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Machine learning assisted prediction of tungsten heavy alloy 
plasma facing component performance for fusion energy 
applications 

 
Summary: Tungsten and tungsten heavy alloys (WHAs), known for their remarkably high hardness, 
durability, and corrosion resistance1,2, play a critical role in the thriving development of nuclear fusion 
reactors in recent years3. However, the exploration in tungsten alloys for the nuclear-related applications 
has been limited by the difficulty of manufacturing and the complexity of experiments to reproduce the 
environment of nuclear reaction. Therefore, this project aims to utilize nanoscale simulation methods such 
as density functional theory (DFT)4 and molecular dynamics (MD)5 with the help of machine learning 
techniques to not only understand the mechanisms of tungsten alloys but also allow us to computationally 
predict their mechanical behaviors under extreme environments. 

 

One critical problem of the application of WHAs in nuclear reactors is the surface melting. In the current 
design of the SPARC reactor, the WHA, W97Ni2.1Fe0.9 or W97NiFe, is chosen to be the first wall 
components to confine the plasma where the particles are fiercely moving and colliding into each other to 
create nuclear fusion reaction. This process will generate extremely high heat flux onto these WHA tiles, 
leaving high surface temperature that could possibly melt the surface of the WHA tiles, As illustrated in 
Fig. 1(a). a laser experiment previously done illustrates that a rough surface damage would be made after 
the surface melting where the matrix area mainly composed of nickel and iron as shown in Fig. 1(b), will 
first melt and then leave vacancies between these tungsten grains. Unfortunately, these kinds of roughness 
on the first-wall components could be deadly to the plasma inside a Tokmak reactor because the heat that 
is supposed to dissipate at a designed ratio through the tiles may in turn be excessively absorbed and 
accumulated on any uneven area of the surface, which will eventually make the whole nuclear reaction 
fail. In this project, we will introduce a machine learning potential, Allegro6, based on DFT calculation 
and then build a MD model for W-Ni-Fe alloys.  

 

Objectives 

The main goal of this project is to investigate and predict the mechanical performance of WHA under 
high temperatures. Since our targeted W97 heavy alloys and its other W-Ni-Fe family have rarely been 
studied, we are starting with quantum-level simulation methods, using Vienna Ab initio Simulation 
Package (VASP)7, to first computationally realize their fundamental mechanisms as illustrated in Fig. 
1(c). And since DFT simulations are so expensive that it is impractical to use them to model physical 
phenomenon at the microscales. We will then apply machine learning techniques to train our own 
potential specializing for W-Ni-Fe interactions, bridging the quantum-level calculation to a nanoscale 
simulation method such as MD simulation to keep both the efficiency and accuracy. We will then use 
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)8 to study the mechanical 
behaviors of W97 alloys at high temperatures to show the reaction of W97 alloys subject to the extreme 
heat flux inside a SPARC reactor. 

 



Results 

Allegro Machine Learning Potential Training and MD Simulation Results 

As shown in Fig. 2(a), the training history of Allegro potential for W-Ni-Fe alloys shows great 
convergency on both loss and accuracy, which implies that the Allegro model can capture the physical 
meanings in the DFT dataset. Then, as shown in Fig. 2(b), with NVT ensemble, our MD model can 
simulate the sample of W97 alloy in Fig. 1(b) to generate a complete temperature profile from 300K to 
4000K. The result shows great credibility as the heating curve goes up smoothly. The movie of the 
heating simulation can be found via this link: https://shorturl.at/FNOU3. 

 

Method 

Density Functional Theory Simulation 

The DFT ab-initio simulation is carried out by VASP and its tungsten, nickel, and iron pseudopotentials. 
There are totally 131 simulation cases collected from DFT calculation. One single case in the dataset is 
shown as below. To train a machine learning potential such as Allegro with DFT calculation results, it 
usually takes a) the number of atoms, b) the lattice geometry, c) boundary conditions, d) atom species, 
positions and forces, and finally e) system energy, following the same order as in the text box below. 

 

 

Allegro Machine 
Learning Potential 

The model structure is 
shown in Fig. 3(a, 
b). The idea of the 
Allegro model is to 
consider all the 
pairs would only 
have the 

contribution only from the neighbor atoms within a strictly local environment. The model adopts 
Euclidean representation for atom and pair information and then use tensor product to combine and 
project them onto a vector space, which can then keep as much the physical and geometrical information 
as much as possible. 

 

Molecular Dynamics Simulation 

30  

Lattice=" 8.952538 0.0 0.0 0.0 8.952538 0.0 0.0 0.0 6.3304" PBC="T T T" 
Properties=species:S:1:pos:R:3:forces:R:3 energy=-282.29977513 "  

W 0.00899 0.00739 6.31906 -0.247885 -0.550854 0.06909 

W 2.23134 0.00772 1.59352 -0.329689 -1.340804 -0.333477 

… 

Ni 4.44178 4.49672 3.12992 -0.814724 1.238037 -0.036772 

Ni 6.22915 4.501 1.33361 1.16247 1.065651 -0.401559 

… 

Fe 4.4747 6.22948 4.9893 -0.135258 0.438462 0.312901 

Fe 4.50377 7.85063 3.1513 0.199664 -5.656032 -0.1121 



The MD simulation is carried out by LAMMPS compiled with pair_allegro: https://github.com/mir-
group/pair_allegro. We simulate a thin plate, with two half-size grains and matrix area in the middle as 
previously shown in Fig. 1(b), with full periodic boundaries and NVT ensemble to mimic the physical 
behaviors of the W97 alloy surface near the grain-matrix boundaries. In the movie mentioned earlier we 
can see how the nickel and iron particles in matrix area are agitated and then turned into liquid phase 
while the rest of the tungsten grains remain relatively stable. 

 

Discussion and Conclusion 

Over the past few decades, although tungsten and its derivatives are widely applied in many fields, there 
is not much progress on its application on nuclear engineering field because it is unrealistic to investigate 
their performance by nuclear infusion experiment. Thanks to the Allegro potential, we now have the MD 
simulation model first ever built for W-Ni-Fe alloys. With this model, we can efficiently probe the 
mechanical behaviors of different WHA samples. In addition, the scalability is also guaranteed since the 
Allegro potential by its nature is a strictly locally computed force potential, which means we can tune up 
the length scale of simulation model to include more complicated geometries if required. However, one 
limitation of the current approach is that the mechanical properties involving stress components may not 
be correctly reported as this method is still under development, which will be addressed in the next phase 
of this project as the future work. To conclude, this DFT-based MD model can provide promising 
simulation result for nuclear engineers to understand the underlying mechanisms of surface melting on 
WHA tiles. 
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Figure 1. (a) The pictures of samples, pure tungsten and W97 tungsten heavy alloy, after the laser beam 
experiment. (b) An SEM image of tungsten heavy alloy that shows grain and matrix microstructure in 
W97 alloy and the sample (in red square) for our (c) MD simulation model. The DFT model for is shown 
in (c) 

 

Figure 2. (a) the training history of Allegro potential against DFT dataset and (b) the heat profile of the 
W97 sample simulated by LAMMPS and pair Allegro.  



 

 

Figure 3. (a, b) The allegro model structure (adapted from the original paper8) and (c) the illustration of 
the strictly local environment of Allegro potential. 
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