Miami Test House

Model NO 4TWA3036A3/4 + 4TEC3F36A1
Entering wet Total air Outdoor air temperature entering outdoor coil
bulb volume 65 °F 75 °F 85 °F 95 °F 105 °F 115 °F
temperature Total cooling capacity
cfm kBtuh

59 °F 1200 37.5 35 325 30.8 29.9 27.3
63 °F 1200 38.9 36.4 33.9 32.1 31.2 28.5
67 °F 1200 41.6 39.1 36.6 34.6 33.6 30.7
71 °F 1200 44.5 42 39.5 37.4 36.3 33.1

Applying Method 1 to the Miami house, the model in Equation (6.2) was first trained with
the EPT data summarized in Table 6.4. The trained model was then used to predict the
enthalpy change and compare it with the actual enthalpy change during normal
operation in a bid to validate the model. For this house, the AC was only run for a short
period of time per day. Hence, to aid visualization of the results, the plots are given in

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 78

12.00
16.00
-20.00
-24.00

Deviation, %



Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

hours rather than days. However, the data for this house were collected from
September 1-27, 2021. Two AFR faults were purposely created, one with a 12% flow
rate reduction and the other with a 21% flow rate reduction. To alleviate the impact on
the test unit, the AFR faults were created by adjusting the fan speed setting instead of
blocking filter area since a multispeed fan is installed in the test unit. Due to the
limitations of the system, we could not reduce the flow rate beyond 21%. Among the
testing days, the 21% flow rate reduction fault was generated from September 1-
September 5, 2021, followed by normal flow rate operation from September 5-
September 12, followed by the 12% flow rate reduction fault from September 15—
September 27, 2021.

Figure 6.10 shows the model validation results with the EPT data for Phase 1. The
results compare the enthalpy change between the one predicted using the EPT data
and the one measured under normal operation. The results reveal that the difference
between the predicted and actual enthalpy change across the evaporator is below 0.5
Btu/lbm and stays mostly within the threshold band. There are, however, a few
exceptions where it goes below the lower bound, mainly because of the impact of
transient data. The presence of transient data for this dataset is likely due to the fact
that only the first 2 minutes of the start of each AC run cycle are filtered out, unlike the 4
minutes adopted for the Norman test house. The first 2 minutes of data were
disregarded due to the short AC run times for this house.

Ai_meas + Ai_predEPT o Ai_meas55 + deviation deviation threshold

12 - 8

deviation, Btu/lbm

Enthalpy change, Btu/lbm

Time (hrs)

Figure 6.10. Validation of model trained with rated data for the Miami house

Next, for Phase 2, the model in Equation (6.2) was retrained with the normal operation
data from September 5-September 12, 2021. For this Phase 2, to quantify the impact of
the assumptions we made on SADP, we verify the algorithm through two steps, one
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using direct SADP measurements and the other using estimated SADP obtained based
on the engineering assumptions.

Step One — Using measured SADP data to implement the AFDD analysis

The retrained model was used to predict the enthalpy change for the different cases
(i.e., normal, 12% airflow reduction and 21% airflow reduction), which was then
compared with the measured enthalpy change. Because the low flow rate fault
generates a larger enthalpy change than normal operation, the expected deviation
defined by Equation (6.1) should be below the lower bound of the threshold band. The
results in Figure 6.11 reveal that the deviations show a distinctive pattern with the two
faults (shaded area) and with normal operation. With the 21% flow rate reduction fault,
most of the deviations are below the threshold lower bound (-1.2 Btu/lbm), i.e., 1,111
sample points among 1,363 points, equivalent to 81.5%. With the 12% flow rate
reduction fault, although it is obvious that the deviations are between -0.4 Btu/lbm and -
0.8 btu/lbm, much higher than normal operation, none of the deviations exceed the
threshold -1.2 Btu/lom. Therefore, the 12% flow rate reduction fault cannot be detected
by the threshold of £1.2 Btu/lbm. However, this result is based on using the actual
SADP measurements without needing the assumptions. To enhance the sensitivity of
the AFDD method, if the SADP can be directly measured, it is reasonable to reduce the
threshold so that the AFDD algorithm can detect faults with less severity.
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Figure 6.11. Test for the Miami house based on Method | and using actual SADP measurements
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Step Two - Using estimated SADP data to implement the FDD analysis

Although the AFDD algorithm is shown to be effective when actual measured SADP is
used, in field implementation the SADP is not available if only a smart thermostat and a
node sensor are used. Therefore, the assumptions stated in Section 6.3.2 are adopted
to estimate the SADP for enthalpy calculation of the supply air temperature. The
enthalpy change model was retrained again using estimated SADP and then used to
predict the enthalpy change. Compared with the results in Figure 6.11, the results in
Figure 6.12 where the estimated SADP is used reveal that the deviations show more
oscillations, although the different patterns for faulty and normal operations can still be
observed. To be more specific, with the 21% flow rate reduction fault, there are 709
sample points exceeding the threshold of -1.2 Btu/lbm (52.0% over 1,363 total sample
points). Compared with the results using actual measured SADP at 81.5%, the
estimated SADP using the assumptions made the AFDD algorithm less sensitive to the
fault. Consequently, it will take longer to detect the fault with the CUSUM algorithm, if
the fault can be detected at all.
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Figure 6.12. Test for the Miami House based on Method 1 and using estimated SADP

Applying Method 2 to the Miami House, Figure 6.13 shows a 16%—-23% drop in the
indoor power, with an average of 20% indoor fan power reduction introduced by the
12% airflow reduction fault. This shows the sensitivity of the indoor power usage to this
specific fault. Again, due to the short run time of the AC during the fault tests, the
CUSUM mechanism is not demonstrated. For the 21% indoor airflow reduction, a
similar observation is made, with the drop in indoor power consumption ranging from
35% to 42%, at an average of 39%, shown in Figure 6.14. The fan power deviations in
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the Miami house provided much better sensitivity compared with the fan power test

results in the Norman house. This is because of the different ways to create the flow

rate faults: blocking filter area in the Norman house and adjusting fan speed in the

Miami house. In the Miami house, higher fan power reduction (close to cubic
relationship to the flow rate) is observed, which complies with the fan laws.
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Figure 6.13. 12% indoor airflow reduction detected using Method 2 for the Miami house
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Figure 6.14. 21% indoor airflow reduction detected with Method 2 for the Miami house

6.7 Validation of the Effectiveness of Fault Detection Using PNNL House
B
For a dry climate, a 2.5-ton AC unit installed in PNNL House B is used to test the AFDD
algorithm. Phase 1 in this test is not included because the EPT data are collected when
the AC unit operates under wet conditions. Therefore, Phase 1 is not applicable to
PNNL House B. For Phase 2, both low flow rate fault and low charge fault were
generated individually and simultaneously to test the AFDD algorithm. The test period
was from September 4 to October 12, 2021. It started with creating a low airflow rate
fault by blocking one filter area from September 4 to September 16, 2021. Because the
system does not have a flow station, flow rate measurements were conducted three
times using a handheld device during the test to ensure a proper amount of flow
reduction. Different flow rates were obtained, at 33.7% reduction measured on
September 4, 2021; at 29.4% reduction measured on September 7, 2021; and at 23.2%
reduction measured on September 7, 2021. The different measurements might be
caused by measurement errors and flow dynamic changes generated by other possible
interruptions at PNNL because multiple teams were using the lab. From September 16
to September 18, 2021, a 30% flow rate reduction and a 30% undercharge of freon
were both created to collect data under two simultaneous faults. However, the severity
of the two faults caused the system to freeze, and those data were discarded. From
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September 29 to October 5, 2021, after the unit recovered from being frozen, a single
30% undercharge fault was created for data collection. The test system was eventually
set back to normal from October 5 to October 19, 2021, to collect normal operation
data.

The enthalpy change model was trained using the normal operation data. Shown in
Figure 6.15, the measured enthalpy change matches well with the predicted enthalpy
change, and the average of the deviations between the two is 0.15 Btu/lbm. As shown
in Figure 6.15, the resulting deviation is within the calculated threshold +0.34 Btu/lbm
most of the time.

% i pred o Ai_meas deviation threshold 4 deviation
6 35

TR A

F 14

(%2}

- 07

R EEEE T .

- 0.7

F-14

Enthalpy change, Btu/lbm
w
Deviation, Btu/lbm

P21

F-28

0 L.3s
10/3/2021 0:00/5/2021 0:00/7/2021 0:00/9/2021 0i@Y11/2021 A:0013/2021 A:00H15/2021 A:0017/2021 A:0019/2021 A:0R1/2021 0:00
Date and time

Figure 6.15. Comparison between estimated and measured enthalpy changes for PNNL House B (dry
climate)

The data collected for the low flow rate fault are subsequently analyzed. As mentioned,
at the beginning of the test the flow rate was reduced by 33.7%, but the airflow
reduction continued to decrease as the test went on, which was confirmed by the
handheld device. Because there is no permanently installed flow station, the continuous
variation of the flow rate reduction is not recorded. However, from Figure 6.16, it is
obvious that the measured enthalpy change is always higher than predicted enthalpy
change except for a few spikes at the beginning of the test, i.e., the deviations (red
triangles) are lower than the negative bound of the threshold, which is consistent with
physical heat transfer laws. However, the deviation drastically reduced in the later part
of the test. It might be caused by flow rate reduction varied throughout the test duration.
This indicates that the AFDD algorithm is sensitive to the severity of the fault.
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Figure 6.16. Test for airflow rate reduction fault in PNNL House B (dry climate)

Next, the data collected for the 30% undercharge fault are analyzed. As shown in Figure
6.17, the measured enthalpy change is consistently lower than the predicted enthalpy
change, i.e., the deviations (red triangles) are well beyond the positive bound of the
threshold band, which is consistent with the physics of the vapor compression cycle. All
the deviation points exceeded 1 Btu/lbm, which is well above the threshold of 0.45
Btu/lbm. Therefore, the 30% undercharge fault is easily detected using enthalpy change
across the evaporator for dry climate. The AFDD algorithm is more effective/sensitive to
detect faults under a dry climate because there is no need for the SADP calculation,
which generates errors due to using the assumptions.
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Figure 6.17. Test for 30% undercharge fault in PNNL House B (dry climate)

Finally, Method 2, which uses fan power measurements to detect an airflow fault, is
validated using normal operation data as well as data containing a flow rate fault. In
Figure 6.18, the blue circles show the measured fan power under normal operation
conditions. It is very consistent with the estimated fan power except for a few transient
points when the unit started and stopped. Therefore, the deviation percentage (red
triangles) is close to zero and stays within the threshold of +3%. The test results for
using fan power to detect low airflow faults are shown in Figure 6.19. It is observed that
fan power reduction for the 30% flow rate reduction is not consistent for a period of time.
The inconsistency might be caused by the fact that the fan in the test system is driven
by a multispeed motor. When the flow rate is reduced by blocking the filters, the motor
might have the capability to adjust its speed to accommodate for the high resistance in
the system created by the filter blockage. However, the project team is not able to verify
this suspicion due to the lack of access to the test unit. Nevertheless, it is confirmed that
the test unit is driven by a four-speed fan through checking the manufacturer
specifications.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 86




Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

700

Indoor fan power, W
N w D U D
o o o o o
o o o o o

=
o
o

0

o|P X|P est &lP _drop,%

= deviationlP_threshold,%

o B 8 2 0 @ R 8 9 & ®
o @ o (€0))
o o O (o) OO‘ o)
¢ 20 4 0 0 , b

-1

15

10

-15

10/3/2021 0:00 10/6/2021 0:00 10/9/2021 0:00 10/12/2021 0:0010/15/2021 0:0010/18/2021 0:0010/21/2021 0:00

Date and time

Figure 6.18. Measured fan power and predicted fan power for normal operation (dry climate)
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Figure 6.19. Fan power analysis for low flow rate fault in PNNL House B (dry climate)

7 Field Test

7.1 Introduction of Participating Test Houses
Although 10 homes were required for field tests to complete the project, we recruited 11

homeowners to account for unexpected circumstances. There were 10 single-family

homes in Norman, Oklahoma, and 1 single-family home in Miami, Florida. To ensure
that a diverse set of test houses were chosen, a survey was done for each home to
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gather building characteristics including their locations, floor areas, building ages,
materials for the structure of the buildings, year of the AC units, and whether the
homeowners have signed up for a TOU rate. Figure 7.1 shows the distribution of floor
areas (subplot (a)), AC tonnages (subplot (b)), building ages, and year of the AC units
(subplot (c)) for the 11 houses. Except for the lab house located near the University of
Oklahoma, each test house was labeled alphabetically depending on when it was
registered with our project. As can be seen from Figure 7.1, the test houses are
diversely distributed in terms of floor areas (from 1,500 ft* to 2,500 ft*) and building
ages. Although only one new house (less than 5 years old) was selected, the year of the
AC units inside the other houses (10-20 years or above) vary from 0-1 years to 8-15
years.
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Figure 7.1. Information about the eleven (11) test houses

Table 7.1 shows detailed information for all the test houses. During the test period, only
two participants (Home C and Home J) were enrolled in the Smart Hour programs. For
those who had not registered for the TOU rate, we carried out a price-based control to
test the effectiveness of the MPC-based optimization algorithm, assuming that the
houses had registered for the TOU rate. The Smart Hour programs from local utility
services inspired the referenced price signals used in the real control tests.
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Table 7.1. Test House Information and TOU Enroliment

Home (SS;i.zfeL) Building Age Miltg'::LOf Year of AC AC znits AC tonnage TOU
Home A 2,400 10-20 years Wood Frame  1-5 years 1 5 -
Home B 2,600 10-20 years Concrete 1-5 years 2 3 (up)/4 (down) -
Home C 3,500 above 20 years Wood Frame  0-1 years 2 2.5(up)/4(down) Yes
Home D 2,500 10-20 years Wood Frame 8-15 years 1 3.5 -
Home E 1,540 1-5 years Wood Frame  1-5 years 1 2.5 -
Home F* 1,812 10-20 years Wood Frame  1-5years 1 N/A -
Home G 1,800 above 20 years Wood Frame  1-5 years 1 4 -

Home H** 3,000 above 20 years Wood Frame 8-15 years 1 N/A -

Home | 2,600 above 20 years unknown 0-1 years 1 5 -

Home J 2,150 10-20 years Wood Frame 8-15 years 1 2.5 Yes
Lab House 1,658 above 20 years Wood Frame  1-3 years 1 3.5 -

* The house was sold in June 2022. We could not conduct the MPC test with the new homeowner.

** The homeowner did not disclose that the house had two units, one with a Nest thermostat and another
with a traditional thermostat. The homeowner only agreed to replace the traditional thermostat after an
ecobee thermostat was installed. Therefore, no further tests were conducted for this house.

To prepare for the field tests, we installed ecobee thermostats at all the 11 test houses
for data collection and ecobee node sensors for wall surface temperature
measurements, which facilitate the learning model identification and verification and
MPC-based optimization algorithm. In addition, we selected five houses (Home A,
Home B, Home |, Home J, and the Norman Test house) for smart meter and additional
node sensor installations to collect indoor and outdoor power measurements and supply
air temperature measurements at one of the closest diffusers to facilitate the AFDD test.
Moreover, we constructed a cloud-based data management and control system to
access all the data collected with the ecobee thermostats and smart meters. Through
the ecobee API, the participating AC units can be directly controlled using the MPC
algorithm for real-time control purposes. However, the field tests were conducted only
for nine homes, after consulting with the DOE project management team, for
unexpected reasons. As indicated in Table 7.1, two houses were excluded from our
analysis. One house (Home F) was sold in June 2022, six months after we set up our
experiments. The other house (Home H) was excluded because the homeowner did not
disclose that the house had two units, with one of them replaced with a Nest smart
thermostat. The homeowner did not want to replace the Nest thermostat with ecobee.
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Figure 7.2 shows the temperature and power sensor installed in one of the houses.
Subplot (a) shows an ecobee thermostat, which recorded indoor air temperature, HVAC
on/off signal, the user's HVAC set point, and their schedule setting. Subplot (b) shows
the Emporia energy monitor installed in the Norman Test House. The energy monitor
measures the total energy usage of each individual circuit inside the electric panel.
Thus, it is possible to distinguish between the power consumed by the HVAC’s indoor
and outdoor units. Subplot (c) shows the wall sensor used by the MPC algorithm. We
put the node sensor that came with the ecobee thermostat in a plastic box and hung it
on the wall.

The wall surface temperature was an important measurement used by the MPC
algorithm. In the home thermal model described in Equations (3.7) and (3.8), the wall
surface temperature was one of the states of the building and reflected the heat transfer
between the outdoor environment and indoor air. As discussed in Sections 4.3.1 and
4.3.2, the sensor location was a key factor in making the model perform well. Thus, we
mounted the wall sensor so that there was no direct solar impact, no wind impact, and
no shading impact. We selected north-facing walls because the solar impact from the
sun was lower compared with south- and west-facing walls. We also chose east-facing
walls for some of the test houses depending on their structure. We tried to avoid surface
walls near a diffuser, the kitchen, and the windows to not create disturbances.
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(¢) Wall node sensor in another residential
house (b) The Emporia Vue which monitor the power

Figure 7.2. Installed smart thermostat, node sensor (surface temperature), and smart meter in one test
home

Based on the data collected through the cloud-based system, the energy consumption
of each home's AC unit was analyzed and found to depend on many factors, including
the floor area, the building age, the AC unit’s capacity, and the materials used in
building construction. A user’s energy awareness is also an important factor that might
affect the electricity cost of a house. Subplot (a) of Figure 7.3 illustrates the distribution
of the AC set points for eight of the test houses in June (blue) and July (orange). Note
that some houses chose to turn off their AC completely when it was not needed, and as
a result the thermostat would not update the set point during the AC-off period. In this
case, we adjusted the set point to 90°F, as shown in the figure. It can be observed that
for some houses, the AC set point preferences changed seasonally. Indeed, Home B
(upper unit) preferred a lower set point on a cool summer day in June and a higher one
on a hotter day in July. In contrast, Home E preferred a higher set point in June and
kept lower set points when it got hot outside. Home A and Home | maintained a
constant set point in June but experienced frequent changes between high and low set
points in July. The ACs on the main floor of Home B and Home G were turned off in
June and July more frequently than in other houses. Finally, the ACs on the main floors
of Home C and Home D had consistent set point preferences during June and July. In
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addition to seasonal variations, users also changed their set points at different times of
the day. Subplot (b) in Figure 7.3 is a violin plot showing the set point distribution for off-
peak hours (dark blue) and on-peak hours (red) in June and July. During off-peak hours,
Home B’s upper unit and Home E slightly lowered their set points, while during on-peak
hours, their set points were raised higher. In these cases, the concept of pre-cooling
was used, which might indicate a better energy awareness of the homeowners. For
some other houses such as Home D, the homeowner preferred to use a slightly lower
set point during on-peak hours to maintain thermal comfort, which might lead to a higher
electricity cost. In this study, although price-based control was performed to achieve the
lowest electricity cost, we still tried to keep the indoor air temperature within a given
temperature range to maintain thermal comfort during the MPC test. The upper and
lower temperature limits were determined based on our observations of user thermal
preferences (summarized in Figure 7.3) and users’ requests for acceptable
temperatures. Note that the Norman Test House, Home F, and Home J are not shown
in Figure 7.3. The lab house was unoccupied and different tests were conducted in the
house during June and July, during which the thermostat set points were chosen to
make the HVAC system run longer. Therefore, its set points did not represent the
preference of real users. Lastly, Home F was sold in June, while Home J suffered data
loss in June due to Wi-Fi issues.
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(b) Set point distribution for eight houses in on-peak and off-peak hours

Figure 7.3. Set point distribution in eight different test houses
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7.2 Implemented MPC-Based Optimization Agent and Its Test Results

Figure 7.4 illustrates the framework of the MPC agent implemented in this study. At
each 5-minute time step, the MPC agent receives time-varying (blue) and constant
(yellow) inputs, and temperature measurements (red arrow), as shown in Figure 7.4.
The home thermal model (2R2C model) first receives forecasts of the disturbances
(wind speed, solar radiation, outdoor air temperature) over a prediction horizon of 12
hours, model parameters identified from the most recent data, and the current building
states including the indoor air and wall surface temperature measurements. The home
thermal model then predicts the future building states (indoor air and wall surface
temperatures) and interacts with the optimization model. In a parallel fashion, the
optimization model receives the TOU rate, heat pump energy usage model, and thermal
comfort range, through which a cost function and constraints are generated. Gurobi
(Gurobi Optimization 2021) is then used to solve the optimization problem to generate a
sequence of optimal on/off decisions for the HVAC system over the prediction horizon.
However, as is typical with MPC algorithms, only the first element of the sequence of
optimal decisions, whether it is on or off, is physically implemented.

Repeat Optiomization Every 5 minutes
T
pastg, A future

- Prediction Horizon ..
1

T timestep
- _ ! 1 I 1 1 L

Time Varing Inputs —
TOU Rate Forecast
pricer, ... price_y r MPC \

Weather Forecast
2 .

W W Cast Function
g M0y gy S p PTICE Pty — Wt Sequence of On/Off Decisions
To::,TAa:» Upy Uk 150+ Uh | N
poac A
Constraint
1. Thermal Comfort with slack variable .Dnly c’_"_dUﬂ
Constant Inputs T —om =T =T ~vmym =k k—1,... k=N First Degision
2.Binary onfoff singal: @, € {0,1} ¥m
3. Real slack variable: v, € BT %¥m - P
HVAC Power Specs Iternate Setpoint to|
Pl = A|Tow + A:To}, + A3 Toh, + 4y implemn?t ?n/ulf
ki1 |k 2 b control
Forecast T4 T 2, ... T A \ 1
form =k k+1,. . k+N '
Home Thermal Model '
TE, TF are initial states of '
" " 2R2C network madel
Comfort Range 11, T,
h
System Identification Results
Ths T2y T3 01y 2, by by 01 e

Real Temperature Reading ’1';52 Tf;

Figure 7.4. MPC controller schematic

7.2.1 Implemented MPC-Based Optimization Agent

The optimization problem addressed by the MPC agent at each time slot k is stated
below:
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where T;, is the indoor air temperature in °F, T;, is the interior wall surface
temperature in °F, T, is the outdoor air temperature in °F, I is the wind

speed in mph, S is the solar radiation in ]:n—mz/ and u is the HVAC on/off

signal. Note that there are nine unknown parameters in the model: z,, t; are
time constants of the house envelope and indoor air associated with the
thermal resistance R and thermal capacity C of the house; 7, is a
coefficient associated with the thermal resistance of air; a,, a, are
coefficients representing the solar radiation's contribution to indoor air;

by, b, are coefficients representing the wind's contribution to indoor air; and
¢4, ¢, are coefficients representing the ACs output to the room. The
prediction horizon in this study is 12 hours, and the time step is 5 minutes,
so N = 144. The variable price is the utility rate determined based on the
local utility company's Smart Hour program. In a vapor compression
system, the evaporator inlet condition and condenser inlet condition are the
most important factors that affect the power consumption of the air-source
heat pump or outdoor unit. For a split system, the outdoor air condition is
measured at the condenser inlet and the indoor air condition is measured at
the evaporator inlet. The variation of the outdoor air in a cooling season is
much larger than that of the indoor air. Hence, to maintain linearity of the
cost function, we assume that the power consumption of the outdoor unit
depends only on the outdoor air temperature through:

P = A Ty + AyT2 + AT, + Ay + Prgoor form =k, k+1,...,k+N (7.29)

Lastly, the power consumption of the indoor unit is relatively constant, and thus is
assumed to be so in the study.

In this study, only five houses are equipped with power measurement devices.
Polynomial regression fit is used to find the unknown parameters A,, 4,, A5, A, for those
houses. For the rest of the houses, a constant approximation of the total AC outdoor
and indoor power consumption is selected based on their heat pump information.
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Every 5 minutes, the lower and upper bounds of the indoor air temperature are sent to
the MPC agent. The MPC agent then solves the optimization problem to generate the
optimal HVAC on/off control signal. In general, the optimization problem might be
infeasible because the initial and subsequent indoor air temperature appearing in some
of the constraints depend on sensor reading, which might be noisy and biased. In fact,
even if the temperature bounds—treated as hard constraints in T3}, < T/ < Tjpper—
are satisfied for every sampling instant k,k + 1, ...,k + N, it is still possible for the
temperature to fluctuate beyond its lower or upper bound between two consecutive
sampling instants that are 5 minutes apart. To address these issues, we “soften” the
constraint by using a non-negative real slack variable v™ to represent the distance from
the current temperature to its upper (or lower) bound when the temperature was beyond
the given range. In the cost, wv™ was added, which only imposed a penalty when the
temperature was higher than the upper bound or lower than the lower bound. In other
words, the temperature constraints were relaxed only when necessary. By relaxing
these constraints, the MPC agent no longer had to deal with an infeasible optimization
problem which might cause the system to crash.

7.2.2 Experimental Setup and Data Management

In this section, we describe the MPC pre-cooling test setup for all the test houses. For
each MPC test, the time step was 5 minutes (the finest granularity in the thermostat),
and the prediction horizon was 12 hours. In addition to the control algorithm itself, one of
the bottlenecks in implementing MPC in residential buildings is the financial burden
created by the need for data communication between the building and the controller.
Fortunately, the proliferation of IoT devices and availability of open-source databases
have facilitated the implementation of advanced control in residential buildings. In the
rest of this section, we introduce the data source, data pipeline, and equipment
installation for the tests.

We divided the datasets required for the tests into three categories based on their
purposes: the system identification dataset, the dataset for real-time control, and the
dataset for post-analysis. Separate Python modules were developed to collect and pre-
process the data in each category. The open-source time-series database InfluxDB 2.0
(InfluxDB 2021) was used for data storage and communication. Grafana v7.4 (Grafana
Labs 2021) was used for data display and user interface.

The system identification dataset was made up of historical data that included the
system state dataset, weather dataset, and HVAC power consumption dataset. The
system state dataset and weather dataset were used to train the home thermal model,
while the HVAC power consumption dataset was used to train the regression
coefficients for power estimation at each house. The states of the system included the
indoor air temperature and HVAC on/off signal collected from the ecobee thermostat as
well as the wall surface temperature collected from the ecobee node sensor. The
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historical outdoor air temperature, solar radiation, and wind speed were obtained from
Mesonet in Oklahoma (Brock et al. 1995; McPherson et al. 2007) and other weather
services (OpenWeather 2018). The HVAC power consumption dataset was obtained
from the smart energy monitor if such a device was installed in the house.

The dataset for real-time control included the building temperature measurements,
weather forecasts, users’ preferred temperature ranges for comfort, and utility rates.
During real-time control, every 5 minutes a building temperature measurement from
ecobee and its node sensor was set as the initial state of the system while a 12-hours-
ahead weather forecast was collected using the weather APIl. Weather forecasts,
especially solar radiation forecasts, were relatively expensive to obtain for residential
control tests, so these forecasts were only updated once every 6 hours. The
temperature range for comfort was obtained from the homeowner’s feedback through
emails. Because the test houses in this project were located in different states and
enrolled in different utility programs, three different rate structures were adopted: a TOU
rate that followed Oklahoma Gas & Electric’'s (OG&E) Smart Hours (OG&E 2022)
schedule, with on-peak hours starting at 2 p.m. and ending at 7 p.m., and off-peak
hours lasting 19 hours; a rate that followed Oklahoma Electric Cooperative’s (OEC)
TOU rate (OEC 2022), for which the on-peak hours were from 3 p.m. to 7 p.m. and the
off-peak hours lasted 20 hours; and a rate that followed Florida Power and Light's TOU
rate (Florida Power & Light 2022), for which the on-peak hours were from 12 p.m. to 9
p.m. and the off-peak hours lasted 15 hours.

Apart from datasets for the days MPC tests were conducted (called MPC days), we also
collected datasets for the days where MPC tests were not performed (called normal
operation days) to enable post-analysis. These historical datasets included the system
states of the buildings, weather information, and HVAC power consumption stored in
InfluxDB. Additional information, such as the user’'s HVAC set point, HVAC system
mode (i.e., whether it was in cooling mode, heating mode, or completely off), and other
scheduled vacation time, was needed to enable performance comparison between MPC
days and normal operation days.
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Figure 7.5. Data pipeline of MPC agent
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7.2.3 Field Test Results

In this section, we describe the MPC test results for multiple real buildings. We first
present the MPC test results for a single home, in which the HVAC system operation,
indoor air temperature, and interior wall surface temperature were accounted for. We
then compare the MPC test results across multiple houses by showing the cost savings,
run time, and power consumption during both MPC days and normal operation days.
We also discuss possible factors that could affect the results of MPC tests in different
houses. In addition, a data mining technique was used to make a fair comparison for
multiple houses.

7.2.3.1 MPC Test Results in a Single-Family House

Figure 7.6 shows seven consecutive days of MPC testing in the lab house in Norman,
Oklahoma. The horizontal axis in each subplot of Figure 7.6 represents time from
August 4 to August 10, 2022. The first subplot shows the building temperature
measurements. The second subplot displays the total number of seconds the AC was
on during each 5-minute time interval. The last subplot shows the actual local weather
information. In the first subplot, the blue curve represents the indoor air temperature
queried from the ecobee thermostat, while the red curve represents the wall surface
temperature queried from the node sensor mounted on the north-facing wall. The two
black solid lines represent the upper and lower bounds on indoor air temperature that
were considered to be comfortable. The on-peak hours are shown as red-shaded areas.
Note that most of the time, the indoor air temperature remained within the two bounds.
This was because whenever the temperature exceeded either the upper or lower
bound, the slack variable in the optimization problem imposed a penalty on the objective
function. If this happened during on-peak hours, such a penalty might not be significant
enough to cause the HVAC to turn on immediately because electricity cost contributed
more to the objective function. As shown in the first subplot, the indoor air temperature
sometimes went above the upper bound for a while during on-peak hours. The indoor
air temperature also reached 83°F on August 10 due to the MPC controller going offline
unexpectedly between 2:37 p.m. and 5:44 p.m. Compared to the indoor air temperature,
the wall surface temperature changed relatively slowly during the test, possibly because
the building acted as a large thermal mass. From Figure 7.6, it can be seen that the pre-
cooling effect on each test day was quite obvious. Indeed, the AC ran hard before on-
peak hours so that the indoor air temperature at the beginning of each on-peak period
was usually around the lower bound. However, although AC operation time was
reduced during on-peak hours due to the thermal mass of the building, the AC could not
completely avoid operation during on-peak hours. This was because the temperature
often reached the upper bound before each on-peak period ended. These results
suggest that the MPC agent worked as intended.
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Figure 7.6. Real-time MPC test results and weather conditions over 7 consecutive days

7.2.3.2 MPC Test Results in Multiple Houses

As discussed in Section 7.1, not all houses participated in the MPC tests in summer
2022 due to some of the homeowners’ personal requests. Home F was sold in June
2022, while Home H quit the MPC test because the homeowner preferred another smart
thermostat. In addition, although we were able to conduct multiple MPC tests on Home
B’s main floor, we were not able to do the same on Home B’s second floor because the
homeowner wanted to work from home. From July to October 2022, we conducted MPC
control tests at nine houses. The tests were conducted for different houses at different
times over four months. Each test lasted 5 to 20 days, depending on the homeowner's
schedule, except for the test at Home G, which was terminated prematurely per the
homeowner’s request.

7.2.3.2.1 Cost-Saving Analysis vs. Temperature Difference Between Indoor and
Outdoor
Figure 7.7 shows the electricity cost versus the temperature difference for all test
houses that ran the MPC tests. Each point on the figure represents the HVAC cost for
one day, either with an MPC controller (red) or without an MPC controller (blue). In
previous studies, researchers mostly focused on understanding the impact of a single
variable (e.g., the indoor air temperature or the solar radiation) on the control results. In
this study, we considered the indoor air temperature, which affected not only the power
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consumption of the outdoor unit and the building envelope heat transfer, but also the
electricity cost. However, unlike previous studies, we accounted for the fact that the
indoor air temperature also depended on the choices of set points on normal operation
days and the choices of temperature bands on MPC days. Therefore, in our analysis we
looked at the temperature difference, defined as the difference between the maximum
daily outdoor air temperature and the daily average indoor air temperature, and used
such a difference to determine the cooling cost for the MPC tests. The density curves
for the temperature difference and the total daily electricity cost are shown on the top
and right of each subplot, respectively. Certain homeowners chose higher set points
throughout the day, which could result in very low electricity costs, especially on days
when the outside temperature was not that high. In this study, days where the AC was
mostly turned off, and days where the homeowners were known to be away from home
for an extended period of time, were excluded. Additionally, days with cold or extreme
weather conditions were excluded. One exception was Home D, which experienced
COVID-19 in August 2022, and as a result the MPC test was postponed until late
September, which had several cold days. For most of the houses, we observed a higher
cost on both normal operation days and MPC days when the temperature difference
was higher. In addition, for most tests, electricity costs on MPC days were lower than
those on normal operation days under the same weather conditions. However, there
was no clear evidence that showed that a larger temperature difference led to a higher
percentage of cost savings whenever the MPC controller was used. For example, the
subplot on the top right corner of the figure is a box plot showing the cost savings of
Home A at different temperature differences. In this subplot, the cost difference between
normal operation days (blue) and MPC days (red) decreased as the temperature
difference grew.
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Figure 7.7. Total cost vs. temperature difference between outdoor and indoor when MPC was used and
not used
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7.2.3.2.2 Cost Reduction Calculation Through Weather Clustering

To evaluate the effectiveness of the MPC agent at different houses, we compared the
electricity cost for both normal operation and MPC days under similar conditions.
Weather conditions varied substantially and significantly affected the results. Thus, it
would be unfair to claim that MPC saved more money when the daily cost of MPC on a
colder day was significantly lower than the daily cost of normal operation on a hotter
day. To more fairly evaluate the MPC agent, we first clustered Norman and Miami
weather data by applying Matrix Profile-based algorithms from data mining applications
(Yeh, Kavantzas, and Keogh 2017; Gharghabi et al. 2018; Imani et al. 2018). To cluster
the long (about four months) time-series (time sequences rather than a single time
point), and multidimensional (outdoor air temperature, solar, etc.) data, we used the
snippets algorithm (Imani et al. 2018) to find the top three most representative days in
the test period. We then selected the top K days similar to these representative days
using our modified MASS algorithm (Mueen et al. 2022), which took into account solar
radiation, outdoor air, and relative humidity. Through trial and error, we arrived at K
equal to 25.

Figure 7.8 shows the weather clustering results for Norman ((a) and (b)) and Miami ((c)
and (d)). The top two subplots ((a) and (c)) show the time-series snippets results, i.e.,
the top three representative days from July to October. From subplots (a) and (c), we
see that the snippets algorithm indeed helped us find the hot, mild, and cold days. The
bottom two subplots ((b) and (d)) show the time-series clusters found by the algorithm.
In these subplots, each curve represents 24-hour weather data, and only the outdoor air
temperature is shown. The solar radiation and relative humidity were also considered,
but not shown in the clustering. The red, orange, and blue curves represent days
associated with the hot, mild, and cold clusters, respectively. The gray curves represent
the rest of the days, which were not part of any cluster and which are labeled as
extreme days. For the Norman cluster, the extreme days included one day with a very
hot morning and several days with relatively low temperatures. For the Miami cluster,
the extreme days included one day with a relatively hot afternoon and several very cold
days. For the Norman data, we see that the layer between each cluster is clear, which
means that the data within each group were similar to one another. For the Miami data,
however, the cold cluster is wide. The main reason is that Miami experienced a big
thunderstorm followed by a short period of temperature rise and then a sudden
temperature drop. This weather change started at the end of September and lasted until
the second half of October. Compared with normal climate, included in the hot and mild
clusters, the cold cluster included most of the abnormal weather change period. Thus,
each day in the cold cluster has a large difference but similar shape.
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Figure 7.8. Weather clustering results in Norman and Miami from July to October

Figure 7.9 summarizes the cost savings during the hot summer test period established
by the clustering algorithm. Notice that not all of the houses were tested during this
period, and those that were not tested are excluded from the figure. The test houses in
Figure 7.9 are listed in descending order of their total cost reduction percentage,
defined as the total cost on normal operation days minus the total cost on MPC days
and divided by the former. The dark red bars represent the average on-peak hour cost
of hot days without MPC, and the light red bars on top of the dark red bars represent the
average off-peak hour cost of hot days without MPC. The dark blue bars represent the
average on-peak hour cost of hot days with MPC, and the light blue bars on top of the
dark blue bars represent the average off-peak hour cost of hot days with MPC. The
specific average off-peak costs for the hot days are listed inside the light red and light
blue bars. The average total costs for the hot days, which are sums of the off-peak and
on-peak hour costs, are listed on top of the bars. The average on-peak hour costs as a
percentage of the total costs for the hot days are listed inside the dark red bars. To
better visualize the impact of MPC, a table is added that compares the percentage
reduction in total cost and on-peak cost with and without MPC. From Figure 7.9, we see
that running the HVAC system with MPC indeed helped reduce homeowners’ electricity
bills to varying degrees during hot days. Across different houses, the average cost
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savings ranged from 51.306% to 26.107% on MPC days compared to normal operation
days.

Cost Saving Summary for Each House, Hot Summer Day
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Figure 7.9. Cost savings summary for each house on hot summer days for normal operation days and
MPC days

Figure 7.10 summarizes the cost savings during the mild summer days. The legend in
Figure 7.9 also applies to this figure. MPC allowed homeowners to save money in most
cases, with percentages saved ranging from 62.789% to 9.545%. For certain houses,
however, the cost savings were not obvious (e.g., Home B and Home C).

Cost Saving Summary for Each House, Mild Summer Day

o sZL3l off-peak cost wio mpe
5y % 6.153 H on-peak cost wfo mpe
.’g 61 oll-peak cosl w/ mpe
5 §1.791 on-peak cost w/ mpe
=%
= 4]
a 4 $ 3.508
Q $ 2.817
z RS $ 2.325 §2.232 :
=) " $ 207
=l 1 $1.83 "
£ 2 515 $ 1.746
z
o
Home-A Lab-house Home-1 Home-] Home-B down Home-C up Home-C down
Total Reduced $ 62.798 % 16.217 % 37.352 % 33.723 % 15.868 % 9.515 % -26.178 %
On-peak Reduced $ 69.202 % 65.602 % 69.221 % 60.322 % 10.753 % 28.989 % 15.803 %

Figure 7.10. Cost savings summary for each house on mild summer days for normal operation days and
MPC days

Table 7.2 presents detailed information on the cost savings and energy consumption for
each test house with and without MPC during the hot summer days. The table includes
daily averages of the total costs, costs during on-peak hours, energy consumption, and
HVAC run time during on-peak hours. As can be seen from Table 7.2, MPC resulted in
cost reductions for most test houses. Note that the maximum cost savings were
achieved by avoiding frequent on/off AC operation during on-peak hours. In addition,
the peak run time reduction was significant. Table 7.3 presents the same information for
the mild summer days. Unsurprisingly, the cost savings due to using MPC under mild
weather conditions were lower than that during hot summer days. Almost all test houses
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show encouraging test results, except for the test on the main floor of Home C. Because
both the living room and bedrooms of Home C are on the main floor, the homeowner
gave a 2-degree temperature band during sleep time, from 9:00 p.m. to 6:00 a.m., and a
3-degree temperature band the rest of the time. Due to such narrow temperature bands,
MPC could not take full advantage of pre-cooling and, therefore, failed to cut electricity
costs. Finally, Table 7.4 presents the same information for cold summer days. Note that
despite the colder outdoor conditions, cost savings were still possible with MPC for the
main floor of Home B and for Home D.

Although the above test results show promising cost reduction in multiple houses, a
number of factors could have affected the amount saved. In this study, we found three
factors that significantly affected the results: weather conditions, the AC's ability to cool
the space in each house, and a user's energy awareness.

Table 7.2. Cost Savings and Energy Consumption Summary for Houses on Hot Summer Days

Hot Summer Day

Home Normal Operation Days MPC Days

Cost, Peak Energy, Peakrun Cost, Peak Energy, Peakrun

$ Cost,$ kWh time, % $ Cost,$ kWh time, %
Home A 948 6.19 66.93 93.84 6.17 3.33 49.43 55.06
:;’me © 25 142 16.94  58.91 185 1.15 11.89  47.92
Home E 225 1.19 18.15 38.45 1.59 0.77 13.48 22.66
Home G 432 3.25 26.97 68.45 219 0.92 19.69 20.92
Home | 8.01 5.04 58.16 76.23 447 1.71 41.65 28.1
Home J 5.51 3.33 41.23 92 .41 268 1.05 24.82 29.42
Lab

5.71 3.3 43.84 89.88 3.41 1.1 33.41 32.86
house
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Table 7.3. Cost Savings and Energy Consumption Summary for Houses on Mild Summer Days

Home Normal Operation Days MPC Days

Cost, Peak Energy, Peak run Cost, Peak Energy, Peak run

$ Cost,$ kWh time, % $ Cost,$ kWh time, %
Home A 715 5.03 47 51 80.54 266 154 20.35 24.96
Ao 2 162 137 12.69 19.62 136  0.81 16.58 11.82
down
Alems & 223 12 15.46 31.01 282 101 22 51 26.11
down
:;’me © 193 13 11.83 53.98 175  0.92 12.2 38.33
Home | 6.15 4.45 39.81 77.85 385 137 36.76 23.67
Home J 351 23 2471 69.77 233 091 21.46 27.12
Lab

479 285 36.13 90.15 258 098 24.04 30.39
house

Table 7.4. Cost Savings and Energy Consumption Summary for Houses on Cold Summer Days

Home Normal Operation Days MPC Days
Cost, Peak Energy, Peak run Cost, Peak Energy, Peak run
$ Cost,$ kWh time, % $ Cost,$ kWh time, %
Home B 153 151 8.23 225 038 013 6.12 1.96
down
Home D 2.81 1.52 22.44 38.44 0.27 0.2 1.74 4.99

7.3 Implemented AFDD Agent and Its Test Results

For field testing of the AFDD agent, five residential AC units among the 11 recruited
houses were selected, but only four were used for implementation purposes. The four
selected homes are all located in Norman, Oklahoma. The fifth home was dropped
because its AC uses an ECM motor and, as noted in Section 6.3.3, the proposed AFDD
algorithm was not intended for such a system. All tests were conducted during the
cooling season in 2022. Some details of the homes and their AC units can be found in
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Table 7.5. The full-scale Norman Test House served as the main test home where we
could create low charge faults for testing purposes.

Table 7.5. Specifications of Tested Homes

Home Square Tonnage AC age Test period
footage Outdoor Indoor
unit unit
Lab-house 1658 35 4 O0-1years July14-Sept. 20
Home A 2100 5 5 4 years May 14 — Sept. 26
Home l 2450 5 5 8—-15vyears May 14 —Sept. 26
Home J 2150 2.5 3 8 —15years  July 14 —Sept. 26

A smart thermostat, a node sensor for supply air temperature (SAT) measurement at a
diffuser, and a smart power meter were installed in each of the four test homes.
Because the node sensor came with the thermostat, it was linked to the latter during
installation so that the SAT measurement can be accessed from the same database
where the thermostat data were stored. Outdoor air temperature (T,,,) and humidity
(¢,q) measurements were obtained from Mesonet’s database, which was shown to be
reliable in a previous study (Wang, Tang, and Song 2020). The AFDD agent was built
with the Python programming language, and a two-way communication platform was
developed to query data from the smart thermostat database. Before using the data for
training and/or by the AFDD, the on/off signal from the thermostat was used to filter out
the transient data, defined as data from the first 10 minutes of each AC on cycle. Also,
the heating signal from the thermostat was used to filter out noise in the data due to
switching from cooling to heating mode by homeowners, either mistakenly or
deliberately. Further disturbances such as internet disruptions and power outages
leading to the thermostat going offline and not storing data were also eliminated when
collecting data. The outdoor air dew point was then computed using CoolProp and used
to divide the data into wet coil data and dry coil data, as described in Section 656.3. The
appropriate dataset was subsequently used to carry out the AFDD test based on the
algorithm described in Sections 6.3.2 and 6.3.3.

The implementation was done between May and September 2022, and was divided into
two phases, with Phase 1 focused on checking for installation faults and Phase 2
focused on checking for degradation faults. Both Method 1 and Method 2, previously
discussed, were also tested since the four homes were each equipped with a smart
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power meter. For Method 1, where enthalpy change is used as a fault detection index,
baseline data of enthalpy measurements were utilized to train the model in Equation
(6.3). On the other hand, for Method 2, an average of the indoor power consumption
was computed and used as the indoor power baseline for Phase 2. The baseline data
used for Phase 2 were collected while testing for installation faults in Phase 1 was
taking place. Thus, Phase 2 did not begin until Phase 1 completed (regardless of
whether a fault was detected).

7.3.1 Phase 1: Real-Time System Monitoring for Installation Faults

For this Phase 1, applying Method 1, the EPT data of enthalpy change were gathered
and used as baseline data for training the model. Figure 7.11 shows the results
generated by the AFDD agent in real time for the AC in the four test homes.
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Figure 7.11. Real-time monitoring of enthalpy change across the evaporator for four test homes for Phase

For the Norman Test House, the results indicated that there was a large mismatch
between the expected enthalpy change (labeled as rated dH in the figure) across the
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evaporator and the measured enthalpy change (labeled as measured dH in the figure).
This mismatch is suspected to be mainly due to the indoor/outdoor unit mismatch, as
can be seen from Table 7.5. With the indoor unit being bigger than the outdoor unit, the
EPT rated indoor airflow rate, which was based on the outdoor unit size, would be less
than the actual indoor airflow rate, thus leading to a lower enthalpy change across the
evaporator. Similarly, Home J showed a large disparity between the measured dH and
rated dH, thus resulting in deviations exceeding the threshold. For Home A, Figure 7.11
shows that deviations of the measured dH (i.e., enthalpy change) were close to the
rated dH, with the deviations occasionally exceeding the threshold. But because such
large deviations were not necessarily due to a fault and could be due to possible
disturbances in the system such as transients, etc., the CUSUM algorithm was able to
confirm that such deviations were in fact not caused by a fault. Thus, a possible false
fault alarm was forestalled. Home [, again from Figure 7.11, had a similar trend as
Home A. However, results for Home | reveal that its AC unit had a closer match to rating
conditions than Home A. Furthermore, it can be observed from Figure 7.11 and
subsequent figures that there were occasional large omissions of several days. For
instance, for Home A in Figure 7.11, there was a jump from May 20, 2022, to May 28,
2022. This was due to disturbances from either a lack of internet connectivity or a power
outage. As the proposed AFDD algorithm is loT-based, whenever there is an internet or
power interruption it disrupts the data collection process and leads to missing data,
sometimes for long periods. To prevent such missing data from hurting the accuracy of
the AFDD algorithm, such time periods are omitted during the AFDD process. This
explains why the results shown have time gaps.

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Figure 7.12. Detection of installation issues for two of the selected homes using Method 2

Figure 7.12 shows results from applying the CUSUM algorithm to the observed
deviations in Figure 7.11. For the Norman Test House, due to sustained deviations that
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exceeded the deviation threshold, the variable associated with either the low charge or
the high indoor airflow (ph1_tau_lowRC_hiAF) is seen to steadily rise until it reached
the duration threshold about 7 days after the start of the installation check. Similar
results were obtained for Home J, where the variable ph1_tau_lowRC _hiAF also had a
steady rise, which led to the detection of a possible installation issue (suspected to be
oversupply of indoor air) about 6 days after the commencement of the installation
check. The observations for this home are similar to those for the Norman Test House.
Like the latter, the AC unit installed in Home J also had the issue of indoor/outdoor unit
mismatch, with the indoor unit being larger than the outdoor unit, as seen in Table 7.5.
The unit mismatch could therefore be a possible cause of the observed oversupply of
indoor air in both homes. For Home A and Home |, as the deviations in Figure 7.11
stayed below the deviation threshold for the most part, results from the CUSUM
algorithm were not included for these homes. As seen from Figure 7.12, the variable
(ph1_tau_lowRC _hiAF) associated with this suspected oversupply of indoor air was
also associated with a low refrigerant charge. This was easily decoupled by applying
Method 2, which first used indoor power for the fault check before using the enthalpy
change (Ai) if indoor power fell below the deviation threshold, as described in Section
6.3.3.
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Figure 7.13. Real-time monitoring of indoor power usage for all four test homes for Phase 1

The results obtained (Figure 7.13) indicate that the Norman Test House and Home J
both had indoor power measurements that exceeded the baseline indoor power. For the
former, the discrepancy in the indoor power from rated values was above 60%, while for
the latter it was between 40% and 50%. This therefore confirms the suspicion of
oversupply of indoor airflow. For Home J, a steady decline in the indoor power
measurement was also observed. This observation was suspected to be caused by an
indoor airflow reduction due most likely to a dirty filter. This was found to be true from
results shown in Phase 2. In addition, Home A also showed indoor power about 14%
higher than the rated indoor power, possibly suggesting an oversupply of indoor airflow.
However, there was no mismatch between indoor and outdoor units and there were no
other obvious installation faults in Home A after inspection. It can therefore be
concluded that the oversupply of the power to the supply fan might be caused by an
inefficient motor, or there were other loads in the circuit other than the indoor power fan.
For Home |, the indoor power matched well with the rated conditions, staying below the
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threshold for the most part, except for the few outliers triggered most likely by sudden
disturbances in the system, which the CUSUM algorithm successfully handled to
prevent false fault alarms.

While the unit mismatch at the Norman Test House and Home J sometimes happens in
residential HVAC systems and offers advantages such as increased cooling capacity
and ventilation, especially when the indoor unit is bigger than the outdoor unit,
manufacturers usually recommend matching the units.

Figure 7.14 shows the alert sent to each home based on the results of the installation
check carried out by the AFDD algorithm. As seen from the figure, Home A and Home |
both reported system operations close to rating conditions, while the Norman Test
House and Home J both reported possible higher indoor airflow rates than rating
conditions.

Alerts_lab-house

2022-07-19 19:00.00 Charge lower or Indeoor airflow higher than design specification for Lab-house
Alerts

Alerts_Home_A

2022-06-13 19:00:00 AC operation close to design specification for Home Al

Alerts_Home_|

2022-06-29 19:00:00 AC operation close to design specification for Home I!

Alerts_Home_J

2022-07-20 19:00:00 Charge lower or Indoor airflow higher than design specification for Home J

Figure 7.14. Alerts sent for all four test homes

7.3.2 Phase 2: Real-Time System Monitoring for Degradation Faults

Upon completion of Phase 1, Phase 2 commenced, with the model retrained using
baseline data collected during Phase 1. Results for this Phase 2 for all 4 test homes are
shown in Figure 7.15. For the Norman Test House, a 30% low charge fault was
purposely introduced on July 29, 2022. After introduction of the fault, the deviation
between the measured and predicted enthalpy changes across the coil began to rise
above the deviation threshold upper bound, and a few times fell below the threshold due
to reduced load conditions (mainly outdoor air temperature). For the other homes,
because no faults were introduced, and monitoring was done only for a period of 2—4
months, as shown in Table 7.5, a close match can be seen between the measured and,
predicted enthalpy changes across the coil. Thus, the deviations mostly stayed below
the deviation threshold and no faults were detected by the algorithm within this period.
Faults were not introduced in any of these other homes to not cause inconvenience to
the occupants. However, as the AFDD algorithm runs in real time and continuously with
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minimal computation cost, it is believed that if there is a deterioration in the AC system
performance over time or if there is an occurrence of either of the two common faults in
the future, the AFDD algorithm would be able to detect it.
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Figure 7.15. Real-time monitoring of enthalpy change across the evaporator for four test homes for Phase
2

Figure 7.16 shows results from the embedded CUSUM algorithm built into Method 1. As
noted, due to the large deviations in the Norman Test House, the CUSUM algorithm
was able to eventually detect the fault on August 27, 2022, which was about four weeks
after the occurrence of the fault. Under higher load conditions, it is expected that the
fault can be detected earlier. Also, as demonstrated in Section 6.6, if the actual SADP
measurements were used, an earlier detection of the fault can be achieved. Figure 7.17
shows the alert that was sent from the AFDD algorithm for the detection of a low charge
fault at the Norman Test House. This alert would also be sent to the homeowner's email
to notify the homeowner of the presence of a fault in the system. Thus, using the
proposed loT-based AFDD algorithm, soft faults that would not have been discovered
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by homeowners can now be detected and corrected before they cause a major system

breakdown.
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Figure 7.16. Detection of low charge fault for OU lab house

Alerts_OU_lab-house

Possible Compressor/charge/expansion valve fault detected. Please check AC unit

2022-08-17 19:00:00
Figure 7.17. Alert sent for detected low charge fault in OU lab house

Applying Method 2 to Phase 2, Figure 7.18 shows results for real-time monitoring of the
indoor power measurements in the different units. Results for the Norman Test House
reveal the inability of the indoor power to detect the low charge fault. This is in line with
earlier observations that the indoor power was mainly influenced by airflow rates but
independent of refrigerant charge levels. For Home A and Home [, as no fault was
introduced, the results obtained were consistent with those shown in Figure 7.15,
obtained from Method 1. However, Home | showed indoor power deviations (i.e., rise in
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indoor power above the baseline) closer to the lower threshold bound. This might have
been caused by disturbances in the system and would be addressed by the CUSUM
algorithm to forestall any possible false fault alarms, especially given that the deviations
were not sustained. Home J on the other hand showed very few data points, a trend
observed from Phase 1 specifically with this home. The paucity of data for this home
was primarily due to frequent internet connectivity issues, thus leading to a lot of
missing data. However, from the few data collected and analyzed, the results obtained
show deviations that stayed clearly above the threshold band, with measured power
being greater than estimated power. This observation is due to the impact of the
suspected low airflow fault (mentioned in Section 7.3.1) on the baseline data collected
during Phase 1. As the indoor power baseline was computed based on the average of
the indoor power data collected during Phase 1, a decline in the power measurement
led to a lower indoor power estimate at 560 W, as the unit was suspected to have a dirty
filter when the AFDD was implemented. On August 17, 2022, the filter was replaced and
the indoor power measurement returned to normal (630 W), as shown in Figure 7.19.
This observation demonstrates the potential of the AFDD algorithm to detect
simultaneous installation issues and degradation faults, as was the case for Home J,
especially with Method 2. Method 1, which offers the advantage of a lower cost, was not
able to detect this problem because the airflow rate changes were not large enough to
be detected by Method 1. Also, the observations for Home J reveal the challenge of
carrying out AFDD with a machine learning approach that relies on operation data for
training the model, as was done in some previous studies. Unless such operation data
can be guaranteed to be fault-free, it could lead to misdetection or false detection when
carrying out AFDD. Therefore, it is suggested to carry out system commissioning before
implementing the AFDD algorithm, if possible.
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Figure 7.19. Indoor power measurements for Home J showing airflow rate degradation and subsequent
filter replacement
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8 Technology Transfer

Technology transfer activities have been carried out with a focus on technology
dissemination through publications and technology commercialization through licensee
identification. In addition, the project team has attended all webinars hosted by the
Building America program to interact with other Building America teams for technology
exchange.

8.1 Technology Dissemination

Results from this project have led to a total of eight publications, listed below, including
six journal papers and two conference papers. Two additional journal papers are in
preparation. In addition, the technology created in this project has been disseminated
through community outreach. The Norman Test House has also been used as a living
laboratory for community engagement to showcase the technology to local stakeholders
including the state legislature, utility companies, residential communities, and tribal
nations for future technology deployment. We have also engaged local newspapers and
TV channels for technology dissemination. For instance, the technology was reported
twice in the Journal Record, which is a daily business and legal newspaper based in
Oklahoma City, Oklahoma, at the beginning of the project in August 2019 and at the
conclusion of the project in December 2022." Appendix D provides detailed coverage. In
addition, Oklahoma News Channel 4 also reported on the project in December 2022.2

e Wang, J., Tang, C.Y., and Song, L. 2023. “Analysis of predicted mean vote-
based model predictive control in building HVAC systems.” Building and
Environment, in press.

e Li,D., Song, L., and Wang, G. 2022. “Energy and dehumidification performance
investigation of different fan control modes of split residential air conditioners in
hot and humid climates,” 2022 ASHRAE Summer Conference. ASHRAE
Transactions, Vol. 128, Part 2.

e Wang, J., Tang, C.Y., and Song, L. 2022. “Analysis of pre-cooling optimization
for residential buildings.” Applied Energy, Vol. 323: 119574.

e Wang, J., Jiang, Y., Tang, C.Y., and Song, L. 2022. “Development and validation
of a second-order thermal network model for grid-interactive HVAC operation in
residential buildings,” Applied Energy, Vol. 306 (B):118124.

e Wang, J., Tang, C.Y., and Song, L. 2020. “Design and analysis of optimal pre-
cooling in residential buildings,” Energy and Buildings, Vol. 216 (1):109951.

' https://journalrecord.com/2022/11/23/old-house-becomes-center-of-energy-research-at-ou/
2 https://kfor.com/news/local/ou-engineering-professor-converts-old-nome-into-high-tech-lab-for-students

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 116


https://journalrecord.com/2022/11/23/old-house-becomes-center-of-energy-research-at-ou/
https://kfor.com/news/local/ou-engineering-professor-converts-old-home-into-high-tech-lab-for-students

Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

e Wang, J., Tang, C.Y., and Song, L. 2020. “Home envelope performance
evaluation using a data driven method,” ASHRAE Transactions, Vol. 126 (1).

o Ejenakevwe, K. A., Wang, J., and Song, L. 2022. “Investigation of an loT-Based
approach for automated fault detection in residential HVAC systems,” 2022
ASHRAE Summer Conference, TO-22-C025, June 25-29, 2022, Toronto
Canada.

e Ejenakevwe, K. A., and Song. L. 2021. “Review of fault detection and diagnosis
studies on residential HVAC systems,” Proceedings of International Mechanical
Engineering Congress and Exposition, IMECE2021-72745, November 1-5, 2021,
virtual.

8.2 Technology Commercialization

Our proposed plan for commercialization involves licensing the technologies to potential
licensees. Therefore, the first step is to file patents for the technologies so that the
licensees’ rights can be protected. So far, with the Office of Technology Development at
the University of Oklahoma, the following two patent applications have been filed,
including one that was issued in March 2021:

e Monitoring system for residential HVAC systems, U.S. Patent No. 10,948,209,
2021; Inventors: L. Song and C.Y. Tang.

e System and method for residential HVAC control, U.S. Provisional Patent Filed in
May 2021, Docket No. 5839.166; Inventors: L. Song, C.Y. Tang, J. Wang, and Y.
Jiang.

For licensee recruitment, we have learned through the project that licensee candidates
for the technologies need not be limited to smart thermostat manufacturers. This
significantly increases the potential for successful commercialization because the
technologies developed in this project—including the MPC agent and AFDD agent,
which require additional measurements at wall surfaces, supply air, and/or power
meters—can be deployed through third-party sensor manufacturers with much lower
cost, better sensing capability, and higher accuracy. So far, we have identified two
potential licensees, outlined below.

Using the cloud-based data management system developed in this project, we can
easily retrieve data from different vendors of devices, such as ecobee’s thermostats and
smart meters. We can then feed those data into an online platform using their APIs to
conduct MPC-based optimization and AFDD with only labor cost for programmers. For
example, the enthalpy change calculation used in the AFDD agent requires supply air
temperature and humidity measurements. Working with ecobee as a partner in this
project, we are limited to using ecobee’s node sensor (market price of $99 for two in
one box) in field demonstration to collect the supply air temperature and estimate the
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supply air humidity measurement. This limitation reduces the sensitivity of the AFDD
agent to more severe faults. Currently, we are working with a local startup company,
Juniper Technology, to develop a Wi-Fi-enabled smart sensor series with temperature,
humidity, and pressure measurements, along with different mounting configurations that
enable easy installation on walls and insertion into AC ducts. The estimated cost of a
complete product is $25 per sensor plus additional small data management sign-up fee
if data management is desired by a buyer. A contract for prototype development is
currently under review by the University of Oklahoma’s purchasing department. If
approved, the prototype development will be sponsored by an Oklahoma state fund.
Therefore, Juniper Technology is identified as one of the two potential licensees.

The other potential licensee is our project partner, ecobee, who generously provided in-
kind cost share by donating their time and the ecobee devices (20 thermostats and 40
node sensors). With ecobee, to provide technology updates and engagement, we
organized two workshops with the ecobee data analysis group through Zoom during the
project. One nondisclosure agreement has also been filed prior to the technology
exchanges. Therefore, ecobee is identified as the other potential licensee for technology
commercialization.
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9 Conclusions

In this project, we successfully developed and extensively validated a learning-based
home thermal model that enables an MPC-based optimization agent and an AFDD
agent to run on top of it. The home thermal model was constructed using a two-node
resistor-capacitor model and enriching it with solar and wind terms. To train the model
parameters, two parameter identification methods—least squares and optimization—
were proposed. The MPC-based optimization agent was designed based on the home
thermal model and shown to be capable of optimizing residential HVAC operation,
reducing operation costs while maintaining user comfort. In addition, the AFDD agent
was designed and shown to be capable of detecting and diagnosing two prevalent
residential AC faults, namely, the airflow reduction fault and incorrect refrigerant charge
fault. The home thermal model, the MPC-based optimization agent, and the AFDD
agent were all experimentally tested at the Norman Test House, Miami Test House,
PNNL Test House A, and PNNL Test House B. They were further field tested at nine
demonstration homes with real occupants.

To summarize the accomplishments of this project, we revisit the five project objectives
and four research questions stated in Section 1 and briefly describe how they have
been addressed and their broader implications.

e Objective 1: Validate the hypothesis that the home thermal model can be
applied to accurately capture home thermal properties and predict space
temperature dynamics.

e Objective 2: Validate the hypothesis that data collected from smart thermostats
and smart meters can be applied to detect both the deficiencies in system design
and construction, and faults during residency.

e Objective 3: Validate the hypothesis that real-time optimization can be achieved
to balance space temperature and energy costs based on occupants’
preferences, home thermal properties, weather forecasts, occupancy schedules,
and TOU energy pricing.

e Obijective 4: Demonstrate the cost and performance benefits of the technology
at homes with different ages, sizes, and household incomes.

e Objective 5: Disseminate the technology through a public domain and/or on a
website so that potential users, developers, and vendors can download
pseudocode, publications, and presentations, and identify a minimum of one
vendor as the technology licensee to commercialize the technology at the end of
this funded project.

e Question 1: Can the thermal model effectively predict energy use of an HVAC
system (extracted heat) with less than 15% error at 90% confidence?
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¢ Question 2: Can the thermal model effectively predict the space air temperature
within 2°F error at 90% confidence?

e Question 3: Can the MPC-based optimization agent be executed in real time
with given weather forecasts and parameters identified automatically through
data training?

e Question 4: To what extent (severity of AC faults) can the SYSTEM detect faults
using data collected through smart thermostats?

Over the project’s duration, we achieved each of these objectives and answered each of
these questions. Objective 1 and Questions 1 and 2 on the effectiveness of the home
thermal model are addressed in Sections 4.1, 4.2, and 4.3. We proved the hypothesis
that the home thermal model can accurately capture home thermal properties and
predict 12-hours-ahead space air temperature. Indeed, results from the Norman Test
House and Miami Test House showed that a 1.96°F error at 95% confidence was
attainable, surpassing the success criterion of 2°F error at 90% confidence. However, a
2.6°F error at 90% confidence was observed at PNNL Test House A, and an invalid
model was obtained at PNNL Test House B. As explained in Section 4.3, these issues
were caused by erroneous sensor measurements in the PNNL datasets. This suggests
that sensor/data quality control is a must before engaging in parameter identification.

Objective 3 and Question 3 on performance of the MPC-based optimization agent are
discussed in Sections 5.2 and 7.2. We established the hypothesis that an energy cost
optimization problem—which takes into account home thermal properties, weather
forecasts, users’ preferred temperature ranges, occupancy schedules, and TOU energy
pricing—can be formulated and solved in real time via an MPC-based optimization
agent. The optimization problem is an integer linear program that may be solved using,
for example, the CVX framework along with a GUROBI solver. The MPC-based
optimization agent has been implemented on an online, cloud-based data management
platform that collects data from smart thermostats and smart meters and enables
remote, optimal control of AC units.

Objective 2 and Question 4 concerning viability of the fault detection methods are
answered in Sections 6.5, 6.6, and 6.7. We have validated the hypothesis that data
collected from smart thermostats and smart meters can be used by an AFDD agent to
detect and diagnose airflow reduction faults and incorrect refrigerant charge faults in
residential AC units. The AFDD agent does so using one of two methods. Method 1
compares actual enthalpy changes across an evaporator with baseline enthalpy
changes and uses their differences to signal a possible fault. The method was found to
be effective in detecting and diagnosing RCL and AFR faults when their severity
reached 30%. However, when both faults occurred simultaneously, Method 2, which
uses two fault indices—enthalpy changes and indoor fan power—is required. The
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method first uses indoor fan power measurements to diagnose AFR and then uses
enthalpy changes to diagnose overcharge, undercharge, and occurrent faults with AFR.
Through lab and field tests, the method was shown to be capable of catching less
severe (around 15%) AFR faults.

Objective 4 concerning costs and benefits of the technology is discussed in Sections
7.1,7.2, and 7.3. We illustrated the performance benefits of both the MPC-based
optimization agent and AFDD agent by carrying out numerous field tests at homes with
different ages, sizes, and household incomes. These homes included the Norman Test
House, Miami Test House, PNNL Test House A, and PNNL Test House B, as well as
nine demonstration homes with real occupants. The field tests have shown, for
instance, that with the MPC-based optimization agent, up to 51% and 62% savings in
energy costs can be achieved on hot and mild summer days, respectively. The
significant amount of cost savings over a diverse collection of homes shows the promise
of the technology.

Objective 5 on dissemination and commercialization of the technology is discussed in
Sections 8.1 and 8.2. On the technology dissemination side, results from this project led
to a total of eight publications, including six journal papers and two conference papers,
and have been disseminated through community outreach and engagement, and
reported through local newspapers and TV channels. On the technology
commercialization side, results from this project led to one issued patent, one
provisional patent, and the identification of two potential licensees of the technology.

By using the data readily available through smart thermostats, such as AC on/off
signals, space air temperature, and humidity and node sensor temperature
measurements—as well as cloud-based computing—the validated technologies in this
project, including the learning-based thermal model, the optimization agent, and AFDD
agent can improve residential AC performance efficiency and cost savings for
homeowners with no additional hardware needed.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 121



Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

References

ASTM. 2019. Standard Test Method for Calibration of Thermocouples by Comparison
Techniques. American Society for Testing and Material. PA, USA.
https://www.astm.org/e0220-19.html.

Bell, lan H., Sylvain Quoilin, Jorrit Wronski, and Vincent Lemort. 2013. “CoolProp: An
open-source reference-quality thermophysical property library.” Abstract from
ASME ORC 2nd International Seminar on ORC Power Systems, Rotterdam,
Netherlands.

Brock, Fred V., Kenneth C. Crawford, Ronald L. Elliott, Gerrit W. Cuperus, Steven J.
Stadler, Howard L. Johnson, and Michael D. Eilts. 1995. “The Oklahoma
Mesonet: A Technical Overview.” Journal of Atmospheric and Oceanic
Technology. 12:5-19. https://doi.org/10.1175/1520-
0426(1995)012<0005:TOMATO>2.0.CO;2.

Brogan, William L. 1991. Modern Control Theory. United Kingdom: Prentice Hall.

Cericola, Rachel. 2015. Emerson ComfortGuard HVAC Monitoring Service Can Predict
Problems. Emerson Electric. https://www.electronichouse.com/home-enerqy-
management/emerson-comfortguard-hvac-monitoring-service-can-predict-

problems/.

Cetin, Kristen Sara, and Catilyn Kallus. 2016. “Data-Driven Methodology for Energy and
Peak Load Reduction of Residential HVAC Systems.” Procedia Engineering.
145:852-859. https://doi.org/10.1016/j.proeng.2016.04.205.

Chintala, Rohit, Jon Winkler, and Xin Jin. 2021. “Automated Fault Detection of
Residential Air-Conditioning Systems Using Thermostat Drive Cycles.” Energy
and Buildings. 236:1-11. https://doi.org/10.1016/j.enbuild.2020.110691.

DOE. 2021. “Programmable Thermostats.”
https://www.energy.gov/energysaver/programmable-thermostats.

DOE EERE. 2016. “Overview of existing and future residential use cases for connected
thermostats.”

Ejenakevwe, Kevwe Andrew, and Li Song. 2021. “Review of Fault Detection and
Diagnosis Studies on Residential HVAC Systems.” Presented at ASME 2021
International Mechanical Engineering Congress and Exposition, online.
https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2021/85642/V
08BT08A045/11329717%?casa_token=aoZwlqzFQ4YAAAAA:mEQjfeoB3csymszz0
mYgCJn90R9I9k-HeYkPAdx5s8zGPwchuVigePI12AkJIiV7UU95BINIE.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 122


https://www.astm.org/e0220-19.html
https://doi.org/10.1175/1520-0426(1995)012%3c0005:TOMATO%3e2.0.CO;2
https://doi.org/10.1175/1520-0426(1995)012%3c0005:TOMATO%3e2.0.CO;2
https://www.electronichouse.com/home-energy-management/emerson-comfortguard-hvac-monitoring-service-can-predict-problems/
https://www.electronichouse.com/home-energy-management/emerson-comfortguard-hvac-monitoring-service-can-predict-problems/
https://www.electronichouse.com/home-energy-management/emerson-comfortguard-hvac-monitoring-service-can-predict-problems/
https://doi.org/10.1016/j.proeng.2016.04.205
https://doi.org/10.1016/j.enbuild.2020.110691
https://www.energy.gov/energysaver/programmable-thermostats
https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2021/85642/V08BT08A045/1132971?casa_token=aoZwlqzFQ4YAAAAA:mE0jfeoB3csymszz0mYgCJn90R99k-HeYkPAdx5s8zGPwchuViqePI2AkJIiV7UU95BinlE
https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2021/85642/V08BT08A045/1132971?casa_token=aoZwlqzFQ4YAAAAA:mE0jfeoB3csymszz0mYgCJn90R99k-HeYkPAdx5s8zGPwchuViqePI2AkJIiV7UU95BinlE
https://asmedigitalcollection.asme.org/IMECE/proceedings/IMECE2021/85642/V08BT08A045/1132971?casa_token=aoZwlqzFQ4YAAAAA:mE0jfeoB3csymszz0mYgCJn90R99k-HeYkPAdx5s8zGPwchuViqePI2AkJIiV7UU95BinlE

Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

Emerson, E. 2021. Sensi Predict smart HVYAC for Contractors. Emerson Electric.
https://sensi.copeland.com/documents/sensi-predict-launch-guide-en-us-

6158016.pdf.

Emerson, E. 2017. ComfortAlert for Residential Applications. Emerson Electric.
https://climate.emerson.com/en-us/shop/1/copeland-comfortalert-for-residential-

applications.

Emporia. 2021. “Emporia Vue: Gen 2 Home Energy Monitor.” Emporia. Littleton, CO,
USA. https://shop.emporiaenergy.com/products/gen-2-emporia-vue-whole-home-
energy-monitor.

Florida Power & Light. 2022. “Residential Time of Use Rate.”
https://www.fpl.com/rates/time-of-use.html.

Gharghabi, Shaghayegh, Shima Imani, Anthony Bagnall, Amirali Darvishzadeh, and
Eamonn Keogh. 2018. “Matrix Profile XII: MPdist: A Novel Time Series Distance
Measure to Allow Data Mining in More Challenging Scenarios.” Presented at:
The 2018 IEEE International Conference on Data Mining (ICDM). Singapore.
https://doi.org/10.1109/ICDM.2018.00119.

Gowri, Krishnan, David W. Winiarski, and Ronald E. Jarnagin. 2009. Infiltration
Modeling Guidelines for Commercial Building Energy Analysis. Richland, WA:
Pacific Northwest National Laboratory. PNNL-18898.
https://doi.org/10.2172/968203.

Grafana Labs. 2021. “Grafana: The Open Observability Platform.” 2021. Accessed
January 24, 2023. https://grafana.com.

Grant, Michael, and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined Convex
Programming, Boston, MA: Springer.

Grigg, O. A., V. T. Farewell, and D. J. Spiegelhalter. 2003. “Use of Risk-Adjusted
CUSUM and RSPRT Charts for Monitoring in Medical Contexts.” Statistical
Methods in Medical Research. 12:147-170.
https://doi.org/10.1177/096228020301200205.

Gurobi Optimization, LLC. 2021. Gurobi Optimizer Reference Manual.
https://www.qurobi.com/wp-
content/plugins/hd documentations/documentation/9.0/refman.pdf.

Imani, Shima, Frank Madrid, Wei Ding, Scott Crouter, and Eamonn Keogh. 2018.
“Matrix Profile Xlll: Time Series Snippets: A New Primitive for Time Series Data

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 123


https://sensi.copeland.com/documents/sensi-predict-launch-guide-en-us-6158016.pdf
https://sensi.copeland.com/documents/sensi-predict-launch-guide-en-us-6158016.pdf
https://sensi.copeland.com/documents/sensi-predict-launch-guide-en-us-6158016.pdf
https://climate.emerson.com/en-us/shop/1/copeland-comfortalert-for-residential-applications
https://climate.emerson.com/en-us/shop/1/copeland-comfortalert-for-residential-applications
https://shop.emporiaenergy.com/products/gen-2-emporia-vue-whole-home-energy-monitor
https://shop.emporiaenergy.com/products/gen-2-emporia-vue-whole-home-energy-monitor
https://www.fpl.com/rates/time-of-use.html
https://doi.org/10.1109/ICDM.2018.00119
https://doi.org/10.2172/968203
https://grafana.com/
https://doi.org/10.1177/096228020301200205
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf

Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

Mining.” Presented at: The 2018 IEEE International Conference on Big
Knowledge (ICBK). Singapore. https://doi.org/10.1109/ICBK.2018.00058.

InfluxDB. 2021. InfluxDB OSS 2.0. 2021. https://docs.influxdata.com/influxdb/v2.0/get-
started.

Jain, Milan, Mridula Gupta, Amarjeet Singh, and Vikas Chandan. 2019. “Beyond
Control: Enabling Smart Thermostats for Leakage Detection.” In Proceedings of
the ACM Interactive, Mobile, Wearable, and Ubiquitous Technologies. 3:1-21,
https://dx.doi.org/10.1145/3314401.

Johra, Hicham, and Per Heiselberg. 2017. “Influence of Internal Thermal Mass on the
Indoor Thermal Dynamics and Integration of Phase Change Materials in
Furniture for Building Energy Storage: A Review.” Renewable and Sustainable
Energy Reviews. 69:19-32. https://doi.org/10.1016/j.rser.2016.11.145.

Juniper Technology. 2022. “Juniper Technology.” Accessed September 6, 2022.
https://www.junipertechnology.co/.

Kim, Jong-Jin, and Jin Woo Moon. 2009. “Impact of Insulation on Building Energy
Consumption.” Presented at: The Eleventh International IBPSA Conference,
Building Simulation. Glasgow, Scotland.
http://www.ibpsa.org/proceedings/BS2009/BS09 0674 680.pdf.

Kosny, Jan, T. Petrie, D. Gawin, P. Childs, A. Desjarlais, and J. Christian. 2001.
Thermal Mass-Energy Savings Potential in Residential Buildings. Oakridge, TN:
Pacific Northwest National Laboratory.
www.buildingstudies.org/pdf/energy studies/ORNL_Thermal-

Mass_Energy Savings Potential in_Residential Buildings.pdf.

Kraft, Dieter. 1988. A Software Package for Sequential Quadratic Programming.
Germany: Wiss. Berichtswesen d. DFVLR.

MathWorks. 2020. MATLAB Manual.
https://www.mathworks.com/help/matlab/index.html?s tid=hc panel.

McPherson, Renee A., Christopher A. Fiebrich, Kenneth C. Crawford, James R. Kilby,
David L. Grimsley, Janet E. Martinez, Jeffrey B. Basara, et al. 2007. “Statewide
Monitoring of the Mesoscale Environment: A Technical Update on the Oklahoma
Mesonet.” Journal of Atmospheric and Oceanic Technology. 24:301-321.
https://doi.org/10.1175/JTECH1976.1.

McQuiston, Faye C., Jerald D. Parker, and Jeffrey D. Spitler. 2004. Heating, Ventilating,
and Air Conditioning: Analysis and Design. United Kingdom: John Wiley & Sons.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 124


https://doi.org/10.1109/ICBK.2018.00058
https://docs.influxdata.com/influxdb/v2.0/get-started
https://docs.influxdata.com/influxdb/v2.0/get-started
https://dx.doi.org/10.1145/3314401
https://doi.org/10.1016/j.rser.2016.11.145
https://www.junipertechnology.co/
http://www.ibpsa.org/proceedings/BS2009/BS09_0674_680.pdf
http://www.buildingstudies.org/pdf/energy_studies/ORNL_Thermal-Mass_Energy_Savings_Potential_in_Residential_Buildings.pdf
http://www.buildingstudies.org/pdf/energy_studies/ORNL_Thermal-Mass_Energy_Savings_Potential_in_Residential_Buildings.pdf
https://www.mathworks.com/help/matlab/index.html?s_tid=hc_panel
https://doi.org/10.1175/JTECH1976.1

Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

Mueen, Abdullah, Sheng Zhing, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy
Viswanathan, Chetan Gupta, and Eamonn Keogh. 2022. “The Fastest Similarity
Search Algorithm for Time Series Subsequences under Euclidean Distance.”
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html.

Nelder, John A, and Roger Mead. 1965. “A Simplex Method for Function Minimization.”
The Computer Journal. 7:308-313.
https://people.duke.edu/~hpgavin/cee201/Nelder+Mead-ComputerJournal-

1965.pdf.

OG&E. 2022. “SmartHours — Because it's a SMART Time to Save on Energy.”
https://www.oge.com/wps/portal/ord/residential/pricing-options/smart-hours.

Ogunsola, Oluwaseyi T., and Li Song. 2015. “Application of a Simplified Thermal
Network Model for Real-Time Thermal Load Estimation.” Energy and Buildings.
96:309-318. https://doi.org/10.1016/j.enbuild.2015.03.044.

Ogunsola, Oluwaseyi T., Li Song, and Gang Wang. 2014. “Development and Validation
of a Time-Series Model for Real-Time Thermal Load Estimation.” Energy and
Buildings. 76:440—-449. https://doi.org/10.1016/].enbuild.2014.02.075.

Rogers, A. P., F. Guo, and B. P. Rasmussen. 2019. “A Review of Fault Detection and
Diagnosis Methods for Residential Air Conditioning Systems.” Building and
Environment. 161:1-12. https://doi.org/10.1016/j.buildenv.2019.106236.

Rotondo, Julia, Robert Johnson, Nancy Gonzalez, Alexandra Waranowski, Chris
Badger, Nick Lange, Ethan Goldman, and Rebecca Foster. 2016. Overview of
Existing and Future Residential Use Cases for Connected Thermostats. WA:
DOE/EE-1508.

Schrijver, Alexander. 1998. Theory of Linear and Integer Programming. Germany: John
Wiley & Sons.

Oklahoma Electric Cooperative. 2022. “Time of Use Rate.” Oklahoma Electric
Cooperative (blog). Accessed May 9, 2022. https://okcoop.org/time-of-use-rate/.

Waite, Michael B, and Sean M O’Brien. 2010. “Air Leakage: Difficulties in Measurement,
Quantification and Energy Simulation.” Presented at: Building Enclosure Science
and Technology (BEST2) Conference, Portland, OR.

Wang, Junke, Yilin Jiang, Choon Yik Tang, and Li Song. 2022. “Development and
Validation of a Second-Order Thermal Network Model for Residential Buildings.”
Applied Energy. 306:118124. https://doi.org/10.1016/j.apenergy.2021.118124.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 125


http://www.cs.unm.edu/%7Emueen/FastestSimilaritySearch.html
https://people.duke.edu/%7Ehpgavin/cee201/Nelder+Mead-ComputerJournal-1965.pdf
https://people.duke.edu/%7Ehpgavin/cee201/Nelder+Mead-ComputerJournal-1965.pdf
https://www.oge.com/wps/portal/ord/residential/pricing-options/smart-hours
https://doi.org/10.1016/j.enbuild.2015.03.044
https://doi.org/10.1016/j.enbuild.2014.02.075
https://doi.org/10.1016/j.buildenv.2019.106236
https://okcoop.org/time-of-use-rate/
https://doi.org/10.1016/j.apenergy.2021.118124

Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection
and Optimal Comfort Control

Wang, Junke, Choon Yik Tang, and Li Song. 2020. “Design and Analysis of Optimal
Pre-Cooling in Residential Buildings.” Energy and Buildings. 216:109951.
https://doi.org/10.1016/j.enbuild.2020.109951.

OpenWeather. 2018. “Weather API” Accessed January 27, 2023.
https://openweathermap.org/api.

Werling, Eric. 2015. Building America Research-to-Market Plan. USA: Office of Energy
Efficiency and Renewable Energy (EERE). DOE/EE-1285.
https://doi.org/10.2172/1226785.

Yeh, Chin-Chia Michael, Nickolas Kavantzas, and Eamonn Keogh. 2017. “Matrix Profile
VI: Meaningful Multidimensional Motif Discovery.” Presented at: The 2017 |IEEE
International Conference on Data Mining (ICDM). New Orleans, LA.
https://doi.org/10.1109/ICDM.2017.66.

U.S. Department of Energy | Office of Energy Efficiency & Renewable Energy 126


https://doi.org/10.1016/j.enbuild.2020.109951
https://openweathermap.org/api
https://doi.org/10.2172/1226785
https://doi.org/10.1109/ICDM.2017.66

Development and Validation of Home Comfort System for Total Performance Deficiency/Fault Detection

and Optimal Comfort Control

Appendix

Appendix A. Lists of the Pi and Sensors Installed in the Norman Test Home

Table A.1. Specifications of All Measurements for the Data Acquisition System

Pi No. | Measurement Channel | Pi No. | Measurement Channel
T 0 T25 0
T2 1 T26 1
Pi 1 Pi 10
T3 2 Open 2
T4 3 Open 3
T5 0 T21 0
T6 1 T22 1
Pi 2 Pi 11
T7 2 T23 2
T8 3 T24 3
T9 0 T28 0
T10 1 T29 1
Pi 3 Pi12
T11 2 T30 2
T12 3 T31 3
T15 0 T32 0
T16 1 T33 1
Pi 5 Pi13
T17 2 T34 2
T18 3 T35 3
Wind speed 0 T38 0
Open 1 T39 1
Pi 6 Pi 14
Open 2 T40 2
Open 3 T41 3
T19 0 T43 0
Pi 7 Pi 15
T20 1 T44 1
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Pi No. | Measurement Channel | Pi No. | Measurement Channel
T36 2 T45 2
T37 3 T46 3
T13 0 T47 0
T14 1 T48 1

Pi 8 Pi 16
T27 2 T49 2
T42 3 Open 3
Indoor frequency | O Solar radiation 0
Outdoor frequency | 1 Airflow from return duct 1 1
House frequency | 2 Airflow from return duct 2 2
Indoor power 3 Relative humidity from supply air duct | 3

Pi 4 Outdoor power 4 Pi 9 Air temperature from supply air duct | 4
House power 5 Relative humidity from return air duct | 5
Indoor pulse 6 Air temperature from return air duct 6
Outdoor pulse 7 Total airflow rate 7
House pulse 8 Open 8
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Table A.2. Specifications of Location and Function of Sensors with Connected Pi for the Data

Acquisition System

Pi
Location Function
Number
Between bedroom )
1 Indoor air temperature measurements
1and 2
2 Livingroom Indoor air temperature measurements
3 Bedroom 3 Temperature measurements for indoor air and interior wall surface
4 Dining room Power measurements
5 Between bedroom Temperature measurements for the exterior wall surface and
1and 2 leaving and entering air of the outdoor unit
6 Bedroom 3 Wind speed measurement
Temperature measurements for the exterior wall surface and supply
7 Bedroom 3
air from diffuser
o Temperature measurements for indoor and outdoor air, exterior wall
8 Dining room ) )
surface, and supply air from diffuser
9 Bedroom 3 Solar radiation and duct flow rate measurements
10 Attic Duct temperature measurement
11 Living room Partition wall surface temperature measurement
12 Bedroom 1 Interior wall surface temperature measurement
Temperature measurements for interior wall surface and supply air
13 Bedroom 3 )
from diffuser
Between bedroom ) )
14 Air temperature measurements from supply diffusers
1and 2
Between bedroom ) )
15 1 and 2 Air temperature measurements from supply diffusers
an
16 Living room Air temperature measurements from return diffusers
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Appendix B. Model Parameter Estimation
(1) Identify t; and 7, in Equation (3.11)
XiB1=" (B.1)

The least-squares solution to Equation (B. 1) is

5 — ﬁ1(1)>: XTX _1XTY B. 2
B <Bl(2) XiX) X h (B.2)

Thus,
7, = At/B;(1) and T, = At/B,(2). (B. 3)

where X, and Y; are known matrices; f3; is the matrix to be identified; and f; is the least-
squares solution matrix.

To (2) - Tie (2) Tin(z) - Tie(z)
To (3) _ Tie (3) Tin(3) _ Tie(3) Ty
X1 = : : > B = [Tz]’
To(k - 1) - Tie(k - 1) Tin(k - 1) - Tie(k - 1)
To (k) — Tie (k) Tin(k) — Tie (k)
(B. 4)
Tie(z) - Tie(l)
Tie(3) - Tie (2)
Y, = : .
Tie(k—1) = Tie(k — 2)
Tie(k) - Tie(k - 1)
(2) Identify 73, by, by, a4, a,, as, Q;, and Q, in Equation (3.12)
XoB, =Y, (B.5)
The least-squares solution to Equation (B. 5) is:
B (D)
B(2)
A3
h ﬁZ (4) — T —-1vyT
2 =1 4 =X X)X, 7, B.6
p £(5) ( ) (B. 6)
b(6)
B2(7)
B2(8)

Thus,
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T3 = At/Bo(1), by = Bo(2) /B, (1), by = B2(3)/B2(1), ay = ,(4) /B, (1), a,
= ,5’2 (5)/32(1); as = 32(6)/,@2(1); Q; = Bz (7)/32(1)' and Qg (B.7)
= .5’2 (8)/32(1)-

where X, and Y, are known matrices; 3, is the matrix needed to identify; and B, is the
least-squares solution matrix.

X, =
Tie(2) — Tin(2) (To(2) = Tr(2))W (2) (T,(2) = T;in(2)
Tie(3) — Tin(3) (T,(3) — Tl-.n(B))W(3) (1,3) - Tin(3)

Tl = 1) = Tk = 1) (Ty(k — 1) = Tyl = D)W (k — 1) (Ty(k — 1) — Ty (k —
Tie (k) — Tin (k) (T, (k) — Tin (K))W (k) (T, (k) — Ty (k)

a, (B. 8)
B = a,

Tin(z) - Tin(l)
Tin(g) - Tin(z)
Y, = : .
Tin(k — 1) = T (k — 2)
Tin(k) — Tin(k — 1)
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Appendix C. Weather Conditions
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Appendix D. News Coverage of the Project for Technology Dissemination

BY DAISY CREAGER
The Journal Record

NORMAN - University of Oklashoma
researchers have partnered with Okla-
homa Gas and Electric, EcoBee, Ideal
Homes and others to create a heating
and cooling systemn that saves money and
energy. while making customers more
informed ai'luut their e[r:d:ncl{'vblll

GalloglyiEall erings
ciate professors Li Song, with ﬂw Sch.ual
of Aprospace snd Mechanical Engi-
neering, and Choon Yik Tang, with the
School of Electrical and Computer En-
sineering, are leading efforts on a self-
learning heating ond cooling system.

The system is designed to build on
existing smart thermostat technology by
accounting for temperature, wind speed,
sunlight, weather forecasting and cus-
tomer preferences, Ies algorithm will use
those factors to forecast what the tem-
perature inside the home will be over 24
hours, allowing occupants to see the ime
period’s contribution o their bill and
how changes to the thermostat settings
will impact the day's electricity cost.

“The occupants may be away from
home in the afternoonand come back in
the evening, so they could have different
preferences set over the day. ... They are
able to experiment with different choic-
5" Tanyr said.

yof 0 1a profs

Song said she had the idea shout five
years ago and approached OG&E about
it and the process of applving for federal
funding through s grant the utility had
applied for previously.

OG&E reported at the time having
customers complain about wanting to
better understand their bills; and this
system would help achieve that goal,

“It really just sligned with what we
were looking st as well. Its our local
university, what better to suppart them
while they create technology that will
help support our costomers.” said Jos-

Li Song and students, from left, June Wang, Emman-
uel Hakizimana and Rodney Hurt measure and analyze a home's energy output.
COURTESY UNIVERSITY OF OKLAHOMA

sica King, an OG&E customer program
SUPPOrt SUPErvisor,

The system will especially help resi-
dents whose electric bill is made more
complex by programs like OG&E's Smart-
Hours, which charges more for electricity
during peak hours on weekdavs during
the summer:

“Our model will be able to tell you
upfront,” Song said. “If you want to have
75 degrees, based on today’s weather
condition, youll find out what you're
going to pay for it. For some people who
want to save §10, they can tolerate two

OU researchers developmg smart AC system

or three degrees higher temperature.”

Funded by a $1 million US. Depart-
ment of Energy grant, the researchers
want the system ready for eommercial
deplovment at the end of three years.

Two years will be spent refining the
system in an unoccupied Norman test
home owned by OU. In the third year,
OGE&E will recruit customers willing to
participate as occupied test homes.

OU students needing research credit
will have the opportunity to assist in
project development.

Song said the team will use machines to
simulate electrical load in the test house.
They decided to keep it unoccupied for
complete control while running initial
tests, but will simulate the moisture, heat
and other things created by residents.

As well as improving bill predictabil-
ity, the system will optimize HVAC op-
erations, detect AC problems earlier and
reduce emissions, Song said.

When complete, the system is pro-
jected to reduce energy use by up to
40% in existing homes and 60% in new
homes compared to the 2010 level.

“Initially we really just wanted to do
temperature forecasting for OG&E to
help them deal with these complaints
from their clients. But as we moved for-
ward, we found out with this informa-
tion available, we actually can do a lot
more,” Soms said,

Figure D.1. Newspaper report about the project in August 2019

Article from: https://journalrecord.com/2019/08/ou-researchers-developing-smart-ac-system-that-could-lower-bills-by-
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@ Energy

Old house becomes center of energy research at OU

NORMAN (JR) - University of
Oklahoma engineer Dr. Li Song never
imagined that a 1940s Norman bungalow
would be central to rescarch.

For more than 20 years, Song has
primarily studied thermal science in
large-scale complex buildings such as
hospitals, office buildings and towers.
However, the mechanical engineering
professor recognized an opportunity a
few years ago.

Song thought that smart thermostats
- Wi-Fi thermostats - merited further
investigation. She noticed hundreds
of computer scientists were collecting
data about smart thermostat usage, but
few were studyving their actual physical
systems.

First, though, Song
laboratory.

Enter the bungalow located just a
block south of the OU campus. Now
known as the Building Energy Efficiency
Laboratory (BEEL) house, the accom-
modation was made possible by research
funding from the Oklahoma Center for
Advancement of Science and Technol-
ogy, Pacific Northwest National Labora-
tory and OG&E with additional support
from the Department of Energy.

Before even converting the bungalow
to a lab, Song had initiated development
of a "self-learning home thermal model”
At first, the model was limited to homes
with air conditioning and gas-furnace
heaters, but now that has grown to in-

needed a

Li Song, a mechanical

at the |

y of Oklah the

Building Energy Efficlency I.aboratorr (BEEL) house justa block south of the Norman cam-

pus. FHOTO BY MARCARITA RODRIGUEZ

clude homes with electric heat pump
systems. The model can automatically
identify model parameters with mini-
mum data needed and can also precisely
predict the space temperature.

When we first started in 2019, we had
all this excitement an paper yet, nath-
ing had been implemented,” Song said.
“We came to an empty house. We were
nat sure we could upgrade it to a cloud-

based, remote-accessible research facility
to do our experiments on. Now, we've
done all that™

The BEEL Lab House is the only such

research lab in the Gallogly College of

Engineering. Tt's about 1,400 square feet
and completely instrumented and up to
the required standard. Only in operation
for three years, the facility already has
made an impact.

“Having this residential home has al-
lowed OU engineering students and re-
searchers to embrace innovation, design
and cutting-edge technology to develop
new solutions in smart building systems,”
Song said. More than 20 students have
completed research projects ranging
from capstones and undergraduate re-
search to Ph.D. dissertations.

Because the home is remotely acces-
sible, students and rescarchers were able
to conduct their experiments even dur-
ing the pandemic, Song says.

“My students did not have to be physi-
cally in the house, but they were still able
to carry on with their projects remotely.
The research of many students at OU got
postponed during the pandemic, but we
were able to keep moving forward.”

There are several other advantages to
working in a residential home, including
unique partnerships with researchers
at the University of Miami and Pacific
Northwest National Laboratory, Song
said. The BEEL Lab House is a “living
laboratory for community outreach.”

“Successful experimental validation
in the BEEL Lab House has accelerated
the technology implementation to many
areas including tribal communities in
Oklahoma with the support from OU
Institute for Resilient Environment and
Energy Systems,” Song said. "The BEEL
Lab House has made the technology vali-
dation, transfer and real-world impact
possible”

Figure D.2. Newspaper report about the project in December 2022

Available from: https://journalrecord.com/2022/11/old-house-becomes-center-of-enerqy-research-at-ou/
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