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Executive Summary

The project's primary objective is to develop a digital-twin based Photovoltaic (PV)
Analysis and Response Support (PARS) platform, which aims to provide real-time
situational awareness and optimal response plans. This platform is designed to enhance
the performance of hybrid PV systems, making them competitive with or even superior to
conventional generation resources. The PARS platform enabled the project team to
develop and evaluate an extensive suite of grid support functionalities for the hybrid PV
systems to enhance grid performance, across key areas including Vvisibility,
dispatchability, security, resilience, and reliability.

Given the global push toward achieving 100% clean energy by 2035, there is a
significant increase in the integration of inverter-based resources (IBRs) throughout the
energy grid. Effectively managing the inherent variability and uncertainty associated with
IBRs is crucial for ensuring cost-effectiveness, reliability, and security in both the main
grid and islanded microgrids.

Constrained to a limited array of IEEE test systems or standard feeder models,
traditional IBR modeling struggles to assimilate new field data, accurately reflect system
dynamics, and adapt to the evolving energy landscape. In our project, we embraced a
Digital Twin (DT) strategy for crafting the PARS platform. A digital twin acts as a precise
virtual counterpart of a physical system, built on historical data and continuously honed
with real-time insights. This enables the high-fidelity DT to accurately mirror current
system operations and forecast future scenarios. Consequently, the PARS platform
becomes an ideal environment for testing and refining monitoring, control, power, and
energy management algorithms designed to boost hybrid PV system performance. The
defining feature of the PARS platform, distinguishing it from other advanced simulation
tools, is its exceptional adaptability. This is achieved by employing actual network
topologies and utilizing real-time field data for fine-tuning and calibration, ensuring a close
emulation of real-world conditions.

The project deliverables include: 1) High-fidelity IBR models and tools for real-time
parameterization, utilizing real-time field measurements to refine IBR models for
enhanced accuracy and performance; 2) Grid-forming and Grid-following capabilities to
deliver resilience services, including blackstart, voltage and frequency support, cold-load
pick-up, power reserves, and three-phase load balancing across grid-connected and
microgrid settings; 3) Machine learning-based forecasting tools and methods for
generating synthetic data and topologies, creating diverse and realistic simulation
environments for evaluating varied operational scenarios; 4) Advanced microgrid power
and energy management algorithms for optimizing the integration and operation of PV,
storage, and demand response resources within both feeder and community scales.

The power grid data sets are provided by four utility companies in North Carolina and
the New York Power Administration. Acting as industry advisors, our industry partners
communicated stakeholder needs and regulatory standards to the research teams, aiding
technology transfer by incorporating the developed methodologies into their daily
operations. This collaboration ensures that the PARS platform, functioning as a power
system digital twin, enhances our understanding of IBR dynamic behaviors and enables
the development and evaluation of IBR control functions that match or exceed the
capabilities of conventional synchronous generators.
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1. Background

Project overview: The objective of this project is to develop a digital-twin based
Photovoltaic (PV) Analysis and Response Support (PARS) platform that provides real-
time situational awareness and optimal response plan selection. By binding steady-state
and dynamic simulation and integrating faster-than-real-time simulation into real-time
simulation, the PARS operation platform can be used to emulate, monitor, and develop
optimal response plans for hybrid PV systems located at transmission, distribution and
behind-the-meter customer sites for both normal and emergency operations. When
running off-line using historical data, PARS can also be used as a planning platform to
design and test PV-based grid support functions and perform cost-benefit studies. Note
that we refer to hybrid PV systems as solar farms or roof-top PV systems operated with
other generation resources or distributed energy resources (DERS).

An OPAL-RT based Real-time PARS Platform

PARS-OMT Transmission Grid Model
Transmission-HIL eMEGASIM
1. Modeling NYPA Transmission network
2. Large-scale PV farms (100+ MW)
3. Large-scale Wind farms (100+ MW)
4. Bulk Energy Storage ( tens of MW)
5. Composite Load Models - =
Distribution-HIL Distribution Grid [
1. Real distribution feeder topology and
load data ePHASORSIM _ - eMEGASIM -&]
2. Utility-scale MW-level PV .
3. Community- and substation- level e J = ‘I X * PARS-RTSAT <=
Energy Storage ‘ ) g T it Monitori
4. Electric Vehicles Charging Stations -r»é,;: -_;‘u & = e onitoring
5. Composite Load Models for modeling - fil=~ -
load transients s \ Forecasting
Anomaly Detection
DER-HIL \ \ DER layer L
Data Storage
L sTav eMEGASIM -
2. BTM-Energy Storage
3. BTM-Electric Vehicles
4. BTM-Controllable loads pe== ==
5. BTM-Base Loads (ZIP loads, Motor
loads, etc.) Database
S
A PARS-CBT
OMT-Database PARS-MPT PARS-ORT
Field Measurements from Opt!on : = o
smart meters, SCADA, PV Option 2
farm sensor networks, ]
weather stations, etc. Option n "J

Figure 1. Configuration of the PARS platform and information flows

The configuration of the PARS platform and information exchanges between the PARS
components are shown in Figure 1. The expected outcome of this project is to bring the
performance of the hybrid PV systems up to par with those of flexible generation
resources in the following five performance areas when providing Grid Support Functions
(GSFs): visibility, dispatchability, security, reliability and resilience. To achieve this goal,
five tools will be developed for the PARS platform: 1) an Operation Model Tool (PARS-
OMT) that models both steady-state and dynamic behaviors of hybrid PV systems when
providing GSFs in real-time, 2) a Model Parameterization Tool (PARS-MPT) that uses
field measurements as inputs to derive and update the OMT parameters, 3) a real-time
Situational Awareness Tool (PARS-RTSAT) that monitors hybrid PV systems, predicts
the GSF capacity and performance, and detects anomalies caused by malfunctions, man-
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made errors, or cyber-attacks, 4) an Optimal Response Tool (PARS-ORT) that runs
parallel, faster-than-real-time simulations for best response plan selection, and 5) a Cost-
Benefit Tool (PARS-CBT) that determines the value proposition for hybrid PV systems at
strategic locations associated with critical infrastructure to provide GSFs for both normal
and emergency operations.

Project Organization: Figure 2 shows the summary description of the overall work
scope of each year. In Year 1, we developed a prototype of each of the five tools and
prepared a benchmark real-time simulation test bed for running those prototype systems.
In Year 2 and 3, we integrated the tools on realistic transmission and distribution models.
In Year 4, we assisted ElectriCities, NYPA, and Strata Solar to tools developed into their
control, simulation, and planning platforms. The end results of each task by performance
periods are listed in the figure.

-§ 1.1: Development of Models 1.2: Develop PARS HIL Prototype on OPAL-RT using 1.4 Situation Awareness Tool

s E 1.1.1 Transmission-GSFs |EEE test systems —NCSU, PNNL, Strata Solar, ElectriCities,
T E — PNNL and NYPA ~NCSU & PNNL & NYPA New River, Wilson Energy, Fayetteville PWC
E _% 1.1.2 Distribution- and BTM- GSFs 1.5 Operation Options Tool

§ % — NCSU, Strata ?ula.r, ElectriCities — NCSU and PNNL

50 1.3 Model Parameterization Tool

f — NCSU, Strata Solar

\

1

/

PARS — A scalable digital Twin based platform

|

2.3 PARS Integration
2.3.1 PARS- MPT — NCSU, NYPA
2.3.2 PARS- RTSA —NCSU, Strata Solar, ElectriCities, New
River, Wilson Energy, Fayetteville PWC
2.3.3 PARS- ORT — NC5U, PNNL

/

2.2 Develop look-ahead, faster than real
time optimal response tool

2.1 Integration of OMT with PARS
2.1.1 GSFs with NYPA transmission model — PNNL and NYPA

2.1.2 GSFs with realistic distribution systems — NCSU, Strata Solar, ElectriCities
— NCSU, Strata Solar, ElectriCities

PARS for situational awareness and
resiliency

3.1: Demonstration, Cost Benefit Studies, Industry Outreach, and Commercialization / [

Algorithm Testing

Model Integration and

PARS-OMT for Grid
operations

Synthetic Data and Topology Generation

3.1.1 Demonstration of PARS at NYPA AGILe Lab — NCSU, PNNL, NYPA
3.1.2 Demonstration of PARS-RTSA — NCSU, Strata Solar, ElectriCities
3.1.3 Demonstration of PARS at the FREEDM center — NCSU

PV-base Grid Support Functions

of PARS

Demonstration

[ Microgrid Power and Energy Management

[ Symmetrical and Unsymmetrical Fault Analysis

Figure. 2: Project tasks for each budget year and primary focuses

Motivation: The transition towards a net-zero carbon economy by 2050 is critically
dependent on the integration of grid-scale and distributed photovoltaic (PV) systems. As
these systems evolve from auxiliary power sources to primary generators, their ability to
deliver grid-stability functions (GSFs) comparable to or better than traditional
synchronous generators becomes essential. This is particularly vital in regions where PV
penetration surpasses 20%, posing unique challenges and opportunities for energy
systems.

Recent research has shed light on the capabilities of hybrid PV systems in which
flexible generation resources such as hydro power plants, combined heat and power
units, battery energy storage systems (BESS), and dynamically controllable loads can be
used to regulate the real and reactive power output of PV systems. These systems can
then be controlled for providing services traditionally provided by synchronous
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generators, for instance, power reserves, volt-var support, and rapid frequency response
to name a few. Moreover, the strategic positioning of distributed PV resources, especially
rooftop installations, minimizes the need for fuel storage or transportation, offering an
economical solution to energy sustainability and resilience.

In the context of microgrids, integrating distributed PVs with diesel generators, BESS
(either stationary or mobile), and controllable loads can create resilient power
ecosystems. These microgrids are designed to withstand extended blackouts, supplying
reliable power for prolonged periods. Thus, enhancing the GSF capabilities of PV systems
for grid-forming activities like black-start, cold-load pickup, and localized ancillary services
becomes imperative, especially in scenarios where reconnecting to the main grid may
take an extended duration.

Furthermore, the increasing amalgamation of DERs calls for a unified approach to
Transmission and Distribution (T&D) monitoring and control. Traditional models, which
treat T&D systems separately, are becoming insufficient. An integrated T&D operational
framework is essential for reflecting real-time grid conditions and evaluating the outcomes
of potential control strategies accurately. This integration is crucial for maintaining grid
reliability, security, and resilience across both transmission and distribution levels,
particularly in light of the challenges posed by faults at the transmission level that affect
the operation of IBRs across the grid.

Innovations: As shown in Figure 3, the PARS platform advanced grid simulation
technology across three major research domains.

e First, we developed an integrated T&D digital twin that can serve as a real-time
HIL simulation platform. This tool dramatically improves upon traditional static
models by dynamically modeling PV outputs and adjusting parameters in real-
time based on actual field measurements (see Figure 4 and Table 1). Such
adaptability allows for precise representation of PV farm performance, enabling
the power and energy management system to be tested in a realistic system
setting considering system dynamic responses. The digital twin not only
accurately forecasts PV farm behavior but also swiftly identifies and corrects
parameter deviations or estimation errors, a significant leap over conventional,
non-adaptive power system models.

e Secondly, our suite of situation awareness tools employs cutting-edge machine
learning techniques, originally developed for speech recognition, image
processing, and natural language processing, to tackle unique challenges in the
power system domain. These tools enhance load and PV forecasting, load
disaggregation, synthetic scenario generation, load model parameterization,
anomaly detection, and cyber-attack mitigation. By leveraging advanced
analytics, we can predict and respond to complex grid dynamics more
effectively, enhancing reliability and security.

e Finally, we developed optimal response strategies for hybrid PV farms to
provide black-start support, provide voltage and frequency regulation, and
enable microgrid operations down to the feeder and community levels. We
developed control methods for providing power reserve margins, coping with
cold-load pickup effects, and correcting 3-phase load imbalances.
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HIL: Hardware-in-the-loop

An OPAL-RT based Real-time PARS Platform
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2. Situation Awareness

Requirement: Monitor the
current status, forecast the
future, authenticate the data,
detect anomalies.

Approach:

1. Meta-learning for
generalizable tool sets

2. TCN for capturing spatial and
temporal correlation

3. Faster-than-real-time Optimal Response Tool (External to the HIL)
Requirement: energy and power management and response options (from 24-hour ahead to intra-hour to real-time)
Approaches: 1) Optimization, and 2) Machine learning based (reinforcement learning for adaptability)

Figure 3: Unique features of the integrated T&D power system digital twin
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Figure 4: An overview of the PVDT parameterization process
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Table 1: Digital-twin based approach versus conventional approaches

Reference Modeling Considerations Synchronization Communication
[1] Electromagnetic transients + phasor model |Yes N/A
[2] Electromagnetic transients + phasor model |Yes N/A
Wireless
[3] Phasor model Yes communication
simulator
[4] Electromagnetic transients + hardware Asynchronous  [N/A
[5] Phasor model + hardware Asynchronous  [JSON-link over Ethernet
Digital-twin |Electromagnetic transients + phasor model Modbus + File-shared
igital-twin g P over Ethernet + VPN
based PARS|+ hardware + Parameter Updates+ . .
L . connections required for
Platform |Communication Links+ Forecast the Asynchronous . . .
. implementation of multi-
Model Evolutions+ Energy/Power tworked digital
[6-12] |Management Systems area networked digita

twins

In Section 2, we presented a comprehensive list of deliverables categorized by tasks
and technical categories. In Section 3, we supplemented this information by including
references that highlight recent advancements in technologies relevant to each
deliverable outlined in Section 2. Additionally, within Section 3, we provided concise
technical discussions and performance comparisons to elucidate the distinctions between
our work and the state-of-the-art, showcasing the extent to which we improve upon the
existing state-of-the-art.
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2. Project Objectives:

The objective of this project is to develop a digital-twin based PARS platform that
improves the real-time visibility, dispatchability, security, and reliability of hybrid PV
systems when providing grid services in both normal and emergency operations. When
running off-line using historical data, the PARS platform can also be used as a planning
platform to test, develop, and validate the performance of hybrid PV systems when
providing GSFs.

As shown in Fig. 1, the PARS platform consists of five tools: OMT, MPT, RTSAT, OPT,
and CBT. The technology advancements that make the PARS platform transformative
are summarized as follows:

e Development of operation models of hybrid PV systems that bind steady-state
simulation together with dynamic response modeling on a real-time HIL simulation
platform that co-simulates multi-rate, multi-scale control systems considering
communication protocols.

e Development of data-driven, machine-learning based model parameterization
algorithms that allow control and model parameters of the OMT to be updated
close to real-time using field measurements from multiple sensor networks for real-
time situational awareness.

e Development of physics-based anomaly detection algorithms by characterizing
signatures of key data streams required for decision making and comparing the
signatures predicted by the high-fidelity real-time HIL simulations with those of the
field measurements to detect bad/fake/tampered data streams from malfunctions
or cyber-attacks.

e Development of a transformational modeling mechanism that allows faster-than-
real-time scenario simulations to be conducted in parallel within the main real-time
simulation thread for preparing emergency operation and selecting optimal
response and restoration plans on the fly over the entire event horizon. This
technology is essential when prompt actions to fast changing operating conditions
are required.

e Development of a performance based cost-benefit assessment tool for capturing
the benefit of PV-based GSFs in typical operation scenarios. This cost-benefit
assessment tool will use the actual field data to estimate the economic benefits for
the services provided under both normal and emergency conditions. The goal is to
estimate the economic value in integrating PV systems with other resources for
providing grid services.

The scientific principle, relevance to the goals of the FOA, feasibility, innovation and
impacts of each of the five technology will be discussed in the following subsections in
Section 3.

The Go/No Go deliverables are summarized in Table 1. The outcome of this project
enables the development of coordinative operation schemes across distribution and
transmission systems for reliably orchestrating the operations of thousands of
interconnected DERSs in achieving system wide benefits. Technical descriptions of each
deliverable can be found in the Appendix.
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3. Project Results and Discussion
The key technologies developed in this project can be summarized into five categories:
e Transmission-level PV grid support functions
o PV-based volt/var control function
o PV-based black start function
e Microgrid Power and Energy Management: managing PV, storage, and demand
response resources at both the feeder and community levels accounting for feeder
reconfiguration, 3-phase balancing, and cold-load pickup requirements for multi-day off-
grid operation.
Feeder-level microgrid
Community level microgrid
Mobile storage powered microgrid
A localized reinforcement learning based PV controller for coordinative volt/var
control on a feeder with multiple PV farms
o Dynamic VAR compensation schemes
e An integrated T&D Simulation Platform
o High Fidelity DT Models: IBRs (PV farms, roof-top PV systems, energy storage
devices), distributed generators, and controllable/non-controllable loads
o Grid-Forming and Grid-Following Functions: providing power reserves, tracking
load balance signals, cold-load pick-up, balancing 3-phase loads, and offering
adaptive voltage and frequency supports in grid-connected and microgrid
operation modes.
o Real-time Parameterization: Using real-time field measurements to parameterize
and fine-tune the IBR DTs.
e Situation Awareness Tools
o Forecasting:
= Meta learning based load forecasting
= TCN-based PV forecasting
o Smart Meter Data Analysis:
= Smart meter data analysis for meter-transformer pairing, behind-the-meter
PV and EV detection, and customer segmentation
= Demand response baseline derivation
o Cyber Attacks: data-injection based cyber-attack and mitigation mechanisms
o Synthetic Data and Topology Generation: Creating highly realistic and diversified
DT simulation environments.
e Scale-up Technologies
o An integrated T&D simulation via VPN based connections
= Use case 1: symmetrical and unsymmetrical transmission fault impact on
distributed IBRs
o Anintegrated T&D simulation via file sharing
= Use case 2: volt/var control coordination
o Integrated communication and power distribution network modeling
= Use case 3: cyber-attack on grid forming battery energy storage units.

o O O O

3.1 General Modeling Approach

3.2.1 Test Systems: We employed two distinct types of test systems: one based on IEEE test
systems (as shown in Figure 5(a)) and the other on actual utility network models (depicted in Figure
5(b)). The IEEE test systems serve as the foundation for developing core technologies. To verify
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their efficacy, we perform validations on real utility network models, utilizing data from various
operational conditions to ensure the results are broadly applicable. The IEEE-118 system is used
by PNNL for transmission level GSF development. NYPA actual transmission level model is used
for testing the Transmission-level PV grid support functions, including PV-based volt/var control
and black start functions. The IEEE-123 system is used by NCSU for distribution level function
development. Two utility feeders with five 5-MW PV farms are used for testing.

Transmission power grid NC State at Raleigh, NC
IEEE 118 bus model: grid scale PV farm locations IEEE 123 bus model Distribution power grid
—
® * ' v
GOt e B e d .. -
5 o VSl 7 2 g e p . e s s we AEgRIESS
T M - O N\a -
LS o R i it
o T »\_" ". - o 1 W
O ’ 2 s ) o "y e )
A= PN (N SRR T b S Mobile Storage and
s N e O L o\ Small PV systems
v O : n > powered microgrid
SEs A"- Sk = = bab rﬁ PV-Battery powered
L . vee Community-level Microgrid
PNNL at Richland, WA |
’1’»?%' E]ﬂ
& > s uft
8 o P
~Jd
LIS
PV.-Battery powered
feeder-level Microgrid
(a)

Transmission power grid Real distribution feeder

PV-Battery powered feeder-
level Microgrid

b
Figure 5. Network Models developed on the PARS ;Sla)tform. (a) IEEE test systems, and (b) Actually utility
network models.

3.2.2 Data Sources: To construct a realistic simulation environment, we purchased
PECAN Street Data Sets and obtained smart meter data collected from 8,720 customers
served by 1,410 transformers on 23 actual power distribution feeders from 2017 to 2020 in
a city at North Carolina. There are 8650 residential loads (including single family house and
apartment buildings) and 70 small commercial and industrial loads. The network topology
model comprises links from substations to distribution transformers and end customers to
each transformer. A significant advantage of this method is the spatial and temporal

Page 14 of 146



DE-EEO008770
Ning Lu

synchronization of the 8000 load profiles, guaranteeing a realistic emulation of consumer
electricity usage patterns at the household, transformer, feeder, and city scales.
Additionally, we devised a Generative Adversarial Network (GAN)-based technique to
create clusters of synthetic data sets for assigning load profiles. This innovation allows other
researchers to replicate our findings.
The data sets used in this project can be summarized as:
Topology Data

PNNL IEEE-118 System: Specifically used for the development of
transmission-level Grid Support Functions, providing a detailed framework for
high-voltage network analysis.

NYPA Transmission Level Model: Employed for testing transmission-level PV
grid support functions, including volt/var control and black start capabilities,
using an actual transmission network model.

NCSU IEEE-123 System: Dedicated to the development of distribution-level
functions, focusing on the integration and management of distributed energy
resources within lower voltage networks.

Utility Feeders with PV Farms: Comprising a utility feeders equipped with five
5-MW PV farms each, these setups are instrumental in assessing the
performance of PV integration and grid support functionalities at the
distribution level. For this feeder, we have load and PV power profiles for two
years (2022 and 2023) with 1-hour resolution. Additionally, we obtained 4-day
load and PV power profiles with 1-minute resolution for investigating extreme
operation conditions, i.e., high PV-load ratio.

Smart Meter Data

PECAN Street Data Sets (with sub-metered data for major appliances and
roof-top PV)

A few EV charging station data

15-minute actual smart data sets from more than 8000 customers for 3 years
from New River Light and Power

15-minute actual smart data sets from 100 residential, 100 commercial, and
100 industrial loads from Wilson Power.

Transmission level data

NYPA black start procedure
NYPA generator models and load data

SCADA Data

5-minute SCADA data from New Reviver and Fayetteville PWC for 5 feeders
SCADA data at feeder head for the three feeders with five PV farms
Demand response data

Conservation voltage reduction data for year 2019 and 2020

PV Plant Sensor Data

1 year 5-minute PV output data for 100 utility-scale PV farms from Strata Solar
1-second, 2-weeks inverter level data from 1 PV farm

Microgrid Device Data

Devices: Battery, PV Panel, Diesel Generators
Data sources: Factory data sheets, field test results, field measurements,
default model data from the Simulink

Synthetic Load Profiles: Generated using a GAN-based method, these synthetic data
sets simulate customer electricity consumption behaviors across different levels
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(household, transformer, feeder, city) to ensure comprehensive and lifelike testing
scenarios.

Method: see deliverable E3&E4 described in Appendix 8.18 and 8.19.
Inputs: PECAN Street data & New River Data

Resolution: from low-resolution (15-minute) to high resolution (1-minute)
Amount: unlimited. Generated as a group of load supplied by one transformer.
Accessible online at Github

3.2.3 Data flows: The data flows among different PARS platform modules are highlighted in
Figure 6. There are four primary types of data exchanges within the PARS platform's real-time
simulation environment:

From Actual Power Grids to the Model Parameterization Tool: This flow is essential for
the calibration of digital twin models, where real-world grid data is utilized to accurately
parameterize these virtual models, ensuring they reflect the current state and dynamics
of the physical grids.

From Actual Power Grids to the Real-Time Situation Awareness Tool: This data flow is
critical for anomaly detection and forecasting within the power grid. By analyzing real-
time data from the actual grids, the tool can identify deviations from normal operations
and predict future grid conditions.

From the Digital Twin to the Real-Time Situation Awareness Tool: This involves the
transfer of generated virtual sensor measurements from the digital twin. These simulated
data points are used to augment the Situation Awareness tool's ability to monitor and
forecast grid conditions, especially when testing scenarios that cannot be safely or
practically executed on the actual grid, as shown in Figure 7(a).

From the Real-Time Situation Awareness Tool to the Optimal Response Selection Tool:
This data flow provides vital inputs for decision-making by delivering forecasts related to
resource availability, output levels, grid flexibility, and control needs. Such information is
crucial for selecting the most appropriate response strategies to maintain or restore grid
stability and efficiency.

These data exchanges facilitate an integrated approach for managing and simulating grid
operations, ensuring that the PARS platform work in synergy with the actual world in order to serve
as a high-fidelity virtual environment.
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Figure 6. Data flows in the PARS platform.

The PARS platform can have two control command flows:

e From the Optimal Response Selection Tool to the Digital Twin: This flow is designed for
evaluating the outcomes of control strategies in a simulated environment. The digital twin
serves as a virtual replica of the power grid, allowing for a safe and efficient assessment
of how control commands would perform under real-world conditions, as shown in Figure
7(b).

e From the Optimal Response Selection Tool to Actual Power Grids: Through this
communication link, control commands can be directly executed on the physical power
grids. In practical this command flow in real-time operations is crucial for actual grid
management and response strategies.

Due to the high costs and operational challenges (e.g., reliability, security, and safety) of
executing field experiments, particularly for assessing resilience measures like black start
capabilities at the transmission level and microgrid control functionalities at the distribution level,
this project leveraged the PARS platform for conducting simulations based on digital twins as
substitutes for actual field tests. This also demonstrates that the PARS can provide a high-fidelity
virtual environment for validating the effectiveness and safety of control strategies before their
deployment in actual grid scenarios, thus serving a key role in bridging the gap between theoretical
development and practical application.
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Figure 7. Data Transfer between HIL and EMS applications. (a) Example of the Measurement List, (b)
Example of the Commands List.
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3.2.4 Time Coordination: Data transfer among applications and the corresponding simulation
time coordination inside the HIL test bed and between HIL test systems and EMS algorithms are
illustrated in Figure 8.

As shown in Figure 8(a) and (b), the data exchanges between the Optimal Response Selection,
Real-Time Situation Awareness, and Digital Twins modules are asynchronous. While the Optimal
Response Tool's energy management functions generate operation schedules ranging from day-
ahead to 5-minute intervals, the digital twins simulate the dynamic responses of power grids in
real-time demands much quicker simulation steps (every 100 ms or 50us). Consequently, as
shown in Figure 8(c), control commands issued from the energy management functions are sent
to the digital twins via different communication protocol every 5 minutes. Within these intervals,
device-level controllers residing in the digital twin models act to balance generation and load,
thereby maintaining voltage and frequency stability.

Uniqueness of the PARS platform is that it models the full sequence of grid operation including
energy management, power balance, frequency and voltage regulation. It can thus captures the
device-level and system-level controller interactions via realistic communication protocols, models
both fast and slow transients between state transitions, and enables the modeling of
communication delays, errors, cyber-attacks on controlling distributed energy resources.

Situation
Awareness Energy Management System
1. System level controllers for energy scheduling
PV and L?Gd 2. Dispatch resources for balancing power and
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Figure 8. Data Transfer and Simulation Time Coordination. (a) Between HIL and EMS, (b) Inside HIL

among different HIL systems, (c) Time coordination among Energy and Power management systems and
device level controllers
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3.2 Model Parameterization Tool

Conventional power system simulation test beds are typically established through two primary
methods. The first method entails crafting a fictitious system characterized by a standard network
topology and populated with typical parameters, such as the IEEE test systems [16]-[18]. The
second method involves directly capturing a snapshot of an existing physical power system to
generate a static replica, essentially freezing a moment in time for analysis and simulation
purposes. For example, a Dispatch Training Simulator (DTS) is a perfect replication of a real power
grid that is initialized from a real time and historian snapshot [19]-[21].

The core difference between a conventional power system test bed and a DT lies in the dynamic
nature of the latter. To act as a real-time replica of an actual system in the virtual realm, the PSDT
need to closely emulate the physical system behavior when the system evolves in real-time. If a
significant deviation from the real system behavior is detected, the DT parameters need to be
adjusted using real-time or near-real-time field measurements without causing abrupt disruptions
in simulation results.

To date, although there are extensive publication on power system test bed development, there
has been relatively limited research on real-time parameterization for Power System Digital Twins
(PSDTs). Thus, in this project, the parameterization tool (See Figure 4) has two DT
parameterization functions: offline- and online- parameterization.

e The off-line parameterization tool uses field test results and factory data sheets as inputs.
Optimization based methods are used to find an optimal set of model parameters for
minimizing the mismatch between the simulation results and field measurements for a
prolonged period, for example, an entire day, week, or month, as illustrated in Figure 9
(@) and (b). The developed offline parameterization methods for the battery energy
storage systems [6], combined heat and power systems [13], diesel generators [14], and
loads [15] have been published in IEEE Transactions on Smart Grid.

e The real-time model parametrization tool uses real-time SCADA data as inputs, as shown
in Figure 6. To achieve higher accuracy for real-time control applications, we developed
a novel two-stage optimization-based method for real-time, online parameterization of a
photovoltaic digital twin (see Figure 4) will use real-time, 1-second field measurements
as inputs. As shown in Figure 10, the PV model parameters are adjusted in real-time for
matching field measurements and minimizing perdition errors. The method for
parameterizing a PV farm digital twin is introduced in detail in Appendix 9.15 D8.

. 3 ] 7 . e s Ambient Temp
min {F(0) =Y w £ @:I<0<ull,ucr"} O i + Volige
TR » SOC
S » Bank Temp
Z 3 w =1 Constraints on model T
r=1 7 parameters. P = Vv

The weighting factor for Model = Battery Model Soc Model
different measurements. Inputs 7 L | T. Outputs

16 =3 (x(0.)-7(1)) , § R

Mismatch between simulation results and field measurements.
(a)
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Figure 9. (a) An example of optimization objective function, and (b) Modeled Outputs and Field
Measurements (battery voltage, state-of-charge, and cell temperature)
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3.3 Operation Model Tool

In this section, we will provide an overview of the modeling considerations and validation
methods. For a comprehensive understanding of the technical approaches, problem formulations,
and simulation results, please refer to Appendix 9.1-9.7 (Deliverables A1-2 and B1-B5) and our
published papers.

3.3.1 Modeling Considerations
This section outlines the key models incorporated into the operation model tools, which include:
e PV farms equipped with grid-following capabilities, ranging from large-scale models for
100MW and above (developed by PNNL) to 5-50 MW PV farms and rooftop PV systems
(both developed by NCSU). The grid-following functionalities of these PV models are
detailed in Table 3 and illustrated in Figure 11.
e Diesel generators, with their modeled functions listed in Table 4.
e Battery systems, where Figure 12 presents battery inverter modeling considerations, and
Table 5 outlines battery modeling details.
e Various load models such as the ZIP model, motor load model, and cold-load-pick-up
models, with Table 6 discussing the load modeling considerations and Figure 13
displaying the cold load pick up modeling outcomes.

Table 3: Grid following Functions for a roof-top PV system

Module Functionality Requirements

Active power curtailment | Follow power curtailment setpoints.

Disturbance ride-through | Trip in accordance with default settings from IEEE 1547-

2018
Reactive power control | Provide all reactive power control modes established for
modes Category 11-B DER from IEEE 1547-2018.
Rooftop
PV Frequency-watt droop Provide f-watt droop to support the grid.
Voltage-active power | Curtail output power if the grid voltage increases (optional
droop mode)
Code-based model Implemented in a code-based environment to provide an
alternative model without block diagrams (reducing model)
Table 4: Diesel generator modeling considerations
Module Functionality Requirement
) . Regulate its output power ramping to a pre-specified p.u./s
Ramping Capability for improving system robustness.
) L Adjust its voltage magnitude and phase for a smooth grid
Grid Synchronization synchronization.
Diesel :
Fuel Consumption lcul he fuel .
Generator | oo Calculate the fuel consumption.
Mode switching capability — | perate in grid-forming or grid-following modes.
grid forming / grid-following
Power factor control Follow active power setpoint and a given power factor.
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Disturbance ride-through Trip in accordance with PRC-024-2 (NERC)

Table 5: Battery modeling considerations

Module | OPeration Functionality Requirement
mode

Voltage and It's responsible for regulating PCC voltage and setting
frequency the system frequency.
regulation
Three-phase If the distribution grid is imbalanced, ES should quickly
imbalance control | readjust its output voltage to maintain voltage balance.
Current limiting The inverters must be protected from overcurrent of the

Grid- control semiconductor devices in overload and fault cases.

forming Coordinated If there are multiple ES units are connected into the
voltage regulation | distribution grid and worked as grid-forming mode, PCC

Battery

Ener with multiple ES voltage can be regulated using the centralized

Storagg); units secondary control.

Model Resynchronization | To connect the MG to the grid, the phase and amplitude
voltage between the grid and the MG will be regulated
as an equal value using the synchronization control loop.

Real and reactive | In grid-tied or grid-following mode, the model should
power dispatch make the output power of the inverter follow the
_ reference values and maintain the voltage reference
Grid- _ tracking.
following Disturbance ride- | When working in the grid-following mode, the machine
through will trip if the grid’s voltage or frequency goes beyond the
specified limits.
Table 6: Load modeling considerations
Functionality Requirement
Realistic load profile Generate node load profile from smart meter data actual
synthesis load data. Use Super—Resolution algorithms for increased
data resolution
Modeling demand Model the behavior of HVAC load regarding house scale
response (pay-back and and appliance parameters
Load cold load effects): HVAC
Model load modeling
Load model Estimate the parameters of the state-space model based
parameterization on actual HVAC load profile
Real-time Cold Load Generate real-time cold-load-pickup response according to
Pickup (CLPU) profile the commands from EMS system
generation
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Figure 11. PV model development considerations. (a) Functions developed for MW-level PV farm, and (b)
Grid-following functions developed for roof-top PV systems (Includes IEEE 1547-2018 Category II-B DER

requirements)
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Figure 13. Cold load pick up model

3.3.2 Model validation: The PARS platform co-simulates Electromagnetic Transient and
Transient Stability (EMT-TS) models, as demonstrated in Figure 14(a). Grid-forming units are
modeled in the EMT domain and the distribution network along with grid-following units are
modeled in the phasor domain. This strategy provides a viable computational approach for grids
heavily populated with Inverter-Based Resources. Microsecond-level EMT simulations run
concurrently with millisecond-level phasor simulations, transferring data between the two every
100 ms, as depicted in Figure 8(b). This time lag may introduce discrepancies in the TS simulation
results due to the EMT simulation's faster execution rate. The following benchmark tests have
been conducted for model validation purposes.

Benchmark Method 1: Base cases for distribution models are typically created using CYME or
OPENDSS, while PSSE is preferred for transmission models. Consequently, once the real-time
simulation models on OPAL-RT are developed, our initial step involves comparing the results from
OPAL-RT with those derived from CYME/OPENDSS or PSSE.
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Benchmark Method 2: To validate the data-driven model performance, we compared the
simulation results with the field measurements.

Benchmark Method 3: Next, we assess our performance against established methods. As
shown in Figure 15, when developing the PV tracking models, we compare the results with the

Benchmark Method 4: The performance of this hybrid EMT-TS framework is also compared
with that of a solely EMT-based simulation framework. As indicated in Figure 14, the hybrid system
delivers a performance comparable to the full EMT model but requires significantly less
computational effort, showcasing the architecture's ability to strike a balance between accuracy
and computational efficiency.
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Figure 15. (a) Circuit and control system block diagrams of a utility-scale PV system (b) Comparison of
the power setpoint tracking performance under irradiance intermittency between the proposed RST method
(left-side figures) and the state-of-the-art adaptive FPPT (right-side figures).

3.3.3 Scale-up studies

Scale-up studies were executed by orchestrating co-simulation scenarios across various
institutions, as depicted in Figures 16 (a) and (b). These studies utilized two primary connectivity
methods: file-transfer and VPN connections, with delays capped at 1 second for file transfers and
50 milliseconds for VPNs. Regardless of the method, multiple smaller simulation systems were
operated concurrently to emulate a comprehensive hardware-in-the-loop, integrated Transmission

and Distribution (T&D) model.

These scale-up studies were conducted with the co-simulation configurations detailed below:

e Collaborations among PNNL, UT Austin, and NCSU focused on integrated volt/var
support across transmission and distribution systems (see Figure 16(b)).

e Partnerships between NCSU and Clemson to analyze the effects of transmission faults
on distributed inverter-based resources, facilitated by a CAPER project with funding from
Duke Energy and Dominion Power.

e Within the North Carolina university system, for simulating cyber-attacks on DERs, a
shared Google file was created, granting North Carolina universities access to real-time
simulation results from the PARS platform.
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3.4 Situation Awareness Tool

Figure 17 shows that the PARS Situation Awareness tool accepts either field measurement data
or digital twin simulated data. When using field data, we initially identify and discard any incorrect
segments using state estimation based bad data detection. Then, we fill in and align missing data
using regression-based or generative learning based methods (i.e., GAN-based and BERT-
based). If field measurements fall short for data-driven applications like machine learning-based
load disaggregation, we can create synthetic data to supplement the field data. Those tools are
highly flexible and can facilitate various downstream tasks such as PV and load forecasting, real-

time volt/var control, model parameterization, power dispatch, energy scheduling, cybersecurity,
and cost-benefit analyses.
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Figure 17. The work flow of the Real-time Situation Awareness tool.

3.5.1 Delayed Stealth False Data Injection Attack Tool (Appendix 9.13: D6)

The development of a deep reinforcement learning (DRL)-based scheme for delayed stealth
false data injection attacks (SFDIAs) against Battery Energy Management Systems (BEMS)
represents a sophisticated approach to compromising the operational integrity of Battery Energy
Storage Systems (BESSs) within Advanced Distribution Networks (ADNs). We leverage a DRL
framework to generate falsified battery voltage and current measurements capable of evading
traditional and cross-validation Bad Data Detection (BDD) checks, thereby inducing targeted SoC
errors with highly stealthy. As shown in Figure 18, the attacker can disrupt BESS operations at any
predetermined future intervals without detection by the BDD mechanisms. The results demonstrate
that by misleading the BEMS about the stored energy levels, we can cause premature system
shutdowns or accelerated BESS degradation through over-discharging. This approach not only
showcases the effectiveness of DRL in crafting stealthy and temporally precise cyber-attacks but
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also highlights the critical need for advanced security measures in safeguarding energy
management systems from such sophisticated threats.

100

100

90 90 / ‘\
80 L False SoC 80 |
70 | 70+
~ 60} = 60}
S S
g S0+ o 50
B 40 A 40
I I False SoC
30+ 30t
20 =i 20 =
10} \G/Actual SoC ] 10 | \d\/ﬁtctual SoC'
0 . 0 .
0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hour) Time (hour)
(a) (b)
Distribution Network
Bus i Bus j PCC
_______________ N I I I
| grid measurements PV farm I I
|
|
I BESS
| ADN Control Center BESS
A 4 measurements VS| measurements
Vi, Py, Qi Py, Qi Vie: lge, m|| & &= ~=-=- BESS Y7777 -

-

State Estimation +—

Residual-based BDD

l residual ¢

l I?dm fdc

SoC Estimation —_—

ke

Controller m, 6

'y
I

1
1
SoC Cross : : Vae, lac, SoC(®) o
validation | o
I oo 5 BMS & ———|u|a|e|s
| control commands Vi Lge
1
BEMS - -~ - Battery pack

—
commands

PV and load commands

(c)

Page 33 of 146

< — — — Communication links SFDIAs

Figure 18. lllustration of falsifying state-of-charge data to (a) deplete battery energy at middle night, (b)
run battery outside it allowable storage range, and (c) An illustration of the attacking scenarios



DE-EEO008770
Ning Lu

3.5.2 Topology and Meter Phase Mislabeling Detection Tool (Appendix 9.20: ES5)

The Power-Band based Data Segmentation (PBDS) method introduces an innovative approach
for meter topology identification, specifically in customer phase identification and transformer-
meter pairing. Tested on thirteen real feeders in North Carolina, this method surpasses existing
techniques by significantly enhancing accuracy while maintaining low computational complexity.
The PBDS method stands out in its ability to efficiently utilize data through segmentation, facilitating
the identification process without the need for extensive additional data or equipment, unlike other
methods which may require signal injections, PMU data, or suffer from data inefficiency and
interpretability issues. The proposed approach is characterized by its simplicity, accuracy, and the
use of readily available AMI data, achieving notable improvements in phase identification accuracy
and a substantial reduction in the false positive rate for transformer-meter pairing. This
demonstrates the PBDS method's effectiveness in automating the identification of smart meter
phase and transformer-meter relationships, offering a significant contribution to the field of meter
topology identification.

3.5.3 Missing Data Restoration Tool (Appendix 9.22: F2)

The Load Profile Inpainting Network (Load-PIN), based on Generative Adversarial Nets (GAN),
introduces a novel approach for restoring missing load data and estimating demand response
event baselines. Unlike traditional methods that struggle with variable-length data segments, Load-
PIN excels in handling varying durations of missing data and differing lengths of available
measurements, overcoming the limitations of fixed input-output formats required by existing
generative methods. This flexibility is achieved through a two-stage generator process involving
initial estimation and fine-tuning, paired with a deep convolutional discriminator optimized with
specially designed loss functions. Load-PIN's capability to adapt to variable data resolutions and
durations sets it apart, demonstrating superior accuracy and a notable 15-30% improvement over
other models in restoring high-resolution load data segments. However, its performance is less
pronounced at lower data resolutions, highlighting its optimized use for high-resolution data to
uncover detailed load shape information. This advancement in missing data restoration and
baseline estimation represents a significant leap forward in the accuracy and applicability of data-
driven methods for load profile inpainting. We also developed a BERT based method [33] that can
generate an ensemble of missing data restoration options (see Figure 19) where the restored data
segments can be ranked by the likelihood of occurrence.
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Figure 19. lllustration of missing data restoration.

3.5.4 An Data Encoding Tool for Mitigating the Impact of Unreliable Communication
(Appendix 9.14: D7)

The encoding tool aimed to mitigate the impact of unreliable communication between distributed
energy resources (DERs) and central controllers in a power distribution network. Utilizing a
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hardware-in-the-loop (HIL) co-simulation environment, which includes a real-time simulation on
OPAL-RT and a simulated communication network, we develop an encoding algorithm for
counteracting communication noise, errors, and missing data. The proposed mitigation method,
formulated as a matrix recovery problem, optimizes LTE communication data and error
estimations, demonstrating its efficacy through simulations that replicate system dynamics and
communication challenges in a controlled lab setting. Simulation results highlighted the
effectiveness of centralized volt-var control (CVVC) strategies under perfect and interrupted
communication scenarios, showing how appropriate voltage margins can eliminate voltage
violations without causing excessive control actions. This innovative approach enhances the
reliability of DER management and voltage control in the face of communication uncertainties,
offering a significant advancement in the development and testing of algorithms for distribution
system analysis.

3.5.5 Super-resolution Tool (Appendix 9.18: E3)

This task introduces ProfileSR-GAN, a GAN-based super-resolution method designed to
enhance low-resolution load profiles (e.g., 30-minute) into high-resolution (e.g., 15-, 5- and 1-
minute), as shown in Figure 20. This tool offers a significant advancement in the field of data-driven
applications where high-resolution load data is increasingly crucial. Traditional methods,
categorized into model-based and deep learning-based approaches, often struggle with
introducing unrealistic details or causing over-smoothing. ProfileSR-GAN addresses these issues
by a two-stage process. First, we apply a GAN-based model to restore high-frequency
components. Next, we refine the generated high-resolution profiles using a polishing network
consisting of deep convolution layers, residual blocks, and batch normalization that can eliminate
unrealistic power fluctuations. Simulation results validated ProfileSR-GAN's superior performance,
showing 36%-62% improvements in shape-related metrics over baseline methods. Additionally, a
case study on Non-Intrusive Load Monitoring methods showcases the framework's potential to
significantly enhance appliance-level activity recognition. This further demonstrates that ProfileSR-
GAN can improve the quality and utility of load data for various downstream tasks.
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Figure 20. lllustration of missing data restoration.
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3.5.6 Synthetic Data Generation Tool (Appendix 9.19: E4)

This task introduces the Multi-load Generative Adversarial Network (MultiLoad-GAN), a
pioneering deep-learning framework designed to generate synthetic load profiles (SLPs) for groups
of loads served by the same distribution transformer, capturing their spatial-temporal correlations.
As shown in Figure 21, unlike traditional methods that generate SLPs individually, MultiLoad-GAN
innovatively produces multiple correlated SLPs simultaneously, addressing a gap in existing
generative approaches. It leverages a generator and discriminator network to create realistic load
profiles in large quantities, essential for microgrid and distribution system planning. The
framework's effectiveness is demonstrated through comparisons with original load data using
statistical and deep-learning metrics, showing its superiority in capturing group-level characteristics
and benefiting from an Automatic Data Augmentation (ADA) process. This process prevents
overfitting, ensuring the generation of diversified, realistic SLPs that closely resemble real-world
data, thus offering a significant advancement in the field of load profile generation.
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A group of load profiles

Figure 21. lllustration of single and group synthetic load profiles generation.

3.5.7 The meta-learning based load forecasting tool (Appendix 9.16: E1)

This tool is developed as an innovative model selection framework for load forecasting in power
systems, addressing the variability in forecasting requirements and data availability. It compares
knowledge-based expert systems and machine-learning methods. The meta-learning based
framework automates and extends model selection by evaluating candidate models on specific
tasks and using task features (see Figure 22) to train a meta-learner. This approach provides a
general purpose forecasting tool for identifying top-performing models and thereby reducing
forecasting errors.
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Figure 22. lllustration of high-level features for selecting the forecasting models.
3.5.8 The TCN-based PV forecasting tool (Appendix 9.17: E2)

The TCN-based hybrid forecasting framework (See Figure 23) tailored for hours-ahead
forecasting in utility-scale PV farms, merging the strengths of both physics-based and data-driven

models.
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Figure 23. An illustration of using TCN and the selection of neighboring sites for improving the short-
term PV forecast accuracy

Traditional models, while beneficial, either depend on historical data or are limited by the
accuracy of Numerical Weather Prediction (NWP) results, lacking a method to integrate these
approaches for enhanced accuracy. This framework introduces a novel solution that not only
combines the predictive power of physics-based and data-driven models but also incorporates
spatial-temporal correlations from neighboring sites to refine forecasts. It employs a TCN network
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for trend forecasting by converting NWP results to power outputs, another TCN for capturing intra-
hour fluctuations through spatial-temporal correlations, and a third for reconciling these forecasts
into a final prediction. A unique neighboring site selection algorithm automatically identifies the
most effective neighboring networks, significantly improving forecasting accuracy. Tested across
95 PV farms in North Carolina, this hybrid method demonstrated a 30% increase in forecasting
accuracy for 6-hour ahead predictions, outperforming benchmark models with its innovative
approach and efficient training time.

3.5.9 CVR Baseline Detection Tool (Appendix 9.21: F1)

The Iterative Bidirectional Gradient Boosting (IBi-GBM) method presents a novel approach for
Conservation Voltage Reduction (CVR) baseline estimation. The method combines a hybrid similar
day selection technique with a bi-directional gradient boosting framework to assess CVR's load
reduction efficacy. Figure 24 presents examples of the restored CVR baselines.
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Figure 24. An illustration of the CVR baseline recovery results from three utility substations

This method is highly adaptable across different data resolutions, types, and seasonal
variations, showing significant improvement in accuracy over existing models without adding
considerable computational complexity. Unlike traditional methods that are either uni-directional,
non-iterative, or demand large volumes of training data, IBi-GBM offers a streamlined, interpretable
solution capable of capturing nonlinear load behaviors with minimal training data. Through rigorous
testing on real-world datasets, IBi-GBM not only demonstrates robust performance across various
conditions but also achieves a notable reduction in normalized Root Mean Square Error, thereby
enhancing the accuracy and reliability of CVR performance evaluations. This innovative approach
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marks a significant advancement in the field of demand response program assessment, providing
utilities with a precise and efficient tool for CVR baseline estimation.

3.5.10 Load Disaggregation Tools (Appendix 9.23&24: F3&F4)

Load disaggregation is an important step for load model parameterization and for assessing
demand response potentials. As shown in Figure 25, load disaggregation can be at different levels,
for example, regional, feeder, and building levels. The methods can separate PV, electric vehicle
charging loads, water heater loads, and the heat, ventilation and air conditioning (HVAC) loads
from the total loads.

We developed two load disaggregation methods as follows:

e Method 1 (F3) utilizes an optimization-based algorithm for HVAC load disaggregation
from smart meter data at various resolutions, notably without requiring detailed sub-meter
data. This method's strength lies in its minimal reliance on extensive labeled datasets,
employing daily temperature and load profiles alongside a base load dictionary to isolate
HVAC consumption efficiently.

e Method 2 (F4) employs a Sequence-to-Point (S2P) algorithm, adept at processing low-
resolution smart meter data, incorporating ambient temperature and load profiles, and
utilizing transfer learning for enhanced adaptability across different locales.
Demonstrating superior performance in accuracy and generalization in Austin, Texas,
this method proves highly effective for dynamic response (DR) initiatives, enabling
precise HVAC system utilization.

Both approaches present scalable and efficient solutions for load disaggregation, marking a
considerable leap forward for utility engineers and service providers in enhancing energy
consumption and operational efficiency. Evaluated using data from Pecan Street Inc. across
various states, these models surpassed traditional benchmark techniques in accuracy and
consistency, evidenced by reduced mean square errors and standard deviations. Moreover, they
exhibited strong performance across diverse levels of customer aggregation. These methods
signify a major breakthrough in the field of load disaggregation, enabling more precise customer
segmentation and rate recommendation, thereby improving accuracy and broadening applicability.
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Figure 25. An illustration of the load disaggregation process (a) Load disaggregation levels, and (b) Load
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3.5 Optimal Response Selection Tool

The optimal response Selection tool for resilience improvement using solar generation
resources can be divided into two level functions: transmission and distribution level. At the
transmission level, PV hybrid systems provide volt/var support and black-start functions, as shown
in Figure 26. At the distribution level, PV hybrid systems provide microgrid, volt/var support, and
demand response functions, as shown in Figure 27. The following subsections summarize the grid

support functions developed at each levels.
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Figure 26. NYPA power system and 7 sub-areas
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3.5.1 Transmission GSF 1: A Solar-assisted Voltage Optimization Method (Appendix 19.1:
A1)

The voltage optimization function is developed by PNNL. A security-constrained optimal power
flow (SCOPF)-based volt-var control algorithm is developed and validated using the New York
Power Authority (NYPA) transmission system model and data. Aiming to stabilize voltage
fluctuations under various scenarios, this method integrates solar power with minimal post-
contingency adjustments across a 500-bus network, utilizing the NYPA energy management
system data collected from 06/03/2014 to 09/10/2015. The two-stage volt-var SCOPF algorithm
demonstrated significant effectiveness in eliminating voltage violations for both base and
contingency scenarios, highlighted by a detailed comparison of bus voltage profiles and power
outputs before and after algorithm application. Despite challenges in comparing with existing
methods due to scale and complexity differences, the approach leverages real system topology
and optimization-assisted procedures for a robust demonstration, underscoring the potential of
solar resources in providing volt-var support services.

3.5.2 Transmission GSF 2: Solar-assisted Blackstart Method (Appendix 19.2: A2)

The solar-assisted black-start process are developed and demonstrated using two sub-areas of
the New York Power Authority (NYPA) system on the HYPERsim electromagnetic-transient (EMT)
real-time simulation test system. A hybrid solar-storage power plant with grid-forming (GFM)
capability is used as a novel black-start resource alongside traditional hydro power plants. The
results demonstrate the optimality of the black-start sequencing and generator dispatch. The tests
also verify the stability in voltage and frequency regulation in the presence of transformer inrush
currents and when long transmission lines are energized in sequence. The approach contrasts
with existing methods by incorporating both ac-side and dc-side dynamics, employing industry-
approved GFM control for comprehensive dynamic modeling, and demonstrating autonomous
coordination between solar and storage. Despite the complexity and effort required for
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implementation in HYPERsim, this method shows effective stabilization and operational feasibility
of the black-start process, as evidenced by the close alignment of actual system behaviors with
numerical predictions and the maintenance of system stability across multiple areas.

3.5.3 Distribution GSF 1: Feeder-level Microgrid EMS (Appendix 19.3: B1)

The function enhances feeder-level microgrid operation using utility-scale MW-level PV systems
and grid-forming battery energy storage systems for improving resilience during extended outages.
It contrasts existing methods by prioritizing the integration of renewable energy sources and
introducing an adaptive model for cold load pickup (CLPU), addressing the shortcomings of fixed
CLPU parameters that often lead to significant estimation errors. The developed energy
management system (EMS) for a feeder-level microgrid incorporates an adaptive CLPU model to
optimize the day-ahead energy scheduling and intra-hour power dispatch, considering the dynamic
impacts of temperature and scheduled outage durations. This approach not only maximizes load
service while maintaining customer comfort but also minimizes the CLPU effect more accurately
than traditional models. The EMS demonstrates superior performance in energy service, critical
load support, baseload maintenance, and PV utilization, significantly outperforming systems that
rely on fixed or no CLPU estimation models. This advancement indicates a promising direction for
microgrid resilience services, particularly in scenarios involving long-duration outages and the
integration of renewable energy resources.

3.5.3 Distribution GSF 2: Community Microgrid EMS (Appendix 19.4: B2)

The function enhances community-level microgrid operation using a novel Secure and Adaptive
Three-Stage Hierarchical Multi-Timescale (SA-HMTS) framework for the energy management of
community microgrids (CMGs) with hybrid PV systems, aimed at enhancing power distribution
resilience during prolonged outages. Unlike previous strategies, this comprehensive approach
focuses on proactive scheduling and real-time dispatch of CMGs, integrating uncertainty mitigation
to handle the volatility of high impact low frequency (HILF) events, and prioritizing critical loads,
resource optimization, demand response, cold-load pick-up, and support expansion to neighboring
grids. The framework operates across three hierarchical stages: stochastic extended duration
scheduling, near-real-time scheduling, and real-time dispatch, incorporating a novel delayed
recourse concept for improved decision robustness against forecast inaccuracies. Validated
through OpenDSS and hardware-in-loop simulations, the SA-HMTS framework outperforms
traditional deterministic, stochastic, and robust optimization methods in critical load supply, PV
utilization, energy storage management, and operational duration of CMGs, showcasing its
effectiveness in uncertainty-aware decision-making for community-level dynamic microgrid energy
management.

3.5.4 Distribution GSF 3: EMS for Managing Mobile Battery and Rooftop PV Powered
Microgrids (Appendix 19.5: B3)

The function enhances microgrid operation using a two-stage hierarchical energy management
strategy tailored for managing mobile battery storage units for operating small microgrids powered
by high penetration of distributed rooftop PV systems and diesel generators. This approach uses
sequential rolling optimization for resource scheduling and real-time dispatch adjustments to
effectively mitigate the uncertainties inherent to residential PV systems. It addresses the limitations
of existing methods that fail to account for realistic operational conditions and prolonged outages,
offering solutions like multi-day fuel rationing, learning-based forecast correction, and dynamic
reserve management to enhance microgrid operation. Simulation results highlight the proposed
scheme's superiority in improving critical and non-critical load service, PV utilization, and
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minimizing disruptions during extended restoration periods, showcasing its effectiveness in
overcoming significant forecast errors and leveraging limited microgrid resources under
challenging conditions.

3.5.5 Distribution GSF 4: Reinforcement-Learning based Volt-var Control (Appendix 19.6:
B4)

This function uses a reinforcement learning (RL)-based Volt/Var Control (VVC) strategy for
regulating nodal voltages in a distribution feeder to be within the preferred operation range. A novel
two-stage progressive training approach to enhance the speed and convergence of the training
process. Unlike traditional rule-based and optimization-based VVC methods, which either lack
adaptability or require complex computational resources and accurate network models, the
proposed RL approach is highly adaptive to changing operation conditions and network topology
and parameters.

As shown in Figure 28, the first stage training concentrates on teaching each PV control agent
on learning under which operation condition it should generate, absorb, or take no action. In the
second stage training, the learning focus shifts to collaborative training across agents to optimize
the allocation of reactive power regulation responsibilities among various PV farms. This strategy
not only shortens the training duration but also enhances the system's robustness and flexibility,
facilitating adjustments in real-time. Simulation outcomes reveal that policies implemented in the
second phase surpass traditional decentralized VVC approaches by markedly diminishing the
cumulative duration of voltage violations, thus demonstrating superior voltage regulation
capabilities amidst uncertainties in load demands, PV generation, and variations in network
configurations or parameters. This forward-thinking method shows significant potential for efficient
VVC management within power distribution networks characterized by high PV farm density.
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Figure 28. An illustration of the two-stage training process

3.5.6 Distribution GSF 5: Dynamic Volt-var Control (Appendix 19.7: B5)

The function introduces a dynamic VAR compensator (DVC) strategy, employing a novel two-
stage hierarchical optimization and control framework to mitigate the impacts of high solar
penetration on unbalanced distribution systems. By analyzing existing methods for DVC placement
and control, the study identifies gaps in addressing prolonged reactive power deficiencies, system
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unbalance, and the need for practical dispatch schemes capable of handling distribution system
communication limitations. The proposed method emphasizes optimal DVC dispatch, placement,
and control to minimize voltage variations and regulator operations, tailored for unbalanced three-
phase systems. It introduces a multi-objective optimization framework and two supervisory control
strategies for dynamic Volt/VAR curve adjustment, ensuring alignment with optimal reactive power
trajectories. Simulation results validate the approach, showing significant improvements in voltage
stability and reduction in regulator operations, particularly with a 120-minute update frequency for
the Volt/VAR curve, highlighting the method's efficiency in enhancing power distribution resilience
against solar-induced volatility.
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Figure 29. Optimal Q dispatch of the DVC at Phase C in winter and local control schemes.

3.5.6 Distribution GSF 6: PV Power Tracking for Providing Power Reserves and Fast
Frequency Response (Appendix 19.8: D1)

The function merges a modified robust perturb-and-observe (P&O) flexible power point tracking
(FPPT) technique with a real-time curve-fitting-based maximum power point estimation (MPPE)
for enhanced performance in both power curtailment and MPPE within single-stage and two-stage
PV system topologies. This combined approach facilitates fast tracking of power-reference
changes, aiding in frequency stabilization during grid disturbances, particularly beneficial for low-
inertia microgrids. As renewable energy integration into the grid increases, this method allows
utility-scale PV farms to offer frequency support and maintain power reserves efficiently and cost-
effectively, akin to battery-energy-storage systems. The algorithm demonstrates rapid
convergence to new setpoints, significantly reducing tracking error and improving frequency
response during load pickups in distribution grids. This advancement in PV power tracking
presents a promising solution for managing power reserves and providing fast frequency response,
showcasing superior performance in maintaining grid stability and supporting renewable energy
integration.
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3.5.6 Distribution GSF 6: Grid-forming Voltage Control Strategy for Supplying
Unbalanced Microgrid Loads using Inverter-based Resources (Appendix 19.10: D3)

The task introduces a grid-forming (GFM) voltage control strategy tailored for battery energy
storage systems, aiming to maintain balanced three-phase output voltages amidst unbalanced
loads in microgrids. As shown in Figure 30, utilizing a stationary af reference frame for regulating
positive and negative sequence voltages and incorporating a grounding transformer for zero-
sequence voltage mitigation, this approach offers a sophisticated solution to voltage unbalance
issues. The strategy is distinctive for its direct regulation of sequence components without
decomposing them, simplifying the control process while effectively addressing unbalance.
Simulation results underscore the strategy's efficacy, particularly with the ap-based control scheme
demonstrating superior dynamic performance. The use of a grounding transformer alongside a Y-
Yg output transformer significantly improves the system's ability to handle unbalanced loads,
maintaining Voltage Unbalance Factor (VUF) within 3% for a Power Unbalance Factor (PUF) of up
to 55%, showcasing a notable advancement over traditional dg-based and ap-based control
methods in supplying balanced voltages to unbalanced microgrid loads.
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Figure 30. Control diagram of the aff SRF-based inner voltage controller.

3.5.6 Distribution GSF 6: Under-frequency Load Shedding for Power Reserve
Management in Islanded Microgrids (Appendix 19.11: D4)

The function features an innovative under-frequency load shedding (UFLS) scheme designed
for islanded microgrids (MGs) with a single grid-forming (GFM) resource, aiming to manage power
reserves effectively during conditions where power demand exceeds supply, triggering frequency
reductions to enact load shedding at various levels. Unlike traditional UFLS methods that act as
emergency measures to prevent frequency collapse, this scheme focuses on maintaining power
reserve margins during normal MG operations, incorporating smart technologies like
sectionalizers, smart meters, and controllable appliances for autonomous operation. This allows
for efficient power reserve replenishment and mitigation of three-phase imbalances without relying
on extensive communication networks. Simulation results demonstrate the scheme's capability in
managing power reserves more dynamically, offering gradual, appliance-based load shedding for
enhanced phase balance and sustained power output, distinguishing it significantly from
conventional approaches by supporting more loads with improved three-phase voltage.
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3.6 Cost Benefit Studies

Published papers have detailed the cost benefits of utilizing hybrid PV systems for frequency
and voltage regulation, blackstart capabilities, and microgrid management. This report highlights
several critical factors, previously under examined, that we discovered can significantly influence
the outcomes of cost-benefit analyses.

Control Coordination and Communication Cost: Figure 31 shows the control architecture for
using hybrid energy systems to provide aggregated transmission-level functions. Coordinating
device-level controllers with system-level controllers via communication networks incurs additional
costs compared to services delivered by generator units. This is attributed to the need for tens or
hundreds of hybrid energy systems to match the service capacity of a single generator. However,
most cost-benefit study failed to account for the cost of communication when coordinating many
DERs.
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Figure 31. Control Coordination.

DER Availability Considering Fault-ride Through: In addition, the availability of hybrid energy
systems can be affected by faults. We have conducted an assessment of transmission-level fault
impacts on distribution DER operation (Appendix 19.12: D5). We delve into the effects of
transmission-level faults on the operation of inverter-based resources (IBRs) in distribution
networks, leveraging a real-time transmission and distribution (T&D) co-simulation platform.
Recognizing the gap in existing research, particularly the lack of detailed analysis on the impact of
such faults on high-penetration IBR systems, the study simulates symmetrical and unsymmetrical
faults within an equivalent transmission network to assess their influence on distribution IBR
tripping. The methodology encompasses modeling both 3-phase and 1-phase IBRs using EMT
and phasor domains to accurately capture their behavior during fault conditions.

Simulation results reveal that higher power-to-load ratios tend to reduce IBR tripping by
improving voltage levels along the feeder. However, point of common coupling faults notably
degrade voltage, increasing IBR tripping instances. The study also finds that 3-phase IBRs are
more affected by transmission-level faults than 1-phase IBRs, and unsymmetrical faults can lead
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to the tripping of IBRs on non-faulty phases, causing significant power and voltage unbalance in
systems with high PLRs. This analysis reveals that while the hybrid system can improve resilience,
it is essential to establish robust fault response strategies. These strategies ensure that IBRs
remain operational during transient faults, maintaining their availability and contributing to system
stability. However, most cost-benefit study failed to account for the availabilities of IBRs when
switching events occur.

Cost of Demand Response for Maintaining Power and Energy Reserves: Our study
indicates that insufficient power reserves and three-phase imbalances can notably diminish the
capacity of hybrid energy systems to sustain microgrid operations. Consequently, it is crucial to
employ demand response strategies, including under-frequency load shedding during standard
microgrid functioning, to preserve power and energy reserve margins and ensure three-phase load
balance. However, most cost-benefit study when considering microgrid functions failed to account
for the cost for establishing such services.
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4. Significant Accomplishments and Conclusions
In the PARS project, we demonstrated the feasibility and benefits of using high-fidelity digital
twins for grid support functions, offering a safer, cost-effective, and scalable alternative to
traditional testing methods. We utilized machine learning-based approaches to enhance
automation, efficiency, adaptability, and consistency in power system applications. This includes
tasks such as load and PV forecasting, anomaly detection, model parameterization, and
reinforcement learning-based DER control. Our collaboration with utilities and vendors has been
instrumental in accessing the substantial real data needed for developing these tools. This includes
realistic network topologies, extensive real-time operational data sets, and field validation, all of
which have been crucial to our success.
Our accomplishments are summarized as follows:
e Grid Support Functions (see Table 2 for details)
e Grid Intelligence
o Developed meta-learning based method for load forecasting model selection and
TCN-based methods for enhancing forecasting large PV short-term output drops
o Developed reinforcement learning-based volt-var control and cyber- attack
strategies
o Developed GAN-based synthetic data generation methods
o Developed BERT, GAN, and gradient boost methods for demand response
baseline identification
o Developed a suit of load disaggregation methods using contextual based
methods, vision-transformer, and GPT based generative methods.
o Developed super-resolution methods for enhancing load profile resolutions
e Power System Digital Twins
o Real-time parameterization for PV-farm digital twins
o Co-simulation platforms for scaling up the models
o Encoding messages to mitigate unreliable communication in enhancing reliability
of grid operations and cybersecurity
o Using synthetic data and network models to enrich modeling scenarios
e Microgrid power management
o Considered reconfiguration when there are multiple grid-forming resources in one
microgrids
o Considered cold-load pickup for maintaining microgrid reserves
o Added demand response budget for meeting cold-load pickup needs
o Managed mobile energy storage for enhancing rooftop PV powered community
microgrid
o Microgrid hierarchical management for merging smaller microgrids into a large
one or dissolve a large microgrid into a few smaller microgrids
¢ Reliability and Resiliency: Coordination with grid-forming BESS and controllable loads,
the use of PV systems for blackstart, voltage regulation, precise power tracking, and
microgrid operation significantly enhances the overall efficiency and reliability of
distribution power system operations.

5. Path Forward
Future research directions:
e Collaborate with ElectriCities and NCEMC to integrate the machine-learning-driven data
analytics tools into the existing data analytic tools used at municipal and co-op utilities.
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Create automated tools for model parameterization to streamline the development of
real-time power system digital twins.

Construct integrated Transmission and Distribution (T&D) power system digital twins and
seamlessly integrate these digital twins with conventional utility operation and planning
tools, thereby improving overall system efficiency and performance.

Funding generated by the PARS project:
Beyond the PARS project, we have the following ongoing synergy activities:

Sponsored by the National Science Foundation (NSF) on the development of a machine
learning-based model reduction method for integrated Transmission and Distribution
(T&D) models.

Sponsored by CAPER for IBR (Integrated Bulk and Retail) fault analysis and composite
load model parameterization, enabling us to assess the impacts on distributed PV
(Photovoltaic) farms.

Sponsored by the North Carolina University Systems to establish a multi-university co-
simulation testbed for cybersecurity analysis

Completed synergy activities as listed as follows:

+ Sponsored by GismoPower (finished in BP3). American-Made Solar Prize, Round 5. Use
the PARS platform and tools to study the impact of adopting solar panel powered EV
chargers on distribution grid operation.

. Sponsored by ElectriCities and their municipal utility members (BP2-BP3Q8)

Utility sponsors: New River Light&Power (NRLP) and Fayetteville PWC
» Transformer overloading and lifetime studies
* Meter-phase and meter-transformer pairing studies
* Demand response baseline derivation
+ Load disaggregation studies
Behind-the-meter EV and PV identification

. Sponsored by Pacific Northwest National Lab (BP2-BP3Q4)

» Utility sponsors: NRLP and Fayetteville PWC

+ Goal: Benefit and potential for energy storage applications

» Coordinative energy management for demand charge mitigation
* Load disaggregation (identify demand response resources)

* CVR and Demand response baseline identification

. Sponsored by CAPER (on going)

Utility sponsors: Duke Energy and Dominion Power

* Project 1: Grid Observatory. Connect the PARS with utility EMS to model the
distribution grid with high PV in detail (with a focus on studying fault propagation from
transmission to distribution)

* Project 2: Machine learning based load model parameterization. Integrate composite
load models to PARS platform
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In this section, we highlight the significant accomplishments and explain why they are significant.
The PARS sites include:

e GitHub

repository for sharing data, models, and algorithms:

https://qithub.com/SyntheticDataGenerationAndSharing/SDG Algorithms-Data.

e PARS

platform site: https://sites.google.com/a/ncsu.edu/ninglu/pars-

platform?authuser=0

6.1 Major Presentations

Links to the Presentation recordings/documents

Overviews of

—_

An overview of the PARS platform by Dr. Ning Lu at the MIT Seminar series

the PARS 2. An Overview of the PARS Platform by Dr. Ning Lu at the DOE workshop.
Platform 3. Bigdata Seminar about the machine learning based methods used to develop
the PARS platform:
https://www.public.asu.edu/~kghosh10/Tutorial5/56 talk lu_li song.html
PNNL HIL 1. Quan Nguyen, ‘Control &amp; Simulation of a Grid-Forming Inverter for Hybrid
Team PV-ES Plants in BlackStart’, 21PESGM2143, 2021 IEEE PES General Meeting.

N

. Quan Nguyen, ‘Demonstration of Black Start On New York Power System In
EMT Real-time Simulator HYPERsim’, at the FREEDM seminar series., April
2022.

PARS Energy

Energy management systems by Ashwin Shirsat, Valliappan Muthukaruppan,

Management Rongxing Hu. at the FREEDM seminar series.
Systems 2. Rongxing Hu: MW microgrid: https://youtu.be/1kIBTnE8V24; Demo link 2: A
Team recording of one complete run: https://youtu.be/b5sv8SozF Sk
3. Valliappan Muthukaruppan: Presentation Link: https://youtu.be/Sr-OC075gZo;
Demo link: https://youtu.be/I885azI3hpU
4. Ashwin Shirsat: https://youtu.be/z1D5T1R9abl
PARS HIL 1. Fuhong Xie: Battery Parameterization at FREEDM Tech Seminar Series
Team 2. Victor Paduani: Maximum Power Reference Tracking Algorithm for Power
Curtailment of PV Systems, 21PESGMO0055 - Best paper session
3. Jiyu Wang: “A data-driven Pivot-point-based Time-series Feeder Load
Disaggregation Method”, 21PESGMO0790
PARS 1. FeederGan presentation:_https://www.youtube.com/watch?v=r8cmSDyxIJ8. By
Situation Dr. Ming Liang at PES General meeting
Awareness 2. ProfileSR-GAN: https://www.youtube.com/watch?v=nBkwTgHplh8&t=30s. By
Team Lidong Song at the FREEDM seminar series.
3. Meta-learning based load forecasting tool. by Dr. Yiyan Li at the FREEDM

seminar series.
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6.2 Publications in Machine-learning and Data Analytics

The publications related with the machine learning applications are listed as follows:

1.

Kai Ye, Hyeonjin Kim, Yi Hu, Ning Lu, Di Wu, and P. J. Rehm. "A Modified Sequence-to-point HYAC Load
Disaggregation Algorithm." In 2023 IEEE Power & Energy Society General Meeting (PESGM), pp. 1-5.
IEEE, 2023.

Kim, Hyeonjin, Kai Ye, Duehee Lee, and Ning Lu. "A Contextually Supervised Optimization-Based HVAC
Load Disaggregation Methodology." IEEE Transactions on Smart Grid (2024).

Yi Hu, Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Mattew Makdad, Edmond Miller, and Ning Lu,
"MultiLoad-GAN: A GAN-Based Synthetic Load Group Generation Method Considering Spatial-Temporal
Correlations," in IEEE Transactions on Smart Grid, vol. 15, no. 2, pp. 2309-2320, Mar. 2024, doi:
10.1109/TSG.2023.3302192. (Youtube video: https://youtu.be/DFPjr2flxwg )

Yiyan Li, Lidong Song, Yi Hu, Hanpyo Lee, Di Wu, PJ Rehm, Ning Lu, "Load Profile Inpainting for Missing
Load Data Restoration and Baseline Estimation," in IEEE Transactions on Smart Grid, vol. 15, no. 2, pp.
2251-2260, Mar. 2024, doi: 10.1109/TSG.2023.3293188.

Ming Liang, Y. Meng, J. Wang, D. Lubkeman and N. Lu, "FeederGAN: Synthetic Feeder Generation via
Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, doi: 10.1109/TSG.2020.3025259.
Lidong Song, Yiyan Li, and Ning Lu. "ProfileSR-GAN: A GAN based Super-Resolution Method for
Generating High-Resolution Load Profiles," http://arxiv.org/abs/2107.09523, Youtube video.

Yiyan Li, Lidong Song, Si Zhang, Laura Kraus, Taylor Adcox, Roger Willardson, Abhishek Komandur, and
Ning Lu, “TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network
Selection,” submitted to IEEE Trans. Sustainable Energy. https://arxiv.org/abs/2111.08809.

Si Zhang, Mingzhi Zhang, Rongxing Hu, David Lubkeman, Yunan Liu, and Ning Lu, “A Two-stage Training
Strategy for Reinforcement Learning based Volt-Var Control,” submitted to 2022 PES General Meeting.
https://arxiv.org/abs/2111.11987

Mingzhi Zhang, Xiangqi Zhu, and Ning Lu, “A Data-driven Probabilistic-based Flexibility Region Estimation
Method for Aggregated Distributed Energy Resources,” Submitted to IEEE Trans. Smart Grid.
https://arxiv.org/abs/2110.07406.

10. Hanpyo Lee, Han Pyo Lee, Mingzhi Zhang,Mesut Baran, Ning Lu, PJ Rehm, Edmond Miller, Matthew

Makdad P.E., “A Novel Data Segmentation Method for Data-driven Phase Identification,” submitted to 2022
PES General Meeting. http://arxiv.org/abs/2111.10500

11. Hyeonjin Kim, Kai Ye, Han Pyo Lee, Rongxing Hu, Di Wu, PJ Rehm, and Ning LU, “An ICA-Based HVAC

Load Disaggregation Method Using Smart Meter Data” submitted to 2023 ISGT. Available online at:
https://arxiv.org/abs/2209.09165

12. Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-

Driven Pivot-Point-Based Time-Series Feeder Load Disaggregation Method." IEEE Transactions on Smart
Grid 11, no. 6 (2020): 5396-5406.

13. Ming Liang, Jiyu Wang, Yao Meng, Ning LU, David Lubkeman, and Andrew Kling. "A Sequential Energy

Disaggregation Method using Low-resolution Smart Meter Data, " Proc. of IEEE Innovative Smart Grid
Technologies, Washington DC, 2019.

14. Yao Meng, Ming Liang, and Ning LU. "Design of Energy Storage Friendly Regulation Signals using

Empirical Mode Decomposition," Proc. of the 2019 IEEE Power & Energy Society General Meeting,
Atlanta, GA, Aug. 2019.

15. Yao Meng, Z. Yu, N. Lu and D. Shi, "Time Series Classification for Locating Forced Oscillation Sources,"

in IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 1712-1721, March 2021, doi:
10.1109/TSG.2020.3028188.

16. Hyeonjin Kim, YiHu, Kai Ye, Ning Lu. "A Novel Vision Transformer based Load Profile Analysis using Load

Images as Inputs". Accepted by 2024 IEEE PES General Meeting. 24PESGMO0338-T2YicBQXD.

6.3 Publications in PARS Hardware-in-the-loop Platform Development

The publications related with the HIL platform development are listed as follows:

1.

X. Ke, A. Thaileh, Q. Nguyen, T. Becejac, M. R. Vallem and N. Samaan, "A Solar-assisted Voltage
Optimization Method for Transmission Solar Network Power System," 2022 IEEE Power & Energy
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Society General Meeting (PESGM), Denver, CO, USA, 2022, pp. 1-5, doi:
10.1109/PESGM48719.2022.9917048.

A. Thaileh et al., "Optimal Power System Black start using Inverter-Based Generation," 2021 IEEE Power
& Energy Society General Meeting (PESGM), Washington, DC, USA, 2021, pp. 1-5, doi:
10.1109/PESGM46819.2021.9638043.

Q. Nguyen, M. R. Vallem, B. Vyakaranam, A. Tbaileh, X. Ke and N. Samaan, "Control and Simulation of
a Grid-Forming Inverter for Hybrid PV-Battery Plants in Power System Black Start," 2021 IEEE Power &
Energy Society General Meeting (PESGM), Washington, DC, USA, 2021, pp. 1-5, doi:
10.1109/PESGM46819.2021.9637882.

Q. Nguyen, A. Tbaileh , Laura A. Ward, X. Ke, M. R. Vallem, B. Vyakaranam, and N. Samaan, "Real-
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Table 1: Lead Institute: North Carolina State University Participants

Name Role Contribution
Ning Lu Pl Manage the overall project and modeling team
David Lubkeman Co-PI Manage the HIL team
Mesut Baran Co-PI Supervise PhD students for EMS algorithm development
Wenyuan Tang Co-PI Supervise PhD students for EMS algorithm development
Srdjan Lukic Co-PI Supervise PhD students for HIL testbed development
Table 2: North Carolina State University Student Participants
GRA: Graduate research assistant; URA: undergraduate research assistant
Name | StartDate | End Date | Role | Contribution
Students in the HIL Team
Jongha Woo PhD | Fall 2022 Fall 2023 GRA | PV parameterization
Charles Kelly PhD | Fall 2021 Fall 2023 GRA | PV modeling
Qi Xiao PhD | Fall 2021 Fall 2023 GRA Feed Reduction and Cyber attack
Lidong Song PhD | Spring 2020 | Fall 2022 GRA Super resolution and Cyber attack
Bei Xu PhD | Spring 2020 | Fall 2023 GRA Battery modeling
Victor Paduani PhD | Fall 2020 Spr. 2022 | GRA PV farm GSF development
Fuhong Xie PhD | 5pring 2020 | Fall 2020 | GRA Battery GSF development
Long Qian PhD Spring 2020 | Fall 2020 GRA Diesel generator GSF
Hui Yu PhD | Spring 2020 | Fall 2020 | GRA Battery GSF development
Students in the Modeling Team
Rongxing Hu PhD | Spring 2020 | Fall 2023 GRA Feeder-level microgrid EMS
Ashwin Shirsat PhD | Spring 2020 | Fall 2022 GRA Community microgrid EMS
Valliappan PhD GRA
Muthukaruppan Spring 2020 | Fall 2022 Mobile storage EMS
Asmaa Alrushoud | PhD | Fall 2020 Fall 2021 GRA Volt/var control
Jiyu Wang PhD | Spring 2020 | Spr. 2020 GRA Load disaggregation
Postdoc/Students in the SA Team
Post GRA Load and PV forecasting
Yiyan Li doc | Spring 2020 | Fall 2022 Synthetic Data generation
Si Zhang PhD | Spring 2020 | Spr. 2023 | GRA RL-based Volt/var control
GRA Smart meter analysis
Hanpyo Lee PhD | Spring 2020 | Fall 2023 CVR baseline detection
GRA Synthetic generation
Yi HU PhD | Fall 2021 Fall 2023 DR baseline detection
Kai Ye PhD | Spr. 2021 Fall 2023 | GRA | Load disaggregation and behind-the-
Hyeonjin Kim PhD | Fall 2021 Fall 2023 | GRA meter DER Detection
Master/Under graduate students
Ignacio Aguilar BS Spring 2023 URA PV modeling
Jakob Triemstra BS Spring 2023 URA PV modeling
Charlie Averett BS Summer 2021 URA PV forecasting
Luna Zhu BS Summer Spr. 2021 URA PV forecasting
Eli Hubble BS Spr. 2020 Spr. 2020 URA PV forecasting
Issac Little MS Summer 2021 GRA PV forecasting
Jacob Triemstra BS Spring 2023 | Fall 2023 URA PV forecasting
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Table 3: Collaboration Organization 1: Pacific Northwest National Lab (requested DOE funding)
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Name Role Contribution
Steady state optimization model development for volt-var control

Xinda Ke team lead | function, project management

participant | Demonstration of black start in two sub-areas of NYPA system in
Quan Nguyen OPAL-RT Hyper-SIM model
Ahmad Tbaileh participant | Steady state optimization based black start path model development
Mallikarjuna Project management, Opal-RT Ephasor-Sim model development,
Vallem participant | industry outreach, technical support
Samaan, Nader A | advisor Advisor of the project
Tamara Becejac participant | Explore the NYPA system in Opal-RT Hyper-sim model

participant | Demonstration of black start in two sub-areas of NYPA system in

Laura A. Ward

OPAL-RT Hyper-SIM model

Table 4: Collaboration Organization 2: Industry Teams and Advisors (in-kind cost-share)

Name Company Contribution
Xia Jiang Provided NYPA blackstart procedure and network
George models. Provide technical support for developing the PV
Stefopoulos NYPA farm models and verify performance of the volt/var
control scheme and the black start sequences using PV
Victor Paduani farm as a major black start resource.
PJ Rehm o . . - .
i Coordinating with municipal utilities and provide data
Andy Fusco ElectriCities . . - e
Greg Flinn support. Disseminate results to municipal utilities.

Laura Kraus

Roger Willardson

Keary Dosier

Taylor Adcox

Abhishek
Komandur

Roger Willardson

Strata Solar

Providing 1-second PV farm data for parameterizing PV
farm digital twin models and anomaly detection.
Provided 100 PV farm data for short term PV large
power drop forecast.

Matt Makdad

New River

Providing SCDA, smart meter data for CVR
performance assessment and behind the meter PV and

Edmond Miller EV and identification

Providing SCDA data for CVR and demand response
Timothy Fayetteville PWC program performance assessment and baseline
Stankiewicz derivation

Marshall Cherry

Roanoke Electric Co-op

Industry advisor

Daniel Gillen

Paul Darden

Wilson Energy

Providing smart meter (residential, commercial, and
industrial loads) and PV data for synthetic data
generation and digital twin parameterization
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9. Appendix

9.1 Task A.1 Transmission GSF 1: Demonstration of a Solar-assisted Voltage
Optimization Method in NYPA Transmission System by PNNL

Background: This task aims to demonstrate and validate a security-constrained optimal power
flow (SCOPF)-based volt-var control algorithm within the New York Power Authority (NYPA)
transmission system. The objective is to enhance the stability of voltage fluctuations in
transmission networks under both base case and contingency scenarios. This is achieved by
integrating a bulk solar power plant with a minimal number of post-contingency corrections in a
500-bus NYPA network. The algorithm utilizes EMS data spanning from 06/03/2014 to 09/10/2015
from NYPA as inputs. Simulation results indicate that the proposed two-stage volt-var ACOPF
algorithm effectively eliminates voltage violations in both base case and contingency scenarios.

TABLE I: Comparison of the Developed Volt/Var control Algorithm and Existing Related Works

Advantages Disadvantages
- Focus on security-constrained optimal power flow Cannot remove every volt-var
[11-[5] (SCOPF) based volt-var control algorithm with violations from all N-1 contingency
significantly reduced problem scale scenarios
- Use the preventive security-constrained optimal power Very large-scale power flow
[31-[5] flow (PSCOPF) problems to handle volt-var violations problems and are hard to solve
for all contingency scenarios directly
: . . : The model requires additional
- Use the corrective security constraint optimal power . . .
Lo decision variables and solution
[6] flow (CSCOPF) to handle volt-var violations for all ; . :
. . actions with respect to different
contingency scenarios . )
contingency scenarios
Do not focus on a full sequence of
[8] - Use GFM-based wind for black start black-start process
Focus on wind instead of solar and
storage as generation resources
- Use GFM inverters as black start unit Do not model the dc-side
[9]-[10] - Conduct a real-time simulation with multiple steps with d :
. I ynamics
autonomous actions of circuit breakers
-  Use real system topology and parameters and
optimization-assisted black-start procedure
Approach - Full demonstration with 25 steps in Area 1 and 17 steps The demonstration and control
developed in Area 4. implementation in HYPERsim
by PNNL - Detailed dynamic model at the dc side and requires greater effort compared
[11,12] autonomous coordination between solar and storage other EMT simulation tools
- Use the only industry-approved GFM control model
with current limiting and P-Q capability limit

Task Objectives:
e Develop the equivalent NYISO power flow cases from the NYPA EMS state estimator

data.

e Run contingency analysis for major contingencies. Identify voltage violations. Baseline
will be obtained.
e Apply the proposed Preventive volt/var control algorithms to reduce voltage violations.
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Methodology Overview: The probability density function representing the voltage magnitude
extracted from the NYISO system over a span of 15 months is depicted in Fig. 1 below. On the x-
axis, the voltage magnitude is presented in per unit (p.u.), while the y-axis illustrates the probability
of various voltage magnitudes throughout the entire year's dataset. The figure reveals that, for the
majority of the time, the voltages in the NYISO area range between 0.9 and 1.1 p.u. Nonetheless,
there are instances where the system experiences both under-voltage and over-voltage issues.

Simulation Results: The proposed volt-var a0
ACOPF voltage control algorithm  was _
implemented in the NYPA for a full day, and the
simulation results are compared for the following
two cases:

e Case 1: Base case with no control on
solar inverter

e Case 2: Proposed volt-var ACOPF
algorithm.

Figure 2(a) illustrates the bus voltage L

comparison between Case 1 and Case 2, ® 705 06 07 08 09 1 11 12 13 14 15
specifically focusing on the selected solar bus vonage ofselecied buses

782 during a 1-day simulation period (24 hours)
on 7/25/2014. Noticeable under-voltage issues
can be seen at the selected bus 782 after 3 p.m., coinciding with a decrease in system load. In
contrast, the volt/'var ACOPF algorithm maintains the voltage level within its scheduled range of
0.95 p.u to 1.05 p.u, showcasing the effectiveness of the proposed algorithm. Figure 2(b) presents
the real and reactive power output of the utility-scale PV plant at bus 782. The reactive power
output of each solar unit is constrained by the apparent power limits of the solar inverter.
Additionally, the solar units actively generate reactive power for the grid, particularly post 3 p.m.,
contributing to volt-var support services. These results underscore the effective utilization of solar
resources for providing volt-var support services.
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Figure 1. Probability density function of voltage
magnitude in NYISO area.
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scale PV plant located at bus 782.
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Figure 3 illustrates the cumulative comparison of bus voltage violations in p.u. between Case 2

and Case 3 across all contingency scenarios during a 1-day simulation period (24 hours). As
depicted in Fig. 3, the second stage security constraint volt/'var ACOPF effectively eradicates all
voltage violations in contingency scenarios. This affirms that the proposed two-stage volt-var
ACOPF algorithm is capable of eliminating voltage violations in both base case and contingency
scenarios.
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Figure 3. Comparison of accumulated voltage violations on all contingency cases.
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9.2 Task A.2 Demonstration of black-start process using two sub-areas of NYPA
system in EMT real-time simulation tool HYPERsim

Background:

This task demonstrates transient stability and validates the effectiveness of the numerical
optimization-based black-start function within the New York Power Authority (NYPA) transmission
system, utilizing the electromagnetic-transient (EMT) real-time simulation tool, HYPERsim. The
EMT demonstration involves the creation of a high-fidelity hybrid solar-storage power plant with
grid-forming (GFM) capability, positioning it as a potential black-start resource alongside existing
hydroelectric power plants in the NYPA system. By employing the optimal black-start sequence
and generator dispatch obtained from the numerical solution as inputs, the EMT real-time
demonstration not only closely aligns all steady-state parameters with those in the numerical
solution but also showcases the NYPA system's capability to maintain voltage and frequency
stability. Furthermore, it demonstrates the system's resilience in overcoming practical dynamic
black-start challenges, such as transformers' inrush current and the energization of long
transmission lines.

TABLE I: Comparison of the Developed Black-Start and Existing Related Works

Advantages

Disadvantages

[11-[8]

Focus on optimal blackstart with multiple steps

Only focus on steady-state analysis,
and cannot capture system dynamics
during black-start

(3]-[6]

Use the only industry-approved GFM control model with
current limiting and P-Q capability limit

Only model the ac-side dynamic
Do not focus on black-start

[7]

Use an autonomous coordination between solar and storage

Only focus on grid-following control
Do not focus on black-start

(8]

Use GFM-based wind for black start

Do not focus on a full sequence of
black-start process

Focus on wind instead of solar and
storage as generation resources

Use GFM inverters as black start unit

[9]-[11] Conduct a real-time simulation with multiple steps with Do not model the dc-side dynamics
autonomous actions of circuit breakers
Use real system topology and parameters and optimization-
assisted black-start procedure
Approach Full demonstration with 25 steps in Area 1 and 17 steps in The demonstration and control
developed Area 4. implementation in HYPERsim requires
by PNNL Detailed dynamic model at the dc side and autonomous greater effort compared other EMT
[12, 13] coordination between solar and storage simulation tools

Use the only industry-approved GFM control model at the ac
side with current limiting and P-Q capability limit

Task Objectives:
e Develop a high-fidelity hybrid dc-coupled solar-storage power plant model with grid-
forming capability and autonomous power sharing between solar and storage.
e Demonstrate system stability and characterize dynamic behaviors of a black-start
process for 2 sub-areas in the NYPA system with input from the numerical optimization
solution via a developed automated co-simulation framework.
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Methodology Overview: As depicted in Figure 1, we have developed a comprehensive model
for the hybrid solar-storage plant, incorporating both ac-side and dc-side control strategies. The
ac-side control employs an industry-approved droop-based Grid-Forming Mode (GFM) control
strategy, regulating terminal voltage and voltage control based on P-f and Q-V droop
characteristics. On the other hand, the dc-side control autonomously coordinates solar generation
at the maximum power point and manages bidirectional storage dispatch in response to the
required ac-side demand.
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* Ppv < Pac : buck mode (charging)
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Figure. 1 Modeling and control of a hybrid solar-storage plant with droop-based GFM capability

Figure 2 illustrates the EMT real-time
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Simulation Results: Simulation results
corresponding to the blackstart in Area 4 are
shown as examples. Figure 4(a) shows the
optimal energizing sequence, With the GFM
control, Figures 4(b) and 4(e) show the stable
voltage magnitudes at different locations and
instantaneous terminal voltage of the hybrid
plant during entire process. While Figure 4(c)
shows the total hybrid plant generation, Figure
4(d) shows the break-down of individual solar
and storage generations to demonstrate the
developed coordinative at the dc side.
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Figure 3. NYPA power system and 7 sub-areas
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Figure 4. Simulation results of the demonstrated black-start process in Area 4.
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9.3 Task B.1 Feeder-level Microgrid Energy Management

Background: This task focuses on developing grid support functions for utility-scale MW-level
PV systems, specifically tailored for extended outages. The aim is to achieve optimal resilience
service performance and regulate the operation of the formed microgrid. Table | provides a
summary of the state-of-the-art works in this area, revealing key observations: 1) Few studies
concentrate on extreme outages lasting multiple days; 2) Existing approaches often rely on
dispatchable distributed resources, which can be costly and unavailable for most distribution
feeders. In contrast, renewables, expected to be prevalent in most distribution systems in the near
future, are not extensively explored; 3) Limited consideration is given to cold load pickup (CLPU),
a crucial factor impacting microgrid operation. While some models use fixed CLPU parameters
based on assumed temperature and outage duration, this approach introduces significant CLPU
estimation errors. Alternatively, candidate-based methods generate CLPU curves for all events,
allowing the microgrid to select optimal CLPU scheduling. However, this becomes impractical
during long outages due to the extensive candidate set.

TABLE I: Comparison of STATE-OF-THE-ART Algorithms for Microgrid Resilience Service

Verified dynamic

Microgrid Operation Setup Microgrid Unit Commitment Algorithm Setup §
responses
Ref. 3-phase . Optimizat . CLPU
Outage Main energy ) Rolling | Foreca
unbalanced duration source* lon horizon |sterror| Y/N e CLPy
system stages events model
v v ) no real-time
[1] <1 hour DG RT one fixed CLPU simulation
[2] up to days DG DA v v one fixed
[3] v up to days | DG + BESS DA v v one fixed
[4] v several DG RT v | v | one |candidate
[5] ssc\ﬁrrsal DG RT 4 v one candidate
[6] several DG DA v multiple
[7] <1 day DG DA+RT v multiple
[8] v <1 hour DG RT one
[9] v up to days DG DA multiple no CLPU
[10] v <1 day DG + BESS DA v multiple
[11] v several | pG+BESS | RT multiple
[12] multi-days | BESS + PV DA multiple
our verified by real-
Method v multi-days | BESS + PV | DA+RT v v V" |multiple | adaptive time CLPU
simulation

*DG denotes dispatchable distributed generations; § Using openDSS, gridLAB or HIL simulation

Task Objectives:
e Develop an energy management system (EMS) for a hybrid PV plant to power a feeder-
level microgrid
e Maximize the total serve load considering customer comfort and minimize the CLPU
effect by using an adaptive CLPU model to accurately capture the CLPU consumption
accounting for impacts of time-varying ambient temperature and uncertainties in
scheduled outage duration.
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Approach: Figure 1 illustrates the framework of the two-stage feeder-level microgrid EMS and
provides a conceptual comparison of CLPU models. The EMS effectively coordinates day-ahead
energy scheduling and intra-hour power dispatch. Notably, the adaptive CLPU model, in contrast
to the fixed CLPU model, accurately considers the influences of temperature and interruptions in
each time step. This precision aids the microgrid in mitigating energy and power deficits attributed
to CLPU, ultimately facilitating optimal operation.
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PV & load o - weather
forecast 1 sta_ge, energy s_chedu_lmg: information A . B
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........... e CLI exiimetan lganannnnnnns
l 1+l (P'lgptp . / CLPU Peak
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! Resolution 2nd stage, power dispatch: overestimated Jv
i smin | (interval: Smin, horizon: 30min) e d_y ___________________________
DR resource dispatch, PV dispatch, ko —_— CIRU duration
BESS dispatch, voltage regulation ovelstimated
l LG status _l_,_l—l CLPU
Real-time Implementation: BESS SOC At | | yperiod, Ty
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Figure 1. Two-stage EMS: (a1) Flowchart of the 2-Stage MGUC, (a2) Scheduling Horizons and Intervals;
Conceptual comparison of the CLPU models: (b1) Temperature; (b2) the fixed CLPU model, (b3) the adaptive
CLPU model, grey shaded areas are the HVACs’ normal electricity consumption when there is no
interruption.

Project Results and Discussions: In Fig. 2, it is evident that the adaptive CLPU model
accurately captures CLPU dynamics. As presented in Table I, the EMS utilizing the adaptive CLPU
model (AdaptCLPU) demonstrates the best overall performance, excelling in terms of served
energy, critical load, baseload, and PV utilization. In contrast, the EMS employing the Fixed CLPU
(FixCLPU) model provides the least served energy, primarily due to higher PV curtailment. The
EMS without CLPU estimation (NoCLPU) results in the highest CLPU consumption [13].

TABLE II: Comparison of Microgrid Performance with and Without CLPU Estimation

Served load in S d
referred periods erve
Served | P critical | S°V9 |Curtailed| CLPU | Estimated
Case load ( ) baseload
() load | PTRPSE PV (kWh) | (kWh) | CLPU (kWh)
total | C-PY | (kwh)
part
NoCLPU 54493 110196 1757 4734 21438 2999 7697 -
FixCLPU [12] | 50737 | 7445 540 4814 20464 5877 5893 12885
AdaptCLPU 55173 | 7771 667 4857 22210 2591 6835 5565
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Figure 2. Two-stage EMS: Comparing various CLPU models, high temperature during: (a) hours 12-16;
(b) hours 4-8.
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9.4 Task B.2 Community-level Dynamic Microgrid Energy Management

Background: This task introduces a comprehensive and adaptive three-stage hierarchical
multi-timescale (SA-HMTS) framework designed for scheduling and real-time dispatch of
community microgrids (CMGs) equipped with hybrid PV systems. The primary goal is to restore
loads during prolonged outages when transmission network support is unavailable, thereby
enhancing the resilience of power distribution systems. Numerous strategies leveraging microgrids
for load restoration have been proposed in the literature, as outlined in Table |. However, a holistic
and computationally efficient approach for proactive scheduling and dispatch of distribution
network-integrated CMGs during extended emergencies, with a focus on real-time uncertainty
mitigation, prioritizing critical loads, optimizing resource allocation for self-sustained continuous
operation, incorporating demand response, modeling cold-load pick-up, and expanding CMG
support to the neighboring grid, remains unexplored.

Table I: Comparison of state-of-the-art methods against proposed SA-HMTS framework.

Reference l_"-ramcwm'k spn_:ciﬁc:,l _ ] _ NlumCrical simulation specifics
!_nad Stages Ru-l_lmg Dynumw_ MG | Uncertainty | KT dispatch || Digatal twin Forecast _ Tcm!mra_l_
maximization " | horizon formation aware frequency validation™ | error analysis | generalizability

1] v 1 X v X N/A v X X

2] X 2 v X X 13 minutes X X X

[3] X 1 X X v N/A v X X

4] X i v X v 5 minutes X X X

[5] v 1 v v v 1 hour X X X

(6] v 1 X X X N/A v X X

7 v 1 X X v 1 hour X X v

[8] X 1 v X X 1 hour X X X

[9] X i v X v 15 minutes X X X
[10], [11] X 2 v X v 5 minutes X X X

[12] v 1 X v X N/A X X X

[13] X 1 v v v 1 hour v X v
SA-HMTS v 3 v v v 5 minutes v v v

* Using OpenDSS or HIL simulations.

Task Objectives:

e Develop an optimal decision-making framework that will enable CMGs to securely restore
loads during extended duration outages caused by high impact low frequency (HILF)
events.

e Incorporate uncertainty mitigation mechanisms within the optimal decision-making
framework for bolstering against the extreme volatility inherent to HILF events.

Methodology Overview:

The proposed optimal decision-making framework is depicted in Fig. 1. The Secure and
Adaptive Three-Stage Hierarchical Multi-Timescale (SA-HMTS) framework consists of three
hierarchical stages, each operating on a distinct timescale. The initial stage tackles a stochastic
extended duration scheduling (EDS) problem, establishing reference plans for optimal resource
allocation and determining the extent to which the Community Microgrid (CMG) can restore
neighboring loads. The intermediate near-real-time (NRT) scheduling stage refines the EDS
schedule closer to the dispatch time using newly obtained forecasts, followed by the Real-Time
(RT) dispatch stage.

To enhance decision robustness against forecast errors, a novel concept called delayed
recourse is introduced. The framework encompasses decision-making for various load types and
distributed energy resources, including energy storage (ES) systems, MW-scale PV generators,
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and rooftop PV generators. It takes into account uncertainties in load demand, solar irradiance,
and outage duration. The framework is validated using OpenDSS software and hardware-in-loop
simulations.

Project Results and Discussions: Table Il presents the outcomes of the proposed approach
in contrast to traditionally employed deterministic, stochastic, and robust optimization approaches,
each utilizing a commonly employed two-stage approach. The objective of this comparison is to
underscore the effectiveness of the proposed approach in the context of uncertainty-aware
decision-making, as reflected in the resiliency metrics detailed in the table. Definitions of these
metrics can be found in [16]. Across all compared scenarios, the proposed Secure and Adaptive
Three-Stage Hierarchical Multi-Timescale (SA-HMTS) framework consistently demonstrates
superior results in critical load supply, PV utilization, availability of adequate reserved limits with
grid-forming Energy Storage (ES) systems, and CMG operational duration.

Implemented Planned Implemented Network b 4 e
schedule schedule dispatch simulator s
S
S —— e IExtended duration scheduling ;EDS"
EDS, NRT Forecasts 7 e d
1. Load 1 L «— At ——> '
H 1 1
\LPYieren ) =il ] !
L ovte{l,...,|T -
S e B t=1 t=2 t=|T| :
v : 1
1
RT pre-dispatch | P ket '
forecasts: 1 2 Near real-time (NR % :
1. Load : 2t 3 '
2. PV generation /I € {1,..., [H,|} < Ah—> .
: N ettt » h=1 h=|H|g---------=c-moocmmcennnnn 1
:kE{l, ,‘K:t,h|} s ~ iy :
1 T -7 .~ T !
R . " :
[ s <« Ak—> -7 <« Ak—> s <« Abk—> e :
1
“of k=1 || ... |k=1xwul| =1 o= Il | k=1 = K|
¥ y r A A A A :
1 n n n n n n 1
| n n n OpenDSS/HIL n n n |
2 Y ! vy N ¥ N y y ;
k=1 k=|Kl|| k=1 k=|Kipl|]| =1 fo = |0 || -

Figure 1. Schematic layout of the proposed framework.

Table Il: Comparative analysis with existing approaches.

Metric H SA-HMTS ] Deterministic ] Stochastic | Robust
PRCL (%) 62.83 71.25 68.12 54.33
PCL (%) 100 86.79 87.34 54.33

PPV, Total (073 86.34 85.13 87.12 79.11
TRLES (%) 4.12 30.58 27.23 21.12
T{JM(}.()FP (hours) 0 9 5 4
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9.5 Task B.3 Mobile Storage powered Microgrid Energy Management

Background: This task introduces a two-stage hierarchical energy management approach
designed to securely manage feeder-level microgrids within a distribution system experiencing
severe outages and a high presence of distributed rooftop residential PV. This approach solves a
sequential rolling optimization problem to schedule main resources and adopts a dispatching
scheme for real-time adjustments. It incorporates novel elements to effectively handle the
considerable uncertainty associated with residential PV systems and optimize the utilization of
microgrid resources. Table | provides a summary of the pros and cons of current state-of-the-art
methods. As indicated in the table, existing methods have so far overlooked realistic operational
conditions for the restoration of distribution systems during prolonged outages. The current
distribution systems exhibit low controllability (limited controllable switches) and observability
(behind-the-meter PV, uncertainty in forecasts, etc.), posing considerable challenges in securely
operating feeder-level microgrids.

TABLE | : Comparison of STATE-OF-THE-ART power system restoration strategies

Description Advantages Disadvantages

During extreme events, outages
Short-term Restoration [1]- last over multiple days. Existing

4] approaches only consider a short
[ restoration time scale ranging
from 6-24 hours.

Proposed EMS must be able to
ration the microgrid resources over
multiple days to provide service to
loads and better utilize the
distributed residential PV.

Short-term restoration enables
uninterrupted service to load
even with limited microgrid
resources.

Distribution  systems have = a Direct control over loads helps | Without this consideration most of

High limited number of controllable i X ;
Controllability | switches which splits the systems to better prioritize and provide | the  proposed — approaches i

into load zones. But existing works uninterrupted service to critical | literature are not implementable in
[5] ) 9 loads. current distribution systems.

consider direct control on loads.

g'eetll!ztl(t:' High penetration of residential PV

Istributio is an untapped resource during

n System Hiah outages but most of these PV net-
g

metered and hence are not

High observability leads to | Lack of observability of high PV
better forecasts and hence | leads to challenges in secure
better utilization of PV systems | operation of the microgrid which can
and management of microgrid | in turn lead to devastating failure in
resources. the system.

Observability | jpservable in the distribution
[6]-7] system. But existing consider full
observability and direct control on
the PV systems.

Task Objectives:

e Develop a two-stage hierarchical energy management approach for securely operating
feeder-level microgrids within a distribution system facing severe outages and high
distributed rooftop residential PV penetration.

e Introduce innovative elements to effectively manage uncertainty associated with
residential PV systems and address the oversight in existing methods regarding realistic
operational conditions during extended outages in distribution systems.

e Extend the proposed scheme to multi-feeder cases to improve utilization of resources
and provide better service to loads [8].

Methodology Overview: In the proposed 2-stage hierarchical energy management framework,
stage-1 schedules the microgrid for the next period (such as %2 or 1 hour) by taking into account
future load and PV forecast. Stage-2 is the short term dispatching stage which determines the
proper dispatch levels for the microgrid resources. The major issue with BTM PV is lack of real-
time data. Being net metered, dis-aggregating PV from load and forecasting just PV components
becomes challenging and leads to significant forecast error as highlighted in Fig. 1. The low
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accuracy in forecasting individual house PV and load leads to really large forecast errors at the
feeder-level (as high as 2MW on a 3.5MW circuit). Handling such forecast errors becomes
challenging since with limited microgrid resources. To securely operate the microgrid under such
challenging conditions three innovative strategies are proposed:

e Multi-Day Fuel Rationing

e Learning-based Forecast Correction

¢ Dynamic Reserve Management

Details of these strategies are explained in [9].

Simulation Results: As shown in Table Il, both on day-1 and day-3 we see that the proposed
scheme with all the innovative forecast error management strategies performs better than the base
scheme. There is significant service to critical and non-critical loads, better utilization of PV,
reduction in scheduled and unscheduled shutdown of the microgrid and minimum disruption to
critical loads even up to 3 days of restoration.

T

]
RealTime Net Load

-1000 | : :
, Stage-1 Forecast ‘
-2000 | ! \Stage-2 Forecast }
| i 1 | 1
00:00 12:00 24:00 36:00
T . . T :
: —— Stage-1 Forecast Error
2000 - i —__Stage-2 Forecast Error ¥
1000 | :
kw :
0 g
i 11| Y 1591 RNV VNIV L SENE NERSRRaee - UL -SRI [N ——
1
00:00

time

Figure 1. High forecast error in short-term and day-ahead forecast of aggregated BTM PV. (top) Real-time
net load measurement, stage-1, and stage-2 forecast. (bottom) Total net load forecast error in stage-1 and
stage-2 forecast. Zoomed plot shows stage-2 forecast is more accurate than stage-1 forecast during no PV
duration and error is close to zero.
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TABLE II: Performance on day-1 and day-3 of proposed scheme against a base scheme with basic energy
management without any forecast error correction strategies over multi-day restoration.

Day-1 Day-2
Metric
Base Case Proposed Scheme Base Case Proposed Scheme
% of Critical Load (CL) Served 72.73% 79.2% 71.69% 76.44%
% of Non-Critical Load (NCL) Served 71.1% 75.244% 67.76% 71.38%
% of PV utilized 78.33% 86.92% 81.88% 90.35%
Avg served duration of CL 37h 15m 39h 20m 34h 45m 3h 30m
No. of interruptions in serving CL 8 9 10 7
thal sqheduled shutdown duration of oh 40m 2h 30m 4h 5m 3h 30m
microgrid
T(_)tal un_scheduled shutdown duration of 1h 0 1h 30m 30m
microgrid
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9.6 Task B.4 Reinforcement Learning-based Volt-Var Control for Distribution System

Background: This task presents a reinforcement learning (RL) approach to solve a cooperative,
multi-agent Volt-Var Control(VVC) problem for high solar penetration distribution systems. The
ingenuity of our RL method lies in a novel two-stage progressive training strategy that can
effectively improve training speed and convergence of the machine learning algorithm. In general,
there are three popular VVC approaches: rule-based, optimization-based, and more recently,
machine learning-based. Although rule-based approaches are widely used in the field due to the
ease of implementation, they lack the ability to adapt to fast-changing operational conditions. The
major drawbacks of optimization-based approaches are their strict requirement of accurate
network models and complex computational platforms for implementation. Furthermore, the
computational complexity increases exponentially as the system scale (e.g. number of controllable
devices) increases.

TABLE I: Comparison of STATE-OF-THE-ART missing data restoration methods

Rule-based System

Widely used in current power
system operation

Fast and stable

Disadvantages

The optimality cannot be
guaranteed

Optimization-base system

With accurate system modeling,
minimize the cost and loss while

provide a stable and
optimal command after
the optimization

Highly rely on the model
accuracy and huge joint
search space would cause

[11-[2] o . . . S scalability issue
satisfying operation constraint Optimal solution if system Suboptimal solutions when
models are known .
model is not accurate
Easv to implement. similar The agents cannot learn directly
Multi-Agent Reinforcement Learning base y P ’ from the decentralized

Reinforcement
Learning [5]-[7]

approach under the centralized
training, decentralized execution.

to single agent setting.
Better performance in the
cooperative setting

environment.  Cannot  self-
correct in field deploy. Can
reach suboptimal solutions.

Machine

Lei;mgg Learn from a decentralized | Inferring other agents’ intention

e Muti-Agent Model the process as Markov environment and can infg:r increases the computation_al
Morkov Game which training in other agepts’ behaviors in burden. The modell complexity
Game[11]-[11] decentralized environment the training. Robust in | prevents be multi-agents be

decentralized in cooperative
setting

scaled up. Can reach

suboptimal solutions

The proposed
approach

Separate the training process in
2 stages. Stage-1 is individual
training. Stage-2 is centralized
cooperation training

Training objectives
explainable and trackable.
Less training time, more
robust and adaptive, allow
for fine-tuning in real-time

Require system models for
more effective first stage
training. Can reach suboptimal
solutions.

Task Objectives:

¢ Develop a novel two-stage, progressive training strategy.

e Propose a novel reward design and allocation mechanism to account for the contributions
of all agents.

Methodology Overview: The 2-stage progressive training framework and the system model
are illustrated in the left and right figures in Fig. 1, respectively. Stage 1 is individual training, in
which each agent learns to take three basic control actions: “generate-Q”, “consume-Q”, and “do-
nothing”, assuming all other agents are inert. Stage 2 is cooperative training, where the training

focus on learning to generate the “optimal” magnitude of Q in the presence of the other agents. In
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the second stage, we assume that all agents have gained understanding of when to “generate-Q”,
“‘consume-Q”, and “do-nothing”.

Os1,i (2)
rp (11
Agentj ol (n no 12 s
v Agent i 4
Stage-1 8 a; " g
Individual Training
Solved by DDPG St Environment

Stage-2

Cooperative Training
Solved by DDPG @z
ar (14)

L 4

r; i(12)

87 LY

5 A i 89
Les  @pvi @PV2@PV3
Fig. 1. The proposed 2-stage progressive training framework. “O” refers to observation, “r” refers to

reward, “a” refers to action (Q command), and “DDPG” refers to Deep Deterministic Policy Gradient. The
environment on the left is based on modified IEEE 123bus system.

Osz,i (2)

Simulation Results: As shown in Table |, the conventional decentralized VVC takes the least
number of actions, which is measured by the cumulative Q consumption, > Q. However, it receives
the lowest Voltage score, showing an inferior voltage regulation performance. Stage-1 policy does
not consider coordination. Thus, PV1 always generates Q, causing more V"™ violations. Stage-2
policy has the highest voltage score, showing superior VVC control performance. By coordinating
with other agents, > Q is significantly reduced in stage-2.

If some nodal voltages fall outside of the designated interval [V, V"™] in a control interval,
we consider this interval to be a voltage violation event. Then, we compare the duration of such
voltage events in four use cases: base case, conventional, stage-1 policy, and stage-2 policy in
the summer season. Table Il summarizes the statistics of the durations of all voltage violation
events in the three summer testing days. Conventional VVC is effective in reducing longer voltage
violations while leading to many shorter voltage violations. This results in a large number of
cumulative violations. Overall, the stage-2 policy exhibits optimal performance in terms of reducing
the total voltage violation duration.

TABLE II: VVC PERFORMANCE COMPARISON (THE SUMMER CASE) EVALUATION

Algorithm Voltage Score | Q;y:ai(KVAR) Qpvi1(p-u.) Qpv2(p-u.) Qpu3(p-u.)
Base Case 0.98756 - - - -
Conventional 0.98995 93.859 0.01688 0.07611 0.09242
Our method 0.99286 452.43 0.41250 0.12527 0.04583
Stage1
Our method 0.99556 144.03 0.01660 0.14361 0.11305
Stage?2
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TABLE Ill: STATISTICS OF THE VOLTAGE EVENT
Statistics Base Conventional Our method Our method
Stage 1 Stage 2
Count 4031 30219 4831 3314
Mean 6.74 1.16 2.64 2.08
Standard deviations 15.83 1.075 4.16 2.86
25 percentile 1 1 1 1
50 percentile 2 1 1 1
75 percentile 4 1 2 2
Max Duration 95 43 47 44
Nodes of Max Duration 2 5 1 2
Integration Sum 27176 34940 12759 6914
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9.7 Task B.5 Adopting Dynamic VAR Compensators (DVCs) to Mitigate PV Impacts

on Unbalanced Distribution Systems

Background: Table 1 presents a comprehensive overview of existing methods for addressing
the optimal placement and control schemes for DVCs, along with a comparison of their strengths
and weaknesses in relation to the proposed approach.

Table I: A Review of Existing Methods and Our Contributions

Category  Methodology Descriptions Strength Weakness
Can inject a voltage for a
. . . . . short time
DVR [1-2] Adq the missing voltage Injects a voltage in series with the Unsuitable for systems
during a voltage sag system voltage . .
with prolonged reactive
power deficiencies
Device Compensate the bus Generate the rated current at any
D- voltape so as to provide network voltage Generating the
STATCOM im rc?ved ower ?actor Use of a relatively small capacitor on harmonics distortion
13-4] e Sower the DC bus Designed for FIDVR
control P Harmonic current compensation mitigation
Load balancing
Analvtical Analytical method to
[5_7]y determine the optimal Easy to implement
location for placing DGs
Application of particle
Meta-
heuristic swarm optimization for Simple to implement Only consider balanced
optima s allocation ess computational effo systems
[8-9] timal DGs allocati L tational effort t
Placement and sizing A detailed 3-phase
Combining genetic distribution system model
Combination 25;:;??3%?8522? Superior to the individual method in IS necessary
[10-11] determin?a the optimal terms of solution quality and number of
location and sizing of lterations
DGs
Include the functionality .
IEEE 1547 of local regulation of Simple design mon-ad.aptablllty )
. ) . ot taking all the benefits
[12] voltages through inverter ~ Easy implementation
wWGC of DVC
Actively adjusts its VAR Canpot maintain a )
Delayed . o feasible voltage profile
WWC [13] output as a function of Control stability under certain
local bus voltage .
circumstances
Feedback-based VVC Requires full lized
strategy by means of a - equires 1u cent_ra lz€
Scaled VVC diagonality scaled Control stability topology information
[14] ra?:lient ¥o'ection Set-point tracking Theoretical analysis only
9 pro) builds on 1-phase
Control A er:'hOd both low stead
scheme chieves both low steady Considers the node
state error and control Achi high . i | h h
Adaptive stability, and makes chieve high set-point trag‘ ing vo tage where the
VVC [15] control ’ arameters self- accuracy and control stability inverter is located, not
adaptivg to external Self-adaptive parameter selection the voltage profile of the
disturbances entire system
Consider unbalanced 3-phase
Optimal dispatch, systems
placement and control Practical dispatch scheme that . g
Our method scheme for DVCs to overcomes the limitations of R Sl T
L C e load and solar PV
[16] minimize voltage communication in distribution

variations and voltage
regulator operations

systems
Consider the voltage variation of the
entire system

forecasting

Page 78 of 146



DE-EEO008770
Ning Lu

Task Objectives:
e Establish a multi-objective optimization framework to identify the optimal dispatch
strategy and suitable placement for the DVC.
e Introduce two supervisory control strategies to determine the appropriate instances for
adjusting the Volt/VAR Curve (VV-C) when the operating condition changes.

Methodology Overview: Determine the optimal dispatch and suitable placement of the DVC to
minimize voltage variations and voltage regulator operations. Next, consider two schemes for
updating the VV-C for the DVC. The first scheme, referred to as the shifted VV-C (Fig. 1(b)),
involves shifting the midpoint of the standard VV-C (Fig. 1(a)) to align with the average Q-V point
obtained from the optimal Q-V trajectory. In the second approach, known as the fitted VV-C (Fig.
1(c)), we employ linear regression to determine the slope that best fits the VV-C, ensuring it closely
matches the optimal Q-V trajectory.

| Dead band Droop Full Capacity |

= AVSl

o ~H

= AQsq

= 1.001.021.08

- Vref V3 V4

s IV (p.u.)

2 |0.920.98 ' -
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2 1
_Qlim ——————————

(@)

Figure. 1. Volt/VAR Curves (VV-Cs) for (a) the standard VV-C, (b) a shifted VV-C with the midpoint
adjustment, and (c) a fitted VV-C without a deadband, featuring only the new slope that best fits with the
optimal Q-V trajectories of the DVC.

Simulation Results: Tables Il and Il show the statistics for voltage variation and voltage
regulator operation for different cases: base case, standard VV-C, shifted VV-C, and fitted VV-C,
respectively. These results demonstrate a substantial reduction in voltage variations compared to
the standard VV-C when using the revised curves. To investigate the impact of different VV-C
update frequencies on the DVC, tests were performed with update rates set at 30-, 60-, 120-, and
240-min. The test results reveal that the optimal performance is attained with a 120-minute update
frequency. As shown in Tables Il and lll, the proposed fitted VV-C can achieve a 0.3% reduction
in voltage violations and a 12.7% decrease in voltage regulator operations compared to the
standard VV-C. Figure 2 presents a sample of the optimal Q-V trajectories and the VV-Cs fitted
using the two proposed approaches: shifted VV-C and fitted VV-C.
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TABLE II: Voltage Violation by Different VV-C
VV-C ylower Vin Ve Out of limits (%)
(1) (2) (3) (()+(3))/(T)

Base 3,744 1,100,393 445,303 28.98
Standard 3,462 1,102,683 443,295 28.83
30-min 3,535 1,099,059 446,846 29.07
Shifted 60-min 3,670 1,108,645 437,125 28.45
120-min 4,198 1,111,648 433,594 28.25
240-min 4,536 1,096,431 448,473 29.24
30-min 3,413 1,084,852 461,175 29.98
Fitted 60-min 3,456 1,099,197 446,787 29.06
120-min 3,483 1,107,690 438,267 28.51
240-min 4,399 1,105,347 439,694 28.66

*T: the total number of voltage points monitored during the scheduling period (1,549,440)

TABLE lll: LTC and LVR Tap Changes by Different VV-C

LTC LVR
VV-C 3-ph Ph-A Ph-A Ph-C Ph-A Ph-B Ph-C Total
150R 9R 25R 25R 160R 160R 160R
Base 20 6 93 46 45 35 14 259
Standard 20 6 90 47 45 34 14 256
30-min 29 4 86 46 46 49 16 276
Shifted 6O-mir1 24 4 85 44 43 37 15 252
120-min 19 5 84 42 42 37 12 241
240-min 23 7 81 47 45 32 14 249
30-min 33 6 82 44 43 37 14 259
Fitted 6O—mir1 24 6 83 42 40 38 14 247
120-min 20 4 78 40 42 29 13 226
240-min 21 5 79 41 45 32 15 238
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9.8 Task D.1 PV Power Tracking for Providing Power Reserves and Fast Frequency
Response

Background: There are several PV power curtailment and PV maximum power point estimation
(MPPE) techniques proposed in the literature; however, not much work has been done to combine
power curtailment and MPPE methods to achieve a better performance for both algorithms. In this
task, we developed an algorithm that combines a modified robust perturb-and-observe (P&O)
flexible power point tracking (FPPT) technique with a real-time curve-fitting-based MPPE that can
be applied to both single-stage and two-stage PV system topologies. The algorithm was first
introduced in the literature in our published paper [1]. By leveraging information provided by the
MPPE, we were able to create a fast convergence technique for tracking power-reference changes
within three steps of the FPPT, which can be used to help reduce frequency drops during grid
disturbances. This is especially useful when operating the PV farm in low-inertia weak grids such
as microgrids. In addition, as the U.S. energy policies move towards more renewable energy
integration, this method can be utilized to allow utility-scale PV farms to provide frequency support
while maintaining power reserves as if they were composed by battery-energy-storage systems,
with the advantage of being much cheaper.

Table | summarizes the advantages and disadvantages of the state-of-the-art methods. As can
be seen in the table, up till now, all existing generative methods require the format of the input and
output to be fixed. However, in practice, the duration of missing data (model output) varies from
minutes to several hours, and the length and number of available measurements (model input)
also vary case by case. To cope with the varying-length cases, traditional methods need either
increase the output window to cover the longest event or train separate models for different
scenarios.

TABLE | : Comparison of STATE-OF-THE-ART ON PV Power Curtailment and MPPE Methods

Description

Advantages

Disadvantages

Adaptive FPPT Method
[13]

Use physical system models to
simulate responses to external
disturbances in hope of restoring
missing data segments.

Robust and superior
transient performance when
compared to conventional
P&O methods.

Does not provide fast
convergence or maximum
power point estimation for
maintaining power reserves for
grid support.

Use a subset of PV
Inverters as MPP
References [16]-[17]

By operating a few pilot inverters
at MPP, they could be used as
references for estimating the total
power available in a farm.

Easy to implement.. Ideal
for large farms with identical
arrays. Can utilize
conventional power setpoint
tracking methods.

Only applicable to large farms
with identical arrays. Cannot
provide fast frequency
response. Can suffer
performance if pilot arrays are
not rotated regularly (as
proposed in [16]).

Real-time curve-fitting
technique from [18]-[19]

Utilize real-time curve fitting for
finding incident irradiance and
temperature at the panel with
higher accuracy and without
need for sensors.

Can provide very accurate
MPPE without need for
sensors (cheaper
implementation), based on
conventional Pl controllers.

Requires an external ripple for
proper convergence. Cannot
provide fast and robust power-
setpoint tracking due to trade-

offs between speed and
robustness in Pl controller
performance.

Combined power
curtailment and MPPE
method introduced in

[20]-[21]

Methods that proposed the
combination of power curtailment
and MPPE methods for improved
performance of both algorithms.

Can quickly provide MPPE
without the need for sensors

while providing
conventional tracking
capability.

Only applicable to two-stage PV
system that operates on left
side of the MPP. Does not
provide fast frequency
response support.
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Task Objectives:

e Develop a PV system power setpoint tracking algorithm capable of maintaining power
reserves that can be used as back-up power for dealing with uncertainties and PV
intermittency during the distribution grid blackstart process.

e Develop a fast frequency response capability that is especially helpful when operating in
weak grids with low inertia which can help maintain frequency above load shedding
during disturbances.

Methodology Overview: The circuit and control block diagram of a utility-scale PV system is
shown in Fig. 1. A hierarchical control structure composed of a dc-link voltage controller cascaded
with a current controller is used to generate the inverter modulation signal ‘m’. More details
regarding the generation of the modulation signal and the PV array model are given in one of our
papers [13]. The main novel functionalities developed in this task are related to the power setpoint
tracking algorithm highlighted in the bottom left side of the figure. By utilizing information from an
MPPE algorithm, the FPPT method can quickly find what should be the voltage reference for the
dc-link (V,.*) to achieve the desired power injected into the grid.
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Fig. 1. Circuit and control system block diagrams of a utility-scale PV system.

Simulation Results: Figure 2 demonstrates a comparison between one of the state-of-the-art
power curtailment algorithms (from [12]) and the algorithm we present [1], which includes a fast
convergence technique. Due to the fast convergence capability, the algorithm is able to quickly
achieve new setpoints, reducing the overall tracking error (T.E.) from 9.166% to 1.758%. In Fig. 3,
we setup a scenario in which a 2 MVA utility-scale PV plant and a 3.125 MVA diesel generator are
used to pick-up cold-loads from a distribution grid in steps of 0.5 MVA. Fig. 4 demonstrates the
microgrid frequency under one of the cold-load pick-ups. As shown in Fig. 16, the proposed method
outperforms the state-of-the-art method from [12] by reducing the frequency nadir during the cold-
load pickup thanks to its faster power setpoint tracking convergence capability.
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Fig. 2. Comparison of the power setpoint tracking performance under irradiance intermittency between
(a) the proposed RST method and (b) the adaptive FPPT (state-of-the-art).
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9.9 Task D.2 A Real-Time EMT-TS Modeling Architecture for Feeder Blackstart
Simulations

Background: In this task, we developed and assessed an innovative real-time architecture for
Electromagnetic Transient and Transient Stability (EMT-TS) modeling, specifically designed for
distribution feeder restoration studies. Notably, we established, for the first time in the literature, a
real-time EMT-TS testbed. This testbed features a grid-forming unit simulated in the EMT domain,
operating as the slack bus of the phasor domain during the restoration process of a distribution
feeder, even under unbalanced voltage conditions. While EMT tools offer in-depth analysis across
a broad frequency range (compared to TS), their computational cost becomes impractical for
simulating larger grids with numerous components. To address this, we integrated EMT-modeled
power electronic systems into the TS-modeled distribution network. This co-simulation approach
proves computationally feasible and provides an effective method for simulating grids under high
penetration of Inverter-Based Resources (IBRs), such as Battery Energy Storage Systems
(BESS).

Task Objectives:

e Introduce a new method to model a real-time EMT-TS testbed in which the grid-forming
unitis modeled in EMT domain, operating as the slack bus of the phasor domain including
unbalanced voltage conditions.

e Present a coupling method for multiple coupling points between the EMT and phasor
domains for moving devices across the feeder into the EMT domain as desired.

Methodology Overview: Figure 1 displays the EMT-TS testbed, which consists of a microgrid
connected to a distribution feeder via a point of common coupling (PCC). The components are split
into two subsystems. The first includes DERs such as BESS, diesel generators, and PV systems,
and a grounding transformer, which is needed to provide grounding when the feeder is
disconnected from the substation. This subsystem is simulated at microsecond level in
eMEGASIM, whereas the second is simulated in ePHASORSIM at the millisecond level, including
distributed rooftop PVs, shunt capacitor banks, voltage regulators, ZIP load models, and the
distribution feeder. Due to the parallel operation of the subsystems in real-time, there is a delay for
events to propagate from one to another.

Simulation Results: We apply load steps both to the proposed EMT-TS co-simulation
architecture, and to a full EMT simulation of the exact same system to compare performance, with
the full EMT being the benchmark. Two different types of grid-forming units are analyzed: a 2 MVA
BESS (parameters from [14]), and a 3.125 MVA diesel generator (parameters from [15]). The
voltage and frequency dynamic responses are shown in Fig. 2 for a step of 1978 kVA. The RMS
error (RMSE) between the EMT and EMT-TS curves is included in the figure of each test, with the
highest RMSE value corresponding to the phase with the largest deviation. A maximum voltage
RMSE of 0.03 p.u. is observed for the BESS; however, note this is an extreme scenario and thus,
represents the upper bound of the modeling error. A comprehensive list of test results is
demonstrated in [1], showing that the EMT-TS testbed can greatly match its EMT counterpart, with
the advantage of requiring only one tenth of the EMT testbed computational effort.
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9.10 Task D.3 A Grid-forming Voltage Control Strategy for Supplying Unbalanced
Microgrid Loads using Inverter-based Resources

Background: This task introduces a grid-forming (GFM) voltage control strategy designed for
a battery energy storage system to uphold balanced three-phase output voltages while serving
unbalanced loads. The proposed control scheme operates in a stationary reference frame (af3) and
regulates positive-sequence (PS) and negative-sequence (NS) voltages. Additionally, a grounding
transformer (GT) is employed to mitigate the zero-sequence (ZS) voltage. The advantages and
disadvantages of existing unbalance control methods are summarized in Table | [1]-[6].

Based on the outcomes, a power-voltage unbalance curve is derived for various output
transformer configurations, establishing the relationship between the power unbalance factor
(PUF) and the voltage unbalance factor (VUF) for microgrid power scheduling.

TABLE I. Comparison of STATE-OF-THE-ART unbalance voltage control methods

Method Description Advantages Disadvantages
dg-based Use two pairs of Pl controllers, which . Need band-stop filters,
control Reliable, easy to

situate in two reference frames while introduce filter delay and

sche[r151]e [1- rotating in the opposite directions. implement slow down regulation speed.
aB-based Better unbalance
Require one pair of PR controllers for | regulation performance, | Hard to find the good control
control scheme S : SI : .
voltage regulation in AC domain. simplified computational | gains.
Lty burden

Task Objectives:
e Developed a grid-forming voltage control strategy to maintain balanced three-phase
output voltages when serving unbalanced loads.
e Derived the relationship between power and voltage unbalance and introduce a
performance metric for regulating power unbalance to meet inverter voltage unbalance
requirements.

Methodology Overview: The topology and control scheme are illustrated in Fig. 1. The voltage
reference of the inner voltage controller, v.*, is generated using the conventional droop and
secondary control methods [8]-[9]. Notably, there is no requirement for decomposing the positive-
sequence (PS) and negative-sequence (NS) components. The inner voltage control operates on
an aB-based controller, successfully achieving NS regulation without the need for an unbalance
compensator, as depicted in Fig. 2. Furthermore, a grounding transformer (GT) has been
incorporated into the circuit to alleviate the impact of zero-sequence (ZS) currents on voltage
regulation, ensuring balanced Point of Common Coupling (PCC) voltage [10].

Simulation Results: As depicted in Fig. 3, when the data granularity is set at 5-min and 15-min
intervals, the steady-state values of Point of Common Coupling (PCC) voltage and current remain
consistent in both cases. This suggests that both control schemes exhibit commendable current
tracking performance in steady-state conditions. However, the dynamic performance of the af3-
based control scheme stands out significantly. Additionally, as illustrated in Fig. 4, when employing
a Y-Yg output transformer, Voltage Unbalance Factor (VUF) [11]-[14] can be regulated within 3%
only when Power Unbalance Factor (PUF) [7] is 30% or less. The introduction of a Grounding
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Transformer (GT) to the Y-Yg output transformer enhances the system's capability to supply
unbalanced loads, regulating VUF within 3% even when PUF is 55% or less, marking a substantial
improvement.
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Figure 1. Topology and control structure of a three-phase grid-forming BESS.
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Fig. 3. Performance comparison of aB-based and dq-based control methods. (a) Time-series waveforms
of PCC voltage and current; (b) RMS profiles of PCC voltage and BESS current; (c) NS and ZS PCC voltage.
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9.11 Task D.4 Under-frequency Load Shedding for Power Reserve Management in
Islanded Microgrids

Background: This task introduces under-frequency load shedding (UFLS) schemes specifically
tailored to meet power reserve requirements in islanded microgrids (MGs) featuring only one grid-
forming (GFM) resource for frequency regulation. In instances where MG power consumption
exceeds a predefined threshold, the MG frequency is gradually lowered to various setpoints,
triggering UFLS for varying levels of load reduction. A detailed comparison between conventional
UFLS and the proposed UFLS is provided in Table I.

Traditionally, UFLS serves as an emergency response mechanism to avert frequency collapse
in large-scale power systems [1][2]. In contrast, the proposed UFLS method prioritizes preserving
power reserves in an islanded MG during regular operation to fulfill the power reserve requirement
(PRR).

TABLE 1: COMPARISON OF EXISTING AND PROPOSED UNDER-FREQUENCY LOAD SHEDDING

SCHEMES
Pow
. . 3-Phase
. Operation | Triggered . Control er
Method | Object perati 99 UFLS Execution : Imbalan
Condition by Mechanism ce Surg
e
Traditional Recover Large UFLS relays [3]-[5] Autonomous [3]-[5]
UFLS system Emergency | frequency ] No No
thod frequenc | response drops due to Controllable loads [6]- Centralized [6]-[8]
metho y outages [9] Decentralized [9]
Developed Keep Sectionalizers No
UFLS power Normal Low power NGRS Yes
method reserve | operation reserve Smart meters; Yes
[10] margin Controllable appliances

Task Objectives:

e Develop the UFLS scheme capable of providing power reserve for the GFM device to
maintain sufficient power regulation headroom. The scheme can operate an isolated
microgrid autonomously for extended durations during outages without dependence on
robust communication networks.

e Implement a per-phase UFLS strategy to efficiently manage and mitigate three-phase
imbalances within the grid.

Methodology Overview: As depicted in Fig. 1, in an islanded MG, three controllable devices
can be used to implement UFLS: sectionalizers (e.g., S1-S6), which can turn on/off an entire load
group (LG); smart meters (e.g., SM1-SM6), capable of turning on/off an entire building/house; and
controllable appliances (e.g., APP1 and APP2). In this task, we assume that there is only one GFM
BESS in the islanded MG. This allows us to use the simplified frequency control structure depicted
in Fig. 2 to modulate the system frequency as the UFLS control signal [11]-[13]. A UFLS device is
characterized by four vital control parameters [14] [15]: the triggering frequency threshold (fr1), the
tripping delay (1), fixed recovery delay (12), and the random recovery delay (Trand), as depicted in
Fig. 3.

Simulation Results: Simulation results confirm the effectiveness of the proposed methods in
replenishing power reserves and sustaining phase power balance. In the context of appliance-
based UFLS, the power output of the BESS gradually diminishes and subsequently recovers while
meeting PRR (see Fig. 4(b)). This contrasts with the sectionalizer-based scenario (see Fig. 4(a)),
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where an abrupt drop or immediate rebound is observed. Moreover, the appliance-based UFLS

enables a more precise per-phase load shedding in a gradual fashion, contributing to better-
balanced three-phase voltage and the ability to serve more loads.
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9.12 Task D.5 Assessment of Transmission-level Fault Impacts on Distribution IBR
Operation

Background: This task presents a comprehensive analysis of the impact of transmission-level
faults on distribution IBR operation by using a real-time transmission and distribution (T&D) co-
simulation platform. Currently, there are different T&D co-simulation platforms proposed for the
integration study of a large amount of IBRs, and fewer of the work analyzed the impact of
transmission-level on distribution IBRs. Table | summarizes the advantages and disadvantages of
the state-of-the-art platforms and work. As can be seen in the table, most research focused on the
power flow algorithm for the T&D co-simulation, the impact of IBRs on stability of the joint system.
The system model is commonly built in phasor domain, especially the IBRs, which cannot
accurately reflect the negative and zero sequence components contributed by IBRs under various
operational conditions for fault assessments.

TABLE I: Comparison of STATE-OF-THE-ART T&D Co-simulation Studies

Sir-:-1|;1alra"tor Sin?lljslta.tor Description Advantages Disadvantages
(1], 12] | MATLAB | MATLAB Model the entire network (transmission i:mlzlri::td easyto Static models and verified only for
and distribution) using dynamic pie ) . simple networks without IBRs.
) Provide a mathematical ;
phasors [1], proposed a coordinated Phasor domain model only
T&D AC optimal power flow [2] model for T&D co- Non-real-time modeling
' simulation power flow.
[3] OPAL-RT | OPAL-
ePHASO | RT Both transmission and distribution Can only model in phasor domain and
Rsim ePHASO | network are modeled in phasor domain | Can run in real time. provide fewer modeling details.
Rsim on the real-time platform. Didn’t consider the modeling of IBRs
[4] MATLAB | MATLAB | Study the impact of aggregate
/SIMULIN | /SIMULI | DERs on dynamic stability for Simple and easy to Didn’t include the modeling of high-
K NK load changes and implement y penetration IBRs.
balanced/unbalanced faults using small ’ Non-real time.
test networks.
[5]-[8] | MATLAB | OPEND | Focus on different coupled load flow Provide a mathematical Didn’t model a large T&D network with
SS algorithms to facilitate T&D co- model for T&D co- high-penetration IBRs.
simulation. simulation power flow. Non-real time.
[9] InterPSS | OPEND Can run in real-time.
SS Consider a simplified transmission Consider the modeling of Ph .
: ) A . . asor domain models cannot model
model (in phasor domain) to simulate high-penetration IBRs. th
. - " . . e responses of IBRs accurately
various transmission-level faults on IBR | Consider different kinds No IBR grounding considerations
tripping in the distribution systems of transmission faults on 9 9
(modeled in phasor domain). distribution IBR
operation.
Our OPAL-RT | OPAL- Consider an equivalent transmission
model | eMEGAsi | RT network (in EMT domain) to simulate | Real-time simulation
[10] m eMEGAs | both symmetrical and Consider both EMT-domain modeling requires
im unsymmetrical transmission faults symmetrical and higher computational cost.
ePHASO | on IBR operation in distribution (in unsymmetrical faults
Rsim EMT and phasor domain).

Task Objectives:

e Developed a T&D co-simulation platform that can model high-penetration IBR

penetration distribution systems under symmetrical and unsymmetrical fault scenarios.
e Assess the impact of transmission-level faults on distribution IBR operation.
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Methodology Overview: Using a real- .. .. Esians
time transmission and distribution (T&D) co- ) ; ;
simulation platform, as shown in Fig. 1, we TRy
simulate both symmetrical and
unsymmetrical faults at increasing electrical < il
distances within the transmission system 0 b
while evaluating IBR tripping across various
phases and locations at the distribution level. 4 ——
The distribution includes three 3-phase IBRs e
(MWH-level) and 86 1-phase rooftop PVs,
which are all equipped with fault ride-through e o
(FRT) [11]. The 1-phase IBRs are evenly ¥ -
throughout the feeder and across a, b, ¢ 7 seemcaimus G0 QU™ CF {00T80° T8 Node
phases. All 1-phase PVs are modeled in ® Roofiop PV (1-%, A) @ Rooftop PV (1-9,8) @ Rooftop PV
phasor domain using ePHASORSIM OPAL- Fig. 1. Layout of the integrated T&D co-simulation
RT platform, and 3-phase IBRs are modeled testbed.

in EMT domain [12] using eMEGASIM. This
configuration enables us to examine the effects of transmission-level faults on both 3-phase and
1-phase IBRs across various feeder locations and across different phases.

Simulation Results: Table || summarizes the percentage of IBRs tripped offline for all four fault
types, where different IBR power-to-load ratios (PLRs) and the impact of voltage regulation
(50%VR) are considered. It can be observed that:1) An increased PLR generally results in less
IBR tripping as the combined fault current injections from distributed IBRs help raise the voltage
levels along the distribution feeder; 2) The PCC fault results in the most pronounced voltage
decline and leads to more instances of IBR tripping, as shown in Fig. 2; 3) 3-phase IBRs are more
susceptible to transmission level faults, compared to 1-phase IBRs; 4) IBRs at non-faulty phases
can also be tripped off due to the over voltage caused by unsymmetrical faults; 5) The
unsymmetrical tripping of 1-phase IBRs will cause severe power and voltage unbalance at high
PLRs.
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Table II: Trip Percentage of Distributed IBRs Under Different Transmission Faults (Ibr PLRs: 50%, 50%VR,

100%, 300% )

The numbers in the cell represent results for 50%, 50%VR, 100%, and 300% PV PLRs, respectively.

Single Line-to-Ground |Double Line-to-Ground| Line-to-Line Fault ([Three Phase-to-Ground
Fault Fault Fault (A-B Fault) Fault
Case Loc (A-G Fault) A-B-G Fault (A-B-C-G Fault)
|3 |d-A|p-B|p-C|3-d | d-A|p-B|¢p-C|3-d | p-A|¢p-B|¢p-C|3-¢d|¢-A|¢p-B|¢p-C
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%)
100 0 100 | 100 0 100 | 100 | 100
100 0 100 | 100 0 100 | 100 | 100
T | PCC 1100 fgo0 | o | © | 190 | 400 | 100 | o | O | O | O | O |19 | 400 | 100 | 100
62 68 57 55 41 57 50 63
Down 100 0 100 | 100 0 100 | 100 | 100
100 0 100 100 0 100 100 100
2 Sream| 199 1100 | 0 O 110 "5 | 100 | o 0 0 0 O 1 100 1 400 | 100 | 100
57 59 54 41 48 57 41 52
Down 97 100
stream 57 100
3 |wveowu| °© 0 0 0 100 [ 3, | 100 0 0 0 0 0 100 | 100 | 450 | 100
M 0 41
Down 33 95 59 89
4 |stream| 0 0 0 0 0 0 0 0 0 0 0 0 303 335 ‘g g
FAR
0 0 0 0
100 100
100 100
5 GTF 0 0 0 0 100 0 100 0 100 0 100 0 100 | 100 | 100 | 100
82 59
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9.13 Task D.6 Design of Delayed Stealth False Data Injection Attacks Against
Battery Energy Management System

Background: This task developed a deep reinforcement learning (DRL)-based delayed stealth
false data injection attack (SFDIA) scheme that targets Battery Energy Management Systems
(BEMS). Battery Energy Storage Systems (BESSs) are crucial components in an Advanced
Distribution Network (ADN), providing both grid-following and grid-forming functions [12] in grid-
connected or microgrid operation modes. Given their significance, BESSs become a prominent
target for False Data Injection Attacks (FDIAs). In TABLE |, we provide a comprehensive literature
review on existing research pertaining to FDIAs against BESSs. Much of the previous work has
focused on the impact of FDIAs on power grid stability, primarily employing persistent and repetitive
attacks, as |illustrated in Table | with scenario-based FDIAs. While these attacks are
straightforward, they lack stealth and can be easily detected by certain Bad Data Detection (BDD)
mechanisms, such as personnel observations or residual-based BDD. Other SFDIAs face
challenges like high computational burden for real-time applications, compromised system

accuracy, or insufficient stealth.
TABLE I: Comparison of state-of-the-art FDIAs targeting the BESS

Attack

Falsified

Type Approach Objectives Data BDD Implementation Advantage Disadvantage
Persistent Active Inject bias within the operation
and Power range to active power setpoints of
o power .
repetitive control setpoints BESS to cause power imbalance
attacks [13] P in an islanded microgrid 1. Non-
. . Mode Falsify the mode command to | Conscious stealthy
Scenario- | Persistent Mode . . i i
based ttacks [14] ntrol command, disrupt the mode conversion from | manipulation 2. Easy to be
(;If; attacks contro etc. No PQ to V; to fail the microgrid detected by
stealthy) Persistent ON/OFF ON/OFF Fa1s1fy the ON/OFF comn}and to Fasy to personngl
attacks [15] | control command deterlqrate power quality or | implement observations
destabilize the power system or BDD
Persistent SoC BESS D}ffe'rent voltage b}as is selected
attacks [16] | estimation voltage W.lthm the operatllon range to
disrupt the SoC estimation
. . Highly stealthy Systgm info is
Optimizat Instantaneo Maximize the SoC estimation required, long
ion-based | ° and SOC . BESS status | Yes error.d with - SE-based B].)D Maximize the runtlmg, not
(Stealthy) delayed estimation consi ergd to cause overcharging SoC estimation robust in real-
attacks [17] or over discharging time
error applications
Need to attack
BESS Utilize ANN to replicate the : alarge
R Med tealth
;\tzlc\]k:)asveii BESS status, normal behavior of BESS for edium steatthy amount of
MitM operation commands No enhanced stealth, and take the Conscious data and easy
[18],[19] status and PCC control of the authentic BESS by . Iu . to be detected
’ meter employing MitM techniques manipulation by residual-
Machi based BDD
achine High stealthy
learning- d i
based an Iatlhccuracy in
(Stealthy) le?L-b;sed Novel DRL-based target SoC ;ea |_i ;Z;ieons b System info is
claye BESS error attacking scheme to o2 A i required and
persistent SoC . conscious .
S measureme | Yes introduce a target SoC error at the : . off-line
and estimation g g B Sed manipulation of L
repetitive nts desired time by only injecting SoC estimation training is
battery voltage and current bias i
attacks [20] &/ g errors. Attacks required
can be launched
repeatitively.
Task Objectives:
e Design a delayed, highly stealthy SFDIAs against BEMS for real-time applications.
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¢ Investigate the possible attacks against BEMS and apply the proposed attack scheme to
the PARS platform.

Methodology Overview: We developed a delayed SFDIA scheme targeting the SoC estimation
in BESS, aiming to disrupt the operation of the BEMS within a specified future time range. As
shown in Fig. 1, the system comprises the distribution grid, an ADN control center, and a BESS,
including battery packs, a voltage-source inverter, a local battery energy management system, and
a BESS controller. The ADN control center employs two BDD mechanisms: residual-based BDD
and cross-validation of SoC. To attack SoC estimation, the V,;. and I;. measurements of the battery
must be falsified. Then, the altered values must be able to evade detection by the two BDD
mechanisms. We frame the stealthy attack as a DRL problem. Through interactions with the grid
and ADN control center environment and a carefully designed reward function, an agent,
represented by a deep neural network, can be offline trained to generate attack measurement bias
capable of passing BDD, inducing a target SoC error at desired times. The proposed DRL
framework is depicted in Fig. 2.

Simulation Results: We implemented the proposed DRL-based delayed SFDIA scheme in the
BEMS of PV Plant Restoration use case. Within the BEMS, the PV plant serves to supply loads
and charge BESS during the day, while the BESS sustains the system during the night. The SoC
of the BESS is regulated within 20%~90%. In this context, we introduced two attack schemes. The
firstinvolves altering SoC to mislead the BEMS, causing it to believe there is enough energy stored
in BESS. As illustrated in Fig. 3(a), the Delayed SFDIAs inject false data, gradually increasing the
SoC error. Consequently, the BESS stops charging when the actual SoC is at 60%, resulting in a
system shutdown when the attack concludes, with the actual SoC falling below the critical threshold
of 20%. The second attack focuses on accelerating BESS degradation through over-discharging.
In Fig. 3(b), a falsely elevated SoC is introduced to convince the BEMS that the BESS has sufficient
energy to release. When the false SoC is around 20%, the actual SoC drops to approximately 5%.
This deep discharge can significantly degrade the lifespan of the BESS. Additionally, for repeated
launch of degradation attacks, it is crucial for the attack to remain stealthy even after it concludes.
Thus, the false SoC must closely match the actual SoC at the end of the attack.
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9.14 Task D.7 Development of an Encoding Method on a Co-Simulation Platform for
Mitigating the Impact of Unreliable Communication

Background: This task focuses on 1) the development of an encoding method to mitigate the
effects of unreliable communication links, and 2) create a hardware-in-the-loop co-simulation
platform to assess the performance of the algorithm. The power distribution network and
distributed energy resources are simulated on an OPAL-RT-based real-time simulation
environment, interconnected with energy management systems through a simulated
communication network. We have conducted a thorough analysis of the pros and cons of current
state-of-the-art approaches in comparison to our proposed methodology, and the findings are
summarized comprehensively in Table I.

TABLE I: State-of-the-art comparison of parameterization methods

Testbed Modeling Communication Issue Mitigation Method
[1] Phasor domain distribution feeder model Link outage N/A
[2] HIL based model + FPGA controller Communication latency N/A
[3] Electromagnetic transients model + network Communication latency N/A

simulator

Communication latency

[4], [6] | HIL based model + network simulator N/A
and packet drop
[5] HIL based model + actual network link Corrupted data N/A
[7] Phasor domain model + FPGA controller Corrupted data ﬁr;&tl(\j/l—based

Propos Communication latency, An enhanced ALM-
P Hybrid HIL based model + network simulator corrupted data and packet
ed [8] based method.

drop

Task Objectives:
e Model the unreliable communication links between DERs and the central controller.
e Test mitigation method for the impact of communication noise, errors, and missing data
on distribution feeder nodal voltage control.

Methodology Overview: The configuration of the asynchronous HIL co-simulation platform is
shown in Fig. 1. The transmission network and distribution feeder are modeled with ePHASORSIM
at the millisecond-level and the DERs are modeled using eMEGASIM so that their dynamic
responses can be modeled with the microsecond-level. Two communication connections are set
up to model the communication between the device level controller and the centralized controller.

We assume that each feeder node is equipped with one user equipment (UE) for communicating
with the base station (BS) tower and an LTE simulator is used to model wireless communication
network between UEs and BS considering different communication interruptions. The configuration
is shown in Fig. 2.

The proposed mitigation method can be formulated as a matrix recovery problem [8]:

IEiél(HL AR [G])) (1)

st
M=L+G (1b)
P,[G]=-E,[L] (1c)
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where ||-||- is the nuclear norm of a matrix (the sum of its singular values), ||-||: is the sum of the
absolute value of matrix entries while A is a positive weighting factor.

By solving (1), the optimal estimations for LTE communication data and communication errors
can be obtained, where L € R and G € R{™". M is the accrual received data via the LTE link

which may contain missing data and corrupted data. Pqo[']: R — R{” is a linear operator that
keeps the entries in Q unchanged and sets those outside Q (e.g., Q) to zeros.

IEEE 118-bus System IEEE 123-bus Test Feeder ‘E —
e . ‘oL wy 1 Ethernet é E‘ ol
iy | S =
=
&
2 X077 Ethemet _
< T
E -
D Load Bus Voltage Feeder-head Load Bus [
N Simulation Measurement | | Control Command
» 1 * Bus voltage ' 1 ¢ Load shedding
é Load X * Load Consumption : ! < PV curtailment
8 T * PV generation i : * Tap change
& Voltage; | Load * Tap number, etc. P Shunt capacitor, etc.
Q ( RT-LAB OpCom /O ) L
7 P v ol .
Detailed Microgrid Model PCC ; ‘E N LTE Simualtion J
= - e !
2 | . | | | 8 Database
S - YA\ E e — B I
z R C Om B
1 — X = [==2
Communication Server Volt-Var Controller

Figure 1. Architecture of the asynchronous HIL co-simulation platform.
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Simulation Results:

The simulation results demonstrate the efficacy of the setup for a controller-in-the-loop system
that models system dynamics and allows algorithms to be developed and tested with realistic
communication links considered in a laboratory environment. The one-minute distribution of the
nodal voltage without control and with the centralized volt-var control (CVVC) from 12:00 to 22:00
is summarized in Fig. 3. Both cases have a perfect communication link without any interruption
and a control voltage margin (0.014 p.u.). As shown in Fig. 4, if no voltage margin is used, nodal
voltage will drop below the desired voltage lower limit. While setting up a large voltage margins
(e.g., 0.02 p.u.) can remove all voltage violations, it leads to frequent control actions, causing
higher wear-and-tear and higher control cost. Fig. 5 demonstrates the impact of both missing and
corrupted data caused by interrupted communication links on CVVC performance using the same
settings as Case 3 and Case 4. The missing rate and corrupted rate are all set as 10%. The total
number of voltage violations (TNVV), the max voltage violation magnitude (MVVM), and the
average execution time (AET) are used as the evaluation metrics.
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Fig. 3. Nodal voltage profiles: (a) no-control baseline case and (b) controlled case with perfect
communication link.
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Fig. 5. Nodal voltage profiles when there are missing and corrupted data sets: (a) no data
recovery, (b) recovery using SVT, and (c) recovery using EALM-EDR.

TABLE Il: Summary of Simulation Results

Method TNVV MVVM (p.u.) AET (second)
Unrecovered 799 0.0185 \
SVT ] 32 0.0029 0.9973
Proeosed 23 0.0027 0.2688
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9.15 Task D.8 Real-Time Parameterization for a PV-farm Digital Twin using a Two-
Stage Optimization Approach

Background: This task delves into the escalating relevance of Power System Digital Twins
(PSDTs), propelled by the global shift towards decarbonization and electrification of power grids.
PSDTs, serving as virtual counterparts to physical systems, are progressively utilized in the
innovation and evaluation of new technologies within power systems. Contrasting with traditional
power system simulation test beds, which are generally either hypothetical or static imitations,
PSDTs offer dynamic simulation that mirrors real-time system changes. This document introduces
an innovative technique for the real-time parameterization of a photovoltaic digital twin (PV-DT)
employing high-resolution field data. This approach marks a significant departure from
conventional practices, emphasizing the distinctive requirements in PSDT development. The
benefits and limitations of existing PV-DT methods, in relation to our proposed methodology, are
comprehensively analyzed and summarized in Table I.

TABLE I: State-of-the-art comparison of parameterization methods

“Inn(:)duil gl?t?a?.llt Description Advantage Disadvantage
1) Considers only the
Irradianc | Estimates variables, including | Parameterize and simulate plotie, G e @l
Model [16], 5 mi PV tilt | imuth | 4| pv t ithout th voltage and current of the
D | B | S| | R | TR |
resolution power albedo, which are related to | use of electrical mode .
based [24] output irradiance. analysis. 2) Performance_ varies
greatly depending on
weather conditions.
MD Manufactu | PV model Model the .PV system Accurate electrical | Increased model
equivalently using the MD - .
model [12]-[15] ral data paramete model  to estimate its modeling of PV becomes | complexity longer
based sheet rs parameters. possible. computation times
[17] 1) Information such as tilt Real-time
[29] . . Est|mat.e |rrad|an.ce. . by anglg and albedo are not parameterization of the
5 min Irradianc | employing an optimization- | required. \
(Bench ’ . . SD model's model
resolution e based approach derived from | 2) Can consider the
mark . ) . . parameter was not
the equations of the SD model | uncertainty of irradiance
method) conducted.
measurement.
[18]- M 1) Some papers do not
anufactu | PV model . ) .
[21], ral data paramete Es_t|mate model paramet?r Can  estimate  model con_3|d_§r the time-
[25],[26] using the SD  model's variability of parameters.
SD sheet rs . parameters that
, equations and the Lambert W 2) If the measured
model . correspond to the V-l | .7 . oo
[22] function. However, the ; irradiance is inaccurate,
based . PV model . - . curve and V-P curve in the .
(Bench 5 min aramete uncertainty of the irradiance manufacturer's datasheet the estimated parameters
mark resolution P rs sensor was not considered. " | cannot be deemed
method) accurate either.
. 1) Considers the uncertainty of | Can maximize the
Irradianc . . S
e & 12r1)e |rrad||.£antce rrgeasurement:.| | pa:?\meterlzatlontIt | The computation time
Our 1 sec stimates model | performance in utility-scale | .
method | resolution P mess) parameters using the SD | PV data at one-second Increases because of co-
paramete " 3 . optimization
rs model's equations and the | intervals that are greatly
Lambert W function. affected by partial shading.

Task Objectives:
e Implement a two-stage optimization process for real-time PV-DT parameterization
e Improve the steady-state and transient performance of the PV-DT

Methodology Overview: The PV-DT framework is depicted in Fig. 1. Real-time measurement
of voltage, current, and temperature (Vi7°%, Ip°%, and TA°%®) are used to estimate the irradiance
assuming the five model parameters are known. If the modeling error exceeds pre-determined
thresholds, or the estimated parameters deviates the parameters in use, the parameters will be
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updated using the two-stage optimization algorithm. The PV-DT is developed on the PARS OPAL-
RT platform and verified using two-week, second-by-second PV farm measurements.
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Fig. 1. Configuration of a utility-scale PV farm

Simulation Results: Tables Il and lll presents the anticipated errors in comparison to actual
PV farm operations in the Estimation stage and during Simulation, respectively.

TABLE II: Comparison of Results across Three Optimization Methods

Mean Absolute Percentage Error

Estimation all?ae;trel:‘izeati Irradiance (MAPE) Root Mean Square Error (RMSE)
Level P on Estimation A Current A Voltage A Power A Current A Voltage A Power

(%) (%) (%) (A) (V) (kW)

Base Case No No 34.83 2.21 36.19 286.37 26.56 305.89
Method 1 [9] No Yes 1.58 1.25 0.33 11.15 14.65 2.41
Me[t:‘g]d 2 Applied No 0.62 0.05 0.65 4173 0.75 43.34
oy ['\1"7e]th°d Applied Applied 0.17 0.04 0.20 1.50 0.66 1.86

]

TABLE lll: Comparison of Results across Three Optimization Methods

Mean Absolute Percentage Error

simulink a:\’ae;:;:::i:ati Irradiance (MAPE) Root Mean Square Error (RMSE)
Level P on Estimation A Current A Voltage A Power A Current A Voltage A Power
(%) (%) (%) (A) v) (kW)
Base Case No No 34.96 2.1 36.25 288.2 26.36 306.87
Method 1 [9] No Yes 1.31 1.06 0.25 7.73 13.38 1.49
Me[t:‘g]d 2 Applied No 119 0.39 0.90 42.69 5.72 43.67
O“r['\1"7e]th°d Applied Applied 0.29 0.22 0.13 2.76 279 0.89
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The baseline PV-DT, using a fixed set of model parameters and relying on irradiance sensor
measurements as inputs, demonstrated the least favorable performance. Method 1, utilizing a fixed
set of model parameters but with calculated equivalent irradiance, showed improved performance
compared to the baseline PV-DT. Method 2, incorporating real-time parameterization while still
using irradiance sensor measurements as inputs, outperformed Method 1. The proposed model,
which calculates equivalent irradiance and is enhanced by real-time parameterization algorithms,
achieved the best performance among the four approaches. As shown in the table, the proposed
method outperformed other methodologies in terms of current, voltage, and power, demonstrating
MAPE improvements of 0.9%, 0.17%, and 0.87%, respectively, when compared with the second-
best model.
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9.16 Task E.1 A Meta-learning Based Distribution System Load Forecasting Model
Selection Framework

Background: This task presents an automated, extendable and robust load forecasting model
selection framework to solve the heterogeneous load forecasting tasks with different forecasting
requirements and data availabilities in power distribution systems. In general, there are two types
of methods achieving model selection: knowledge-based expert system (KES) and machine-
learning based methods. Table | summarizes the advantages and disadvantages of the state-of-
the-art methods. We can see that the KES methods are less flexible because the system needs to
be updated manually whenever new forecasting models are introduced or new forecasting
scenarios are considered. Meanwhile, there lacks a rigorous problem formulation as well as a
generalized test case for the current machine-learning based methods.

TABLE I: Comparison of STATE-OF-THE-ART load forecasting model selection methods

Description

Advantages

Disadvantages

Knowledge-based Expert
System Error! Reference s
ource not found.-Error!
Reference source not
found.

Construct a rule-based model
selection mechanism to determine
which model to use under what
forecasting scenarios, based on
experts’ knowledge.

Explainable and friendly to
system operators, since the
model selection rules are built
based on human knowledge.

Inflexible because the system
needs to be updated manually
whenever new models or scenarios
are introduced.

Machine-learning based
methods Error! Reference s
ource not found.-Error!
Reference source not

Construct a mapping from forecasting
task features to the optimal
forecasting models to achieve model
selection.

Automated and easy to update
when new models or
forecasting tasks
considered.

are

Less explainable, and currently
there lacks are rigorous problem
formulation for the model selection
system.

found.

Task Objectives:
e Provide a rigorous problem formulation for the machine-learning based model selection.
e Develop a meta-learning based model selection framework to solve the heterogeneous
load forecasting tasks in power distribution systems, which is automated, extendable and
flexible.

Methodology Overview: The meta-learning based load forecasting model selection framework
is illustrated in Fig. 1. In the base-learning layer, all candidate forecasting model will be tested on
each forecasting task to find out the best-performed model on each task. In the meta-learning
layer, the features of forecasting tasks will be calculated as the input to train the meta-learner, the
nature of which is a classifier, to construct the mapping from task features to the best-performed
models. In the online application layer, the trained meta-learner will provide the forecasting model
recommendation among candidate models for the new forecasting task, given the task features as
the input.

Simulation Results: As shown in Table Il, the proposed model selection framework has 46%
chance to identify the best-performed load forecasting model among 10 candidate forecasting
models for a given load forecasting task, and 76% chance to provide a top-3 forecasting model.
Consequently, the average forecasting error on 170 testing tasks is reduced: compared with the
best-performed single forecasting model, the proposed model selection framework can reduce the
Mean Absolute Percentage Error (MAPE) from 0.188 to 0.143, and reduce the System Error Ratio
(SER) from 1.40 to 1.14.
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As shown in Table Ill, when data granularity is 5-min and 15-min, Load-PIN outperforms all other
models and shows 15-30% improvement compared with the second-best model. This shows that
Load-PIN can extract information hidden inside the high-resolution data for forecasting the missing
data segments. However, if the data resolution is too low, the Load-PIN does not show significant
performance improvements. This is because in those cases, forecasting average values outweigh
uncovering load shape details.
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Figure 1. The proposed meta-learning based load forecasting model selection framework, including base-
learning layer, meta-learning layer and online application layer.
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TABLE II: Model performance on different rankings

Ranking 1 2 3 4 5 6 7 8 9 10
Classification accuracy | 46% | 17% [ 13% | 6% | 4% | 3% | 3% | 3% | 2% | 3%
SER 114 | 1.27 | 1.34 | 1.46 | 418 | 2.89 | 448 | 3.61 | 2.61 | 3.09

Failure count 0 0 2 10 10 12 12 17 14 11

TABLE lll: Error comparison between our method and the best-performed single model

Average SER Average MAPE Failure Count

Proposed meta-learning mechanism 1.14 0.143 0
Best-performed single LF model 1.40 0.188 0
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9.17 Task E.2 A TCN-based Hybrid Forecasting Framework for Hours-ahead Utility-
scale PV Forecasting

Background: This task presents a hybrid forecasting framework for utility-scale PV farms to
achieve hours-ahead PV forecasting, based on the Temporal Convolutional Network (TCN). In
general, there are two types of PV forecasting models: physics-based model and data-driven
model, as summarized in Table |. As can be seen, both physics-based model and data-driven
model have advantages and disadvantages. There still lacks a deep fusion approach for integrating
their advantages to further improve the forecasting accuracy. Besides, recent studies start to
leverage the spatial-temporal correlations between the target site and its neighboring sites to
improve the forecasting accuracy. However, how to automatically identify the most efficient
neighboring network is still unsolved.

TABLE I: Comparison of STATE-OF-THE-ART PV forecasting models

Description Advantages Disadvantages

An analytical model to describe the
Physics-based internal physical process of an actual PV | Do not rely on historical data,

model system, therefore achieving PV | and the forecasting error only
forecasting by converting the Numerical | comes from NWP when the

[11]-[13] Weather Prediction (NWP) results to PV | model is well-calibrated.
forecasts.

Only available to the PV sites
whose physical parameters are
known, and the forecasting
resolution and accuracy are limited
by the NWP sources.

Rely heavily on the quality and
quantity of the data of the target PV
system, and the forecasting
performance can be unstable if the
model is not well-trained.

Use statistical or machine learning

Data-driven model methods to construct the mapping from | Flexible to be implemented in
historical data or exogenous variables to | any PV systems that has

[14]-[19] the future PV output to achieve | enough data.

forecasting.

Task Objectives:
e Develop a hybrid PV forecasting framework that combines the advantages of both
physics-based model and data-driven model.
e Develop a neighboring site selection method that can automatically identify the most
effective neighboring networks to help improve the forecasting accuracy for the target
site.

Methodology Overview: The proposed hybrid PV forecasting framework is in Fig. 1, including
trend forecasting, fluctuation forecasting, and forecasting results reconciliation. In the trend
forecasting stage, the physics-based model of the target site is built to forecast the hourly PV
output by converting the hourly NWP to power. To enhance the trend forecasting, a TCN network
is introduced to blend multiple NWP sources. In the fluctuation forecasting stage, another TCN
network is used to extract the spatial-temporal correlations among the target site and its neighbors
to achieve intra-hour forecasting. A neighboring site selection algorithm is proposed to
automatically identify the most effective neighbors. Finally, the two forecasting results with different
granularities will be reconciled by a third TCN network to generate the final forecasting results.

Simulation Results: The proposed method is tested on 95 PV farms in North Carolina. As
shown in Table Il, our data-driven model equipped with the neighbor site selection algorithm can
achieve 10% accuracy improvement while remaining the lowest model training time, compared
with another 3 benchmarking models. As shown in Table Ill, our hybrid forecasting method can
achieve 30% overall accuracy improvement for 6-hour ahead PV forecasting.
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Fig. 1. The proposed hybrid PV forecasting framework, including trend forecasting, fluctuation
forecasting and forecasting results reconciliation.

TABLE II: Forecasting performance evaluation (averaged on 95 sites)

Scenarios Evaluation TCN CNN-LSTM VGG-8 GARNN
Metrics
Selected RMSE 39.80 51.88 48.52 43.81
neighbors CI-90% 10.37 15.81 16.25 10.89
Single site RMSE 52.86 55.80 61.77 56.71
9 CI-90% 11.67 18.00 15.03 12.66
. RMSE 49.92 57.74 54.30 42.15
All sites Py
CI-90% 17.84 23.33 25.69 14.52
Random RMSE 54.60 52.26 58.11 49.77
neighbors CI-90% 13.96 16.07 15.22 11.33
Average computation time = 6min = 22min = 31min = 164min

TABLE lll: AVERAGE FORECASTING RMSE BEFORE AND AFTER RECONCILIATION UNDER DIFFERENT
WEATHER CONDITIONS

5min 30min 2h 4h 6h Average
Before Sunny 13.70 15.09 20.40 23.62 28.01 20.16
reconciliatio| Cloudy 26.37 37.70 68.80 106.02 142.70 76.32
n Rainy 19.90 26.84 36.44 59.33 91.80 46.86
After Sunny 11.31 13.70 14.44 16.20 17.68 14.67
reconciliatio| Cloudy 28.66 40.68 56.71 60.64 64.00 50.14
n Rainy 21.07 27.55 34.70 37.11 43.17 32.72
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Imoroveme Sunny 17.45% 9.21% 29.22% 31.41% 36.88% 27.27%
P nt Cloudy -8.68% -7.90% 17.57% 42.80% 55.15% 34.30%
Rainy -5.88% -2.65% 4.77% 37.45% 52.97% 30.18%
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9.18 Task E.3 A GAN based Super-Resolution Method for Generating High-
Resolution Load Profiles

Background: In the realm of data-driven applications, the significance of high-resolution load
data has grown exponentially. Addressing this imperative, this task presents a a two-stage load
profile super-resolution (LPSR) framework, ProfileSR-GANI[9]. In the first stage, a GAN-based
model is adopted to restore high-frequency components from the low-resolution load profiles
(LRLPs). The trdaditional LPSR methods mainly have two catagory: model-based and deep
learning-based, which are based on Mean Square Error (MSE) loss. However, the current
algorithms can introduce unrealistic details and cause over-smoothing in the reconstructed HR
data. Table | summarizes the advantages and disadvantages of the state-of-the-art methods.

TABLE I: Comparison of STATE-OF-THE-ART missing data restoration methods

Description Advantages Disadvantages

Need prior knowledge and

A large amount  of rule-based prediction s

Populate high-resolution data training data is not

Interpolation-based points based on prior required, and the model's complex, which needs to be
methods [1]-[4] knowledge and interpolation prediction process s manually flne-tlune for
algorithms. different scenarios. Low

explainable
accuracy.

End-to-end models based on
deep neural networks, which | No  prior knowledge
Deep learning-based are trained on a large amount | modeling is required
methods [5]-[8] of real data complete super- | through manual work.
resolution tasks to minimie | Easy to train and deploy.
MSE error.

Need a large amount of
training data.

Prediction is lack of high-
frequecy component and
over-smoothed.

Task Objectives:
e Develop ProfileSR-GAN model for restoring realistic high-resolution load profile from low
resolution ones.

Methodology Overview: The ProfileSR-GAN framework is illustrated in Fig. 1. In the first stage,
LR profiles and their corresponding weather data are used as inputs of the GAN-based model to
generate HR profiles through adversarial training. In the second stage, a polishing network will
remove unrealistic power fluctuations from the GAN generated HR profiles. The network comprises
a generator with deep convolution layers for high-level feature extraction and transpose
convolution layers for profile recovery. Residual blocks and batch normalization address gradient
issues. The discriminator utilize LeakyRelLU activation, with four convolutional layers and a fully
connected layer for real/fake classification. The polishing network is similar to the generator but
with fewer layers and no up-sampling transpose convolution layers. Three shape similarity metrics,
Peak Load Error (PLE), Frequency Component Error (FCE), and Critical Point Error (CPE), are
proposed to comprehensivly eavluate the realiticness compared with state of the art method.

Simulation Results: As shown in Table Il, the proposed ProfileSR-GAN model has significant
improvement regarding realiticness. This shows that ProfileSR-GAN achieved 36%-62%
improvements in shape-related evaluation metrics compared with the baseline methods. Table Ili
is presented NILM as a case study to demonstrate that applying ProfileSR-GAN on upsampling
can benefit downstream tasks that require the use of high-resolution load profiles. Simulation
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results show that when using ProfileSR-GAN to upsample the low resolution profiles before
conducting NILM, appliance-level activities can be better recognized by the NILM algorithms.

Stage 1: GAN-based SR
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Figure 1. The two-stage ProfileSR-GAN architecture with corresponding kernel size (k), number of feature
maps (n), and stride (s) indicated for each convolution layer.

TABLE II: Model performances on the Pecan Street Test Case

ProfileSR ProfileSR
SR method LERP ASR SRP CNN GAN- GAN
(unpolished) (polished)
MSE mean 0.55 0.44 0.42 0.41 0.61 0.51
Gain / 20% 24% 25% -11% 7%
PLE mean 1.38 0.99 0.92 0.91 0.86 0.73
Gain / 28% 33% 34% 38% 47%
FCE mean 7.22 5.83 5.36 5.38 4.81 4.65
Gain / 19% 26% 25% 33% 36%
CPE mean 0.65 0.41 0.29 0.31 0.26 0.25
Gain / 37% 55% 52% 60% 62%
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TABLE lll: Performance Comparison of Different NILM Algorithms

Metric

s Root mean square error (kW) Overall error (10°7)
App:anc House ProfileS ProfileS
s LERP | ASR SRP CNN R- LERP | ASR SRP CNN R-
GAN GAN
1 1.063 | 1.049 | 1.024 | 1.016 0.969 0.780 | 0.883 | 0.403 | 0.430 0.346
Air- 2 1.216 | 1.201 | 1.071 | 1.103 1.048 2417 | 2.303 | 1.587 | 1.917 0.758
condition 3 1.348 | 1.350 | 1.134 | 1.199 0.922 4.949 | 4.925 | 2.620 | 3.004 1.102
er 4 0.793 | 0.809 | 0.710 | 0.727 0.679 0.713 | 0.790 | 0.404 | 0.453 0.104
mean 1.105 | 1.102 | 0.985 | 1.011 0.905 2215 | 2.225 | 1.253 | 1.451 0.578
1 0.105 | 0.106 | 0.105 | 0.105 0.106 0.145 | 0.155 | 0.128 | 0.144 0.040
2 0.071 0.074 | 0.074 | 0.078 0.067 0.325 | 0.285 | 0.233 | 0.261 0.160
Fridge 3 0.102 | 0.104 | 0.089 | 0.088 0.084 2,703 | 2.712 | 1.258 | 1.539 0.482
4 0.078 | 0.079 | 0.078 | 0.079 0.078 0.278 | 0.335 | 0.138 | 0.153 0.236
mean 0.089 | 0.091 | 0.087 | 0.087 0.084 0.863 | 0.872 | 0.439 | 0.524 0.230
1 0.118 | 0.116 | 0.106 | 0.106 0.090 0.329 | 0.362 | 0.162 | 0.138 0.130
Electri 2 0.063 | 0.064 | 0.057 | 0.058 0.056 0.687 | 0.634 | 0.501 | 0.644 0.474
fu?rgg(e; 3 0.299 | 0.299 | 0.220 | 0.243 0.201 0.571 | 0.569 | 0.689 | 0.654 0.349
4 0.071 0.073 | 0.066 | 0.067 0.064 0.055 | 0.057 | 0.049 | 0.064 0.021
mean 0.138 | 0.138 | 0.112 | 0.119 0.103 0.410 | 0.405 | 0.350 | 0.375 0.244
1 0.127 | 0.135 | 0.100 | 0.114 0.075 0.453 | 0.495 | 0.293 | 0.329 0.051
Dish 2 0.364 | 0.365 | 0.321 | 0.333 0.224 1.378 | 1.362 | 0.832 | 0.990 0.151
washer 3 0.128 | 0.123 | 0.102 | 0.106 0.073 1.434 | 1.351 | 0.636 | 0.755 0.248
4 0.089 | 0.086 | 0.105 | 0.095 0.087 0.065 | 0.049 | 0.163 | 0.123 0.025
mean 0.177 | 0.177 | 0.157 | 0.162 0.115 0.832 | 0.814 | 0.481 | 0.549 0.119
1 0.085 | 0.084 | 0.083 | 0.084 0.083 0.114 | 0.124 | 0.130 | 0.138 0.156
Microwa 2 0.023 | 0.022 | 0.022 | 0.022 0.021 0.023 | 0.018 | 0.018 | 0.020 0.010
ve 3 0.028 | 0.028 | 0.013 | 0.014 0.013 0.468 | 0.453 | 0.037 | 0.055 0.023
4 0.123 | 0.122 | 0.121 | 0.122 0.120 0.489 | 0.492 | 0.433 | 0.458 0.160
mean 0.065 | 0.064 | 0.060 | 0.060 0.059 0.273 | 0.272 | 0.154 | 0.168 0.087
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9.19 Task E.4 Synthetic load profile generation

Background: This task presents a deep-learning framework, Multi-load Generative Adversarial
Network (MultiLoad-GAN), for generating a group of synthetic load profiles (SLPs) simultaneously,
considering the spatial-temporal correlations among a group of loads that are served by the same
distribution transformer. SLPs are generated load profiles bearing similar characteristics as the
real ones. In general, there are two approaches for generating SLPs: simulation-based and data-
driven. Table X.I summarizes the advantages and disadvantages of the state-of-the-art SLP
generation methods and compares our algorithm with the existing ones. As can be seen in the
table, up till now, all existing generative methods generate SLPs one at a time. There is no
generative method proposed for generating a group of SLPs served by the same distribution
transformer or the same feeder, where the SLPs have strong spatial-temporal correlations.

Task Objectives
e Enable the generation of correlated realistic SLPs in large quantity for meeting the
emerging need in microgrid and distribution system planning.
e Evaluate the realisticness of generated load profiles.
¢ Develop an iterative data augmentation mechanism is to tackle data scarcity.

Methodology Overview: The configuration of MultiLoad-GAN is shown in Fig. 1, it generates N
load profiles simultaneously. It is a GAN-based model and consists of two components: a generator
network (G) and a discriminator network (D).
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Fig. 1. MultiLoad-GAN architecture with corresponding input dimension (ID), output dimension (OD), kernel
size (K), stride (S), padding (P), output padding (OP) for each convolutional layer. The parameter is an example
for generating weekly 15-min load group with 8 households

Simulation Results: The realisticness of the generated load groups is evaluated by comparing
the generated load groups with the “original positive samples” using two different kinds of
realisticness metrics: statistics metrics based on domain knowledge and a deep-learning classifier
for comparing high-level features. The performance indices are summarized in Table Il and Fig. 2.
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The results show that MultiLoad-GAN captures group-level characteristics better than benchmark
methods, and the Automatic Data Augmentation (ADA) process significantly shorten the distance
between MultiLoad-GAN generated data set and the real data set. This shows that the ADA
process avoids MultiLoad-GAN to be over-trained so that it only generates load groups strongly
resemble the “original positive samples”.

TABLE I: Comparison of our Multiload-GAN model with the state-of-the-art generative methods

_ . Model
Description Advantages Disadvantages output
Use physical models, such Explainable as the Require detailed
L . models reflect the laws .
as building thermodynamics . physics-based models
Model-based methods . of physics when . ;
and customer behavioral o . with many inputs and
[10][11] ; . .. | describing the behavior .
models, to simulate electricity D e require parameter
. ) behind field )
consumption profiles. tuning.
measurements .
Single load
Cluster existing load profiles profile
into different categories so Easy to implement and Lack of diversity when
Clustering that by combining the load can represent some using combinations of a | (When )
based [12][13] | profiles across different realistic load profile limited number of generatlr)g a
categories, SLPs are characteristics. existing profiles. load profile,
generated. the methods
do not
Depend heavily on consider the
Forecasting Easy to implement and historical data. The spatial-
based [14]-[17] | Generate SLPs based on flexible to generate load | generated load profiles | temporal
(the publicly available load or profiles with different have similar patterns correlations
benchmark weather data. lengths and with historical data, among a
method) granularities. therefore, lack of group of
Data- diversity. generateq
driven SingleLoad- load profiles)
methods Learn from the real data
GAN-based G . o
[19]-21] AN-based generative d!strlbgtlon to gener.ate .
(the methods to generate the SLP | diversified load profiles | Hard to train.
for one customer at a time. with high-frequency
benchmark .
details.
method)
: Learn from the
ﬁgm;%assfs geenneiraatgvae roup | distribution of real data Multiple
MultiLoad- of atial-ter% oral corrglaterc)i to generate diversified spatial-
GAN patia-temp load profiles with high- . temporal
load profiles simultaneously. . Hard to train.
(the proposed . frequency details. correlated
Such load profiles can be .
method) loads served by the same Preserve the spatial- load
y temporal correlations profiles

transformer or feeder.

between loads.
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TABLE II: Results of DLC-based evaluation
. Real SingleLoad- . MultiLoad-GAN

Indices data GAN LSTM MultiLoad-GAN (with ADA)
Percent of Real 94.38% 19.69% 84.83% 99.06% 94.99%
Mean E:‘:‘;:dence 0.9371 0.1913 0.8919 0.9899 0.9491
Fréchet inception

distance
with the Real load N/A 0.5173 0.00706 0.01106 0.000055

group
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9.20 Task E.5 Power-Band based Data Segmentation (PBDS) Method for Enhancing
Meter Phase and Transformer-Meter Pairing Identification

Background: We applied power-band-based data segmentation (PBDS) in two meter topology
identification algorithms: customer phase identification and transformer-meter pairing
identification. Through simulation on thirteen real feeders, our proposed algorithm outperformed
existing approaches, significantly improving the accuracy of meter topology identification without
introduction significant computational complexity.

Table 1 presents a comprehensive overview of existing methods for addressing phase and
transformer-meter pairing identification problems, along with a comparison of their strengths and
weaknesses in relation to the proposed approach.

TABLE I: A Review of Existing Methods and Our Contributions

Category Methodology Descriptions Strength Weakness
Signal injection  Detect a signal injected into a Additional
[1] specific phase Extremely accurate equipment required
PMU [2] Measure the voltage phase angle PMU data required
Real Power- Customer loads on the same Degradation
based phase should match substation Simplicity depending on the
[3-4] power measurements AMI penetration
Customers on the same phase
Voltage-based  exhibit stronger voltage Easily-interpretable Inefficient use of
[6-7] correlations than those on different ~ Require only voltage from AMI data
phases
Phase Uninterpretable and
Identification unexplainable
ML-based Unsupervised learning algorithms High accuracy Manual verification
[812] that solve the clustering problem Identify phases without labels and retraining
required if applied to
other feeders
Easily-interpretable
PBDS Power-band based data Identify phases without labels
(Proposed) segment_atlon algorithm to Require only real power and Pararneter tuning
[13-14] extract highly correlated voltage voltage from AMI required
segments on the same phase Efficient use of data through
data segmentation
Load summing Customer loads under the same o DT metering
(5], [15] DT should match DT power Simplicity required
’ measurements
Inefficient use of
data
Voltage-based Analyzg voltage correlation Easily-interpretable c,;l:rtnglrgtvel dS_I:a
[16-19] coefficient between all customers Require only AMI data and grouping result
labeled on the same transformer customer DT labels : .
Transformer No solution provided
-Meter for incorrect DT
Pairing labeling
Identification  Regression- Estimate line impedance using Requires reactive
based linear regression and build up a Mathematical simplicity q p AMI
[20-22] secondary circuit power from
. Present a method to correct
PBDS QBtvl\)lg-tstag_e a_llgon:lthm CESEET abnormal DT-meter pairs Cannot identify a
o distinguish between a R "
equired only AMI data and transformer that
(Proposed) group of meters under the same customer DT labels serves only one
4] DT and a group of meters under y

different DTs

Efficient use of data through
data segmentation

customer
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Task Objectives
e Automated identification of smart meter phase and transformer-meter pairing
relationships.

Methodology Overview: The configuration of the proposed phase identification algorithm is
shown in Fig. 1(a). The PBDS steps are highlighted in the two shaded boxes. Two cases, known
and unknown phase labels, are considered. The configuration of the proposed transformer-meter
pairing identification algorithm is shown in Fig. 1(b). The PBDS is used to eliminate false positives.

[ Start ] Load meter power and voltage data
i
l Meters j,k €{1,-, Ny}, DTsi,r € {1, Ny}

| Load smart meter data |

!
‘ Compute PCC(V;,V,,) for each season in a year

L1

‘ —'{ Meter j =1 l

Yes | Select [P~ P*] and Ty, ranges —
- I i No - T2PCC;_;<T2PCC:;
Select [P~ P*]between [0 a] ki in 0.1 ki increments ! - = APCC. < APCC™ — i-i i
and Ty, between [0 b] hin 0.5 h increments Extract data segments that satisfy power JEIt - [ HLLY
band and minimum duration H Yes
fLYes |
| ! Flag a IDT2peter, DT Zoriginai:
Extract data segments that satisfy power band and Calculate PCC and correlation distance l Flag @ IDneters IDoriginairs I Didentifiedr IDT2 ongifiear

minimum duration matrices for all combinations

| 1 s —
Calculate PCC and correlation distance matrices Implement hierarchical clustering

for all combinations using correlation distances to cluster [ Yes|
smart meters into 3n" groups
| I
Implement hierarchical clustering using correlation Construct the CTS matrix using
distances to iteratively cluster smart meters from cluster ensemble
1to Ninto 3n groups (n € {1,--,N L0 |
g lps( {1,-,N) T : mq‘lg@
Implement hierarchical clustering i :
H Moe L H
using CTS matrix to cluster i §l Yes | _
Assign predicted phase labels using majority vote smart meters into 3n" groups No
l T False positive GIS or field check
Utility make final predictions for Yes
Stop the phase label of each cluster
! | Mislabeled |
(a) (b)

Figure 1. Flowchart of the PBDS based, (a) meter phase identification methodology, (b) the two-stage
transformer-meter pairing identification algorithm.

Simulation Results: The proposed method is tested on 13 real feeders in North Carolina. As
shown in Tables Il and lll, the proposed phase identification algorithm achieves a 1.1% and 1.9%
improvement in accuracy compared to benchmarking methods (i.e., Spectral Clustering and Co-
association Matrix Ensemble Clustering), respectively. As indicated in Table IV, our transformer-
meter pairing identification algorithm achieves an 84.6% reduction in the false positive rate.
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Gradient Boosting Approach for

Background: In this subtask, we developed IBi-GBM, a novel iterative, bidirectional gradient
boosting CVR baseline estimation algorithm designed to assess the efficacy of CVR in load
reduction. Our approach introduces a hybrid methodology, incorporating a bi-directional framework
and a hybrid similar day selection method. The proposed algorithm exhibits robust performance
across different data resolutions (ranging from 5- to 60-minute intervals), various data types
(including aggregated smart meter and SCADA data), and seasonal changes (specifically, summer
and winter). Our findings reveal substantial variability in CVR performance across different feeders
and seasons.

In general, there are four main approaches for CVR baseline estimation: comparison-based,
synthesis-based, load modeling-based, regression-based, and machine learning (ML)-based
techniques. In Table 1, we offer a thorough literature review of current CVR baseline estimation
approaches, highlighting their strengths and weaknesses in comparison to the proposed approach

Table 1: A Review of Existing Methods and Our Contributions

Category Methodology Descriptions Strength Weakness
. Compare performance
Comparison Field experiments [1] between test and control Simplicity Dependent on control
-based group
groups
Difficult to collect load

Synthesis Aggregate LTV behaviors :::drgrmformatlon fora

y LTV [2] to estimate the CVR Quick estimation .

-based effects of a circuit Requires LTV response of
all existing electrical
appliances

Represent load .
Load - consumption as a function . . Cannot repre_s_ent different
. LTV sensitivity Can estimate time load compositions

Modeling of voltages, and calculate . ;

[3], [4] varying CVR factors depending on the load

-based CVR factors from the model used

identified LTV sensitivities
Linear regression Loads are modeled as a I'I::eer:ltahrg:]n cc:)\f/eRr::frfengf y be
Regression [5], [6] function of several impact Interpretable ger
A . - L Inability to capture the
-based Multivariate regression  factors to calculate the Mathematical simplicity - .
characteristics of nonlinear
[71-[9] CVR factor
loads
Noniterative and uni-
Interpretable directional
MSVR [10] MSVR-based model Can approximate Accuracy relies on the
nonlinear behaviors of existence of similar profiles
load Results may not always be
attainable for each test day
ML MLP, LSTM, TCN Can capture complex ?&Zﬂiﬁ?é?&?én length
-based 11]13] Uni-directional DL model and ponllnear Demands a substantial
relationships -
volume of training data
Bi-directional Mathematically complex
Variable prediction Lack of interpretability
Load-PIN [14] GAN-based generative length Comp.ut.atlonally expensive
method Can capture complex for training
and nonlinear Demands a substantial
relationships volume of training data
Interpretable, capture
nonlinear behaviors of
Iterative IBi-GBM lterative. bidirectional load and bi-directional  Accuracy relies on the
bidirectional IBi-LightGBM GB-base,d alaorithm information for existence of available
(Proposed) [15] 9 variable-duration similar profiles

events and require
very few training data

Task Objectives: Identify the baseline of CVR to enable performance evaluation of CVR based
load reduction.
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Methodology Overview: Accurate baseline estimation is crucial for utilities to assess the
effectiveness of demand response (DR) programs. The baseline of a DR event is essentially the
load profile that would exist if a DR action had not been implemented. Thus, to estimate the DR
baseline, it's essential to reconstruct the electricity consumption as it would be during the DR
period, assuming that not DR actions are implemented. This process can be conceptualized as a
missing data segments (MSDs) recovery problem.

As illustrated in Fig. 1, the proposed lterative, Bidirectional Gradient Boosting Model (IBi-
GBM)-based CVR baseline estimation methodology involves three essential processes: the
selection of similar days, the training of the GB model, and the iterative generation of baseline data
points.

= Regression Tree (RT)

F + afi(x; 04) FU + afalx; @;) PN + afrix; Op)

Load power, Weatheia"d CVR event data 3) Iterative, Bidirectional Gradient Boosting Model (IBi-GBM)
i€ {1, NOVRY, j € {10, NPV £
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F _ ppre —prenf ! l [ 4 1 1
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Fig. 1. A three-stage framework proposed for CVR baseline estimation, involving: 1) selecting similar
days, 2) training the GB model, and 3) implementing IBi-GBM.

Simulation Results: Two real-world datasets (i.e., 15-min smart meter data and 5-min SCADA
data) are used to develop and validate the performance of the two iterative bidirectional-GB based
CVR baseline estimation algorithms. Tables Il and Ill demonstrate that the proposed IBi-GBM
exhibits robust performance across various data resolutions and in different seasons for virtual-
CVR days, and outperforms existing methods by achieving a 1-2% reduction in normalized Root
Mean Square Error (nRMSE). Figure 2 shows the examples of the proposed IBi-GBM generated
CVR baseline for the actual CVR days. After estimating the CVR baseline, CVR performance can
be evaluated using the CVR factor in (1). The CVR factor for each time step is shown in Fig. 3.

_ AP% _ (ﬁbaseline B ﬁCVR)/ﬁbaseline
AV% (Vbaseline - VCVR)/Vbaseline (1)
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Figure. 2. Examples of the IBi-GBM generated CVR baseline for (a) three feeders with 15-min smart meter
data, (b) three substations with 5-min SCADA data in summer, and (c) three substations with 5-min SCADA

data in winter.
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Figure. 3. Average step-by-step CVR factors and 95% confidence intervals for (a) three feeders with 15-
min smart meter data, (b) three substations with 5-min SCADA data in summer, and (c) three substations
with 5-min SCADA data in winter.
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9.22 Task F.2 Load Profile Inpainting for Missing Load Data Restoration

Background: This task presents a Generative Adversarial Nets (GAN) based, Load Profile
Inpainting Network (Load-PIN) for restoring missing load data segments and estimating the
baseline for a demand response event. In general, there are two categories of missing data
restoration methods for load profile inpainting: model-based and data-driven. Table X.I
summarizes the advantages and disadvantages of the state-of-the-art methods. As can be seen
in the table, up till now, all existing generative methods require the format of the input and output
to be fixed. However, in practice, the duration of missing data (model output) varies from minutes
to several hours, and the length and number of available measurements (model input) also vary
case by case. To cope with the varying-length cases, traditional methods need either increase the
output window to cover the longest event or train separate models for different scenarios.

TABLE | : Comparison of STATE-OF-THE-ART missing data restoration methods

Description Advantages Disadvantages

Explainable as the

Use physical system models | 1" efiect the laws

to simulate responses to

Model-based methods external  disturbances  in of physics when | Require accurate
[11-[5] hope of restoring missing despribing the behayior distribution system models.
data segments. behind field
measurements
Groups load profiles by day
type, weather conditions, and Defined by human analysts,
shape characteristics of load Straightforward, easy to making the accuracy of the
similarity- profiles. The missing data implement ' and method  dependent on
based [5]-[7] |segments are restored by explainable subjective  selections  of
referencing to the data on the P similarity metrics and
load profiles having the best weights.
Data- similarity match.
driven
methods Include linear regression, Achievg higher | Compared with similarity-
Long Short Term Memory estimation accuracy baseq methods, the deep-
regression- (LSTM) Stacked compared to the similar | learning based methods are
based [11]- Autoenc;oder (SAE) day approach because | less explainable and having
[11] Gaussian Regression, of their nonlinear | higher computing costs
Support Vector Regressior; learning capabilities, | the data format of the input
(SVR) especially when using | and output is required to be
deep-learning models fixed.
Task Objectives

e Develop Load-PIN model for missing data restoration and baseline estimation.
e The most distinct feature of the Load-PIN model is its flexibility in restoring variable-length
data segments and its superior accuracy compared with the state-of-the-art methods.

Methodology Overview: The Load-PIN framework is illustrated in Fig. 1. The model input z
has three parts: 24-hour load and temperature profiles, and a Boolean mask indicating the event
period as one and the normal period as zero. The load data resolution varies from 1-minute to 15-
minute and the missing data duration, T,,.,;:, is less than 4 hours. The generator contains two
stages: a coarse network for initial estimation and a fine-tuning network for polishing. The
discriminator is a deep convolutional network with specially designed loss functions.

Page 137 of 146



DE-EEO008770
Ning Lu

Simulation Results: As shown in Table Il, when data granularity is 5-min and 15-min, Load-
PIN outperforms all other models and shows 15-30% improvement compared with the second-
best model. This shows that Load-PIN can extract information hidden inside the high-resolution
data for forecasting the missing data segments. However, if the data resolution is too low, the
Load-PIN does not show significant performance improvements. This is because in those cases,
forecasting average values outweigh uncovering load shape details.

Generator

Daily temperature

Concatenate
layer outputs

Daily load + mask
Coarse network

Adversarial loss
on each neuron

~Real [N
data

Discriminator 9 GC @ GTC @ CNN J Attention
Layer | gc gc gc gc gc gtc gc gtc gc
ks 5 4 3 4 3 3 3 3 3
Coarse 164 | 128 | 128 | 256 | 256 | 128 | 1286 | 64 1
st 1 2 1 2 1 2 1 2 1
Generator
Layer | gc gc gc gc gc gc gcn | attn*4 | gen*2 | gten | gen | gten | gen
Refine ks 5 4 3 4 3 3 3 3 3 3 3 3 3
kn 64 64 64 64 64 128 | 256 64 1 2 128 2 128
st 1 2 1 2 1 1 1 1 256 128 1 128 1
Layer [ cnn [ cnn | cnn | cnn | cnn
I ks 4 4 4 4 4
Discriminator kn | 16 | 32 | 64 | 128 | 256
st 2 2 2 2 2

Figure 1. The proposed Load-PIN framework. “GC” refers to a gated convolution block, “GTC” refers to a
gated transpose convolution block, “CNN” refers to a convolutional block, and “Attention” refers to a self-
attention block. “ks” means kernel size, “kn” means number of kernels, and “st” means stride.
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9.23 Task F.3 HVAC Load Disaggregation Method 1

Background: Load disaggregation is an important technique in distribution system
analysis. Its results can be used in many downstream tasks, for example, customer
segmentation, resource identification, and rate recommendation. When the sampling rate
of available data sets is less than 1 minute, non-intrusive load monitoring (NILM) methods
are often used to disaggregate the electricity consumption curves of different appliances.
However, in practice, inputs to many load disaggregation algorithms are 15-minute smart
meter data and hourly weather data. This makes those NILM methods relying on second-
level meter data inapplicable. The goal of the proposed HVAC disaggregation algorithm
is to filter out hidden portions of HVAC usage lying in total metering, using the row
resolution smart meter profile and outdoor temperature profile, which are applicable for
customer-level and aggregated-level load profiles.

TABLE 1: A Review of Existing Methods and Our Contribution

Methodology Description Disadvantage Advantage
HMM-based HMM-based methods assume that Exponential increases in Interpretability.
method [1] appliances operate in distinct states, complexity as the number of

represented as hidden states within appliances rises. Requiring

the HMM model. metering data with a sampling

rate of 1 minute.

Deep learning- State-of-the-art supervised learning Heavy reliance on large labeled | High Accuracy.
based method [2] | methods sub-metered datasets.
Optimization- Steady-state-based and dictionary- Low transferability. Requiring less
based method [3] | learning-based approaches using training data and

appliance signature matrices model

complexity.

Our method Optimization-based approach and applicable to various smart meter data resolution with
[4][5] low dependency on labeled data set

Task Objectives: Develop a HVAC load disaggregation model that is transferable and
generalizable to diverse customers and customers with limited training data and no sub-
metered information.

Methodology Overview: As shown in Fig. 1, there are three different steps in the
proposed HVAC disaggregation algorithm. The inputs of the optimization algorithm
include daily temperature and load profiles, base load dictionary, and HVAC electricity
consumption references calculated by minimizing the mutual information (MI) between
the ambient temperature profile and the temperature-insensitive load (i.e., total load
minus the HVAC loads). In the end, a fine-tuning process is used to detect and remove
the anomalies in the estimated HVAC load based on predetermined criteria extracted
from the statistical characteristics of the HVAC loads.

Simulation Results: The data sets used in this study were collected by Pecan Street
Inc. from 1070 residential users in New York, Colorado, California, and Texas. The data
sets include 1-minute electricity consumption of the total household and appliances (e.g.,
HVAC, water heater, and dryer). The 1-minute data is down-sampled to 1 hour to match
the typical smart grid data. 230 users with only one HVAC unit and 90 days in Summer
2019 are selected to illustrate the algorithm performance on cooling load disaggregation.
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To measure the aggregated-level results, we randomly pick 10 to 500 customers and use
the aggregated profiles.

As represented in Table 2, when compared to all three benchmark models, our model
demonstrates substantially higher accuracy and the lowest standard deviation in nMAE,
indicating the superior performance and consistency of our model in accurately
disaggregating HVAC load from smart meter data, even when dealing with varying data
resolutions. The model exhibits satisfactory performances as shown in Table 3 where
results are compared across different aggregation levels.

Yearly Temperature Yearly Load Daily Temperature Daily Load

\L E
v

MI-based Estimation .| Optimization-based

(Algorithm 1) Load Disaggregation Fine-tuning

! f !

mc M non-HVAC

Yearly HYAC Load Estimation Base Load Dictionary Disaggregation Result

Figure 1. Workflow of the proposed load disaggregation algorithm.

TABLE 2. Customer-level HVAC Load Disaggregation Performance Comparison

nMAE (%) EE (kWh) std (nMAE)
Data Resol.
Proposed BM1 BM2 BM3 Proposed BM1 BM2 BM3 Proposed BM1 BM2 BM3
5-min 9.02 16.80 12.76  19.76 3.44 7.13 8.52 9.72 1.93 6.24 491 7.20
15-min 8.10 1432 1195 2047 2.78 8.84 7.98 9.40 253 6.37 4.64 8.34
30-min 8.48 1485 1055 18.12 3.20 6.12 5.30 8.72 2.68 6.72 4.37 7.49
60-min 8.70 12.65 9.62 18.70 3.54 6.71 4.69 7.95 2.71 6.02 4.21 8.27

TABLE 3. Aggregated-level HVAC Load Disaggregation Performance Comparison

Data Resol. nMAE (%) EE (kWh)
10 users 50 users 100 users 300 users 500 users 10 users 50 users 100 users 300 users 500 users
5-min 4.96 4.75 3.61 3.76 3.76 1.17 2.18 1.14 1.09 1.10
15-min 6.05 5.18 3.75 3.76 372 1.91 2.46 1.22 1.16 1.16
30-min 6.09 5.23 3.70 3.70 3.77 2.11 2,51 1.23 1.17 1.17
60-min 5.75 4.90 4.24 4.48 4.18 1.83 1.54 1.33 143 1.21
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9.24 Task F.4 Load Disaggregation Method 2

Background: HVAC loads are widely used demand response (DR) resources
nowadays, which takes 30% of residential and 40% of commercial building electricity
consumption. However, in practice, only the total building electricity consumption is
metered. Thus, load service providers and utility engineers mainly rely on HVAC load
disaggregation algorithms for conducting DR potential studies. The existing methods are
reviewed and listed in Table | in comparison to our proposed method.

TABLE I: A Review of Existing Methods and Our Contribution

Description Advantages Disadvantages
Edge-detection Use edge-detection to | Straightforward, Require  high-resolution
ge- directly identify on and off | interpretable, and | (1-min/5-min) data, sub-
algorithm [17] . :
events of HVAC. easy to implement, optimal accuracy.

Sequentially  separate

Average Value the HVAC load with | Explainable. Require the classification
Subtraction Algorithm | average values by | Mathematical of day types and not
[18] considering the day | simplicity. generalizable to all sites.
types.

Use MLP and LSTM as . Require the training of

e Easy to implementand | _. o :
the classifier to detect on site-specific machine-

MLP and and off event of HVAC | %" capture complex learning (ML) models

LSTM [19] and nonlinear :

and the regressor to get Requires high-resolution

relationships.

the HVAC profile. data.
Use random forest to |Increased
Data- . o The accuracy of the
. Random aggregate and deploy | interpretability and :
driven . method is dependent on
forest [20] extra trees to select the | accuracy with manual .
methods the feature selection.

best feature. feature extraction.

Use seguence-to point Quick estimation with | The deep-learning based
convolutional neural

S2P CNN the pre-trained model, | methods are less
[21] network (S2P-CNN) and higher accuracy, and | explainable and having

sliding window to T . )
separate HVAC profile. better generalizability. | higher computing costs.

Task Objectives: Develop a modified S2P algorithm to use low resolution smart meter
data as inputs for HVAC load disaggregation with great generalizability.
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Methodology Overview: As shown in Fig. 1, the modified S2P algorithm is conducted
in three steps: data augmentation, training and testing the model on one location, transfer
learning (port the pre-trained model to other locations) with fine-tuning. First, the
infrequently used loads (i.e., water heater and dryer loads) are removed from the total
load profile. Then, the sub-metered HVAC data is removed from the residual load profile
to obtain the base-load profiles. Next, the augmented load profiles are generated by
shuffling the HVAC profiles against each base load profile. After data augmentation, the
original N yearly 1-minute load profiles are expanded to N x N yearly 1-minute load
profiles. Then, the model is trained using the augmented load profiles and their
corresponding ambient temperature profiles. The trained S2P model is first tested for the
same location. Then, it is ported to two other locations, and we further improve the
pretrained model by fine-tuning.

A ted Dat Training Fine-tune the Test
HBMENTEE =ata 1 lthe CNN based load ) the trained CNN
. . | model with small |
7| disaggregation model on other
Temperature Data amount of data .
model locations
F30 k1151 FAOK9S1 F40K7S1  FSOK5S1  F50KSS1 OD512 D512 OD1

RelU
Flatten
Dropout
FC
RelU
FC
RelU

Figure 1. Architecture of the modified S2P HVAC load disaggregation algorithm.

Simulation Results: We compared the proposed model with two benchmark models
using data collected in Austin, Texas: Support Vector Machine (SVM) and the original
S2P-CNN. We set up three cases to compare the performance improvements brought by
data augmentation and adding temperature to the input: 1) using data sets collected from
the 150 users for training, 2) using augmented data (150 x 150 users) for training, and 3)
using augmented data for training and using both load and temperature data as model
inputs. The trained model is tested on the remaining 50 Austin users. As shown in Table
Il, augmentation significantly reduces error variances (i.e., improved model consistency)
and adding temperature to the inputs reduces the errors (i.e., improved accuracy).

For new sites with limited amounts of sub-metered data, we can fine-tune the model
for each household using the transfer learning algorithm. We use one weeks’ labelled
data to demonstrate the efficacy of fine-tuning. As shown in Table llIl, the pre-trained
model has shown satisfactory accuracy when directly used on new sites. And fine-tuning
can considerably reduce the disaggregation errors and error variances. As shown in Fig.
2, fine-tuning achieves noticeable improvements in HVAC disaggregation accuracy
because it can identify some distinct user characteristics (e.g., the HVAC rated power).
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The modified model shows significant improvement in disaggregation accuracy and
consistency compared to previous methods in an area with labelled data sets. The model
generalizability is also improved because the pre-trained model achieves satisfactory
performance in other locations where there is no sub-metered HVAC load data for
training. The proposed transfer learning technique using a small amount of labelled data
at the new location to fine-tune the pre-trained model can also significantly improve the
model performance.

Table II: Performance Comparison for Different Load Disaggregation Method

Benchmark Models Proposed Model
SVM S2P-CNN Case 1 Case2 Case3
nMAE (%) 13.09 9.54 8.54 8.44 717
nEE (%) 11.36 6.47 4,37 4.54 3.51
std(nMAE) 8.47 4.25 3.89 2.28 2.85
std(nEE) 7.42 3.72 2.39 2.47 1.86

Table lll: Performance Comparison for Different Locations (Boulder, CO & San Diego, CA)

. Benchmark Models Modified S2P
Area Metrics
SVM S2P-CNN NoFT  WithFT
co nMAE (%) 23.78 11.26 9.28 7.90
’ std(nMAE) 17.12 7.61 6.54 3.73
CA nMAE (%) 19.82 6.71 4.40 4.52
’ std(nMAE) 9.62 3.55 1.82 0.86
25 — — Total Load
——= Actual AC
.20 - Prediction
E \k -==-- Fine-tuned
)
3 1.0
o
0.5 > \i Y
0.0 " LDl {\’l \7\‘ IIITS?;’J,MTJI\. s
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time

Figure 2. An example of load disaggregation results for one user located at Boulder, CO.
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