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Abstract 15 
 16 
Mercury (Hg) is a ubiquitous environmental contaminant known to bioaccumulate in biota and 17 
biomagnify in food webs. Parasites occur in nearly every ecosystem and often interact in 18 
complex ways with other stressors that their hosts experience. Hepatozoon spp. are 19 
intraerythrocytic parasites common in snakes. The Florida green watersnake (Nerodia floridana) 20 
and the banded watersnake (Nerodia fasciata) occur syntopically in certain aquatic habitats 21 
wetlands in the Southeastern United States. The purpose of this study was to investigate 22 
relationships among total mercury (THg) concentrations, body size, species, habitat type and 23 
prevalence and parasitemia of Hepatozoon spp. infections in snakes. In the present study, we 24 
sampled N. floridana and N. fasciata from former nuclear cooling reservoirs and isolated 25 
wetlands of the Savannah River Site in South Carolina. We used snake tail clips to quantify THg 26 
and collected blood samples for hemoparasite counts. Our results indicate a significant, positive 27 
relationship between THg and snake body size in N. floridana and N. fasciata in both habitats. 28 
Average THg was significantly higher for N. fasciata compared to N. floridana in bays (0.22 ± 29 
0.02 and 0.08 ± 0.006 mg/kg, respectively; p < 0.01), but not in reservoirs (0.17 ± 0.02 and 0.17 30 
± 0.03 mg/kg, respectively; p = 0.29). Sex did not appear to be related to THg concentration or 31 
Hepatozoon spp. infections in either species. We found no association between Hg and 32 
Hepatozoon spp. prevalence or parasitemia; however, our results suggest that species and habitat 33 
type play a role in susceptibility to Hepatozoon spp. infection. 34 
 35 
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               Mercury (Hg) is a ubiquitous environmental contaminant of particular concern for human and 40 

wildlife health because of its toxicity and persistence in the environment (Rice et al. 2014; Eagles-Smith 41 

et al. 2018). Although Hg occurs naturally (i.e., volcanic emission, forest fires, volatilization), 42 

anthropogenic activities such as mining, fossil fuel combustion, waste incineration, gold processing 43 

facilities, cement production, and caustic soda production through chlor-alkali processes have increased 44 

its mobilization and bioavailability to biota (Wang et al. 2004; Pacyna et al. 2006; Schneider et al. 2013). 45 

Methylmercury, the most toxic form of Hg, can persist in an environment for long periods of time, and is 46 

easily transferred through diet, especially in aquatic food webs (Burger et al. 2001; Hogan et al. 2007; 47 

Chumchal et al. 2011; Haskins et al. 2021a). Methylmercury uptake in wildlife occurs primarily through 48 

diet and can become widely distributed in body tissues such as liver and muscle (Green et al. 2010; 49 

Azevedo et al 2012; Drewett et al. 2013; Moore et al. 2022). 50 

 Bioaccumulation of Hg has been documented in a wide range of taxa (Wolfe et al. 1998; Nilsen 51 

et al. 2017; Rodriguez-Jorquera et al. 2017) and biomagnification has been observed in numerous 52 

aquatic and terrestrial systems, with the highest concentrations of Hg often occurring in top 53 

predators (Burger et al. 2001; Rimmer et al. 2010; Carrasco et al. 2011; Chumchal et al. 2011). 54 

The harmful effects of Hg include reduced reproductive success (Heinz 1979; Hopkins et al. 55 

2013; Thompson et al. 2018), endocrine impairment (Dieter and Ludke 1975; Wolfe et al. 1998; 56 

Lemaire et al. 2021), overt neurotoxicity, and death (Wren et al. 1987; Heinz 1996; 57 

Scheuhammer et al. 2007). Furthermore, even if concentrations of Hg are low or exposure is 58 

chronic, less obvious sublethal effects can occur. Mercury exposure may compromise an 59 

organism’s immune function, leaving them more susceptible to disease and parasite infection 60 

(Lafferty and Kuris 1999; Sures 2004; Martin et al. 2010; Marcogliese and Pietrock 2011). For 61 

example, a study investigating associations between Hg and parasite infection in common loons 62 

(Gavia immer) found prevalence and intensity of Leucytozoon parasites increased with blood Hg 63 
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concentrations (Weinandt 2006). More recently, Borchert et al. (2019) found positive 64 

associations between Hg concentrations and endoparasite abundance in raccoons (Procyon lotor) 65 

from South Carolina and Georgia. However, a contrasting effect is also possible; parasites or 66 

their vectors may be more sensitive to contaminants than the primary hosts (Sures 2004, Martin 67 

et al. 2010, Brown et al. 2022), leading to lower parasite occurrence within a polluted system. 68 

 Despite a growing interest in the use of herpetofauna as ecological receptors, reptiles are 69 

included less often in environmental monitoring and risk assessment compared to other 70 

vertebrate taxa (i.e., birds, mammals, fish, amphibians; Hopkins 2000; Campbell and Campbell 71 

2001; Sparling et al. 2010; Burger et al. 2017; Haskins et al. 2019a,b). Snakes in particular are 72 

well-suited for studying the accumulation and effects of contaminants, as they are relatively long-73 

lived and exclusively carnivorous, often serving as mid-level to top predators in the ecosystems 74 

they inhabit (Gibbons and Dorcas 2004; Burger et al. 2017; Haskins et al. 2019a). Snakes also 75 

have relatively small home ranges and are likely to remain in a contaminated area throughout 76 

their lifespan (Bauerle et al. 1975; Beaupre and Douglas 2009; Drewett et al. 2013), subjecting 77 

them to chronic contaminant exposure. Collectively, these life history traits combine to make 78 

snakes a reliable bioindicator of environmental health (Campbell and Campbell 2001; Burger et 79 

al. 2017; Haskins et al. 2019a). In particular, snakes that feed primarily on aquatic prey appear to 80 

be more susceptible to accumulating contaminants compared to those that feed on terrestrial prey 81 

(Burger et al. 2006; Chumchal et al. 2011; Drewett et al. 2013). 82 

 Differences in habitat association and feeding ecology are likely to influence patterns of 83 

Hg accumulation in wildlife (Weiner et al. 2003; Lemaire et al. 2018). The bioavailability of Hg 84 

can depend on many biogeochemical processes that occur within a particular aquatic habitat 85 
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(Gilmour et al. 1992). Isolated Carolina bays found throughout the Coastal Plain of the 86 

southeastern United States have been found to exhibit high concentrations of Hg despite a lack of 87 

proximity to a point-source (Snodgrass et al. 2000a). This is likely due to several characteristics 88 

found in Carolina bays that are associated with increased Hg biomethylation rates, such as 89 

fluctuating water levels, high dissolved organic carbon, and low pH (Snodgrass et al. 2000a; 90 

Unrine et al. 2005). Aquatic habitats may also vary in prey sources available to aquatic snakes 91 

(Durso et al. 2013), which may in turn impact the bioavailability of Hg (Lemaire et al. 2018). 92 

Snakes living in aquatic habitats with shorter hydroperiods may rely more on amphibian prey 93 

sources, while diets of snakes living in larger more permanent bodies of water may include both 94 

fish and amphibians (Durso et al. 2013). Closely related syntopic species occupying habitats with 95 

broader prey resources may also partition into various trophic niches, which may in turn lead to 96 

differences in Hg bioaccumulation between species. 97 

 Habitat type and feeding ecology may also play a role in exposure to parasites. 98 

Hemogregarines of the genus Hepatozoon spp. are a common intraerythrocytic parasite of snakes 99 

(Smith 1996; Telford et al. 2001). Infections with Hepatozoon spp. parasites in aquatic snakes 100 

usually occur as a result of the ingestion of an infected intermediate host (e.g., frog or lizard) but 101 

may also be transmitted through a bite from an invertebrate vector (i.e., mosquito, leech) (Smith 102 

1996; Telford et al. 2001). Interestingly, fish—a common staple of some watersnake diets—do 103 

not appear to be a major intermediate host of Hepatozoon spp. parasites (Smith 1996). Thus, the 104 

prey assemblage within a habitat is likely to affect a snake’s susceptibility to Hepatozoon spp. 105 

infection—with infections more common in snakes that often feed on anuran prey items. Snakes 106 

inhabiting wetlands with fewer fish will be reliant on more available amphibian prey sources, 107 

potentially influencing exposure to hemoparasites and prevalence of parasitic infections (Tomé et 108 
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al. 2012). Bioaccumulation of a contaminant such as Hg can directly impact a host’s ability to 109 

fight off parasitic infections leading to increased prevalence and intensity of infections 110 

(Weinandt 2006). Furthermore, exposure to Hg can affect host-parasite dynamics by altering 111 

behavior and reproductive patterns of vectors and hosts, indirectly influencing transmission of 112 

parasites (Borchert et al. 2019). 113 

 In the present study, we evaluated how Hg accumulation varies with habitat type and 114 

between two species of aquatic snakes. We were also interested in elucidating how species, body 115 

size, habitat and Hg concentrations impact prevalence and parasitemia of Hepatozoon spp. in 116 

syntopic species. Our specific objectives were to (1) examine the relationship between tail total 117 

Hg (tail THg) and snake body size, (2) compare tail THg between species and aquatic habitat 118 

types, (3) compare Hepatozoon spp. infections between watersnake species and aquatic habitat 119 

types, and (4) determine associations between tail THg and Hepatozoon spp. infections. To meet 120 

our objectives, we sampled two syntopic species of watersnakes—the Florida green water snake 121 

(Nerodia floridana) and banded watersnake (Nerodia fasciata)—from isolated Carolina bays and 122 

a former nuclear cooling reservoir of the Savannah River Site in South Carolina. We used snake 123 

tail clips as a non-lethal sampling method to quantify THg and examined blood smears to 124 

determine Hepatozoon spp. prevalence and parasitemia. We predicted tail THg would increase 125 

with body size in both N. floridana and N. fasciata. Based on their suspected differences in diet, 126 

we predicted that in the reservoirs, N. floridana adults, which prey on fish when available, would 127 

accumulate higher concentrations of THg compared to N. fasciata. In contrast, we predicted THg 128 

concentrations would be similar in the two species in Carolina bays, where diet may be more 129 

likely to rely on amphibians and overlap between snake species. We hypothesized that 130 

Hepatozoon spp. infections would be more common in N. fasciata based on a higher reliance of 131 
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amphibian prey items in their diet. We expected that Hepatozoon spp. infections would be more 132 

common for both species in isolated wetlands, where amphibian prey sources are more plentiful 133 

compared to fish. Finally, we predicted that snakes with higher tail THg would be more likely to 134 

be infected with Hepatozoon spp. 135 

Methods 136 

Study sites 137 

 138 
 The Savannah River Site (SRS) is a 780 km2 United States Department of Energy 139 

property in west-central South Carolina. Due to past activities associated with production of 140 

nuclear weapons on the SRS, legacy heavy metals and radionuclides remain in some aquatic 141 

habitats, particularly in former nuclear cooling reservoirs. The SRS is home to a diversity of 142 

aquatic habitat types including multiple cooling reservoirs totaling 2000 hectares (ha) and more 143 

than 300 relatively unimpacted isolated wetlands and ponds (Schalles et al. 1989; White and 144 

Gaines 2000). Most of the isolated wetlands have no history of direct Hg inputs but may receive 145 

the contaminant through atmospheric deposition and runoff (Snodgrass et al. 2000a; Unrine et al. 146 

2005). In the present study, we sampled snakes from two aquatic habitat types: a former nuclear 147 

cooling reservoir and two Carolina bays. 148 

 We collected snakes from Pond B (Fig. 1; 33°17'37.5"N 81°32'50.7"W), an 87 ha 149 

cooling reservoir with a maximum depth of 12 m constructed in 1961 to serve as a secondary 150 

cooling system for nuclear production reactors (Parker et al. 1973). The Savannah River borders 151 

the western edge of the SRS and was used as a water source for filling the constructed reservoirs 152 

and to cool nuclear reactors during operation. However, the Savannah River was contaminated 153 

with mercury by an upstream chloro-alkali plant and introduced Hg into the cooling reservoirs on 154 
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the SRS (Kvartek et al. 1994; Sugg et al. 1995). Pond B received thermal effluent from one of the 155 

nuclear reactors (R Reactor) until it was shut down in 1964. Pond B water levels are now 156 

maintained exclusively by precipitation and groundwater seepage (Kennamer et al. 2005). 157 

Contaminant levels in Pond B fish have been monitored by numerous studies since the reservoir 158 

was created, with at least 11 species of fish documented (Parker et al. 1973; Whicker et al. 1990; 159 

Fulghum et al. 2019). Several studies have reported concentrations of Hg in wildlife inhabiting 160 

Pond B (Sugg et al. 1995; Gaines et al. 2002; Kennamer et al. 2005; Haskins et al. 2019), which 161 

along with radiocesium (137Cs), is the primary contaminant of concern in the reservoir. 162 

 We also collected snakes from two isolated Carolina bays, Craig’s Pond and Sarracenia 163 

Bay (Fig. 1; 33°17'06.2"N 81°28'39.3"W and 33°17'05.0"N 81°28'22.4"W, respectively), which 164 

have no history of Hg inputs resulting from SRS operations. Craig’s Pond is the largest Carolina 165 

bay (78.2 ha) on the SRS and is semi-permanent, only drying during extended droughts (Davis 166 

and Janacek 1997). Craig’s Pond also has one external and two internal ditches which allow fish 167 

to invade it during high water levels. Due to its long hydroperiod, Craig’s Pond has 168 

comparatively high diversity of amphibians and smaller fish species compared to other SRS bays 169 

(Snodgrass et al. 2000). Despite being much smaller, Sarracenia Bay (4.0 ha) also has an 170 

extended hydroperiod (Janacek and Davis 1997). Because of their close proximity (approximately 171 

200 m apart), the two bays can become connected. Prior studies have documented Hg 172 

concentrations in wildlife inhabiting these two sites as well as other Carolina Bays on the SRS 173 

(Snodgrass et al. 2000; Unrine et al. 2005; Borchert et al. 2019). Since animals can easily move 174 

between the two wetlands, we chose not to examine these two sites independently, and hereafter 175 

refer to them collectively as “bays.”  176 

Study species 177 
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 The Florida green watersnake (N. floridana) and the banded watersnake (N. fasciata) 178 

are two of the nine species of Nerodia found in North America. Both species occur sympatrically 179 

in some parts of Florida, Georgia, and South Carolina, and they can occur syntopically in some 180 

wetlands, but relative abundance of each species varies with habitat type. Nerodia floridana 181 

prefer permanent lentic habitats such as reservoirs, lakes, and some isolated wetlands with 182 

extended hydroperiods (Gibbons and Dorcas 2004).  In contrast, N. fasciata is a habitat generalist 183 

occupying wetlands with a wide range of hydrological conditions. Among aquatic habitats of the 184 

SRS in South Carolina, where the two species co-occur, N. fasciata is one of the most abundant 185 

snake species except in the large reservoirs, where N. floridana is more common. Factors that 186 

likely contribute to this pattern include interspecific differences in drought response (Willson et 187 

al. 2006; Vogrinc et al. 2018) and diet (Durso et al. 2011). 188 

 The diets of N. floridana and N. fasciata may overlap, especially as juveniles when both 189 

rely heavily on amphibians and small fish (Gibbons and Dorcas 2004; Willson et al. 2006). 190 

However, as adults, the diet of N. floridana consists more heavily of fish (when fish are 191 

available), while N. fasciata diet has a wider range of aquatic prey (Gibbons and Dorcas 2004; 192 

Durso et al. 2013). The feeding ecology of N. fasciata has been studied more extensively, with 193 

several studies reporting an ontogenetic shift from smaller prey (e.g., mosquitofish, tadpoles) as 194 

juveniles to large anurans (e.g., ranid frogs and toads) as adults (Mushinsky et al. 1982; Vincent 195 

et al. 2007). At the SRS, N. floridana are more likely to be detected in permanent wetlands 196 

containing fish, while N. fasciata are more common in less permanent wetlands (Durso et al. 197 

2011).However, in wetlands without fish but where N. floridana and N. fasciata co-occur, both 198 

snake species may rely heavily on the same prey, including larval or paedomorphic mole 199 

salamanders (Ambystoma talpoideum; Durso et al. 2013).  200 
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Data and sample collection 201 

 We used a combination of plastic minnow traps and funnel traps to capture snakes from 202 

bays (16 May - 11 June 2017) and Pond B reservoir (11 June - 1 August 2018). We arranged 20 203 

trap arrays around the water’s edge of each aquatic habitat and checked traps daily (Seigel et al. 204 

1995, Willson et al. 2006). Each array consisted of one funnel trap and four minnow traps, which 205 

we positioned 2-3 m apart in shallow water, with 3-5 cm of the trap remaining above the water 206 

level. We transported all captured snakes to the Savannah River Ecology Laboratory for 207 

processing, which included measuring mass (to nearest 1 g), snout-vent length (SVL; to the 208 

nearest 1 mm) and permanently marked each individual by injection of a passive integrated 209 

transponder (PIT) tag into the coelomic cavity (AVID, Norco, CA, USA; Gibbons and Andrews 210 

2004). We determined sex by examining tail morphology and/or probing the cloaca (Fitch 1960).  211 

 We removed approximately 1.0 cm of tail tip from each snake for the quantification of 212 

total Hg (THg, using tail Hg as a proxy for whole-body Hg; Hopkins et al. 2001). We recorded 213 

the wet weight of each tail clip to the nearest 0.001 g (Sartorius Research Analytical Balance 214 

R160D, Goettingen, Germany) and stored tail clips at -70ºC until subsequent analysis. We 215 

collected blood from the caudal vein with a 25 G needle and syringe and created blood smears on 216 

microscope slides to be used for Hepatozoon spp. hemoparasite counts. We fixed slides with 217 

100% methanol and stained with modified Wright-Giemsa (Diff-Quik, PolySciences Inc., 218 

Warrington, PA, USA) to facilitate visualization of erythrocytes and hemoparasites. We released 219 

snakes at their location of capture within 24-48 hours of sample collection. We released any 220 

recaptured snakes immediately after capture. 221 

 222 
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Mercury quantification 223 

 We dried tail clips in an oven for a minimum of 24 hours at 50˚C and recorded dry 224 

weight (d.w.) of each tail clip to the nearest 0.001 g (Mettler-Toledo AX504 Delta Range, 225 

Columbus, OH, USA). We quantified tail THg using thermal decomposition, catalytic 226 

conversion, amalgamation, and cold vapor atomic absorption spectrophotometry by a DMA-80 227 

Tri-cell Direct Mercury Analyzer (Milestone, Shelton, CT, USA). Our THg analysis used a 228 

modified version of the USEPA method 7473 (USEPA 1998). We ran two blanks and two 229 

standard reference material checks, TORT-3 lobster hepatopancreas and PACS-2 marine 230 

sediment (National Research Council of Canada, Ottawa, ON), before sampling began and after 231 

every 10 samples. The detection limit for THg in tail tissue was 4.36 × 10-4 mg/kg dry mass. 232 

Average percent recoveries (± SE) for TORT-3 and PACS-2 (both n = 12) reference materials 233 

were 98.8% ± 4.76% and 101.9% ± 1.39%, respectively. We present all THg concentrations as 234 

mg/kg on a dry weight basis (Table 1; see Supplementary Table 1 for average wet weight, percent 235 

moisture, and wet/dry factor). 236 

 237 

Hemoparasite counts 238 

 We scanned blood smears in a zig-zag manner using a standard light microscope (Zeiss 239 

Axioscope 50, Jena, Germany) at 1000x magnification using oil immersion. We counted a total 240 

of 8000 erythrocytes and recorded the number of cells infected with Hepatozoon spp. for each 241 

slide (Davis and Sterrett 2011). Although several species of Hepatozoon may infect a single 242 

species of Nerodia, we did not identify hepatozoa beyond the genus nor did we assess 243 
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developmental stage. We determined prevalence as the proportion of individual snakes infected 244 

with at least one Hepatozoon spp. We calculated parasitemia (i.e., the percentage of erythrocytes 245 

infected with Hepatozoon spp.) using the following equation: Parasitemia= (Number of 246 

Hepatozoon spp. infected erythrocytes/8000 erythrocytes) *100.  247 

 248 

Statistical analyses 249 

 We conducted all statistical analyses using program R (R Core Team 2022). We tested 250 

data for normality and homogeneity of variances using Shapiro-Wilks test of normality and 251 

Bartlett’s test, respectively. We log-transformed any data that did not meet the assumptions of 252 

normality. If data transformations did not result in meeting model assumptions, the data were 253 

evaluated for outliers using the interquartile range rule. We compared THg concentrations and 254 

average Hepatozoon spp. parasitemia in N. floridana and N. fasciata from bays and Pond B 255 

reservoir using an analysis of covariance (ANCOVA), with species and habitat as the 256 

independent variables and SVL as the covariate. We used logistic regression to determine the 257 

importance of species, habitat, and individual-level factors (SVL, sex) in predicting the 258 

probability of Hepatozoon spp. infections in N. floridana and N. fasciata. We used Akaike 259 

information criterion (AIC) values to select the most supported among candidate models using an 260 

information-theoretic approach (Burnham and Anderson 1998, Burnham and Anderson 2004). 261 

 262 

Results 263 
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 During the summers of 2017 and 2018, we captured a total of 112 snakes. However, we 264 

were unable to obtain tail clips to test for Hg from seven of the captured snakes. A further five 265 

snakes were determined to be outliers due to size or THg concentration and were removed from 266 

further analyses in models. The remaining snakes sampled consisted of 34 N. fasciata and 10 N. 267 

floridana in bays and 18 N. fasciata and 38 N. floridana from Pond B reservoir (for summary 268 

information see Table 1). Overall mass for N. fasciata ranged from 14.0 to 266.0 g (mean = 269 

89.12 ± 9.7 g), while mass of N. floridana ranged from 36.0 to 278.0 g (mean = 102.2 ± 8.0 g). 270 

Overall SVL for N. fasciata ranged from to 255 – 695 mm (mean = 425 ± 15.8 mm), while SVL 271 

of N. floridana ranged from 346 to 696 mm (mean= 474 ± 11.5 mm). An analysis of variance 272 

(ANOVA) comparing average SVL between sites indicated no significant difference in size 273 

between sites. However, a two sample t- test comparing average size between species indicated a 274 

significant difference in SVL between N. floridana and N. fasciata, with N. floridana averaging 275 

slightly larger (t98=-2.48, p < 0.01). 276 

 277 

Tail Total Mercury Concentrations 278 

 Average tail THg for all 100 snakes captured was 0.17 ± 0.008 mg/kg dry weight 279 

(range: 0.02-0.38 mg/kg d.w.; Table 1). There was a significant, positive trend of increasing tail 280 

THg with body size (SVL) for N. floridana and N. fasciata from both the bays and the former 281 

nuclear cooling reservoir (Fig. 2). Average tail THg was highest in N. fasciata from Carolina 282 

bays (0.25 ± 0.02), followed by N. floridana (0.17 ± 0.007) and N. fasciata (0.17 ± 0.005) from 283 

the reservoir, with the lowest occurring in N. floridana from Carolina bays (0.08 ± 0.007) (Fig. 284 

3). The effect of sex on average tail THg was evaluated but did not differ significantly for either 285 
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species and was excluded from further models. There were significant differences in average tail 286 

THg among groupings (species + habitat type) after controlling for the effect of SVL (ANCOVA: 287 

F3,98 = 19.16, p < 0.001). When comparing within habitat type, average tail THg was significantly 288 

higher in N. fasciata than N. floridana from bays (t = -7.43, p < 0.001) but differences between 289 

the species were not significant in snakes collected from the reservoir (t = -1.56, p = 0.39; Fig. 3). 290 

Within species, there was no significant difference in average tail THg between reservoir and bay 291 

for N. fasciata (t = -0.86, p = 0.82); however, average tail THg was significantly higher in N. 292 

floridana collected from reservoirs than those collected from bays (t = 5.39, p < 0.001; Fig. 3). 293 

 294 

Hepatozoon spp. Prevalence and Parasitemia 295 

 We obtained blood smears from 100 snakes, in which overall prevalence of Hepatozoon 296 

spp. infections was 43% (43/100). Infections by Hepatozoon spp. were more prevalent in snakes 297 

of both species when captured in bays compared to when captured from the reservoir and were 298 

more common in N. fasciata than N. floridana in both habitats (Table 1). Overall average 299 

parasitemia was 4.32 ± 0.97 and was higher in both species from the bays compared to those 300 

from the reservoir. After controlling for body size, parasitemia varied significantly between 301 

habitats and species (ANCOVA: F3,96 = 1.36, p < 0.001). Posthoc comparisons of means revealed 302 

average parasitemia for N. fasciata from the bays was significantly higher than N. fasciata from 303 

the reservoir (t = -3.79, p < 0.001) and from N. floridana from both the bays (t = - 4.08, p < 304 

0.001) and the reservoir (t = -6.43, p < .001). Average parasitemia for N. floridana from the 305 

reservoir was not significantly different from N. fasciata from reservoir (t = -0.90, p = 0.53) or N. 306 

floridana from bays (t = -0.09, p = 0.99) (Table 1). The most parsimonious models predicting 307 
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probability of Hepatozoon spp. infection in watersnakes included habitat, species, and SVL 308 

(Table 2), all of which were significant predictors of infection (Table 3). Based on the best 309 

supported model, N. fasciata were more likely to be infected by Hepatozoon spp. compared to N. 310 

floridana, there was a weakly positive effect of size on infection probability and infections are 311 

more common in bays compared to the reservoir (Table 3). 312 

 313 

Discussion 314 

 As expected based on known habitat affinities for the two species (Gibbons and Dorcas 315 

2004), including from prior research on the SRS (Durso et al. 2011, 2013), we captured more N. 316 

floridana in the former nuclear cooling reservoir and more N. fasciata in the Carolina bays. As 317 

has been previously reported for THg in snakes, we found higher tail THg concentrations in 318 

larger individuals of each species, and this pattern was observed in both habitat types. A positive 319 

relationship between body size and Hg levels has been consistently documented across taxa 320 

(Bergeron et al. 2007; Loseto et al. 2008; Staudinger 2011), including several species of snakes 321 

(Rainwater et al. 2005; Lemaire et al. 2018; Rumbold and Bartoszek 2019) and specifically in 322 

watersnakes (Drewett et al. 2013; Haskins et al. 2019a; Haskins et al. 2021a; Haskins et al. 323 

2021b, Brown et al. 2022). Within species, the relationship between body size and tail THg was 324 

stronger for N. fasciata from the reservoir and N. floridana from the bays, where fewer of each 325 

species were captured. However, body size explained only a moderate amount of the variation in 326 

tail THg for both N. fasciata and N. floridana in each habitat. Thus, additional factors are likely 327 

impacting the bioaccumulation of THg in Nerodia within our systems. 328 
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 The observed patterns of interspecific variation between N. fasciata and N. floridana 329 

were in contrast to our expectations. We expected concentrations of tail THg to be similar 330 

between species in Carolina bays, where dietary resources between the two species would be 331 

more likely to overlap (Durso et al. 2013) and more distinct in the former nuclear cooling 332 

reservoir, with N. floridana accumulating more THg due to a diet expected to consist more 333 

heavily of fish. In contrasts, tail THg concentrations were similar between N. floridana and N. 334 

fasciata in the reservoir but differed significantly in Carolina bays. Our results likely reflect both 335 

ontogenetic shifts in diet as well as the size distribution of snakes sampled from each habitat 336 

type. The diet of N. fasciata has been more thoroughly documented than that of N. floridana. 337 

However, Mushinsky et al. (1982) studied the diet of both N. fasciata and Mississippi green 338 

watersnake (N. cyclopion)—a sister taxa to N. floridana. After reaching 500 mm SVL, N. 339 

fasciata exhibited a distinct shift in diet from small fish prey (Gambusia spp. and Fundulus spp.) 340 

to larger anuran prey items (Rana [Lithobates]spp. and Bufo [Anaxyrus] spp.). In contrast, N. 341 

cyclopion continued to contain high proportions of small fish even after reaching larger size 342 

classes (>500 mm SVL) (Mushinsky et al. 1982). We caught very few individuals of either 343 

species over 500 mm within the former nuclear cooling reservoir; thus, it is possible that both 344 

species in Pond B are often feeding on small fish prey items, which are abundant in the reservoir. 345 

We did observe multiple regurgitations of fish by N. floridana, and fish and frogs by N. fasciata; 346 

however, we did not force regurgitations for each snake captured. Thus, it is possible the diets of 347 

N. fasciata and N. floridana in Pond B overlap much more than expected over the size of the 348 

snakes we were able to sample, which could potentially contribute to the similar tail THg 349 

concentrations in both species in the reservoir. 350 

 Furthermore, our method of trapping may have limited our ability to observe 351 
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interspecific differences in tail THg in snakes from the reservoir. We only sampled in the shallow 352 

edges of the littoral zone and were not able to sample deep water habitat where larger snakes 353 

from both species could be feeding (Aresco and James 2005). Pond B is larger and deeper in 354 

comparison to the Carolina bays; thus, there is an increased possibility for inter- and intraspecific 355 

spatial partitioning of foraging locations. While the use of funnel and minnow traps is generally 356 

accepted as the best method for capturing aquatic snakes (Seigel et al. 1995, Willson et al. 2006, 357 

Vogrinc et al. 2018), trap size may have also hindered our ability to capture individuals of both 358 

species in larger size classes. For example, Willson et al. (2008) found that conventional aquatic 359 

traps may not be useful for capturing Nerodia over 800 mm SVL. Modifying trapping efforts to 360 

gather samples from a broader range of snake sizes, particularly those from larger size classes, 361 

may help elucidate patterns of THg accumulation in both N. fasciata and N. floridana. 362 

 Unexpectedly, N. fasciata exhibited significantly higher average tail THg compared to 363 

N. floridana in Carolina bays. Again, this is likely related to the abundance of certain prey items 364 

and the differences in body size of species captured. In the Carolina bays we captured more N. 365 

fasciata over 500 mm, which have likely shifted to a diet consisting of more large anuran prey 366 

items (Mushinsky et al. 1982). We caught few N. floridana over 500 mm in the bays, and those 367 

individuals may be feeding on lower trophic prey items (e.g., salamander larvae, small fish, and 368 

tadpoles). Anecdotally, we observed several N. floridana and N. fasciata captured in bays 369 

regurgitate larval mole salamanders (Ambystoma talpoideum) after capture, while several large 370 

N. fasciata regurgitated adult and larval southern leopard frogs (Rana [Lithobates] 371 

sphenocephala). Previous research in SRS Carolina bays has documented significantly higher 372 

levels of whole-body THg in R. sphenocephala tadpoles (mean= 2.5 mg/kg) compared to larval 373 

A. talpoideum (mean= 1.0 mg/kg: Lance et al., unpublished data). Thus, if N. floridana are 374 
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relying more often on A. talpoideum and N. fasciata are consuming more R. sphenocephala, it is 375 

reasonable to suspect tail THg concentrations would be higher in N. fasciata as a result. Further 376 

research into dietary partitioning of sympatric watersnake species and its relationship to Hg 377 

bioaccumulation is needed to further support this hypothesis. 378 

 Differences in factors affecting the bioavailability of Hg between habitat types 379 

potentially played a role in the pattern of tail THg concentrations we observed. Biota, including 380 

fish and anurans, from Carolina bays on the SRS have been documented to have elevated levels 381 

of Hg despite having no inputs of the contaminant beyond atmospheric deposition and run-off 382 

(Snodgrass et al. 2000a; Unrine et al. 2005). As noted in those previous studies, increased water 383 

fluctuation, higher dissolved organic carbon, lower pH, and anoxic conditions associated with 384 

Carolina bays likely lead to an increased bioavailability of Hg. The relative stability of water 385 

levels in Pond B and the decades that have passed since Hg-contaminated Savannah River water 386 

was introduced into Pond B have likely decreased bioavailability in the reservoir (Sugg et al. 387 

1995; Kennamer et al. 2005). Increased bioavailability could explain higher concentrations of 388 

THg in N. fasciata living in bays compared to those from the reservoir. However, THg was 389 

higher in N. floridana from the reservoir compared to those from the bay. A potential explanation 390 

for this could be related to the higher trophic prey that are available in the reservoir compared to 391 

the bay. The larger N. floridana living in the reservoir have the ability to prey upon centrarchid 392 

fish (bass, sunfish) which are not found as commonly in the bays and have generally been shown 393 

to have higher THg relative to lower trophic prey items (Eagles-Smith et al. 2008; Chumchal et 394 

al. 2011). Additionally, Hg concentrations in wetlands can show variation among years (Morris et 395 

al. 2022). Due to logistical constraints, our sites were sampled in different years and we were not 396 

able to assess potential temporal variation in Hg dynamics in our study systems. 397 
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 Overall, the THg concentrations in snakes from both the former nuclear cooling 398 

reservoir and Carolina bays on the SRS we sampled were relatively low compared to levels 399 

documented in other regions globally (see Drewett et al. 2013; Haskins et al. 2019a). One of the 400 

highest documented concentrations of THg in snake tail tips was observed in N. sipedon from 401 

Hg-contaminated parts of the South River in Virginia (13.84 mg/kg d.w.; Drewett et al. 2013) 402 

and was well above the highest concentration documented in our study (0.62 mg/kg, d.w.). In 403 

fact, the average tail THg observed in N. fasciata from Carolina bays was less than the average 404 

tail THg of N. sipedon from uncontaminated reference sites in the South River study (Drewett et 405 

al. 2013). While levels of THg observed in our study appear to be relatively low, little is known 406 

of thresholds for toxic effects of Hg on snakes (Haskins et al. 2019a). 407 

 Species, habitat type, and size (SVL) were the most important factors contributing to 408 

probability of Hepatozoon spp. infections in the snakes sampled in this study. Tail THg did not 409 

appear to be an important factor contributing to Hepatozoon spp. infections. A similar result of 410 

no association between Hg concentrations and hematozoa infections has been observed in 411 

nestling wading birds (Bryan et al. 2015). The importance of species and habitat type in 412 

probability of Hepatozoon spp. are likely reflective of dietary differences between species and 413 

prey resources between sites. Infections by Hepatozoon spp. in snakes generally occur through 414 

the ingestion of an initial vertebrate host, which for Nerodia spp., is often an anuran (Smith et al. 415 

1994; Smith 1996). The overall high prevalence (32/37 individuals infected) and parasitemia in 416 

N. fasciata from Carolina bays could speak to their reliance on anuran prey items in comparison 417 

to their conspecific N. floridana – even at sites where they co-occur. Moreover, we observed 418 

higher prevalence and parasitemia for both species living in Carolina bays, where anurans are a 419 

more common prey source (Durso et al. 2013). Thus, it is not surprising that Hepatozoon spp. 420 
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infections are more common in snakes captured in Carolina bays. Interestingly, body size 421 

appeared to have a weak effect on probability of infection, with larger snakes being more likely 422 

to have Hepatozoon spp. detected. However, snakes of larger size classes (>500mm SVL) were 423 

underrepresented in our study. We must keep in mind that there were unmeasured factors that 424 

could impact Hepatozoon spp. infection prevalence and parasitemia. For example, additional 425 

contaminants with the potential to affect infection rates may be found in our study sites but 426 

were not measured during this study (Brown et al. 2022). Furthermore, several invertebrates 427 

may serve as initial vectors for Hepatozoon spp., including mosquitoes, arthropods, and 428 

annelids (Telford et al. 2001) and their presence within study sites and relationship to study 429 

species was not measured. Our analyses were limited in that we only considered one 430 

representative site for each habitat type. Even similar aquatic habitat types can differ 431 

considerably in size, biota, water chemistry and hydrology, among other factors (Schalles et al. 432 

1989, Snodgrass et al. 2000b). Thus, a comparison across a broader array of wetlands is merited 433 

to better elucidate patterns of Hepatozoon spp. infections in aquatic snakes. 434 

 435 

Conclusions 436 

 The limited research on the effects of Hg accumulation in snakes has yielded varying 437 

results in terms of potential health consequences. Some studies indicate that snakes are relatively 438 

tolerant to Hg (Wolfe et al. 1998; Chin et al. 2013a, Haskins et al. 2022), while others suggest the 439 

possibility of detrimental effects (Bazar et al. 2002; Chin et al. 2013b). We documented the 440 

bioaccumulation of THg and Hepatozoon spp infections in N. fasciata and N. floridana 441 

inhabiting both a former nuclear cooling reservoir and two Carolina bays on the Savannah River 442 
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Site in west-central South Carolina. Concentrations of THg in snake tail tips were relatively low 443 

and did not appear to be related to Hepatozoon spp infections in N. fasciata and N. floridana in 444 

this study. The monitoring of Hepatozoon spp. infections was perhaps the most informative in 445 

terms of revealing the potential dietary differences between species and habitat types due to the 446 

primary route of infection occurring through the consumption of amphibians rather than fish. 447 

 Our findings suggest that habitat and associated prey availability can be important 448 

factors influencing bioaccumulation of environmental contaminants and exposure to infections 449 

by hemoparasites, such as Hepatozoon spp. in snakes. Our results also suggest snakes feeding 450 

more often on anurans may be more susceptible to Hepatozoon spp. infections. Future studies 451 

examining the relationships between habitat, diet, and Hepatozoon spp. infections are warranted 452 

and should include a wider array of aquatic habitats and more species of aquatic snakes. The 453 

isolated Carolina bays and former nuclear cooling reservoirs of the SRS offer an excellent 454 

opportunity to study environmentally relevant concentrations of contaminants and subsequent 455 

effects in snakes and other taxa. Future studies could benefit by determining diet of captured 456 

snakes, measuring additional factors that could influence endpoints, and incorporating stable 457 

isotopes analysis to further investigate the effect of trophic dynamics on Hg accumulation and 458 

Hepatozoon spp. susceptibility in watersnakes. 459 
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 850 

Table 1 Average (± 1 SE) snout vent length (SVL), mass, total mercury concentration (THg) in 851 
tail tips and prevalence (number of individuals infected / number of individuals sampled) and 852 
parasitemia(per 8000 erythrocytes) of Hepatozoon spp. infections in Nerodia fasciata and N. 853 
floridana from a former nuclear cooling reservoir and two Carolina bays of the Savannah 854 
River Site in Aiken, South Carolina. Sex ratios are reported below sample size (n). Ranges of 855 
all values are reported in parentheses below respective means. 856 

Species and 
Site 

n SVL  
(mm) 

Mass  
(g) 

Tail THg 
(mg/kg) 

Hepatozoon 
Prevalence 

Hepatozoon 
Parasitemia 

Reservoir       

N. floridana 38 
(23F:15M) 

475 ± 14 
(346-696) 

100 ± 9 
(36-278) 

0.17 ± 0.03 
(0.09-0.32) 

0.05 
(2/38) 

0.001 ± 0.001 
(0.00-0.04) 

N. fasciata 18 
(10F:8M) 

371 ± 19 
(262-551) 

55 ± 12 
(16-200) 

0.17 ± 0.02 
(0.10-0.38) 

0.42 
(8/18) 

0.98 ± 0.56 
(0.00-9.90) 

Bays       

N. floridana 10 
(6F:4M) 

469 ± 19 
(366-560) 

107 ± 14 
(58-194) 

0.08 ± 0.006 
(0.05-0.10) 

 

0.50 
(5/10) 

0.12 ± 0.07 
(0.00-0.11) 

N. fasciata 34 
(13F:21M) 

453 ± 21 
(255-695) 

107 ± 13 
(18-266) 

0.22 ± 0.02 
(0.02-0.38) 

0.85 
(29/34) 

12.06 ± 2.47 
(0.00-47.30) 

 

 857 

 858 

 859 

 860 

 861 

 862 

 863 

 864 

 865 

 866 
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Table 2 Twelve candidate logistic regression models to predict the probability of Hepatozoon 867 
spp. infection in Florida green watersnakes (Nerodia floridana) and banded watersnakes 868 
(Nerodia fasciata) captured from a former nuclear cooling reservoir (Pond B) and Carolina 869 
bay system (Craig’s Pond and Sarracenia Bay) on the Savannah River Site, South Carolina. 870 
The most parsimonious model is indicated in bold. Parameters included: snout-vent length 871 
(SVL), Habitat (Reservoir vs. Bay), log-transformed tail THg, and species (N. floridana vs. N. 872 
fasciata). Model values presented include log-likelihood, model degrees of freedom (K), 873 
Akaike Information Criterion (AIC), delta AIC (∆AIC), and the weight of each model 874 
(AICWt). *p < 0.05 875 

 876 
Model Log-likelihood K AIC ∆AI

C 
AICWt 

Species + Habitat + SVL -37.82 4 83.65 0.00 0.67 

Species + Habitat + SVL + log(THg) -37.74 5 85.48 1.83 0.27 

Habitat + Species + log(THg) -40.73 4 89.46 5.81 0.04 

Species + Habitat -42.54 3 91.08 7.44 0.02 

Habitat + log(THg) -45.43 3 96.85 13.20 0.00 

Habitat + log(THg) + SVL -45.32 4 98.64 14.99 0.00 

Species + SVL -47.56 3 101.12 17.47 0.00 

Habitat + SVL -49.26 2 104.52 20.87 0.00 

Habitat -50.80 2 105.60 21.95 0.00 

Species -53.44 2 110.89 27.24 0.00 

log(THg) -67.66 2 139.32 55.68 0.00 

SVL -69.95 2 143.90 60.26 0.00 

 877 

 878 

 879 

 880 

 881 
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Table 3 Summary of the most parsimonious model predicting the probability of Hepatozoon 882 
spp. infection for Florida green watersnakes (Nerodia floridana) and banded watersnakes 883 
(Nerodia fasciata) captured from a former nuclear cooling reservoir and Carolina bay system of 884 
the Savannah River Site, SC. Model parameters, estimates, and associated p-values are 885 
displayed 886 

 887 
888 Parameter(s) Estimates z-value p-value 

Model intercept -1.54 -1.225 0.22 

Species: N. floridana -2.99 -4.11 <0.001 

Habitat: Reservoir -2.45 -4.11 <0.001 

SVL 0.01 2.72 0.006 



34  

 889 

 890 
Fig. 1 Map of study sites sampled on the Savannah River Site near Aiken, South Carolina. 891 
Florida green watersnakes (Nerodia floridana) and banded watersnakes (N. fasciata) were 892 
collected from two Carolina bays (Craig’s Pond and Sarracenia Bay) and a former nuclear 893 
cooling reservoir (Pond B) in the summers of 2017 and 2018 (Basemap: Esri, USGS) 894 
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 919 
Fig. 2 The relationship between snout-vent length and tail total mercury (mg/kg, dry weight) 920 
for Florida green watersnakes (Nerodia floridana) and banded watersnakes (N. fasciata) from 921 
two Carolina bays (open shapes; Craig’s Pond and Sarracenia Bay) a former cooling reservoir 922 
(filled shapes; Pond B) on the Savannah River Site near Aiken, SC. All groupings of snakes 923 
exhibited significant and positive associations (r2 = 0.15-0.53, all p < 0.05) between snout-vent 924 
length and tail total mercury.925 
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 947 
 948 
Fig. 3 Average (±1SE) tail total mercury for Florida green watersnakes (Nerodia floridana) and 949 
banded watersnakes (N. fasciata) living in a former nuclear cooling reservoir and isolated 950 
Carolina bays of the Savannah River Site, Aiken, SC. Letters indicate statistical significance 951 
based on posthoc Tukey HSD test from Analysis of Covariance 952 
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Supplemental Table 1: Average (± 1 SE) percent moisture content, wet:dry factor values, and 970 
total mercury (THg, mg/kg wet weight) for tail tissues (n=100) from Florida green watersnakes 971 
(Nerodia floridana) and banded water snakes (Nerodia fasciata) collected from a former nuclear 972 
cooling reservoir and two Carolina bays on the Savannah River Site, South Carolina. Ranges of 973 
all values are reported in parentheses below respective means. 974 

 975 

 976 
 977 

Percent moisture Tail THg 
(mg/kg; dry weight) 

Wet:Dry ratio Tail THg 
(mg/kg; wet weight) 

62.07 ± 0.31 
(56.32 – 80.30) 

0.17 ± 0.008 
(0.02 – 0.38) 

2.66 ± 0.03 
(2.28 – 5.08) 

0.06 ± 0.003 
(0.003 – 0.16) 


