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Abstract—Bidirectional wireless communication is employed
in various smart grid components such as smart meters and
control and monitoring applications where security is vital. The
Trusted Third Party %T’FIE) and wireless connectivity between
the smart meter and the third party in the key management-
based encryption techniques for the smart grid are expected to be
totally trustworthy and dependable. In a wired/wireless medium,
however, a man-in-the-middle may seek to disrupt, monitor and
manii)ulate the network, or simply execute a replay attack,
revealing its vulnerability. Recognizing this, this study tpresents a
novel authentication management (model) comprised of two layer
security schema. The first layer implements an efficient novel
encryption method for secure data exchange between meters
and control center with the help of two partially trusted simple
servers (constitutes the TTP). In this setting, one server handles
the data encryption between the meter and control center/central
database, and the other server administers the random sequence
of data transmission. The second layer monitors and verifies
exchanged data packets among smart meters. It detects abnormal
packets from suspicious sources. To implement this node-to-node
authentication, One class support vector machine algorithm is
proposed which takes advantages of the location information as
well as the data transmission history (node identification, packet
size, and data transmission frequency). This schema secures data
communication, and imposes a comprehensive privacy through-
out the system without considerably extending the complexity of
the conventional key management scheme.

I. INTRODUCTION

The term “smart grid” equates to the advanced power sys-
tem that incorporates bidirectional communication, ubiquitous
computer capabilities, and intelligent technology to enhance
reliability, control, efficiency, and safety within the distribution
system. The Advanced Metering Infrastructure (AMI) serves
as a fundamental component at the distribution level. It com-
prises a vast number of interconnected meters organized in
a hierarchical or mesh or hybrid networking configuration.
Wireless technology is used by the meters to connect with
the control center. The commonly employed communication
protocols for AMI encompass ZigBee, WiFi, and LTE [1]],
[2]. Among these diverse communication standards, ZigBee
has attracted considerable attention [3]], [4]]. However, the short
transmission range of ZigBee hinders the feasibility of trans-
ferring data directly from smart meters to the control center
leading to cooperative transmission. Within the cooperative
framework, each smart meter is responsible for gathering and
retaining real-time energy consumption data. This information
is subsequently transmitted at regular intervals to the control
center by relaying it through adjacent nodes. The data packet
continues to be forwarded until it reaches the data collector,
at which point the aggregated packet data is dispatched to the
control center [5]—[7].

Due to the utilization of wireless connection and hop-to-hop
data aggregation and forwarding, security concerns emerge as
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a significant challenge for AMI. By analyzing use patterns, an
adversary or thief may be able to anticipate the whereabouts
of targeted customers within their residences, so posing a
potential risk to their personal safety and privacy. Additionally,
via the analysis of detailed energy consumption data, home ap-
pliance firms are able to get insights into consumers’ lifestyles
and habits and the energy usage of their household equipment.
Hence, rival firms companies might want to eavesdrop in
the hop-to-hop communication and can use this valuable
information in their businesses. Consumers would want to
tamper with consumption data to reduce their electricity bill.
The most crucial thing is that the opponent/hacker might jam
or take over the AMI network by sending a false signal to
meters on an unsecured system, which may cause a wide
area power outage along with an imbalance in the demand
generation model.

The main obstacle for implementing AMI security scheme
is the tightly bounded memory and low computation ca-
pability of the smart meters which calls for a lightweight
and resilient security scheme. The key management-based
encryption approach has been recognized in the literature as
a notable security system for the smart grid, which incor-
porates a Trusted Third Party (TTP) [8]-[13]. Almost all
TTP management solutions make the premise that the TPP
can be entirely trusted. However, the TTP, the meters, and
the communication linkages between the TTP and the meters
might all be breached.

Taking into account semi-trusted servers and untrustwor-
thy/unreliable communication channels, this paper presents
an authentication management consists of two-layer security
scheme. The first layer boosts the security of the data trans-
missions between the Smart Meter (SM) node and the control
center/Metering Data Management Service (MDMS) by data
encryption as well as randomized packet transmission. As
mentioned in our early work [14]], the scheme consists of two
seperate servers. Secure communication using public-private
key management between every smart meter and MDMS is
handled by the master server. On the other hand, the auxiliary
server manages the transmitted sequence of the data packet
(using a public key received from the master server). The pri-
vate key associated with the public key and generated random
sequence are used to retrieve the data at the MDMS. This paper
extends [14] by using One Class Support Vector Machine
(OCSVM) and Received Signal Strength (RSS) techniques
for authentication in node-to-node links. OCSVM is used to
detect malicious packets from unknown sources considering
data transmission history like transmission frequency, data
packet size, and distance between sender and receiver. RSS
algorithm is applied to localize meters via the RSS from
its neighbor meters. In the prevision version of work [14],
only RSSI based distance was used on node authentication
algorithm. On the other hand, on OCSVM based node-to-node
authentication, we use three features which makes the node-to-
node authentication more robust. And the main motivation for
selecting OCSVM for node authentication is because of its
memory efficiency, effectiveness in small and medium-sized
datasets, robustness to over fitting, various Kernel options, and
global optimization advantage.

This comprehensive approach has, to the best of our knowl-
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edge, never been introduced in the literature previously. The
utilization of two separate servers for key management, to-
gether with the implementation of randomly sequenced packet
transmission, enhances the level of security resilience in an
untrusted communication links and servers. Furthermore, node
to node authentication based on OCSVM secures inter-node
communication without the considerable overhead, and limited
resource requirement makes it a suitable technique for a trusted
node to node communication. Additionally. The usual data
traffic flow between the meters and control center is unaffected
by the communication between the meters and servers, which
happens once for each session of data transfer. Therefore,
our approach provides significant improvement in conventional
key management based system by two level security- data
security and node authentication. Additionally, by prudent
design of cluster of meters served by a TTP (a master and
an auxiliary serve) we can make this approach scalable.

The subsequent sections of the paper are structured in
the following manner. Section II provides an overview of
the existing literature pertaining to the security techniques
that have been suggested for the AMI. In Section III, the
architecture of the suggested model is presented. In Section IV,
we provide a discussion on the theoretical foundations of RSS-
based localization, OCSVM, and entropy of data packet in
relation to our suggested system. Section V of this paper
provides a detailed analysis of the implementation of the
security strategy, as well as the communication flow between
smart meters, servers, and MDMS. The analysis of simulation
results and the theoretical security strength of a data packet
is conducted in Section VI. In conclusion, this paper presents
the final thoughts in Section VII.

II. LITERATURE REVIEW

Security challenges in AMI have received a substantial
attention in recent years from a variety of communities,
including electrical engineers, computer scientists, and IT
specialists [15]-[17]. We can divide the works from the
literature into major two categories: (1) non key management
system based schemes and (2) key management system based
schemes.

In non key management system based security schemes,
few diverse approaches have been proposed for reinforcing
the security in the AMI. In [[18]], randomization of the AMI
configuration is proposed to make its behavior unpredictable
to the hacker, whereas the behavior is predictable to the
control center. In [19], [20], authors introduced anonymization
of data by randomizing node identity using a TTP. But,
communication overhead may be increased due to the need
for the TTP to communicate with all nodes simultaneously.
In [21], [22]], homomorphic encryption has been introduced.
Though it requires minimal calculation at data retrieval, but it
may be complicated for a large network. In [23]], the authors
introduce a blockchain-based lightweight solution that utilizes
a received signal strength indicator (RSSI) for localization
and provenance through blockchain. The adversarial nodes
can be identified with the variation of RSSI. The paper [24]]
presents an approach that aims to ensure privacy preservation
during authentication and data aggregation in a smart grid sys-
tem utilizing fog computing technology. The authors propose
to employ the techniques of short randomizable signature and
blind signature to establish a system of anonymous authenti-
cation. In addition, the smart meter readings are consolidated
using the homomorphic Paillier cryptosystem.

On the other hand, in case of key management system based
schemes, vast works can be found in the literature. The key
management system based security schemes can be catego-
rized into four major categories [16]: (1) Key graph based
scheme, (2) Authentication based scheme, (3) PUF based
scheme, and (4) Hybrid scheme. In addition to introducing
Information-Centric Networking (ICN) in AMI systems, the
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authors in [11]] introduce a key graph-based key management
system for numerous smart meters. In the proposed ICN-AMI
structure, a key graph consists of the user key, the group
key, and the root key for unicast, multicast, and broadcast
purposes. This approach addresses the confidentiality and
integrity of data, but it does not address authentication. In [25]],
the authors propose Multi-Group Key Graph (individual and
batch rekeying) based Versatile and Scalable key management
scheme for AMI (VerSAMI) and VerSAMI+ which supports
unicast, multicast, and broadcast communications. It addresses
the packet overhead and does not address the node/packet
authentication. In order to secure the smart metering network,
the paper [26] introduces a sophisticated hybrid encryption
system which combines public and symmetric key encryptions.
The foundational components for the suggested scheme are
the Elliptic Curve Integrated Encryption Scheme (ECIES)
and Advanced Encryption Scheme (AES). A precomputation
approach that offers quicker encryption and decryption is given
in order to reduce the computational cost of ECIES. In [27],
the author introduces a simple anonymous authentication and
key agreement approach for the smart grid, which enables the
service provider and the smart meter to establish a shared ses-
sion key and authenticate one another. In comparison to current
smart grid authentication systems, it ensures the anonymity
and untraceability of the smart meter while achieving quick
mutual authentication between the service provider and the
smart meter.

In [28], event driven asset centric key management is
proposed where key management (i.e. key generation, refresh-
ment, revocation, etc.) is orchestrated automatically based on
events from assets or nodes. In [29], public key management
has been proposed for smart grid based on elliptic curve
public key cryptography and Needham Schrouder symmetric
key authentication. Even though, scalability and simplicity are
two advantages of this approach, it does not come with experi-
mental proof. In [30], symmetric key establishment mechanism
is proposed based on X.1035 standard which reduces data
delivery time up to 75%. In [31], group key management
with three-tier network model is proposed which requires
moderate key storage. The paper [32] introduces a novel
authentication protocol that incorporates a key establishment
mechanism. The system enables service providers to securely
commence communication with multiple smart meters, facil-
itating the dynamic update of power consumption data. The
protocol under consideration has been formally verified for
correctness using GNY logic. In the paper [33], the authors
proposes a novel quantum-defended lattice-based anonymous
mutual authentication and key-exchange (MAKE) protocol for
secure group (SG) systems. The suggested technique has the
capability to achieve resilient conditional identity anonymity
and key management through the utilization of small integer
solutions and inhomogeneous small integer solutions lattice
hard assumptions. This eliminates the need for additional
complex cryptographic primitives.

In [34], a security scheme is proposed for smart meters
applying digital signatures that a trusted third party can sign
and timestamp. Additionally, data hashing using SHA-256
ahead of applying the signature adds a layer of security. For
an end-to-end communication solution, [35] proposes Identity-
Based Signcryption (IBS) with zero configuration encryption
and authentication. In [36], encryption of node-to-node links
using a secret key has been proposed. However, in large
networks, packet overhead might be increased for both IBS
and node-to-node authentication. In [37], Diffie—Hellman key
protocol based message authentication is proposed in addition
to Hash based message authentication. This approach provides
higher scalability, lower memory utilization and less delay for
decryption. Four broad countermeasures to thwart attacks on
smart meters have been proposed in [38]]: (1) authentication
and strong encryption of communication that deals with HAN
and NAN and buses within smart meters, (2) secure key
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management which form the critical backbone to a secure
AMI, (3) securing the firmware to avoid being manipulated
by the attackers or mistakenly by authorized personnel, and
(4) security-driven firmware development cycle that conducts
frequent walkthroughs and security assessments.

The protocol proposed in the paper [39] utilizes a physically
unclonable function (PUF) and incorporates a one-time pad
mechanism. This approach offers a notable advantage by
eliminating the need for the Diffie-Hellman key setup protocol.
The cryptographic key utilized in this scenario is derived from
a genuine random source known as a Physical Unclonable
Function (PUF), which is included within the secure module’s
(SM) hardware. In [40]], authentication between smart meter
and utility server along with low overhead key management
has been proposed. The mutual authentication consists of four
steps whereas the key management is founded on ID based
public/private key pair model with lower transmission over-
head for key refreshment. The paper [41]] presents an authen-
tication mechanism called Anonymous Secure Authentication
mechanism for the SG environment (ASAP-SG). ASAP-SG
is capable of achieving authentication and key agreement
between smart meters and service providers through the uti-
lization of elliptic curve cryptography and physical unclonable
function. The proposed approach minimizes the computational
cost for both smart meters and service providers, resulting in
reduced communication overhead. The author in [42] presents
a key establishment protocol for secure group communication
that possesses several desirable characteristics such as a high
level of anonymity, resilience against well-known attacks with
perfect forward secrecy, and efficiency in terms of computa-
tional and communication costs. It eliminates the need for a
Public Key Infrastructure (PKI) and the number of necessary
messages for mutual authentication is reduced to merely two.

To distribute the keys and manage the network, a wireless
sensor network based Public Key Management Infrastructure
(PKI) has been proposed in [[12], [43]]. However, it requires
to generate a large numbers of unique keys for a large
networks. In [44], a Key Management System (KMS) has
been introduced based on DLMS/COSEM standard providing
two main information security features: data access security
and data transport security. Since DLMS/COSEM is an open
standard and allows a number of variations in the protocol
implementation, it might increase the complexity in the client
side. In the study [45]], a security architecture consisting of two
layers was presented to ensure the security of communication
between the meter and the Data Concentrator (DC), as well
as between the DC and the control center. The recommended
approach for encrypting the meter-to-DC communication is
based on the IEC 62056 standard. Similarly, for the DC
to control center communication, the use of a public Key
Management System (KMS) has been suggested. However,
it is necessary to conduct encryption and decryption twice in
each time step.

In contrast to previous research in the literature, our pro-
posed approach offers enhancements in the AMI systems. In
our approach, we use randomization of data transmission and
node-to-node authentication methods to address the challenges
posed by unreliable communication scenarios. Additionally,
we leverage a machine learning technique to enhance the effec-
tiveness of our proposed method. The use of data packet ran-
domization and the utilization of machine learning for node
authentication enhances the robustness of the schema without
incurring additional costs.

III. ARCHITECTURE OF THE PROPOSED SECURED AMI

The proposed AMI is similar to a typical AMI which is a
web-like network with millions of meters except it has two
extra servers as shown in Fig. [l Two mechanisms are pro-
posed for the encryption of each data packet and authenticate
the communication among meters.
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Fig. 1: An AMI architecture comprising a control center,
data concentrator, and cluster of mesh- or hybrid-connected
meters.

A detailed description of the components of proposed AMI
is provided here.

e Smart meter: It is a solid state device responsible for
collecting, storing and sending data to MDMS using
wireless communication in a fixed interval time less than
1 hour.

e Home Area Network (HAN): All home appliances are
connected to a smart meter by a network, forming HAN.

o Neighborhood Area Network (NAN): The meters are
connected to each other through a mesh or hierarchical
or hybrid wireless network termed as NAN. In our archi-
tecture, we assume that NAN utilizes ZigBee protocol.

e Data Collector/concentrator: The head end of the NAN
is the data concentrator or gateway which collects data
from NAN and forwards those to MDMS by a dedicated
wired or wireless connection (e.g., optical fiber, a cellular
network, etc.).

o Metering Data Management Service (MDMS) /control
center: The MDMS receives the consumption data from
the AMI network, and calculates bills based on them.
Having fine-grained collected data, MDMS also monitors,
manages, and optimizes power generation and electricity
distribution in the grid.

e Master server: Master server generates a pair of private
and public keys for a SM ahead of each session. The
public key is unicasted by the master server to be used in
encryption. On the other hand, the unicasted private key
is received at the Auxiliary server and MDMS for decryp-
tion. In the proposed architecture, the connection between
the Master server and NAN is via untrusted wireless
communication whereas the Master and Auxiliary server
are connected to MDMS by reliable communication (such
as optical fiber, 5G).

o Auxiliary server: Ahead of data encryption using the pub-
lic key received from the Master server, the smart meter
creates a random sequence. This sequence is encrypted by
public key and sent to the Auxiliary server. The Auxiliary
receives the random sequence then authenticates it using
the private key of the smart meter before forwarding it
to MDMS for final decryption.

Since in our model, a cluster of meters is supported by a
Master and an Auxiliary server, our scheme can be scalable
by prudent design of clusters.
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A. Basic Notifications and Definitions
. . .. . . Feat
The notifications and definitions used in the presented — Taining | [ - . e -
algorithm and data flow scheme are stated in Table The Packets xiraction
(RSS...)
Model
. . oy ‘ Normal
TABLE I: Symbol notations and definitions.
Application New Feature Packet
Notation DescriptiOﬂ In Real Time Data ‘ Extraction ‘ ., Abnormal
SM; Smart meter node 4 (B5=2) Packet
TT Py Master server
TTP Auxiliary server . .. .. .
i A Asymmey[ric encryption scheme for meter 2 Flg. 2: Tralnll’lg and appllcatlon Of OCSVM mOdel 1n smart
Ki Randomized key generation algorithm for meter meters
(3
pk; Public key for meter ¢
sk; Secret/private key for meter i
o ge‘l’lne"t message/data of meter i out the malicious packet data from an unauthorized source,
i iphertext message/data of meter 4 th tent of the dat ket should b d full
E({u,v},w) Encrypt the cleartext w and v with the key w € content o ¢ data packet shou € screened carcrully
D({{v},q) Deterministically decrypt ciphertext y with the before delivery and dispatch to the next node in the grid.
11{<?Y q ) One class classification, or concept learning in the absence
tzt N}rer;z;:emgaégfzf:e for node 4 at time ¢ of counter examples, has the potential to tackle these kinds of
" Number of packet segments for a given meter ;problems. Among different implementations of the Support
at time ¢ Vector Machine (SVM), one class classification algorithm
(c1,¢2,+ - ,cn) € C@ Segmented packets of cipher-text for meter ¢ (OCSVM) is selected in this work and the performance is
(r1,72,-+-,™n) €ER Random sequences at time instant ¢ compared with another anomaly detection algorithm: Isolation
(1, P2, ,pn) € P Probability of jth packet transmission Forest [46], [47]. Appropriate features of the packet data
AP Data concentrator/Access Point . -
~ Path loss component should be extracted and fed into the OCSVM for training and
oy Variance of random noise later on for testing the new packet. Location (i.e. distance)
SM Set of all smart meters of the sender, which is an informative feature for detecting
f%x _ Set of ZigBee connections, where x € [1.3] " the unauthorized source, is not directly defined in the data
eq; Key request message sent by SM; to 77 Py Kket. T tract this foat RSS aleorithm is utilized. RSS
N Number of smart meter nodes, i.e. ¢ € [1, N] pac e.~ 0 extrac ls_ cature, ‘ a gorl m 15 utilized.
PSO Particle Swarm Optimization can pinpoint the location of neighboring meters based on the
OCSVM One class support Vector Machine received electromagnetic signals. Other features of the data

Let, SM = {SM;}¥ | denotes the set of participating smart
meters connected as a network in our system. Also, let graph
G = (SM U {AP},L; U Ly U L3) represents the network
topology of smart meters where:

o AP represents the data concentrator,

e L; denotes the set of ZigBee connections connecting

neighboring smart meters together,

o L, represents the set of ZigBee connections connecting
the data collector AP to a few nearby smart meters (see
Fig. 1 for illustration)

e L3 is untrusted communication links (such as ZigBee,
WiMax etc.) between the Master sever 17" P),/ Auxiliary
sever TT'P, and every smart meter in SM,

e Both the TT'Py; and TT P, are connected to MDMS via
a dedicated network. Additionally, they are connected by
a trusted connection.

It is worth mentioning that each SM has a unique ID which
is stored in the data packet, TT'Py; and TTPy. TT Py and
MDMS exchange the corresponding private key based on this
ID. They both stored the corresponding private keys of the
SM in their internal databases to retrieve at the time of packet
arrival for decryption purpose.

For a node-to-node authentication of data packets, a ma-
chine learning algorithm is proposed to run in each smart
meter. The proposed algorithm explores all the incoming data
packets in real time and identifies whether it is reliable or
spiteful based on the three features of the packet including 1)
the distance of the packet sender which is estimated by RSS-
based localization algorithm, 2) time intervals that a packet
is received in destination, and 3) packet size. Based on the
decision of the algorithm, the packet is accepted and forwarded
to the next SM in the grid, otherwise the packet will be
discarded. Fig. 2] illustrates the mechanism.

IV. RSS ALGORITHM, OCSVM AND ENTROPY OF A DATA
PACKET

As mentioned earlier, packet data is circulated among the
meters in the path reaching the destination AP. To point
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packet such as packet size, and transmission frequency are
relatively simple to capture or infer. In the following part, the
RSS and OCSVM algorithm are discussed in details.

A. Received Signal Strength (RSS) based Localization

Let’s assume an unknown positioned meter at a location
(z,y) accompanied by somewhat dispersed meters of known
position at locations (x;,y;), where 1 <1 < n. The received
signal strength at location (z;,y;) from the unknown position
meter can be denoted by v; [48]-[50]

Yy = ¢ — 10 log(d;) + wy, )

Such that ¢ is an unknown constant that depends on transmis-
sion power, frequency, etc., and v is the path loss exponent.
Path loss exponent defines the decay rate of electromagnetic
signal. In our model, v = 2.93 is used regarding a residential
area. The parameter d; represents euclidean distance between
the known and unknown position meter defined as follows:

d=(x—2)2+ (y —u)? )

and wy is the zero mean random Gaussian noise with standard
deviation o0;. The value of o; ranges from 6 to 12 dBm.

Let us define, the @ and v as 8 = [z,9,2]7 and
P = [, e ,¥n]T, where z is the reference
transmission power.

The likelihood function of @ for a given RSS measurement 1,
f(@|v) is given by

—c+ 10ylog(d;)}?
207 ’

fBlp) =crexpq — > v 3)
=1

where ¢ is a constant.

!Unless or otherwise specified, node and meter are same thing in the rest
of the study.
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~

The Maximum Likelihood (ML) estimate of €, denoted by 6,
can be found from the following equation

6 = argmax f(0]v)
i argmm{ _ 3o Wiz er 10y log(d))” } @

20,2
=1

The equation presented above is an optimization problem.
A range of optimization approaches, including differential
evolution, dynamic relaxation, and Particle Swarm Optimiza-
tion (PSO), can be employed for the purpose of solving
(4). In the current problem, PSO is used to solve the non-
linear optimization problem. Finally, the ML estimator yields
the location (x,y) and reference power z of the unknown
positioned meter

(2,9.2) = {0(1),6(2),6(3)}- )

Now the distance between any two meters SM; and SM,;
is

dij = \/(ﬂCz —x;)%+ (i —yj)2. (6)

where (z;,y;) and (z;,y;) are derived positions of meter
SM; and SM; respectively. The distance d;; is used as a
feature in OCSiVM algorithm.

Since GPS doesn’t work in some places such as inside the
multi-stored building, hilly areas, forests, etc., we used RSS
based localization over GPS. Additionally, GPS reveals exact
position of meters/consumers which we want to avoid. On the
other hand, RSS technique will build a local map for meters.

B. OCSVM Algorithm

One class SVM classifier is motivated by the SVM classifier
[51]], [52]. The one class classification problem allows to find
the hyperplane to separate the training distributions from the
origin of the feature space.

OCSVM maps the input vector to feature dimension accord-
ing to the kernel function, and separates it from the origin with
maximum margin.

Let us consider, a set of training data I = (iy, 42, ....., 1) €
7, and € be the feature map Z — # such that the dot product
of H is computed by kernel &k

k(i,i') =< Q>i), Q1) >x (7
The regular family for the data set
Cu'p = il fuw,p(i) > 0} 8)

where f, ,(7) = sgn(< w, ®(i) > —p) and (w, p) is the
vector to offset parameterizing a hyperplane in the feature
space associated with kernel.

fuw,p is estimated by minimizing regularization

RS, (O = BP0+ 100l ©)

Outliers are penalized via slack variables £ operating in the
objective function to control the trade-off from empirical risk
and regularizes the penalty.

The quadratic programming minimization function

Ly Ly
. - 7 L 1
1?175151/) 2 leoll”+ on néi—p (10
such that (w - ®(x;)) > p — &;, (11)

and & > 0, 1=1,2,3,....,n.
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where @ is the kernel function for mapping, &; is the slack
variables, v € (0, 1] is a fixed constant, and p contains decision
value it determines if a given point is inside the estimated high
density region. Thus the decision function f;7',(z) is of the
form

f(@) = sgn(w T @(x) — p*)

where p* and w* are the values of w and p solving from the
equation (10).

In OCSVM, C is the smoothness operation and v is char-
acteristic of the solution [53]:

e Symbol v determines an upper bound on the outliers.

o It is the lower bound for amount of of training samples
for use as support vectors.

12)

C. Entropy of a Data Packet

Entropy is a metric for analyzing the robustness of
an encryption methodology [14]. In other word, entropy
demonstrates the feasibility degree of capturing the lock by
chance. The more certain about a value, the more diminished
the entropy.

The entropy for a sequence S
H(S) = X2, P(S = o) logy P(S = 2)
Such that, P(S = x) is the probability of taking S a value x.

If the size of a random variable or packet generated by a
meter is n bit, then the entropy and security strength of the data
packet are n and 2", respectively. The higher the entropy, the
harder the decryption process. For analyzing the performance
of the proposed encryption schema, this metric is selected.

V. PRIVACY SCHEME IMPLEMENTATION AND DATA
TRAFFIC FLOW

In this section, the privacy scheme implementation and the
data flow process are described in details to clarify how each
layer of the schema affects the grid security. In the data flow
architecture, the following assumptions exist:

o The Master and Auxiliary servers are semi-trusted and
independent. However, they might physically be the same
machine however virtually divided into two servers.

e The wireless communication links between servers and
meters are not fully reliable.

o The meters have small memory and computation capa-
bility.

e The control center/MDMS has the adequate computa-
tional ability.

o The meters keep the records of the position of neighbor-
ing meters, the frequency of transmission, packet size,
and node identity. The frequency of transmission, node
identity, and packet size are extracted from the packet
header. The node position is derived from electromagnetic
signals using RSS based localization as explained in
previous section IV(A).

o Every meter transmits data at a constant transmission
power.

o The data packet size is constant for every meter, and is
128 KB in the studied grid.

o After installing a new meter, it starts to record the position
of the neighbor meters, frequency of data transmissions,
node identity, and packet size.

e We assume that AMI network use high penetrating fre-
quency bands such as 2.4 GHZ and 3.5 GHZ and the
smarts are equipped with advanced signal processing
techniques.
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Fig. 3: Data flow among various components of AMIL.

e The communication links among Master and Auxiliary
servers and MDMS are fully trusted.

o It is noted that the security scheme adds latency to data
communication. However, the delay is much less than
expected data communication timeline of AMI, as energy
bills and household privacy and ‘ping’ for on demand data
have lower requirements in terms of timeline.

A. Attack Model

A simplified attack model for the system model shown
in Fig. |1| is discussed here. Man-in-the-Middle (MITM) and
replay are two of the most common attacks conducted in
the AMI. While MITM leverages the vulnerabilities in the
communication medium to intercept, swap, corrupt or steal
sensitive data, the replay attacks simply capture a copy of
legitimate information and replay it in the future, posing to
be the same legitimate user. To this end, it is assumed in
this paper that the attacks can happen only in Lq, Ly or Ls,
but not between TT Py, TT P4 and MDMS. It is noted that
other kinds of attacks such as compromised nodes and puppet
attacks [54], [55] are out of scope in this study.

A critical assumption of this attack model is that the
attacker’s targets are solely on the communication channel
between the devices, but not the devices themselves. It is
assumed that the smart meter nodes, 7T Py;, AP, TT P4 and
MDMS are not compromised by the attacker, but only the
links L4, Lo or L are. The incentive for the attacker could be
offsetting energy consumption to achieve lower bills, stealing
sensitive information to monitor energy consumption profile
and through that spy on consumer behavior, or corrupting
encrypted data packets in L; or Ly. The proposed encryption
scheme relies on the strength of the secret key sk, hence falling
under the category of Public Key Encryption (PKI).

B. Data Traffic Flow

The data flow among the meters, servers, and MDMS (as
shown in Fig. 3) is explained below in details.

STEP 1: Initialization
SM; sends a request Req; for a public key pk; to the
Master Server T1'P);. The Master server generates a public
key-private key pair, (pk;,sk;), upon receiving the request.
While pk; is unicasted to SM; for data encryption, sk; is sent
to the Auxiliary server TT P4 and MDMS. Key generation
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Fig. 4: Meter positions in Manhattan grid.
by asymmetric algorithm:
AE; = (K;,&;,D;),i € [1,n] (13)
K; — (pki, sk;),i € [1,n] (14)

STEP 2: Encryption

The SM; generates a random sequence (R!) for timestamp
instance t. It encrypts both the sequence and the timestamp
using pk; to generate a ciphertext, .S;, and sends it to TT Pj.
This server receives S; and decodes it using sk;. It then
performs two steps to validate the sequence. To safeguard
against the replay attacks, TT'P4 ensures if the timestamp
instance ¢ is received within a stipulated limit predefined for
“freshness” of data. If it is within that limit, it considers
the request, else it rejects the packet. To ensure whether
the sequence was sent by a legitimate SM;, the server re-
encrypts the sequence it decoded along with the timestamp
instance t using the pk; it received from 7T P,;. It compares
the ciphertext it created with the one it initially received.
A discrepancy between the two ciphertexts prompts 77 Py
to reject the packet. A match indicates the packet is indeed
legitimate. In this way, data transmitted from SM; is verified.
After that, TT P4 sends the sequence Rﬁ to MDMS. At
the same time, SM,; encrypts its consumption data by the
following method:

C; «— E({M;, t}, pk;)

STEP 3: Data transmission
The entcrypted data C; is segmented into n packets of equal
size, z;.

5)

(01,02,03,"' 7cn) <_Cz (16)
Then, the packets are ordered based on sequence R! for
transmission.
t

Rt
acn) — (01,82,83,"' 7CTL) (17)

The transmitting algorithm is explained in Algorithm [T}

(635617047"'

STEP 4: Hop to hop data aggregation and forwarding
At first, meter SM; is verified by SM,;1 using the node ID
that is perceived from packet header. Afterwards, based on the
history (i.e. previous data receiving history) of sender node’s
distance (dy), the frequency of data received (f;) and packet
size (z;)- the node SM; , verifies source node SM; and
forwards data to the next node SM; 5. OCSVM algorithm is
used to authenticate in this process. The data aggregation and
forwarding algorithm pseudocode is tabulated in Algorithm

STEP 5: Data retrieval
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Algorithm 1 Transmitting algorithm

1: Initialization:

2: Get ith meter’s data packet C;, ¢ € {1,2,...,N} and
random sequence R! = {r;}, j = {1,2,3,---,n},
vVt €T and |R!| €N

3 if RI™' = R! then

4 Go to step 2

5: else

6: Proceed to next step

7: end if

8: Segment packet C = {¢;} +— C;, j = {1,2,3,--- ,n}
and |C| = |R|

9: Set index set Jo = {{},1=1,2,3,--- ,n where f:l —

10:
11:

14:
15:
16:
17:
18:
19:
20:
21:

C is the particular enumeration of C

Update f~'(c;) =r;, j ={1,2,3,--- ,n}.

Calculate transmission probability, P = {p,} where p; =
%j = f_%(cj)’ ] = {172,3,"' ,n}.

Set index set Kp = {k}, k =1,2,3,...n where g : k —
P is the particular enumeration of P

. Sort index | = f~1(c;) = g~ (max p;)
p;EP

Transmit packet f(I) indexed packet
Update C =C — {f(1)}
if C # ® then
Go to step 9
else
End process

end if
End

Algorithm 2 Data aggregation and forwarding

—_

12:
13:

SMiy2
10:
11:

Training:

For any two meters {SM,,SM,} € SM and time
instant [, get regular data Iiy = (déy, L2z e
{1727"' aN}7y€ {1723 7N}

For data set Iiy, define a family/boundary C7"* through
8

1(\/I)eter/Packet authentication:

For time instant ¢, get relative distance dg( i+1) between
source meter SM; and data receiving meter SM,;iq
through (6)

Calculate data transmission frequency f} and packet size
2! for packet from meter ¢

For new data Ij; ;) = (djj; ), fi. ), get decision by
(12)

if I, ;) € CI" then

The data is within the boundary, forward to next meter

else
Reject data from source SM; which is flagged by
algorithm as anomaly
end if
End
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The MDMS receives the randomized and encrypted packets
antd decodes them by the secret key pk; and random sequence
R:.

Reordering the data:

(c1,c2,c3,- - ,cn)ﬁ (cs,c1,¢a0 yCn) (18)
Message unification:
Ci +— (c1,¢9,¢3,++ ,¢p) (19)
Decryption:
{M;,t} «— D(C;, sk;) (20)

VI. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

In this section, we present the performance of RSS and
OCSVM in our proposed AMI architecture. We also discuss
about the security strength of our scheme and compare the
performance of the OCSVM algorithm with another state of
the art anomaly detection algorithm named Isolation Forest.

A. The Proposed Algorithm’s Performance

To get insights into the localization of meters, we consider,
Manhattan grid building topology [56] in which the distance
between two meters (i.e. house) is 30m. We consider an area
of interest (AOI) of 30mx 30m where a new meter is located
at (1, —1) position surrounded by known position meters as
illustrated in Fig. 4] For optimization problem in localization,
PSO [57]] was used whereas residential path loss model was
considered for path loss calculation. The transmission power
of each meter is 10 dBm, and iteration number and population
size of PSO are 100 and 30, respectively. The simulation
results of position and power of an unknown positioned meter
surrounded by 4 known positioned meters and environment
with path loss constant 3 are tabulated in Table [

TABLE II: MEAN SQUARE ERROR (MSE) IN
LOCALIZATION FOR DIFFERENT
NOISE VARIANCES

Noise Variance X Y Reference Power MSE
-3.3059 | -2.2506 10.0005 4.4839

! 28715 | -0.2784 9.9997 39324

6 7.3873 -1.9575 9.9841 6.4586

8 48517 | -5.9137 10.0175 7.6411

10 0.1728 -8.5027 9.9789 7.5482

12 23678 -8.8504 9.9818 7.9687

With an increase in the number of neighboring meters, the
Mean Square Error (MSE) from the exact position of the meter
decreases. This means that for the more number of neighboring
meters, localization error for a meter will be lower. Secondly,
for the increase of noise variance, MSE also increases. This
implies that localization error for a meter is higher for the
increased interference or noise. These are illustrated in Fig.
5(a). For the increase of both neighboring meters and path
loss exponent, the MSE decreases from the exact position
of meter which is reflected in Fig. 5(b). Path loss exponent
(decaying rate of signal) is associated with the obstacle in
the path of electromagnetic signal propagation. Therefore,
for the presence of buildings, walls, trees, etc., the error in
determining the location of meters will be higher. Furthermore,
as meters are mounted on a stationary pole/wall, and in good
conditions the environment around them is stable, the error for
a meter by RSS based localization technique will be nearly
uniform.

In the second part of the simulation, OCSVM is imple-
mented in Python using scikit-learn library [58]. As a power
system is a critical national infrastructure, it is very hard to
get real-world power system data, especially cyber attack data.
Since there is no appropriate public dataset for our simulation
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Fig. 5: (a) Mean square error for different number of nodes and noise variances. (b) Mean square error for different number
of nodes and path loss exponent.

and obtaining the real data is not feasible, we generated a syn-
thesized dataset simulating/mimicking the normal data packet
structure due to the scarcity of the malicious packets and the
unknown structure of the attacks. One of the important features
of OCSVM is that if it is trained with the normal dataset, it
can classify anything as malicious if it fails outside of the
normal behavior. The structure of the normal packets and
their transmission behavior is generated based on the defined
standard of the network with a small variation. Regarding
the current network standard, each packet data was generated
with the following information: meter’s position, the frequency
of transmission, and the packet size. Some real-world data
transferring from two smart meters in an AMI network of a
local utility company is illustrated in Table

TABLE III: SMART METER REAL WORLD DATA SAMPLE

Device-Name Read- Usage | Meter ID | Coordinate
Start- Unit
Time

G0034501624 57172013 0.3218 98747434 | 8668675880
0:00 1:00 | kWh

G0034501624 57172013 0.2757 98747434 | 8668675880
1:00 2:00 kWh

G0034501624 57172013 0.3561 98747434 | 8668675880
2:00 3:00 | kWh

G0034501637 57172013 0.4587 98747434 | 8728604300
0:00 1:00 | kWh

G0034501637 57172013 0.4101 98747434 | 8728604300
1:00 2:00 | kWh

G0034501637 57172013 0.1346 98747434 | 8728604300
2:00 3:00 | kWh

Based on the real world utility data (referred to Table Eg@,
we defined data transmission frequency equal to one hour. The
distance between two meters is assumed to be 30m considering
Manhattan Grid. The packet size is directly estimated upon the
delivery of packet, and the standard packet size is considered
128KB based on the network topology. The training data is
generated with 3 degrees of standard deviation from normal
distribution of meter distance, data transmission frequency,
and data packet size where the mean of meter distance, data
transmission frequency, and packet size are 30m, one hour,
and 128KB, respectively.

The OCSVM model was trained on the 70% of the data
and the model was tuned on the validation set, 10% of the
remaining data, with an exhaustive grid search, resulting in the
RBF (Guassian) kernel with v and ~ both equal to 0.01. The
model was tested by the rest of the data. The mapped decision
boundaries of the OCSVM with the best parameter settings
is shown in Fig. [6] Red lines show the decision boundaries
and yellow dots are the packets from unauthorized sources.
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The training erroy| false positive rate’| and false negative rateﬂ
of OCSVM are 4/200, 3/20, and 2/20, respectively. On the
other hand, the training error, false positive rate and false
negative rate for Isolation Forest are 16,/200, 6/20, and 1/20,
respectively. Therefore, it can be conceived that OCSVM
can discriminate the authorized and unauthorized (malicious)
packets almost precisely in comparison to it’s counterpart
Isolation Forest algorithm.

To evaluate the model’s performance, confusion matrix and
receiver operating characteristic (ROC) curve [59], [60] are
provided. The statistics of true negative, true positive, false
positive, and false negative of OCSVM and Isolation Forest are
illustrated in Fig. Referred to the figure, the overall accuracy

of OCSVM is (TH8) x 100 = 91.6%. On the other hand,

the accuracy of Isolation Forest is (31:512) x 100 = 88.33%.

Receiver Operator Characteristic (R&C) curve plots the true
positive rate (TPR) against the false positive rate (FPR) at vari-
ous threshold. ROC for this experiment with different tweaked
parameters is shown in Fig. [8] It is noted that the area under the
curve slightly changes based on the different hyper parameter
setting, and for v = 0.01 and v = 0.01, the maximum area of
0.95 is achieved; therefore the aforementioned parameters are
selected as the best setting for the model.

B. Security Strength Analysis of a Data Packet

Let us assume, a meter generates a consumption unit packet
of size 128KB (10243 bit) which is divided into 4000 blocks
with each block size of 256 bit. If each block is encrypted by
256 bit public/asymmetric key and transmitted according to a
random sequence, then the entropy of each block is 256. The
security strength of the data block is 226,

Furthermore, the security strength of a 256 bit public key
is 2256/ 2.

So, for 4000 random sequenced packets and 256 bit public
key,

Total security strength of the 128KB meter data = 4000 =
(2256 4 9256/2)

Hence, a hacker needs maximum 4000 x (2256 4 2256/2)
number of iterations (tries) to decrypt a message, which is
impractical.

>The training error is the ratio between the number of normal data that
falls outside of the boundary erroneously and total number of data.

3The false positive rate is the ratio between the number of negative events
wrongly categorized as positive (false positives) and the total number of actual
negative events (regardless of classification).

4The false negative rate is the ratio between the number of positive events
wrongly categorized as false (false 1I})ositives) and the total number of actual
negative events (regardless of classification)
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VII. CONCLUSION

In our security scheme, a novel authentication management
model comprised of two-level security method has been pro-
posed with data encryption and node authentication. In the data
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encryption level, encryption by asymmetric keys and random-
ization of data packets have been proposed. In the conventional
key management system, only data encryption is used. On the
other hand, in our scheme, randomization of packets along
with data encryption ensures enhanced data security. Another
contribution of our scheme is the introduction of node-to-
node authentication by OCSVM, which utilizes three features-
frequency of data reception from a specific meter, packet size,
and meter position. The features of data frequency and packet
size can easily be extracted from the packet’s header. To
capture the last feature which detects the position of the sender
of the packet, RSS model is used. In the case of authorized
source this value would be very close or identical but in the
case of attack, it varies.

For TTP-to-smart meter communication, we use a bi-
directional communication similar to meter data communica-
tion of conventional AMI network. As communication from
meters and servers occurs once per every session initialization
between meter and control center, the data traffic of the
normal meter data flow from meter to control center is not
hampered. Furthermore, since a random sequence along with
the asymmetric key is used to retrieve data in the control
center, it also helps to authenticate data incoming from the
smart meter. Additionally, being a cluster of meters is served
by a TTP (a Master and an Auxiliary server), prudent design
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of clusters can make our approach scalable easily.

By integrating Supervisory Control and Data Acquisition
(SCADA) data with AMI systems, utilities can gain deeper
insights into their infrastructure’s performance and optimize
resource allocation in real-time. However, integrating SCADA
with AMI comes with inherent risks that need careful consid-
eration. One significant risk is the potential for cybersecurity
threats and vulnerabilities. When SCADA systems, which
control critical infrastructure, are interconnected with AMI,
which gathers sensitive consumption data, the attack surface
for cyber threats expands. Hackers could exploit vulnerabilities
in one system to gain unauthorized access to the other, po-
tentially disrupting operations, manipulating data, or causing
physical damage. Another risk is the complexity of integration
between SCADA and AMI. SCADA and AMI systems may
use different communication protocols, data formats, and
security standards. Additionally, there is a risk of operational
disruption during the integration process. To mitigate these
risks in integrated SCADA and AMI, the utility should adopt
a comprehensive approach to cybersecurity, including regular
risk assessments, threat monitoring, employee training, and
the implementation of industry best practices and standards
such as NERC CIP (North American Electric Reliability
Corporation Critical Infrastructure Protection) for the energy
sector.

Additionally, a collaboration between smart meters and the
distribution dispatching center is essential for ensuring the
security and reliability of the power grid. The utilities can
implement comprehensive and proactive approaches that en-
compass both technological solutions and robust cybersecurity
protocols, including encryption and authentication, intrusion
detection systems, secure firmware updates, and collaborative
defense strategies to resist attack signals.
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