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Executive Summary 
The project's primary objective is to develop a digital-twin based Photovoltaic (PV) 

Analysis and Response Support (PARS) platform, which aims to provide real-time 
situational awareness and optimal response plans. This platform is designed to enhance 
the performance of hybrid PV systems, making them competitive with or even superior to 
conventional generation resources. The PARS platform enabled the project team to 
develop and evaluate an extensive suite of grid support functionalities for the hybrid PV 
systems to enhance grid performance, across key areas including visibility, 
dispatchability, security, resilience, and reliability. 

Given the global push toward achieving 100% clean energy by 2035, there is a 
significant increase in the integration of inverter-based resources (IBRs) throughout the 
energy grid. Effectively managing the inherent variability and uncertainty associated with 
IBRs is crucial for ensuring cost-effectiveness, reliability, and security in both the main 
grid and islanded microgrids. 

Constrained to a limited array of IEEE test systems or standard feeder models, 
traditional IBR modeling struggles to assimilate new field data, accurately reflect system 
dynamics, and adapt to the evolving energy landscape. In our project, we embraced a 
Digital Twin (DT) strategy for crafting the PARS platform. A digital twin acts as a precise 
virtual counterpart of a physical system, built on historical data and continuously honed 
with real-time insights. This enables the high-fidelity DT to accurately mirror current 
system operations and forecast future scenarios. Consequently, the PARS platform 
becomes an ideal environment for testing and refining monitoring, control, power, and 
energy management algorithms designed to boost hybrid PV system performance. The 
defining feature of the PARS platform, distinguishing it from other advanced simulation 
tools, is its exceptional adaptability. This is achieved by employing actual network 
topologies and utilizing real-time field data for fine-tuning and calibration, ensuring a close 
emulation of real-world conditions. 

The project deliverables include: 1) High-fidelity IBR models and tools for real-time 
parameterization, utilizing real-time field measurements to refine IBR models for 
enhanced accuracy and performance; 2) Grid-forming and Grid-following capabilities to 
deliver resilience services, including blackstart, voltage and frequency support, cold-load 
pick-up, power reserves, and three-phase load balancing across grid-connected and 
microgrid settings; 3) Machine learning-based forecasting tools and methods for 
generating synthetic data and topologies, creating diverse and realistic simulation 
environments for evaluating varied operational scenarios; 4) Advanced microgrid power 
and energy management algorithms for optimizing the integration and operation of PV, 
storage, and demand response resources within both feeder and community scales. 

The power grid data sets are provided by four utility companies in North Carolina and 
the New York Power Administration. Acting as industry advisors, our industry partners 
communicated stakeholder needs and regulatory standards to the research teams, aiding 
technology transfer by incorporating the developed methodologies into their daily 
operations. This collaboration ensures that the PARS platform, functioning as a power 
system digital twin, enhances our understanding of IBR dynamic behaviors and enables 
the development and evaluation of IBR control functions that match or exceed the 
capabilities of conventional synchronous generators.  
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1. Background 
Project overview: The objective of this project is to develop a digital-twin based 

Photovoltaic (PV) Analysis and Response Support (PARS) platform that provides real-
time situational awareness and optimal response plan selection.  By binding steady-state 
and dynamic simulation and integrating faster-than-real-time simulation into real-time 
simulation, the PARS operation platform can be used to emulate, monitor, and develop 
optimal response plans for hybrid PV systems located at transmission, distribution and 
behind-the-meter customer sites for both normal and emergency operations. When 
running off-line using historical data, PARS can also be used as a planning platform to 
design and test PV-based grid support functions and perform cost-benefit studies. Note 
that we refer to hybrid PV systems as solar farms or roof-top PV systems operated with 
other generation resources or distributed energy resources (DERs).  

 
Figure 1. Configuration of the PARS platform and information flows 

The configuration of the PARS platform and information exchanges between the PARS 
components are shown in Figure 1. The expected outcome of this project is to bring the 
performance of the hybrid PV systems up to par with those of flexible generation 
resources in the following five performance areas when providing Grid Support Functions 
(GSFs): visibility, dispatchability, security, reliability and resilience. To achieve this goal, 
five tools will be developed for the PARS platform: 1) an Operation Model Tool (PARS-
OMT) that models both steady-state and dynamic behaviors of hybrid PV systems when 
providing GSFs in real-time, 2) a Model Parameterization Tool (PARS-MPT) that uses 
field measurements as inputs to derive and update the OMT parameters, 3) a real-time 
Situational Awareness Tool (PARS-RTSAT) that monitors hybrid PV systems, predicts 
the GSF capacity and performance, and detects anomalies caused by malfunctions, man-
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made errors, or cyber-attacks, 4) an Optimal Response Tool (PARS-ORT) that runs 
parallel, faster-than-real-time simulations for best response plan selection, and 5) a Cost-
Benefit Tool (PARS-CBT) that determines the value proposition for hybrid PV systems at 
strategic locations associated with critical infrastructure to provide GSFs for both normal 
and emergency operations. 

Project Organization: Figure 2 shows the summary description of the overall work 
scope of each year. In Year 1, we developed a prototype of each of the five tools and 
prepared a benchmark real-time simulation test bed for running those prototype systems. 
In Year 2 and 3, we integrated the tools on realistic transmission and distribution models.  
In Year 4, we assisted ElectriCities, NYPA, and Strata Solar to tools developed into their 
control, simulation, and planning platforms. The end results of each task by performance 
periods are listed in the figure.  

 

Figure. 2:  Project tasks for each budget year and primary focuses 
 
Motivation: The transition towards a net-zero carbon economy by 2050 is critically 

dependent on the integration of grid-scale and distributed photovoltaic (PV) systems. As 
these systems evolve from auxiliary power sources to primary generators, their ability to 
deliver grid-stability functions (GSFs) comparable to or better than traditional 
synchronous generators becomes essential. This is particularly vital in regions where PV 
penetration surpasses 20%, posing unique challenges and opportunities for energy 
systems. 

Recent research has shed light on the capabilities of hybrid PV systems in which 
flexible generation resources such as hydro power plants, combined heat and power 
units, battery energy storage systems (BESS), and dynamically controllable loads can be 
used to regulate the real and reactive power output of PV systems. These systems can 
then be controlled for providing services traditionally provided by synchronous 
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generators, for instance, power reserves, volt-var support, and rapid frequency response 
to name a few. Moreover, the strategic positioning of distributed PV resources, especially 
rooftop installations, minimizes the need for fuel storage or transportation, offering an 
economical solution to energy sustainability and resilience. 

In the context of microgrids, integrating distributed PVs with diesel generators, BESS 
(either stationary or mobile), and controllable loads can create resilient power 
ecosystems. These microgrids are designed to withstand extended blackouts, supplying 
reliable power for prolonged periods. Thus, enhancing the GSF capabilities of PV systems 
for grid-forming activities like black-start, cold-load pickup, and localized ancillary services 
becomes imperative, especially in scenarios where reconnecting to the main grid may 
take an extended duration. 

Furthermore, the increasing amalgamation of DERs calls for a unified approach to 
Transmission and Distribution (T&D) monitoring and control. Traditional models, which 
treat T&D systems separately, are becoming insufficient. An integrated T&D operational 
framework is essential for reflecting real-time grid conditions and evaluating the outcomes 
of potential control strategies accurately. This integration is crucial for maintaining grid 
reliability, security, and resilience across both transmission and distribution levels, 
particularly in light of the challenges posed by faults at the transmission level that affect 
the operation of IBRs across the grid. 

Innovations: As shown in Figure 3, the PARS platform advanced grid simulation 
technology across three major research domains. 

 First, we developed an integrated T&D digital twin that can serve as a real-time 
HIL simulation platform. This tool dramatically improves upon traditional static 
models by dynamically modeling PV outputs and adjusting parameters in real-
time based on actual field measurements (see Figure 4 and Table 1). Such 
adaptability allows for precise representation of PV farm performance, enabling 
the power and energy management system to be tested in a realistic system 
setting considering system dynamic responses. The digital twin not only 
accurately forecasts PV farm behavior but also swiftly identifies and corrects 
parameter deviations or estimation errors, a significant leap over conventional, 
non-adaptive power system models. 

 Secondly, our suite of situation awareness tools employs cutting-edge machine 
learning techniques, originally developed for speech recognition, image 
processing, and natural language processing, to tackle unique challenges in the 
power system domain. These tools enhance load and PV forecasting, load 
disaggregation, synthetic scenario generation, load model parameterization, 
anomaly detection, and cyber-attack mitigation. By leveraging advanced 
analytics, we can predict and respond to complex grid dynamics more 
effectively, enhancing reliability and security. 

 Finally, we developed optimal response strategies for hybrid PV farms to 
provide black-start support, provide voltage and frequency regulation, and 
enable microgrid operations down to the feeder and community levels. We 
developed control methods for providing power reserve margins, coping with 
cold-load pickup effects, and correcting 3-phase load imbalances.  
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Figure 3: Unique features of the integrated T&D power system digital twin  

 

 
Figure 4: An overview of the PVDT parameterization process  
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Table 1:  Digital-twin based approach versus conventional approaches 

Reference Modeling Considerations Synchronization Communication 

[1] Electromagnetic transients + phasor model Yes N/A 

[2] Electromagnetic transients + phasor model Yes N/A 

[3] Phasor model  Yes 
Wireless 
communication 
simulator 

[4] Electromagnetic transients + hardware Asynchronous N/A 

[5] Phasor model + hardware Asynchronous JSON-link over Ethernet 

Digital-twin 
based PARS 

Platform 

[6-12] 

Electromagnetic transients + phasor model 
+ hardware + Parameter Updates+ 
Communication Links+ Forecast the 
Model Evolutions+ Energy/Power 
Management Systems 

Asynchronous 

Modbus + File-shared 
over Ethernet + VPN 
connections required for 
implementation of multi-
area networked digital 
twins 

 
In Section 2, we presented a comprehensive list of deliverables categorized by tasks 

and technical categories. In Section 3, we supplemented this information by including 
references that highlight recent advancements in technologies relevant to each 
deliverable outlined in Section 2. Additionally, within Section 3, we provided concise 
technical discussions and performance comparisons to elucidate the distinctions between 
our work and the state-of-the-art, showcasing the extent to which we improve upon the 
existing state-of-the-art. 
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2. Project Objectives:  
The objective of this project is to develop a digital-twin based PARS platform that 

improves the real-time visibility, dispatchability, security, and reliability of hybrid PV 
systems when providing grid services in both normal and emergency operations. When 
running off-line using historical data, the PARS platform can also be used as a planning 
platform to test, develop, and validate the performance of hybrid PV systems when 
providing GSFs.  

As shown in Fig. 1, the PARS platform consists of five tools: OMT, MPT, RTSAT, OPT, 
and CBT. The technology advancements that make the PARS platform transformative 
are summarized as follows:  

 Development of operation models of hybrid PV systems that bind steady-state 
simulation together with dynamic response modeling on a real-time HIL simulation 
platform that co-simulates multi-rate, multi-scale control systems considering 
communication protocols.  

 Development of data-driven, machine-learning based model parameterization 
algorithms that allow control and model parameters of the OMT to be updated 
close to real-time using field measurements from multiple sensor networks for real-
time situational awareness. 

 Development of physics-based anomaly detection algorithms by characterizing 
signatures of key data streams required for decision making and comparing the 
signatures predicted by the high-fidelity real-time HIL simulations with those of the 
field measurements to detect bad/fake/tampered data streams from malfunctions 
or cyber-attacks.  

 Development of a transformational modeling mechanism that allows faster-than-
real-time scenario simulations to be conducted in parallel within the main real-time 
simulation thread for preparing emergency operation and selecting optimal 
response and restoration plans on the fly over the entire event horizon. This 
technology is essential when prompt actions to fast changing operating conditions 
are required. 

 Development of a performance based cost-benefit assessment tool for capturing 
the benefit of PV-based GSFs in typical operation scenarios. This cost-benefit 
assessment tool will use the actual field data to estimate the economic benefits for 
the services provided under both normal and emergency conditions. The goal is to 
estimate the economic value in integrating PV systems with other resources for 
providing grid services.  

The scientific principle, relevance to the goals of the FOA, feasibility, innovation and 
impacts of each of the five technology will be discussed in the following subsections in 
Section 3. 

The Go/No Go deliverables are summarized in Table 1. The outcome of this project 
enables the development of coordinative operation schemes across distribution and 
transmission systems for reliably orchestrating the operations of thousands of 
interconnected DERs in achieving system wide benefits. Technical descriptions of each 
deliverable can be found in the Appendix.  
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3. Project Results and Discussion  
The key technologies developed in this project can be summarized into five categories: 

 Transmission-level PV grid support functions 
o PV-based volt/var control function  
o PV-based black start function  

 Microgrid Power and Energy Management: managing PV, storage, and demand 
response resources at both the feeder and community levels accounting for feeder 
reconfiguration, 3-phase balancing, and cold-load pickup requirements for multi-day off-
grid operation. 

o Feeder-level microgrid  
o Community level microgrid  
o Mobile storage powered microgrid 
o A localized reinforcement learning based PV controller for coordinative volt/var 

control on a feeder with multiple PV farms 
o Dynamic VAR compensation schemes 

 An integrated T&D Simulation Platform 
o High Fidelity DT Models: IBRs (PV farms, roof-top PV systems, energy storage 

devices), distributed generators, and controllable/non-controllable loads 
o Grid-Forming and Grid-Following Functions: providing power reserves, tracking 

load balance signals, cold-load pick-up, balancing 3-phase loads, and offering 
adaptive voltage and frequency supports in grid-connected and microgrid 
operation modes. 

o Real-time Parameterization: Using real-time field measurements to parameterize 
and fine-tune the IBR DTs. 

 Situation Awareness Tools 
o Forecasting:  

 Meta learning based load forecasting 
 TCN-based PV forecasting 

o Smart Meter Data Analysis:  
 Smart meter data analysis for meter-transformer pairing, behind-the-meter 

PV and EV detection, and customer segmentation 
 Demand response baseline derivation 

o Cyber Attacks: data-injection based cyber-attack and mitigation mechanisms 
o Synthetic Data and Topology Generation: Creating highly realistic and diversified 

DT simulation environments. 
 Scale-up Technologies 

o An integrated T&D simulation via VPN based connections 
 Use case 1: symmetrical and unsymmetrical transmission fault impact on 

distributed IBRs 
o An integrated T&D simulation via file sharing 

 Use case 2: volt/var control coordination 
o Integrated communication and power distribution network modeling 

 Use case 3: cyber-attack on grid forming battery energy storage units. 
3.1 General Modeling Approach 

3.2.1 Test Systems: We employed two distinct types of test systems: one based on IEEE test 
systems (as shown in Figure 5(a)) and the other on actual utility network models (depicted in Figure 
5(b)). The IEEE test systems serve as the foundation for developing core technologies. To verify 
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their efficacy, we perform validations on real utility network models, utilizing data from various 
operational conditions to ensure the results are broadly applicable. The IEEE-118 system is used 
by PNNL for transmission level GSF development. NYPA actual transmission level model is used 
for testing the Transmission-level PV grid support functions, including PV-based volt/var control 
and black start functions. The IEEE-123 system is used by NCSU for distribution level function 
development. Two utility feeders with five 5-MW PV farms are used for testing.   

 
(a) 

 
(b) 

Figure 5. Network Models developed on the PARS platform. (a) IEEE test systems, and (b) Actually utility 
network models. 

3.2.2 Data Sources: To construct a realistic simulation environment, we purchased 
PECAN Street Data Sets and obtained smart meter data collected from 8,720 customers 
served by 1,410 transformers on 23 actual power distribution feeders from 2017 to 2020 in 
a city at North Carolina. There are 8650 residential loads (including single family house and 
apartment buildings) and 70 small commercial and industrial loads. The network topology 
model comprises links from substations to distribution transformers and end customers to 
each transformer. A significant advantage of this method is the spatial and temporal 
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synchronization of the 8000 load profiles, guaranteeing a realistic emulation of consumer 
electricity usage patterns at the household, transformer, feeder, and city scales. 

Additionally, we devised a Generative Adversarial Network (GAN)-based technique to 
create clusters of synthetic data sets for assigning load profiles. This innovation allows other 
researchers to replicate our findings.  

The data sets used in this project can be summarized as: 
• Topology Data 

• PNNL IEEE-118 System: Specifically used for the development of 
transmission-level Grid Support Functions, providing a detailed framework for 
high-voltage network analysis. 

• NYPA Transmission Level Model: Employed for testing transmission-level PV 
grid support functions, including volt/var control and black start capabilities, 
using an actual transmission network model. 

• NCSU IEEE-123 System: Dedicated to the development of distribution-level 
functions, focusing on the integration and management of distributed energy 
resources within lower voltage networks. 

• Utility Feeders with PV Farms: Comprising a utility feeders equipped with five 
5-MW PV farms each, these setups are instrumental in assessing the 
performance of PV integration and grid support functionalities at the 
distribution level.  For this feeder, we have load and PV power profiles for two 
years (2022 and 2023) with 1-hour resolution. Additionally, we obtained 4-day 
load and PV power profiles with 1-minute resolution for investigating extreme 
operation conditions, i.e., high PV-load ratio. 

• Smart Meter Data 
• PECAN Street Data Sets (with sub-metered data for major appliances and 

roof-top PV) 
• A few EV charging station data  
• 15-minute actual smart data sets from more than 8000 customers for 3 years 

from New River Light and Power 
• 15-minute actual smart data sets from 100 residential, 100 commercial, and 

100 industrial loads from Wilson Power. 
• Transmission level data 

• NYPA black start procedure 
• NYPA generator models and load data 

• SCADA Data 
• 5-minute SCADA data from New Reviver and Fayetteville PWC for 5 feeders  
• SCADA data at feeder head for the three feeders with five PV farms 
• Demand response data 
• Conservation voltage reduction data for year 2019 and 2020 

• PV Plant Sensor Data 
• 1 year 5-minute PV output data for 100 utility-scale PV farms from Strata Solar 
• 1-second, 2-weeks inverter level data from 1 PV farm 

• Microgrid Device Data 
• Devices: Battery, PV Panel, Diesel Generators 
• Data sources: Factory data sheets, field test results, field measurements, 

default model data from the Simulink 
• Synthetic Load Profiles: Generated using a GAN-based method, these synthetic data 

sets simulate customer electricity consumption behaviors across different levels 
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(household, transformer, feeder, city) to ensure comprehensive and lifelike testing 
scenarios.  

• Method: see deliverable E3&E4 described in Appendix 8.18 and 8.19. 
• Inputs: PECAN Street data & New River Data 
• Resolution: from low-resolution (15-minute) to high resolution (1-minute) 
• Amount: unlimited. Generated as a group of load supplied by one transformer. 
• Accessible online at Github  

 
 
3.2.3 Data flows: The data flows among different PARS platform modules are highlighted in 

Figure 6. There are four primary types of data exchanges within the PARS platform's real-time 
simulation environment: 

 From Actual Power Grids to the Model Parameterization Tool: This flow is essential for 
the calibration of digital twin models, where real-world grid data is utilized to accurately 
parameterize these virtual models, ensuring they reflect the current state and dynamics 
of the physical grids. 

 From Actual Power Grids to the Real-Time Situation Awareness Tool: This data flow is 
critical for anomaly detection and forecasting within the power grid. By analyzing real-
time data from the actual grids, the tool can identify deviations from normal operations 
and predict future grid conditions. 

 From the Digital Twin to the Real-Time Situation Awareness Tool: This involves the 
transfer of generated virtual sensor measurements from the digital twin. These simulated 
data points are used to augment the Situation Awareness tool's ability to monitor and 
forecast grid conditions, especially when testing scenarios that cannot be safely or 
practically executed on the actual grid, as shown in Figure 7(a). 

 From the Real-Time Situation Awareness Tool to the Optimal Response Selection Tool: 
This data flow provides vital inputs for decision-making by delivering forecasts related to 
resource availability, output levels, grid flexibility, and control needs. Such information is 
crucial for selecting the most appropriate response strategies to maintain or restore grid 
stability and efficiency. 

These data exchanges facilitate an integrated approach for managing and simulating grid 
operations, ensuring that the PARS platform work in synergy with the actual world in order to serve 
as a high-fidelity virtual environment. 
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Figure 6. Data flows in the PARS platform. 

The PARS platform can have two control command flows:
From the Optimal Response Selection Tool to the Digital Twin: This flow is designed for 
evaluating the outcomes of control strategies in a simulated environment. The digital twin 
serves as a virtual replica of the power grid, allowing for a safe and efficient assessment 
of how control commands would perform under real-world conditions, as shown in Figure 
7(b). 
From the Optimal Response Selection Tool to Actual Power Grids: Through this 
communication link, control commands can be directly executed on the physical power 
grids. In practical this command flow in real-time operations is crucial for actual grid 
management and response strategies.

Due to the high costs and operational challenges (e.g., reliability, security, and safety) of 
executing field experiments, particularly for assessing resilience measures like black start 
capabilities at the transmission level and microgrid control functionalities at the distribution level, 
this project leveraged the PARS platform for conducting simulations based on digital twins as 
substitutes for actual field tests. This also demonstrates that the PARS can provide a high-fidelity 
virtual environment for validating the effectiveness and safety of control strategies before their 
deployment in actual grid scenarios, thus serving a key role in bridging the gap between theoretical 
development and practical application.
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(a)  
(b) 

 
Figure 7. Data Transfer between HIL and EMS applications. (a) Example of the Measurement List, (b) 

Example of the Commands List. 
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3.2.4 Time Coordination: Data transfer among applications and the corresponding simulation 
time coordination inside the HIL test bed and between HIL test systems and EMS algorithms are 
illustrated in Figure 8.  

As shown in Figure 8(a) and (b), the data exchanges between the Optimal Response Selection, 
Real-Time Situation Awareness, and Digital Twins modules are asynchronous.  While the Optimal 
Response Tool's energy management functions generate operation schedules ranging from day-
ahead to 5-minute intervals, the digital twins simulate the dynamic responses of power grids in 
real-time demands much quicker simulation steps (every 100 ms or 50μs). Consequently, as 
shown in Figure 8(c), control commands issued from the energy management functions are sent 
to the digital twins via different communication protocol every 5 minutes. Within these intervals, 
device-level controllers residing in the digital twin models act to balance generation and load, 
thereby maintaining voltage and frequency stability. 

Uniqueness of the PARS platform is that it models the full sequence of grid operation including 
energy management, power balance, frequency and voltage regulation. It can thus captures the 
device-level and system-level controller interactions via realistic communication protocols, models 
both fast and slow transients between state transitions, and enables the modeling of 
communication delays, errors, cyber-attacks on controlling distributed energy resources.  

  
(a) 

  
(b) 
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(c) 

 
Figure 8. Data Transfer and Simulation Time Coordination. (a) Between HIL and EMS, (b) Inside HIL 

among different HIL systems, (c) Time coordination among Energy and Power management systems and 
device level controllers 
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3.2 Model Parameterization Tool 

Conventional power system simulation test beds are typically established through two primary 
methods. The first method entails crafting a fictitious system characterized by a standard network 
topology and populated with typical parameters, such as the IEEE test systems [16]-[18]. The 
second method involves directly capturing a snapshot of an existing physical power system to 
generate a static replica, essentially freezing a moment in time for analysis and simulation 
purposes. For example, a Dispatch Training Simulator (DTS) is a perfect replication of a real power 
grid that is initialized from a real time and historian snapshot [19]-[21]. 

The core difference between a conventional power system test bed and a DT lies in the dynamic 
nature of the latter. To act as a real-time replica of an actual system in the virtual realm, the PSDT 
need to closely emulate the physical system behavior when the system evolves in real-time. If a 
significant deviation from the real system behavior is detected, the DT parameters need to be 
adjusted using real-time or near-real-time field measurements without causing abrupt disruptions 
in simulation results.   

To date, although there are extensive publication on power system test bed development, there 
has been relatively limited research on real-time parameterization for Power System Digital Twins 
(PSDTs). Thus, in this project, the parameterization tool (See Figure 4) has two DT 
parameterization functions: offline- and online- parameterization.  

 The off-line parameterization tool uses field test results and factory data sheets as inputs. 
Optimization based methods are used to find an optimal set of model parameters for 
minimizing the mismatch between the simulation results and field measurements for a 
prolonged period, for example, an entire day, week, or month, as illustrated in Figure 9 
(a) and (b). The developed offline parameterization methods for the battery energy 
storage systems [6], combined heat and power systems [13], diesel generators [14], and 
loads [15] have been published in IEEE Transactions on Smart Grid.  

 The real-time model parametrization tool uses real-time SCADA data as inputs, as shown 
in Figure 6. To achieve higher accuracy for real-time control applications, we developed 
a novel two-stage optimization-based method for real-time, online parameterization of a 
photovoltaic digital twin (see Figure 4) will use real-time, 1-second field measurements 
as inputs. As shown in Figure 10, the PV model parameters are adjusted in real-time for 
matching field measurements and minimizing perdition errors. The method for 
parameterizing a PV farm digital twin is introduced in detail in Appendix 9.15 D8. 

 
 
 
 

 
(a) 
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(b)

Figure 9. (a) An example of optimization objective function, and (b) Modeled Outputs and Field 
Measurements (battery voltage, state-of-charge, and cell temperature)
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Fig. 10. Changes in 5 model parameters according to update criteria (3-hours)
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3.3 Operation Model Tool 

In this section, we will provide an overview of the modeling considerations and validation 
methods. For a comprehensive understanding of the technical approaches, problem formulations, 
and simulation results, please refer to Appendix 9.1-9.7 (Deliverables A1-2 and B1-B5) and our 
published papers. 

 
3.3.1 Modeling Considerations 
This section outlines the key models incorporated into the operation model tools, which include: 

 PV farms equipped with grid-following capabilities, ranging from large-scale models for 
100MW and above (developed by PNNL) to 5-50 MW PV farms and rooftop PV systems 
(both developed by NCSU). The grid-following functionalities of these PV models are 
detailed in Table 3 and illustrated in Figure 11. 

 Diesel generators, with their modeled functions listed in Table 4. 
 Battery systems, where Figure 12 presents battery inverter modeling considerations, and 

Table 5 outlines battery modeling details. 
 Various load models such as the ZIP model, motor load model, and cold-load-pick-up 

models, with Table 6 discussing the load modeling considerations and Figure 13 
displaying the cold load pick up modeling outcomes. 

 
Table 3: Grid following Functions for a roof-top PV system 

Module Functionality Requirements 

Rooftop 
PV 

Active power curtailment Follow power curtailment setpoints. 

Disturbance ride-through Trip in accordance with default settings from IEEE 1547-
2018  

Reactive power control 
modes 

Provide all reactive power control modes established for 
Category II-B DER from IEEE 1547-2018. 

Frequency-watt droop Provide f-watt droop to support the grid. 

Voltage-active power 
droop 

Curtail output power if the grid voltage increases (optional 
mode) 

Code-based model Implemented in a code-based environment to provide an 
alternative model without block diagrams (reducing model) 

 
Table 4: Diesel generator modeling considerations 

Module Functionality Requirement 

Diesel 
Generator 

Ramping Capability 
Regulate its output power ramping to a pre-specified p.u./s 
for improving system robustness. 

Grid Synchronization 
Adjust its voltage magnitude and phase for a smooth grid 
synchronization. 

Fuel Consumption 
Estimation 

Calculate the fuel consumption. 

Mode switching capability – 
grid forming / grid-following 

Operate in grid-forming or grid-following modes. 

Power factor control Follow active power setpoint and a given power factor. 
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Disturbance ride-through Trip in accordance with PRC-024-2 (NERC) 

 
Table 5: Battery modeling considerations 

Module Operation 
mode Functionality Requirement 

Battery 
Energy 
Storage 
Model 

 

Grid-  
forming  

Voltage and 
frequency 
regulation 

It’s responsible for regulating PCC voltage and setting 
the system frequency.  

Three-phase 
imbalance control 

If the distribution grid is imbalanced, ES should quickly 
readjust its output voltage to maintain voltage balance. 

Current limiting 
control 

The inverters must be protected from overcurrent of the 
semiconductor devices in overload and fault cases. 

Coordinated 
voltage regulation 
with multiple ES 
units 

If there are multiple ES units are connected into the 
distribution grid and worked as grid-forming mode, PCC 
voltage can be regulated using the centralized 
secondary control.  

Resynchronization To connect the MG to the grid, the phase and amplitude 
voltage between the grid and the MG will be regulated 
as an equal value using the synchronization control loop. 

Grid-
following  

Real and reactive 
power dispatch 

In grid-tied or grid-following mode, the model should 
make the output power of the inverter follow the 
reference values and maintain the voltage reference 
tracking.  

Disturbance ride-
through 

When working in the grid-following mode, the machine 
will trip if the grid’s voltage or frequency goes beyond the 
specified limits. 

 
 

Table 6: Load modeling considerations 
 Functionality Requirement 

Load 
Model 

Realistic load profile 
synthesis 

Generate node load profile from smart meter data actual 
load data. Use Super–Resolution algorithms for increased 
data resolution 

Modeling demand 
response (pay-back and 
cold load effects): HVAC 
load modeling 

Model the behavior of HVAC load regarding house scale 
and appliance parameters 

Load model 
parameterization 

Estimate the parameters of the state-space model based 
on actual HVAC load profile 

Real-time Cold Load 
Pickup (CLPU) profile 
generation 

Generate real-time cold-load-pickup response according to 
the commands from EMS system 
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(a)  

 
(b) 

 
Figure 11. PV model development considerations. (a) Functions developed for MW-level PV farm, and (b) 

Grid-following functions developed for roof-top PV systems (Includes IEEE 1547-2018 Category II-B DER 
requirements) 
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Figure 12. BESS Inverter models (single-phase versus three-phase) 
 
 

 
 

Figure 13. Cold load pick up model 
 
 

 
3.3.2 Model validation: The PARS platform co-simulates Electromagnetic Transient and 

Transient Stability (EMT-TS) models, as demonstrated in Figure 14(a). Grid-forming units are 
modeled in the EMT domain and the distribution network along with grid-following units are 
modeled in the phasor domain. This strategy provides a viable computational approach for grids 
heavily populated with Inverter-Based Resources. Microsecond-level EMT simulations run 
concurrently with millisecond-level phasor simulations, transferring data between the two every 
100 ms, as depicted in Figure 8(b). This time lag may introduce discrepancies in the TS simulation 
results due to the EMT simulation's faster execution rate. The following benchmark tests have 
been conducted for model validation purposes. 

 
Benchmark Method 1: Base cases for distribution models are typically created using CYME or 

OPENDSS, while PSSE is preferred for transmission models. Consequently, once the real-time 
simulation models on OPAL-RT are developed, our initial step involves comparing the results from 
OPAL-RT with those derived from CYME/OPENDSS or PSSE. 
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Benchmark Method 2: To validate the data-driven model performance, we compared the 

simulation results with the field measurements.  
 
Benchmark Method 3: Next, we assess our performance against established methods. As 

shown in Figure 15, when developing the PV tracking models, we compare the results with the  
 
Benchmark Method 4: The performance of this hybrid EMT-TS framework is also compared 

with that of a solely EMT-based simulation framework. As indicated in Figure 14, the hybrid system 
delivers a performance comparable to the full EMT model but requires significantly less 
computational effort, showcasing the architecture's ability to strike a balance between accuracy 
and computational efficiency. 

 

  
(a) 
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(b) 

 
Figure 14. EMT-TS versus EMT simulation (Appendix 9.9: D2) (a) Configuration of the Co-simulation test 

system, and (b) Comparison of EMT-TS results with EMT results 
 
 

 
(a) 
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(b) 

Figure 15. (a) Circuit and control system block diagrams of a utility-scale PV system (b) Comparison of 
the power setpoint tracking performance under irradiance intermittency between  the proposed RST method 

(left-side figures) and the state-of-the-art adaptive FPPT (right-side figures). 
 

 
3.3.3 Scale-up studies 
Scale-up studies were executed by orchestrating co-simulation scenarios across various 

institutions, as depicted in Figures 16 (a) and (b). These studies utilized two primary connectivity 
methods: file-transfer and VPN connections, with delays capped at 1 second for file transfers and 
50 milliseconds for VPNs. Regardless of the method, multiple smaller simulation systems were 
operated concurrently to emulate a comprehensive hardware-in-the-loop, integrated Transmission 
and Distribution (T&D) model.  

These scale-up studies were conducted with the co-simulation configurations detailed below: 
 Collaborations among PNNL, UT Austin, and NCSU focused on integrated volt/var 

support across transmission and distribution systems (see Figure 16(b)). 
 Partnerships between NCSU and Clemson to analyze the effects of transmission faults 

on distributed inverter-based resources, facilitated by a CAPER project with funding from 
Duke Energy and Dominion Power. 

 Within the North Carolina university system, for simulating cyber-attacks on DERs, a 
shared Google file was created, granting North Carolina universities access to real-time 
simulation results from the PARS platform. 
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(a) 

 
(b) 

Figure 16. Co-Simulation test cases conducted. (a) Co-simulation cases conducted and (b) Simulation 
setup of one simulation between PNNL, NCSU, and UT Austin. 
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3.4 Situation Awareness Tool 

Figure 17 shows that the PARS Situation Awareness tool accepts either field measurement data 
or digital twin simulated data. When using field data, we initially identify and discard any incorrect 
segments using state estimation based bad data detection. Then, we fill in and align missing data 
using regression-based or generative learning based methods (i.e., GAN-based and BERT-
based).  If field measurements fall short for data-driven applications like machine learning-based 
load disaggregation, we can create synthetic data to supplement the field data. Those tools are 
highly flexible and can facilitate various downstream tasks such as PV and load forecasting, real-
time volt/var control, model parameterization, power dispatch, energy scheduling, cybersecurity, 
and cost-benefit analyses. 

 
Figure 17. The work flow of the Real-time Situation Awareness tool. 

 
3.5.1 Delayed Stealth False Data Injection Attack Tool (Appendix 9.13: D6) 
The development of a deep reinforcement learning (DRL)-based scheme for delayed stealth 

false data injection attacks (SFDIAs) against Battery Energy Management Systems (BEMS) 
represents a sophisticated approach to compromising the operational integrity of Battery Energy 
Storage Systems (BESSs) within Advanced Distribution Networks (ADNs). We leverage a DRL 
framework to generate falsified battery voltage and current measurements capable of evading 
traditional and cross-validation Bad Data Detection (BDD) checks, thereby inducing targeted SoC 
errors with highly stealthy. As shown in Figure 18, the attacker can disrupt BESS operations at any 
predetermined future intervals without detection by the BDD mechanisms. The results demonstrate 
that by misleading the BEMS about the stored energy levels, we can cause premature system 
shutdowns or accelerated BESS degradation through over-discharging. This approach not only 
showcases the effectiveness of DRL in crafting stealthy and temporally precise cyber-attacks but 
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also highlights the critical need for advanced security measures in safeguarding energy 
management systems from such sophisticated threats.

  
(a) (b)

(c)
Figure 18. Illustration of falsifying state-of-charge data to (a) deplete battery energy at middle night, (b) 

run battery outside it allowable storage range, and (c) An illustration of the attacking scenarios
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3.5.2 Topology and Meter Phase Mislabeling Detection Tool (Appendix 9.20: E5) 
The Power-Band based Data Segmentation (PBDS) method introduces an innovative approach 

for meter topology identification, specifically in customer phase identification and transformer-
meter pairing. Tested on thirteen real feeders in North Carolina, this method surpasses existing 
techniques by significantly enhancing accuracy while maintaining low computational complexity. 
The PBDS method stands out in its ability to efficiently utilize data through segmentation, facilitating 
the identification process without the need for extensive additional data or equipment, unlike other 
methods which may require signal injections, PMU data, or suffer from data inefficiency and 
interpretability issues. The proposed approach is characterized by its simplicity, accuracy, and the 
use of readily available AMI data, achieving notable improvements in phase identification accuracy 
and a substantial reduction in the false positive rate for transformer-meter pairing. This 
demonstrates the PBDS method's effectiveness in automating the identification of smart meter 
phase and transformer-meter relationships, offering a significant contribution to the field of meter 
topology identification. 

 
3.5.3 Missing Data Restoration Tool (Appendix 9.22: F2) 
The Load Profile Inpainting Network (Load-PIN), based on Generative Adversarial Nets (GAN), 

introduces a novel approach for restoring missing load data and estimating demand response 
event baselines. Unlike traditional methods that struggle with variable-length data segments, Load-
PIN excels in handling varying durations of missing data and differing lengths of available 
measurements, overcoming the limitations of fixed input-output formats required by existing 
generative methods. This flexibility is achieved through a two-stage generator process involving 
initial estimation and fine-tuning, paired with a deep convolutional discriminator optimized with 
specially designed loss functions. Load-PIN's capability to adapt to variable data resolutions and 
durations sets it apart, demonstrating superior accuracy and a notable 15-30% improvement over 
other models in restoring high-resolution load data segments. However, its performance is less 
pronounced at lower data resolutions, highlighting its optimized use for high-resolution data to 
uncover detailed load shape information. This advancement in missing data restoration and 
baseline estimation represents a significant leap forward in the accuracy and applicability of data-
driven methods for load profile inpainting. We also developed a BERT based method [33] that can 
generate an ensemble of missing data restoration options (see Figure 19) where the restored data 
segments can be ranked by the likelihood of occurrence.  

 
Figure 19. Illustration of missing data restoration. 

3.5.4 An Data Encoding Tool for Mitigating the Impact of Unreliable Communication 
(Appendix 9.14: D7) 

The encoding tool aimed to mitigate the impact of unreliable communication between distributed 
energy resources (DERs) and central controllers in a power distribution network. Utilizing a 
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hardware-in-the-loop (HIL) co-simulation environment, which includes a real-time simulation on 
OPAL-RT and a simulated communication network, we develop an encoding algorithm for 
counteracting communication noise, errors, and missing data. The proposed mitigation method, 
formulated as a matrix recovery problem, optimizes LTE communication data and error 
estimations, demonstrating its efficacy through simulations that replicate system dynamics and 
communication challenges in a controlled lab setting. Simulation results highlighted the 
effectiveness of centralized volt-var control (CVVC) strategies under perfect and interrupted 
communication scenarios, showing how appropriate voltage margins can eliminate voltage 
violations without causing excessive control actions. This innovative approach enhances the 
reliability of DER management and voltage control in the face of communication uncertainties, 
offering a significant advancement in the development and testing of algorithms for distribution 
system analysis.

3.5.5 Super-resolution Tool (Appendix 9.18: E3)
This task introduces ProfileSR-GAN, a GAN-based super-resolution method designed to 

enhance low-resolution load profiles (e.g., 30-minute) into high-resolution (e.g., 15-, 5- and 1-
minute), as shown in Figure 20. This tool offers a significant advancement in the field of data-driven 
applications where high-resolution load data is increasingly crucial. Traditional methods, 
categorized into model-based and deep learning-based approaches, often struggle with 
introducing unrealistic details or causing over-smoothing. ProfileSR-GAN addresses these issues 
by a two-stage process. First, we apply a GAN-based model to restore high-frequency 
components. Next, we refine the generated high-resolution profiles using a polishing network 
consisting of deep convolution layers, residual blocks, and batch normalization that can eliminate 
unrealistic power fluctuations. Simulation results validated ProfileSR-GAN's superior performance, 
showing 36%-62% improvements in shape-related metrics over baseline methods. Additionally, a 
case study on Non-Intrusive Load Monitoring methods showcases the framework's potential to 
significantly enhance appliance-level activity recognition. This further demonstrates that ProfileSR-
GAN can improve the quality and utility of load data for various downstream tasks.

Figure 20. Illustration of missing data restoration.
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3.5.6 Synthetic Data Generation Tool (Appendix 9.19: E4) 
This task introduces the Multi-load Generative Adversarial Network (MultiLoad-GAN), a 

pioneering deep-learning framework designed to generate synthetic load profiles (SLPs) for groups 
of loads served by the same distribution transformer, capturing their spatial-temporal correlations. 
As shown in Figure 21, unlike traditional methods that generate SLPs individually, MultiLoad-GAN 
innovatively produces multiple correlated SLPs simultaneously, addressing a gap in existing 
generative approaches. It leverages a generator and discriminator network to create realistic load 
profiles in large quantities, essential for microgrid and distribution system planning. The 
framework's effectiveness is demonstrated through comparisons with original load data using 
statistical and deep-learning metrics, showing its superiority in capturing group-level characteristics 
and benefiting from an Automatic Data Augmentation (ADA) process. This process prevents 
overfitting, ensuring the generation of diversified, realistic SLPs that closely resemble real-world 
data, thus offering a significant advancement in the field of load profile generation. 

 

 
 

Figure 21. Illustration of single and group synthetic load profiles generation. 
 
 
3.5.7 The meta-learning based load forecasting tool (Appendix 9.16: E1) 
This tool is developed as an innovative model selection framework for load forecasting in power 

systems, addressing the variability in forecasting requirements and data availability. It compares 
knowledge-based expert systems and machine-learning methods. The meta-learning based 
framework automates and extends model selection by evaluating candidate models on specific 
tasks and using task features (see Figure 22) to train a meta-learner. This approach provides a 
general purpose forecasting tool for identifying top-performing models and thereby reducing 
forecasting errors. 
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Figure 22. Illustration of high-level features for selecting the forecasting models. 

 
3.5.8 The TCN-based PV forecasting tool (Appendix 9.17: E2) 
The TCN-based hybrid forecasting framework (See Figure 23) tailored for hours-ahead 

forecasting in utility-scale PV farms, merging the strengths of both physics-based and data-driven 
models. 

 

 
Figure 23. An illustration of using TCN and the selection of neighboring sites for improving the short-

term PV forecast accuracy 
 
Traditional models, while beneficial, either depend on historical data or are limited by the 

accuracy of Numerical Weather Prediction (NWP) results, lacking a method to integrate these 
approaches for enhanced accuracy. This framework introduces a novel solution that not only 
combines the predictive power of physics-based and data-driven models but also incorporates 
spatial-temporal correlations from neighboring sites to refine forecasts. It employs a TCN network 
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for trend forecasting by converting NWP results to power outputs, another TCN for capturing intra-
hour fluctuations through spatial-temporal correlations, and a third for reconciling these forecasts 
into a final prediction. A unique neighboring site selection algorithm automatically identifies the 
most effective neighboring networks, significantly improving forecasting accuracy. Tested across 
95 PV farms in North Carolina, this hybrid method demonstrated a 30% increase in forecasting 
accuracy for 6-hour ahead predictions, outperforming benchmark models with its innovative 
approach and efficient training time. 

 
3.5.9 CVR Baseline Detection Tool (Appendix 9.21: F1) 
The Iterative Bidirectional Gradient Boosting (IBi-GBM) method presents a novel approach for 

Conservation Voltage Reduction (CVR) baseline estimation. The method combines a hybrid similar 
day selection technique with a bi-directional gradient boosting framework to assess CVR's load 
reduction efficacy. Figure 24 presents examples of the restored CVR baselines. 

 
 

Figure 24. An illustration of the CVR baseline recovery results from three utility substations 
This method is highly adaptable across different data resolutions, types, and seasonal 

variations, showing significant improvement in accuracy over existing models without adding 
considerable computational complexity. Unlike traditional methods that are either uni-directional, 
non-iterative, or demand large volumes of training data, IBi-GBM offers a streamlined, interpretable 
solution capable of capturing nonlinear load behaviors with minimal training data. Through rigorous 
testing on real-world datasets, IBi-GBM not only demonstrates robust performance across various 
conditions but also achieves a notable reduction in normalized Root Mean Square Error, thereby 
enhancing the accuracy and reliability of CVR performance evaluations. This innovative approach 
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marks a significant advancement in the field of demand response program assessment, providing 
utilities with a precise and efficient tool for CVR baseline estimation.  

 
 
3.5.10 Load Disaggregation Tools (Appendix 9.23&24: F3&F4) 
Load disaggregation is an important step for load model parameterization and for assessing 

demand response potentials. As shown in Figure 25, load disaggregation can be at different levels, 
for example, regional, feeder, and building levels. The methods can separate PV, electric vehicle 
charging loads, water heater loads, and the heat, ventilation and air conditioning (HVAC) loads 
from the total loads.  

We developed two load disaggregation methods as follows:  
 Method 1 (F3) utilizes an optimization-based algorithm for HVAC load disaggregation 

from smart meter data at various resolutions, notably without requiring detailed sub-meter 
data. This method's strength lies in its minimal reliance on extensive labeled datasets, 
employing daily temperature and load profiles alongside a base load dictionary to isolate 
HVAC consumption efficiently.  

 Method 2 (F4) employs a Sequence-to-Point (S2P) algorithm, adept at processing low-
resolution smart meter data, incorporating ambient temperature and load profiles, and 
utilizing transfer learning for enhanced adaptability across different locales. 
Demonstrating superior performance in accuracy and generalization in Austin, Texas, 
this method proves highly effective for dynamic response (DR) initiatives, enabling 
precise HVAC system utilization.  

Both approaches present scalable and efficient solutions for load disaggregation, marking a 
considerable leap forward for utility engineers and service providers in enhancing energy 
consumption and operational efficiency. Evaluated using data from Pecan Street Inc. across 
various states, these models surpassed traditional benchmark techniques in accuracy and 
consistency, evidenced by reduced mean square errors and standard deviations. Moreover, they 
exhibited strong performance across diverse levels of customer aggregation. These methods 
signify a major breakthrough in the field of load disaggregation, enabling more precise customer 
segmentation and rate recommendation, thereby improving accuracy and broadening applicability. 

 
(a) 
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(b) 

 
Figure 25. An illustration of the load disaggregation process (a) Load disaggregation levels, and (b) Load 

categories 
 
 
 
 
 
 
 
 

3.5 Optimal Response Selection Tool 

The optimal response Selection tool for resilience improvement using solar generation 
resources can be divided into two level functions: transmission and distribution level. At the 
transmission level, PV hybrid systems provide volt/var support and black-start functions, as shown 
in Figure 26. At the distribution level, PV hybrid systems provide microgrid, volt/var support, and 
demand response functions, as shown in Figure 27. The following subsections summarize the grid 
support functions developed at each levels.  

 
Figure 26. NYPA power system and 7 sub-areas 
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Figure 27. An illustration of the Microgrid energy management system 

 
3.5.1 Transmission GSF 1: A Solar-assisted Voltage Optimization Method (Appendix 19.1: 

A1) 
The voltage optimization function is developed by PNNL. A security-constrained optimal power 

flow (SCOPF)-based volt-var control algorithm is developed and validated using the New York 
Power Authority (NYPA) transmission system model and data. Aiming to stabilize voltage 
fluctuations under various scenarios, this method integrates solar power with minimal post-
contingency adjustments across a 500-bus network, utilizing the NYPA energy management 
system data collected from 06/03/2014 to 09/10/2015. The two-stage volt-var SCOPF algorithm 
demonstrated significant effectiveness in eliminating voltage violations for both base and 
contingency scenarios, highlighted by a detailed comparison of bus voltage profiles and power 
outputs before and after algorithm application. Despite challenges in comparing with existing 
methods due to scale and complexity differences, the approach leverages real system topology 
and optimization-assisted procedures for a robust demonstration, underscoring the potential of 
solar resources in providing volt-var support services. 

 
3.5.2 Transmission GSF 2: Solar-assisted Blackstart Method (Appendix 19.2: A2) 
The solar-assisted black-start process are developed and demonstrated using two sub-areas of 

the New York Power Authority (NYPA) system on the HYPERsim electromagnetic-transient (EMT) 
real-time simulation test system.  A hybrid solar-storage power plant with grid-forming (GFM) 
capability is used as a novel black-start resource alongside traditional hydro power plants. The 
results demonstrate the optimality of the black-start sequencing and generator dispatch. The tests 
also verify the stability in voltage and frequency regulation in the presence of transformer inrush 
currents and when long transmission lines are energized in sequence. The approach contrasts 
with existing methods by incorporating both ac-side and dc-side dynamics, employing industry-
approved GFM control for comprehensive dynamic modeling, and demonstrating autonomous 
coordination between solar and storage. Despite the complexity and effort required for 
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implementation in HYPERsim, this method shows effective stabilization and operational feasibility 
of the black-start process, as evidenced by the close alignment of actual system behaviors with 
numerical predictions and the maintenance of system stability across multiple areas.  

 
3.5.3 Distribution GSF 1: Feeder-level Microgrid EMS (Appendix 19.3: B1) 
The function enhances feeder-level microgrid operation using utility-scale MW-level PV systems 

and grid-forming battery energy storage systems for improving resilience during extended outages. 
It contrasts existing methods by prioritizing the integration of renewable energy sources and 
introducing an adaptive model for cold load pickup (CLPU), addressing the shortcomings of fixed 
CLPU parameters that often lead to significant estimation errors. The developed energy 
management system (EMS) for a feeder-level microgrid incorporates an adaptive CLPU model to 
optimize the day-ahead energy scheduling and intra-hour power dispatch, considering the dynamic 
impacts of temperature and scheduled outage durations. This approach not only maximizes load 
service while maintaining customer comfort but also minimizes the CLPU effect more accurately 
than traditional models. The EMS demonstrates superior performance in energy service, critical 
load support, baseload maintenance, and PV utilization, significantly outperforming systems that 
rely on fixed or no CLPU estimation models. This advancement indicates a promising direction for 
microgrid resilience services, particularly in scenarios involving long-duration outages and the 
integration of renewable energy resources. 

 
3.5.3 Distribution GSF 2: Community Microgrid EMS (Appendix 19.4: B2) 
The function enhances community-level microgrid operation using a novel Secure and Adaptive 

Three-Stage Hierarchical Multi-Timescale (SA-HMTS) framework for the energy management of 
community microgrids (CMGs) with hybrid PV systems, aimed at enhancing power distribution 
resilience during prolonged outages. Unlike previous strategies, this comprehensive approach 
focuses on proactive scheduling and real-time dispatch of CMGs, integrating uncertainty mitigation 
to handle the volatility of high impact low frequency (HILF) events, and prioritizing critical loads, 
resource optimization, demand response, cold-load pick-up, and support expansion to neighboring 
grids. The framework operates across three hierarchical stages: stochastic extended duration 
scheduling, near-real-time scheduling, and real-time dispatch, incorporating a novel delayed 
recourse concept for improved decision robustness against forecast inaccuracies. Validated 
through OpenDSS and hardware-in-loop simulations, the SA-HMTS framework outperforms 
traditional deterministic, stochastic, and robust optimization methods in critical load supply, PV 
utilization, energy storage management, and operational duration of CMGs, showcasing its 
effectiveness in uncertainty-aware decision-making for community-level dynamic microgrid energy 
management. 

 
3.5.4 Distribution GSF 3: EMS for Managing Mobile Battery and Rooftop PV Powered 

Microgrids (Appendix 19.5: B3) 
The function enhances microgrid operation using a two-stage hierarchical energy management 

strategy tailored for managing mobile battery storage units for operating small microgrids powered 
by high penetration of distributed rooftop PV systems and diesel generators. This approach uses 
sequential rolling optimization for resource scheduling and real-time dispatch adjustments to 
effectively mitigate the uncertainties inherent to residential PV systems. It addresses the limitations 
of existing methods that fail to account for realistic operational conditions and prolonged outages, 
offering solutions like multi-day fuel rationing, learning-based forecast correction, and dynamic 
reserve management to enhance microgrid operation. Simulation results highlight the proposed 
scheme's superiority in improving critical and non-critical load service, PV utilization, and 
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minimizing disruptions during extended restoration periods, showcasing its effectiveness in 
overcoming significant forecast errors and leveraging limited microgrid resources under 
challenging conditions.

3.5.5 Distribution GSF 4: Reinforcement-Learning based Volt-var Control (Appendix 19.6: 
B4)

This function uses a reinforcement learning (RL)-based Volt/Var Control (VVC) strategy for 
regulating nodal voltages in a distribution feeder to be within the preferred operation range. A novel 
two-stage progressive training approach to enhance the speed and convergence of the training 
process. Unlike traditional rule-based and optimization-based VVC methods, which either lack 
adaptability or require complex computational resources and accurate network models, the 
proposed RL approach is highly adaptive to changing operation conditions and network topology 
and parameters. 

As shown in Figure 28, the first stage training concentrates on teaching each PV control agent 
on learning under which operation condition it should generate, absorb, or take no action. In the 
second stage training, the learning focus shifts to collaborative training across agents to optimize 
the allocation of reactive power regulation responsibilities among various PV farms. This strategy 
not only shortens the training duration but also enhances the system's robustness and flexibility, 
facilitating adjustments in real-time. Simulation outcomes reveal that policies implemented in the 
second phase surpass traditional decentralized VVC approaches by markedly diminishing the 
cumulative duration of voltage violations, thus demonstrating superior voltage regulation 
capabilities amidst uncertainties in load demands, PV generation, and variations in network 
configurations or parameters. This forward-thinking method shows significant potential for efficient 
VVC management within power distribution networks characterized by high PV farm density.

Figure 28. An illustration of the two-stage training process

3.5.6 Distribution GSF 5: Dynamic Volt-var Control (Appendix 19.7: B5)
The function introduces a dynamic VAR compensator (DVC) strategy, employing a novel two-

stage hierarchical optimization and control framework to mitigate the impacts of high solar 
penetration on unbalanced distribution systems. By analyzing existing methods for DVC placement 
and control, the study identifies gaps in addressing prolonged reactive power deficiencies, system 
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unbalance, and the need for practical dispatch schemes capable of handling distribution system 
communication limitations. The proposed method emphasizes optimal DVC dispatch, placement, 
and control to minimize voltage variations and regulator operations, tailored for unbalanced three-
phase systems. It introduces a multi-objective optimization framework and two supervisory control 
strategies for dynamic Volt/VAR curve adjustment, ensuring alignment with optimal reactive power 
trajectories. Simulation results validate the approach, showing significant improvements in voltage 
stability and reduction in regulator operations, particularly with a 120-minute update frequency for 
the Volt/VAR curve, highlighting the method's efficiency in enhancing power distribution resilience 
against solar-induced volatility. 

 

      
                                        (a) 08:00-10:00                                              (b) 10:00-12:00 
 

      
                                        (c) 12:00 – 14:00                                           (d) 14:00 – 16:00 
 

Figure 29. Optimal Q dispatch of the DVC at Phase C in winter and local control schemes. 
 

 
3.5.6 Distribution GSF 6: PV Power Tracking for Providing Power Reserves and Fast 
Frequency Response (Appendix 19.8: D1) 

The function merges a modified robust perturb-and-observe (P&O) flexible power point tracking 
(FPPT) technique with a real-time curve-fitting-based maximum power point estimation (MPPE) 
for enhanced performance in both power curtailment and MPPE within single-stage and two-stage 
PV system topologies. This combined approach facilitates fast tracking of power-reference 
changes, aiding in frequency stabilization during grid disturbances, particularly beneficial for low-
inertia microgrids. As renewable energy integration into the grid increases, this method allows 
utility-scale PV farms to offer frequency support and maintain power reserves efficiently and cost-
effectively, akin to battery-energy-storage systems. The algorithm demonstrates rapid 
convergence to new setpoints, significantly reducing tracking error and improving frequency 
response during load pickups in distribution grids. This advancement in PV power tracking 
presents a promising solution for managing power reserves and providing fast frequency response, 
showcasing superior performance in maintaining grid stability and supporting renewable energy 
integration. 
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3.5.6 Distribution GSF 6: Grid-forming Voltage Control Strategy for Supplying 
Unbalanced Microgrid Loads using Inverter-based Resources (Appendix 19.10: D3) 

The task introduces a grid-forming (GFM) voltage control strategy tailored for battery energy 
storage systems, aiming to maintain balanced three-phase output voltages amidst unbalanced 
loads in microgrids. As shown in Figure 30, utilizing a stationary αβ reference frame for regulating 
positive and negative sequence voltages and incorporating a grounding transformer for zero-
sequence voltage mitigation, this approach offers a sophisticated solution to voltage unbalance 
issues. The strategy is distinctive for its direct regulation of sequence components without 
decomposing them, simplifying the control process while effectively addressing unbalance. 
Simulation results underscore the strategy's efficacy, particularly with the αβ-based control scheme 
demonstrating superior dynamic performance. The use of a grounding transformer alongside a Y-
Yg output transformer significantly improves the system's ability to handle unbalanced loads, 
maintaining Voltage Unbalance Factor (VUF) within 3% for a Power Unbalance Factor (PUF) of up 
to 55%, showcasing a notable advancement over traditional dq-based and αβ-based control 
methods in supplying balanced voltages to unbalanced microgrid loads. 

 

 
 

Figure 30. Control diagram of the αβ SRF-based inner voltage controller. 

 
3.5.6 Distribution GSF 6: Under-frequency Load Shedding for Power Reserve 

Management in Islanded Microgrids (Appendix 19.11: D4) 
The function features an innovative under-frequency load shedding (UFLS) scheme designed 

for islanded microgrids (MGs) with a single grid-forming (GFM) resource, aiming to manage power 
reserves effectively during conditions where power demand exceeds supply, triggering frequency 
reductions to enact load shedding at various levels. Unlike traditional UFLS methods that act as 
emergency measures to prevent frequency collapse, this scheme focuses on maintaining power 
reserve margins during normal MG operations, incorporating smart technologies like 
sectionalizers, smart meters, and controllable appliances for autonomous operation. This allows 
for efficient power reserve replenishment and mitigation of three-phase imbalances without relying 
on extensive communication networks. Simulation results demonstrate the scheme's capability in 
managing power reserves more dynamically, offering gradual, appliance-based load shedding for 
enhanced phase balance and sustained power output, distinguishing it significantly from 
conventional approaches by supporting more loads with improved three-phase voltage. 
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3.6 Cost Benefit Studies 

Published papers have detailed the cost benefits of utilizing hybrid PV systems for frequency 
and voltage regulation, blackstart capabilities, and microgrid management. This report highlights 
several critical factors, previously under examined, that we discovered can significantly influence 
the outcomes of cost-benefit analyses. 

 
Control Coordination and Communication Cost: Figure 31 shows the control architecture for 

using hybrid energy systems to provide aggregated transmission-level functions. Coordinating 
device-level controllers with system-level controllers via communication networks incurs additional 
costs compared to services delivered by generator units. This is attributed to the need for tens or 
hundreds of hybrid energy systems to match the service capacity of a single generator. However, 
most cost-benefit study failed to account for the cost of communication when coordinating many 
DERs.  

 

 
Figure 31. Control Coordination. 

 
DER Availability Considering Fault-ride Through: In addition, the availability of hybrid energy 

systems can be affected by faults. We have conducted an assessment of transmission-level fault 
impacts on distribution DER operation (Appendix 19.12: D5). We delve into the effects of 
transmission-level faults on the operation of inverter-based resources (IBRs) in distribution 
networks, leveraging a real-time transmission and distribution (T&D) co-simulation platform. 
Recognizing the gap in existing research, particularly the lack of detailed analysis on the impact of 
such faults on high-penetration IBR systems, the study simulates symmetrical and unsymmetrical 
faults within an equivalent transmission network to assess their influence on distribution IBR 
tripping. The methodology encompasses modeling both 3-phase and 1-phase IBRs using EMT 
and phasor domains to accurately capture their behavior during fault conditions.  

Simulation results reveal that higher power-to-load ratios tend to reduce IBR tripping by 
improving voltage levels along the feeder. However, point of common coupling faults notably 
degrade voltage, increasing IBR tripping instances. The study also finds that 3-phase IBRs are 
more affected by transmission-level faults than 1-phase IBRs, and unsymmetrical faults can lead 
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to the tripping of IBRs on non-faulty phases, causing significant power and voltage unbalance in 
systems with high PLRs. This analysis reveals that while the hybrid system can improve resilience, 
it is essential to establish robust fault response strategies. These strategies ensure that IBRs 
remain operational during transient faults, maintaining their availability and contributing to system 
stability. However, most cost-benefit study failed to account for the availabilities of IBRs when 
switching events occur. 

 
Cost of Demand Response for Maintaining Power and Energy Reserves: Our study 

indicates that insufficient power reserves and three-phase imbalances can notably diminish the 
capacity of hybrid energy systems to sustain microgrid operations. Consequently, it is crucial to 
employ demand response strategies, including under-frequency load shedding during standard 
microgrid functioning, to preserve power and energy reserve margins and ensure three-phase load 
balance. However, most cost-benefit study when considering microgrid functions failed to account 
for the cost for establishing such services.   
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4. Significant Accomplishments and Conclusions 
In the PARS project, we demonstrated the feasibility and benefits of using high-fidelity digital 

twins for grid support functions, offering a safer, cost-effective, and scalable alternative to 
traditional testing methods. We utilized machine learning-based approaches to enhance 
automation, efficiency, adaptability, and consistency in power system applications. This includes 
tasks such as load and PV forecasting, anomaly detection, model parameterization, and 
reinforcement learning-based DER control. Our collaboration with utilities and vendors has been 
instrumental in accessing the substantial real data needed for developing these tools. This includes 
realistic network topologies, extensive real-time operational data sets, and field validation, all of 
which have been crucial to our success.  

Our accomplishments are summarized as follows: 
 Grid Support Functions (see Table 2 for details) 
 Grid Intelligence  

o Developed meta-learning based method for load forecasting model selection and 
TCN-based methods for enhancing forecasting large PV short-term output drops 

o Developed reinforcement learning-based volt-var control and cyber- attack 
strategies 

o Developed GAN-based synthetic data generation methods 
o Developed BERT, GAN, and gradient boost methods for demand response 

baseline identification 
o Developed a suit of load disaggregation methods using contextual based 

methods, vision-transformer, and GPT based generative methods. 
o Developed super-resolution methods for enhancing load profile resolutions 

 Power System Digital Twins 
o Real-time parameterization for PV-farm digital twins 
o Co-simulation platforms for scaling up the models 
o Encoding messages to mitigate unreliable communication in enhancing reliability 

of grid operations and cybersecurity 
o Using synthetic data and network models to enrich modeling scenarios  

 Microgrid power management 
o Considered reconfiguration when there are multiple grid-forming resources in one 

microgrids 
o Considered cold-load pickup for maintaining microgrid reserves 
o Added demand response budget for meeting cold-load pickup needs 
o Managed mobile energy storage for enhancing rooftop PV powered community 

microgrid 
o Microgrid hierarchical management for merging smaller microgrids into a large 

one or dissolve a large microgrid into a few smaller microgrids 
 Reliability and Resiliency: Coordination with grid-forming BESS and controllable loads, 

the use of PV systems for blackstart, voltage regulation, precise power tracking, and 
microgrid operation significantly enhances the overall efficiency and reliability of 
distribution power system operations. 

5. Path Forward  
Future research directions:  

 Collaborate with ElectriCities and NCEMC to integrate the machine-learning-driven data 
analytics tools into the existing data analytic tools used at municipal and co-op utilities. 
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 Create automated tools for model parameterization to streamline the development of 
real-time power system digital twins. 

 Construct integrated Transmission and Distribution (T&D) power system digital twins and 
seamlessly integrate these digital twins with conventional utility operation and planning 
tools, thereby improving overall system efficiency and performance. 

Funding generated by the PARS project:  
Beyond the PARS project, we have the following ongoing synergy activities: 

 Sponsored by the National Science Foundation (NSF) on the development of a machine 
learning-based model reduction method for integrated Transmission and Distribution 
(T&D) models. 

 Sponsored by CAPER for IBR (Integrated Bulk and Retail) fault analysis and composite 
load model parameterization, enabling us to assess the impacts on distributed PV 
(Photovoltaic) farms. 

 Sponsored by the North Carolina University Systems to establish a multi-university co-
simulation testbed for cybersecurity analysis  

Completed synergy activities as listed as follows:  
• Sponsored by GismoPower (finished in BP3). American-Made Solar Prize, Round 5. Use 

the PARS platform and tools to study the impact of adopting solar panel powered EV 
chargers on distribution grid operation. 

• Sponsored by ElectriCities and their municipal utility members (BP2-BP3Q8)  
• Utility sponsors: New River Light&Power (NRLP) and Fayetteville PWC 
• Transformer overloading and lifetime studies 
• Meter-phase and meter-transformer pairing studies 
• Demand response baseline derivation 
• Load disaggregation studies 
• Behind-the-meter EV and PV identification  

• Sponsored by Pacific Northwest National Lab (BP2-BP3Q4) 
• Utility sponsors: NRLP and Fayetteville PWC  
• Goal: Benefit and potential for energy storage applications  
• Coordinative energy management for demand charge mitigation 
• Load disaggregation (identify demand response resources) 
• CVR and Demand response baseline identification 

• Sponsored by CAPER (on going) 
• Utility sponsors: Duke Energy and Dominion Power 
• Project 1: Grid Observatory. Connect the PARS with utility EMS to model the 

distribution grid with high PV in detail (with a focus on studying fault propagation from 
transmission to distribution)  

• Project 2: Machine learning based load model parameterization.  Integrate composite 
load models to PARS platform  
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6. Products  
In this section, we highlight the significant accomplishments and explain why they are significant.  

The PARS sites include: 
 GitHub repository for sharing data, models, and algorithms: 

https://github.com/SyntheticDataGenerationAndSharing/SDG_Algorithms-Data. 
 PARS platform site: https://sites.google.com/a/ncsu.edu/ninglu/pars-

platform?authuser=0 
 

6.1 Major Presentations 

 Links to the Presentation recordings/documents 
Overviews of 
the PARS 
Platform 

1. An overview of the PARS platform by Dr. Ning Lu at the MIT Seminar series 
2. An Overview of the PARS Platform by Dr. Ning Lu at the DOE workshop. 
3. Bigdata Seminar about the machine learning based methods used to develop 

the PARS platform: 
https://www.public.asu.edu/~kghosh10/Tutorial5/56_talk_lu_li_song.html 

PNNL HIL 
Team 

1. Quan Nguyen, ‘Control &amp; Simulation of a Grid-Forming Inverter for Hybrid 
PV-ES Plants in BlackStart’, 21PESGM2143, 2021 IEEE PES General Meeting.  

2. Quan Nguyen, ‘Demonstration of Black Start On New York Power System In 
EMT Real-time Simulator HYPERsim’, at the FREEDM seminar series., April 
2022. 

PARS Energy 
Management 
Systems 
Team 

1. Energy management systems by Ashwin Shirsat, Valliappan Muthukaruppan, 
Rongxing Hu. at the FREEDM seminar series. 

2. Rongxing Hu: MW microgrid: https://youtu.be/1kIBTnE8V24; Demo link 2: A 
recording of one complete run: https://youtu.be/b5sv8SozFSk 

3. Valliappan Muthukaruppan: Presentation Link: https://youtu.be/Sr-OC075gZo; 
Demo link: https://youtu.be/I885azl3hpU 

4. Ashwin Shirsat:  https://youtu.be/z1D5T1R9abI 

PARS HIL 
Team 

1. Fuhong Xie: Battery Parameterization at FREEDM Tech Seminar Series  
2. Victor Paduani: Maximum Power Reference Tracking Algorithm for Power 

Curtailment of PV Systems, 21PESGM0055 - Best paper session 
3. Jiyu Wang: “A data-driven Pivot-point-based Time-series Feeder Load 

Disaggregation Method”, 21PESGM0790  
 

PARS 
Situation 
Awareness 
Team 

1. FeederGan presentation: https://www.youtube.com/watch?v=r8cmSDyxIJ8. By 
Dr. Ming Liang at PES General meeting 

2. ProfileSR-GAN: https://www.youtube.com/watch?v=nBkwTqHplh8&t=30s. By 
Lidong Song  at the FREEDM seminar series. 

3. Meta-learning based load forecasting tool. by Dr. Yiyan Li  at the FREEDM 
seminar series. 

 
 

  



DE-EE0008770 
Ning Lu 

 

Page 51 of 146 
 

6.2 Publications in Machine-learning and Data Analytics 

The publications related with the machine learning applications are listed as follows: 
1. Kai Ye, Hyeonjin Kim, Yi Hu, Ning Lu, Di Wu, and P. J. Rehm. "A Modified Sequence-to-point HVAC Load 

Disaggregation Algorithm." In 2023 IEEE Power & Energy Society General Meeting (PESGM), pp. 1-5. 
IEEE, 2023. 

2. Kim, Hyeonjin, Kai Ye, Duehee Lee, and Ning Lu. "A Contextually Supervised Optimization-Based HVAC 
Load Disaggregation Methodology." IEEE Transactions on Smart Grid (2024). 

3. Yi Hu, Yiyan Li, Lidong Song, Han Pyo Lee, PJ Rehm, Mattew Makdad, Edmond Miller, and Ning Lu, 
"MultiLoad-GAN: A GAN-Based Synthetic Load Group Generation Method Considering Spatial-Temporal 
Correlations," in IEEE Transactions on Smart Grid, vol. 15, no. 2, pp. 2309-2320, Mar. 2024, doi: 
10.1109/TSG.2023.3302192. (Youtube video: https://youtu.be/DFPjr2fIxwg ) 

4. Yiyan Li, Lidong Song, Yi Hu, Hanpyo Lee, Di Wu, PJ Rehm, Ning Lu, "Load Profile Inpainting for Missing 
Load Data Restoration and Baseline Estimation," in IEEE Transactions on Smart Grid, vol. 15, no. 2, pp. 
2251-2260, Mar. 2024, doi: 10.1109/TSG.2023.3293188. 

5. Ming Liang, Y. Meng, J. Wang, D. Lubkeman and N. Lu, "FeederGAN: Synthetic Feeder Generation via 
Deep Graph Adversarial Nets," in IEEE Transactions on Smart Grid, doi: 10.1109/TSG.2020.3025259. 

6. Lidong Song, Yiyan Li, and Ning Lu. "ProfileSR-GAN: A GAN based Super-Resolution Method for 
Generating High-Resolution Load Profiles," http://arxiv.org/abs/2107.09523, Youtube video. 

7. Yiyan Li, Lidong Song, Si Zhang,  Laura Kraus, Taylor Adcox, Roger Willardson, Abhishek Komandur, and 
Ning Lu, “TCN-based Spatial-Temporal PV Forecasting Framework with Automated Detector Network 
Selection,” submitted to IEEE Trans. Sustainable Energy. https://arxiv.org/abs/2111.08809. 

8. Si Zhang, Mingzhi Zhang, Rongxing Hu, David Lubkeman, Yunan Liu, and Ning Lu, “A Two-stage Training 
Strategy for  Reinforcement Learning based Volt-Var Control,” submitted to 2022 PES General Meeting. 
https://arxiv.org/abs/2111.11987 

9. Mingzhi Zhang, Xiangqi Zhu, and Ning Lu, “A Data-driven Probabilistic-based Flexibility Region Estimation 
Method for Aggregated Distributed Energy Resources,” Submitted to IEEE Trans. Smart Grid. 
https://arxiv.org/abs/2110.07406. 

10. Hanpyo Lee, Han Pyo Lee, Mingzhi Zhang,Mesut Baran, Ning Lu, PJ Rehm, Edmond Miller, Matthew 
Makdad P.E., “A Novel Data Segmentation Method for Data-driven Phase Identification,” submitted to 2022 
PES General Meeting. http://arxiv.org/abs/2111.10500 

11. Hyeonjin Kim, Kai Ye, Han Pyo Lee, Rongxing Hu, Di Wu, PJ Rehm, and Ning LU, “An ICA-Based HVAC 
Load Disaggregation Method Using Smart Meter Data” submitted to 2023 ISGT. Available online at: 
https://arxiv.org/abs/2209.09165  

12. Wang, Jiyu, Xiangqi Zhu, Ming Liang, Yao Meng, Andrew Kling, David L. Lubkeman, and Ning Lu. "A Data-
Driven Pivot-Point-Based Time-Series Feeder Load Disaggregation Method." IEEE Transactions on Smart 
Grid 11, no. 6 (2020): 5396-5406. 

13. Ming Liang, Jiyu Wang, Yao Meng, Ning LU, David Lubkeman, and Andrew Kling. "A Sequential Energy 
Disaggregation Method using Low-resolution Smart Meter Data, " Proc. of IEEE Innovative Smart Grid 
Technologies, Washington DC, 2019.  

14. Yao Meng, Ming Liang, and Ning LU. "Design of Energy Storage Friendly Regulation Signals using 
Empirical Mode Decomposition," Proc. of  the 2019 IEEE Power & Energy Society General Meeting, 
Atlanta, GA, Aug. 2019. 

15. Yao Meng, Z. Yu, N. Lu and D. Shi, "Time Series Classification for Locating Forced Oscillation Sources," 
in IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 1712-1721, March 2021, doi: 
10.1109/TSG.2020.3028188.  

16. Hyeonjin Kim, Yi Hu, Kai Ye, Ning Lu. "A Novel Vision Transformer based Load Profile Analysis using Load 
Images as Inputs". Accepted by  2024 IEEE PES General Meeting. 24PESGM0338-T2YicBQXD. 

 
 

6.3 Publications in PARS Hardware-in-the-loop Platform Development 

The publications related with the HIL platform development are listed as follows: 
1. X. Ke, A. Tbaileh, Q. Nguyen, T. Becejac, M. R. Vallem and N. Samaan, "A Solar-assisted Voltage 

Optimization Method for Transmission Solar Network Power System," 2022 IEEE Power & Energy 
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Society General Meeting (PESGM), Denver, CO, USA, 2022, pp. 1-5, doi: 
10.1109/PESGM48719.2022.9917048. 

2. A. Tbaileh et al., "Optimal Power System Black start using Inverter-Based Generation," 2021 IEEE Power 
& Energy Society General Meeting (PESGM), Washington, DC, USA, 2021, pp. 1-5, doi: 
10.1109/PESGM46819.2021.9638043. 

3. Q. Nguyen, M. R. Vallem, B. Vyakaranam, A. Tbaileh, X. Ke and N. Samaan, "Control and Simulation of 
a Grid-Forming Inverter for Hybrid PV-Battery Plants in Power System Black Start," 2021 IEEE Power & 
Energy Society General Meeting (PESGM), Washington, DC, USA, 2021, pp. 1-5, doi: 
10.1109/PESGM46819.2021.9637882. 

4. Q. Nguyen, A. Tbaileh , Laura A. Ward, X. Ke, M. R. Vallem, B. Vyakaranam, and N. Samaan, "Real-
Time Demonstration of Black-Start using a Grid-Forming Hybrid Solar-Energy Storage Power 
Plant," IEEE Transaction on Industrial Applications (in preparation). 

5. Q. Long, H. Yu, F. Xie, N. Lu and D. Lubkeman, "Diesel Generator Model Parameterization for Microgrid 
Simulation Using Hybrid Box-Constrained Levenberg-Marquardt Algorithm," in IEEE Transactions on 
Smart Grid, doi: 10.1109/TSG.2020.3026617. 

6. F. Xie, H. Yu, Q. Long, W. Zeng and N. Lu, "Battery Model Parameterization Using Manufacturer Datasheet 
and Field Measurement for Real-Time HIL Applications," in IEEE Transactions on Smart Grid, vol. 11, no. 
3, pp. 2396-2406, May 2020, doi: 10.1109/TSG.2019.2953718. 

7. F. Xie, C. McEntee, M. Zhang, B. Mather and N. Lu, "Development of an Encoding Method on a Co-
Simulation Platform for Mitigating the Impact of Unreliable Communication," in IEEE Transactions on Smart 
Grid, vol. 12, no. 3, pp. 2496-2507, May 2021, doi: 10.1109/TSG.2020.3039949. Videos related with the 
paper: https://www.youtube.com/watch?v=SdibDKEpw60 

8. F. Xie et al., "Networked HIL Simulation System for Modeling Large-scale Power Systems," 2020 52nd 
North American Power Symposium (NAPS), 2021, pp. 1-6, doi: 10.1109/NAPS50074.2021.9449646.  

9. F. Xie, C. McEntee, M. Zhang and N. Lu, "An Asynchronous Real-time Co-simulation Platform for Modeling 
Interaction between Microgrids and Power Distribution Systems," Proc. of 2019 IEEE Power & Energy 
Society General Meeting (PESGM), Atlanta, GA, USA, 2019, pp. 1-5, doi: 
10.1109/PESGM40551.2019.8973802. 

10. Victor Paduani, Bei Xu, David Lubkeman, Ning Lu, “Novel Real-Time EMT-TS Modeling Architecture for 
Feeder Blackstart Simulations,” submitted to 2022 IEEE PESGM. https://arxiv.org/pdf/2111.10031.pdf 

11. Victor Paduani, Lidong Song, Bei Xu, Dr. Ning Lu, "Maximum Power Reference Tracking Algorithm for 
Power Curtailment of Photovoltaic Systems", Proc. of IEEE PES 2021 General Meeting. 2021. arXiv 
preprint arXiv:2011.09555. 

12. Bei Xu, Victor Paduani, David Lubkeman, and Ning Lu, “A Novel Grid-forming Voltage Control Strategy for 
Supplying Unbalanced Microgrid Loads Using Inverter-based Resources,” submitted to 2022 PES General 
meeting. https://arxiv.org/pdf/2111.09464.pdf 

13. Long Qian, Hui Yu, Fuhong Xie, Wenti Zeng, Srdjan Lukic, Ning Lu, and David Lubkeman., "Microgrid 
Power Flow Control with Integrated Battery Management Functions," Proc. of 2020 IEEE Power & Energy 
Society General Meeting (PESGM), Montreal, QC, 2020, pp. 1-5, doi: 
10.1109/PESGM41954.2020.9281437. 

14. Nguyen, Quan, Jim Ogle, Xiaoyuan Fan, Xinda Ke, Mallikarjuna R. Vallem, Nader Samaan, and Ning Lu. 
"EMS and DMS Integration of the Coordinative Real-time Sub-Transmission Volt-Var Control Tool under 
High DER Penetration." arXiv preprint arXiv:2103.10511 (2021).  

15. Qi Xiao, et al., "Assessment of Transmission-level Fault Impacts on 3-phase and 1-phase Distribution IBR 
Operation," Accepted by  2024 IEEE PES General Meeting, Available online: 
https://arxiv.org/abs/2311.11339. 24PESGM1188-ZZQ781QL7  
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6.4 Publications in Power and Energy Management Algorithms 

The publications related with the power and energy management algorithms are listed as 
follows: 

1. Wu, Di, Xu Ma, Tao Fu, Zhangshuan Hou, P. J. Rehm, and Ning Lu. "Design of a Battery Energy 
Management System for Capacity Charge Reduction." IEEE Open Access Journal of Power and Energy 9 
(2022): 351-360.  

2. Han Pyo Lee, Keith DSouza, Ke Chen, Ning Lu, and Mesut Baran, "Adopting Dynamic VAR Compensators 
to Mitigate PV Impacts on Unbalanced Distribution Systems,” submitted to IEEE Access (2023). 
Accepted. Available online at: Available online at: http://arxiv.org/abs/2309.06098  

3. Shirsat, Ashwin, Valliappan Muthukaruppan, Rongxing Hu, Victor Paduani, Bei Xu, Lidong Song, Yiyan Li 
et al. "A Secure and Adaptive Hierarchical Multi-timescale Framework for Resilient Load Restoration Using 
a Community Microgrid." IEEE Transactions on Sustainable Energy (2023).   

4. Rongxing Hu, Ashwin Shirsat, Valliappan Muthukaruppan, Wenyuan Tang, Mesut Baran, Ning Lu. 
"Adaptive Cold-Load Pickup Considerations in 2-Stage Microgrid Unit Commitment for Enhancing 
Microgrid Resilience ." submitted to Applied Energy. Available online at:   

5. Lu, Ning. "Load Control: A new era of intelligent automation." IEEE Electrification Magazine 9, no. 3 (2021): 
18-28.  

6. Si Zhang, Mingzhi Zhang, Rongxing Hu, David Lubkeman, Yunan Liu, and Ning Lu, “A Two-stage Training 
Strategy for Reinforcement Learning based Volt-Var Control,” 22PESGM3454, Proc. of 2022 PES General 
Meeting. http://arxiv.org/abs/2111.11987  

7. Rongxing Hu, Yiyan Li, Si zhang, Valliappan Muthukaruppan, Ashwin Shirsat, Mesut Baran, Wenyuan 
Tang, David Lubkeman, Ning Lu, "A Load Switching Group based Feeder-level Microgrid Energy 
Management Algorithm for Service Restoration in Power Distribution System", Proc. of IEEE PES 2021 
General Meeting. 2021. Available online at:https://arxiv.org/abs/2011.08735 

8. Ashwin Shirsat, Valliappan Muthukaruppan, Rongxing Hu, Ning Lu, Mesut Baran, David Lubkeman, 
Wenyuan Tang, "Hierarchical Multi-timescale Framework for Operation of Dynamic Community Microgrid", 
Proc. of IEEE PES 2021 General Meeting. 2021. https://arxiv.org/abs/2011.10087 

9. V. Muthukaruppan, A. Shirsat, et. al., “Feeder Microgrid Management on an Active Distribution System 
during a Severe Outage”, submitted to IEEE Trans. on Power System, 2022 (available: arXiv:2208.10712). 

10. J. Wang, S. Huang, D. Wu and N. Lu, "Operating a Commercial Building HVAC Load as a Virtual Battery 
Through Airflow Control," in IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 158-168, Jan. 
2021, doi: 10.1109/TSTE.2020.2988513. 

11. Nguyen, Quan, Jim Ogle, Xiaoyuan Fan, Xinda Ke, Mallikarjuna R. Vallem, Nader Samaan, and Ning Lu. 
"EMS and DMS Integration of the Coordinative Real-time Sub-Transmission Volt-Var Control Tool under 
High DER Penetration." arXiv preprint arXiv:2103.10511 (2021).  

12. C. McEntee, D. Mulcahy, J. Wang, X. Zhu and N. Lu, "A VSM-Based DER Dispatch MINLP for Volt-VAR 
Control in Unbalanced Power Distribution Systems," Proc. of 2019 IEEE Power & Energy Society General 
Meeting (PESGM), 2019, pp. 1-5, doi: 10.1109/PESGM40551.2019.8973721  

13. Asmaa Alrushoud, Catie McEntee, and Ning Lu, "A Zonal Volt/VAR Control Mechanism for High PV 
Penetration Distribution Systems", Proc. of IEEE PES 2021 General Meeting. 2021. Available online at: 
https://arxiv.org/abs/2101.00106. 

14. Rongxing Hu, Kai Ye, Hyeonjin Kim, Hanpyo Lee, Di Wu, P.J. Rehm, Ning Lu "Coordinative Demand 
Charge Mitigation Strategies," Proc. of  2023 IEEE PES General Meeting, Available online at: 
https://arxiv.org/abs/2212.08535. 23PESGM1367 

15. Han Pyo Lee, Keith DSouza, Ke Chen, Ning Lu, and Mesut Baran, "Adopting Dynamic VAR Compensators 
to Mitigate PV Impacts on Unbalanced Distribution Systems,” submitted to IEEE Access (2023). Accepted. 
Available online at: Available online at: http://arxiv.org/abs/2309.06098  

16. Han Pyo Lee, Lidong Song, Yiyan Li, Ning Lu, Di Wu, PJ Rehm, Matthew Makdad, Edmond Miller, "An 
Iterative Bidirectional Gradient Boosting Algorithm for CVR Baseline Estimation" 23PESGM0022, Proc. of  
2023 IEEE PES General Meeting, Available online at: http://arxiv.org/abs/2211.03733. 23PESGM0022. 
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7. Project Team and Roles:  
 

Table 1: Lead Institute: North Carolina State University Participants  
Name Role Contribution 

Ning Lu PI Manage the overall project and modeling team 
David Lubkeman Co-PI Manage the HIL team 
Mesut Baran Co-PI Supervise PhD students for EMS algorithm development 
Wenyuan Tang Co-PI Supervise PhD students for EMS algorithm development 
Srdjan Lukic Co-PI Supervise PhD students for HIL testbed development 

 
Table 2: North Carolina State University Student Participants  
GRA: Graduate research assistant; URA: undergraduate research assistant 

Name 
 

Start Date End Date Role Contribution 
Students in the HIL Team 

Jongha Woo PhD Fall 2022 Fall 2023 GRA PV parameterization 
Charles Kelly PhD Fall 2021 Fall 2023 GRA PV modeling 
Qi Xiao PhD Fall 2021 Fall 2023 GRA Feed Reduction and Cyber attack  
Lidong Song PhD Spring 2020 Fall 2022 GRA Super resolution and Cyber attack  
Bei Xu PhD Spring 2020 Fall 2023 GRA Battery modeling 
Victor Paduani PhD Fall 2020 Spr. 2022 GRA PV farm GSF development 
Fuhong Xie PhD Spring 2020 Fall 2020 GRA Battery GSF development 
Long Qian PhD Spring 2020 Fall 2020 GRA Diesel generator GSF  
Hui Yu PhD Spring 2020 Fall 2020 GRA Battery GSF development 

Students in the Modeling Team 
Rongxing Hu PhD Spring 2020 Fall 2023 GRA Feeder-level microgrid EMS 
Ashwin Shirsat PhD Spring 2020 Fall 2022 GRA Community microgrid EMS 
Valliappan 
Muthukaruppan 

PhD 
Spring 2020 Fall 2022 

GRA 
Mobile storage EMS 

Asmaa Alrushoud PhD Fall 2020 Fall 2021 GRA Volt/var control 
Jiyu Wang PhD Spring 2020 Spr. 2020 GRA Load disaggregation 

Postdoc/Students in the SA Team 

Yiyan Li  
Post
doc Spring 2020 Fall 2022 

GRA Load and PV forecasting 
Synthetic Data generation 

Si Zhang PhD Spring 2020 Spr. 2023 GRA RL-based Volt/var control 

Hanpyo Lee PhD Spring 2020 Fall 2023 
GRA Smart meter analysis 

CVR baseline detection 

Yi HU PhD Fall 2021 Fall 2023 
GRA Synthetic generation 

DR baseline detection 
Kai Ye PhD Spr. 2021 Fall 2023 GRA Load disaggregation and behind-the-

meter  DER Detection Hyeonjin Kim PhD Fall 2021 Fall 2023 GRA 
Master/Under graduate students 

Ignacio Aguilar BS Spring 2023 URA PV modeling 
Jakob Triemstra BS Spring 2023 URA PV modeling 
Charlie Averett BS Summer 2021 URA PV forecasting 
Luna Zhu  BS Summer  Spr. 2021 URA PV forecasting 
Eli Hubble  BS Spr. 2020 Spr. 2020 URA PV forecasting 
Issac Little MS Summer 2021 GRA PV forecasting 
Jacob Triemstra BS Spring 2023 Fall 2023 URA PV forecasting 

 
 

Table 3: Collaboration Organization 1: Pacific Northwest National Lab (requested DOE funding) 
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Name Role Contribution 

Xinda Ke team lead 
Steady state optimization model development for volt-var control 
function, project management 

 Quan Nguyen 
participant Demonstration of black start in two sub-areas of NYPA system in 

OPAL-RT Hyper-SIM model  
Ahmad Tbaileh participant Steady state optimization based black start path model development 
Mallikarjuna 
Vallem participant 

Project management, Opal-RT Ephasor-Sim model development, 
industry outreach, technical support 

Samaan, Nader A advisor Advisor of the project 
Tamara Becejac participant Explore the NYPA system in Opal-RT Hyper-sim model 

 Laura A. Ward 
participant Demonstration of black start in two sub-areas of NYPA system in 

OPAL-RT Hyper-SIM model  
 

Table 4: Collaboration Organization 2:  Industry Teams and Advisors (in-kind cost-share) 
Name Company Contribution 

Xia Jiang 

NYPA 

Provided NYPA blackstart procedure and network 
models. Provide technical support for developing the PV 

farm models and verify performance of the volt/var 
control scheme and the black start sequences using PV 

farm as a major black start resource. 

George 
Stefopoulos 

Victor Paduani 
PJ Rehm 

ElectriCities Coordinating with municipal utilities and provide data 
support. Disseminate results to municipal utilities. Andy Fusco 

Greg Flinn 
Laura Kraus  

Strata Solar 

Providing 1-second PV farm data for parameterizing PV 
farm digital twin models and anomaly detection. 

Provided 100 PV farm data for short term PV large 
power drop forecast.  

Roger Willardson 
Keary Dosier 
Taylor Adcox 
Abhishek 
Komandur 
Roger Willardson 
Matt Makdad 

New River  
Providing SCDA, smart meter data for CVR 

performance assessment and behind the meter PV and 
EV and identification Edmond Miller 

 
Timothy 
Stankiewicz 

Fayetteville PWC 
Providing SCDA data for CVR and demand response 

program performance assessment and baseline 
derivation 

Marshall Cherry Roanoke Electric Co-op Industry advisor 

Daniel Gillen 
Wilson Energy 

Providing smart meter (residential, commercial, and 
industrial loads) and PV data for synthetic data 

generation and digital twin parameterization Paul Darden 
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9. Appendix 
9.1 Task A.1 Transmission GSF 1: Demonstration of a Solar-assisted Voltage 

Optimization Method in NYPA Transmission System by PNNL 

Background: This task aims to demonstrate and validate a security-constrained optimal power 
flow (SCOPF)-based volt-var control algorithm within the New York Power Authority (NYPA) 
transmission system. The objective is to enhance the stability of voltage fluctuations in 
transmission networks under both base case and contingency scenarios. This is achieved by 
integrating a bulk solar power plant with a minimal number of post-contingency corrections in a 
500-bus NYPA network. The algorithm utilizes EMS data spanning from 06/03/2014 to 09/10/2015 
from NYPA as inputs. Simulation results indicate that the proposed two-stage volt-var ACOPF 
algorithm effectively eliminates voltage violations in both base case and contingency scenarios.  

TABLE I: Comparison of the Developed Volt/Var control Algorithm and Existing Related Works 

 Advantages Disadvantages 

[1]-[5] 
- Focus on security-constrained optimal power flow 

(SCOPF) based volt-var control algorithm with 
significantly reduced problem scale 

- Cannot remove every volt-var 
violations from all N-1 contingency 
scenarios 

[3]-[5] 
- Use the preventive security-constrained optimal power 

flow (PSCOPF) problems to handle volt-var violations 
for all contingency scenarios 

- Very large-scale power flow 
problems and are hard to solve 
directly 

[6] 
- Use the corrective security constraint optimal power 

flow (CSCOPF) to handle volt-var violations for all 
contingency scenarios 

- The model requires additional 
decision variables and solution 
actions with respect to different 
contingency scenarios 

[8] - Use GFM-based wind for black start 

- Do not focus on a full sequence of 
black-start process 

- Focus on wind instead of solar and 
storage as generation resources 

[9]-[10] 
- Use GFM inverters as black start unit 
- Conduct a real-time simulation with multiple steps with 

autonomous actions of circuit breakers 

- Do not model the dc-side 
dynamics 

Approach 
developed 
by PNNL  
[11, 12] 

- Use real system topology and parameters and 
optimization-assisted black-start procedure 

- Full demonstration with 25 steps in Area 1 and 17 steps 
in Area 4. 

- Detailed dynamic model at the dc side and 
autonomous coordination between solar and storage 

- Use the only industry-approved GFM control model 
with current limiting and P-Q capability limit 

- The demonstration and control 
implementation in HYPERsim 
requires greater effort compared 
other EMT simulation tools 

 
Task Objectives:  

 Develop the equivalent NYISO power flow cases from the NYPA EMS state estimator 
data. 

 Run contingency analysis for major contingencies. Identify voltage violations. Baseline 
will be obtained.  

 Apply the proposed Preventive volt/var control algorithms to reduce voltage violations. 
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Methodology Overview: The probability density function representing the voltage magnitude 
extracted from the NYISO system over a span of 15 months is depicted in Fig. 1 below. On the x-
axis, the voltage magnitude is presented in per unit (p.u.), while the y-axis illustrates the probability 
of various voltage magnitudes throughout the entire year's dataset. The figure reveals that, for the 
majority of the time, the voltages in the NYISO area range between 0.9 and 1.1 p.u. Nonetheless, 
there are instances where the system experiences both under-voltage and over-voltage issues.

Simulation Results: The proposed volt-var 
ACOPF voltage control algorithm was 
implemented in the NYPA for a full day, and the 
simulation results are compared for the following 
two cases: 

Case 1: Base case with no control on 
solar inverter
Case 2: Proposed volt-var ACOPF 
algorithm.

Figure 2(a) illustrates the bus voltage 
comparison between Case 1 and Case 2, 
specifically focusing on the selected solar bus 
782 during a 1-day simulation period (24 hours) 
on 7/25/2014. Noticeable under-voltage issues 
can be seen at the selected bus 782 after 3 p.m., coinciding with a decrease in system load. In 
contrast, the volt/var ACOPF algorithm maintains the voltage level within its scheduled range of 
0.95 p.u to 1.05 p.u, showcasing the effectiveness of the proposed algorithm. Figure 2(b) presents 
the real and reactive power output of the utility-scale PV plant at bus 782. The reactive power 
output of each solar unit is constrained by the apparent power limits of the solar inverter. 
Additionally, the solar units actively generate reactive power for the grid, particularly post 3 p.m., 
contributing to volt-var support services. These results underscore the effective utilization of solar 
resources for providing volt-var support services. 

(a)                                                                                 (b)
Figure 2. (a) Comparison of voltage profile on a selected solar bus 782. (b)The power output of utility-

scale PV plant located at bus 782.

Figure 1. Probability density function of voltage 
magnitude in NYISO area.
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Figure 3 illustrates the cumulative comparison of bus voltage violations in p.u. between Case 2 
and Case 3 across all contingency scenarios during a 1-day simulation period (24 hours). As 
depicted in Fig. 3, the second stage security constraint volt/var ACOPF effectively eradicates all 
voltage violations in contingency scenarios. This affirms that the proposed two-stage volt-var 
ACOPF algorithm is capable of eliminating voltage violations in both base case and contingency 
scenarios. 

 
Figure 3. Comparison of accumulated voltage violations on all contingency cases. 
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9.2 Task A.2 Demonstration of black-start process using two sub-areas of NYPA 
system in EMT real-time simulation tool HYPERsim 

Background:  
This task demonstrates transient stability and validates the effectiveness of the numerical 

optimization-based black-start function within the New York Power Authority (NYPA) transmission 
system, utilizing the electromagnetic-transient (EMT) real-time simulation tool, HYPERsim. The 
EMT demonstration involves the creation of a high-fidelity hybrid solar-storage power plant with 
grid-forming (GFM) capability, positioning it as a potential black-start resource alongside existing 
hydroelectric power plants in the NYPA system. By employing the optimal black-start sequence 
and generator dispatch obtained from the numerical solution as inputs, the EMT real-time 
demonstration not only closely aligns all steady-state parameters with those in the numerical 
solution but also showcases the NYPA system's capability to maintain voltage and frequency 
stability. Furthermore, it demonstrates the system's resilience in overcoming practical dynamic 
black-start challenges, such as transformers' inrush current and the energization of long 
transmission lines. 

TABLE I: Comparison of the Developed Black-Start and Existing Related Works 

 Advantages Disadvantages 

[1]-[5] - Focus on optimal blackstart with multiple steps 
- Only focus on steady-state analysis, 

and cannot capture system dynamics 
during black-start 

[3]-[6] - Use the only industry-approved GFM control model with 
current limiting and P-Q capability limit 

- Only model the ac-side dynamic 
- Do not focus on black-start 

[7] - Use an autonomous coordination between solar and storage - Only focus on grid-following control 
- Do not focus on black-start 

[8] - Use GFM-based wind for black start 

- Do not focus on a full sequence of 
black-start process 

- Focus on wind instead of solar and 
storage as generation resources 

[9]-[11] 
- Use GFM inverters as black start unit 
- Conduct a real-time simulation with multiple steps with 

autonomous actions of circuit breakers 
- Do not model the dc-side dynamics 

Approach 
developed 
by PNNL 
[12, 13] 

- Use real system topology and parameters and optimization-
assisted black-start procedure 

- Full demonstration with 25 steps in Area 1 and 17 steps in 
Area 4. 

- Detailed dynamic model at the dc side and autonomous 
coordination between solar and storage 

- Use the only industry-approved GFM control model at the ac 
side with current limiting and P-Q capability limit 

- The demonstration and control 
implementation in HYPERsim requires 
greater effort compared other EMT 
simulation tools 

 
Task Objectives:  

 Develop a high-fidelity hybrid dc-coupled solar-storage power plant model with grid-
forming capability and autonomous power sharing between solar and storage.  

 Demonstrate system stability and characterize dynamic behaviors of a black-start 
process for 2 sub-areas in the NYPA system with input from the numerical optimization 
solution via a developed automated co-simulation framework.  
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Methodology Overview: As depicted in Figure 1, we have developed a comprehensive model 
for the hybrid solar-storage plant, incorporating both ac-side and dc-side control strategies. The 
ac-side control employs an industry-approved droop-based Grid-Forming Mode (GFM) control 
strategy, regulating terminal voltage and voltage control based on P-f and Q-V droop 
characteristics. On the other hand, the dc-side control autonomously coordinates solar generation 
at the maximum power point and manages bidirectional storage dispatch in response to the 
required ac-side demand.

Figure. 1 Modeling and control of a hybrid solar-storage plant with droop-based GFM capability

Figure 2 illustrates the EMT real-time 
demonstration within HYPERsim, 
conducted separately for Area 1 and 
Area 4 in the NYPA system, as 
shown in Figure 3. Area 1 utilizes a 
hydro plant as a black-start 
resource, while Area 4 leverages the 
developed hybrid solar-storage 
plant. To facilitate this, we have 
established a communication-based 
co-simulation framework. This 
framework automatically collects 
real-time measurement data of 
system states, identifies when the 
system reaches steady-state after 
each switching event, and 
determines readiness for the 
subsequent step in the black-start 
process. Additionally, it transmits the 
optimal line and transformer 
energizing sequence, along with 
reference dispatch information for 
the hydro and hybrid storage plants.

Automated backbone 
algorithm in Python

Original NYPA system

Area 1
(Western NYPA system):

Hydro unit as BS unit 

Area 4:
GFM-based hybrid solar-
storage plant as BS unit

Identify optimal 
energization sequence

Real-time demonstration 
of backbone energization

Identify optimal 
energization sequence

GFM-based PV-ES plant 
model development

Real-time demonstration 
of backbone energization

Synchronization between 
Areas 1 and 4

UDP communication

Real-time bus voltage and  frequency measurements

CB closing signals and generator reference disparch

Control center HYPERsim simulator

System model in 
HYPERsim

Figure 2. Framework of demonstrating an automated blackstart 
process in 2 sub-areas in NYPA system in HYPERsim



DE-EE0008770 
Ning Lu 

 

Page 64 of 146 
 

Simulation Results: Simulation results 
corresponding to the blackstart in Area 4 are 
shown as examples. Figure 4(a) shows the 
optimal energizing sequence, With the GFM 
control, Figures 4(b) and 4(e) show the stable 
voltage magnitudes at different locations and 
instantaneous terminal voltage of the hybrid 
plant during entire process. While Figure 4(c) 
shows the total hybrid plant generation, Figure 
4(d) shows the break-down of individual solar 
and storage generations to demonstrate the 
developed coordinative at the dc side. 

 
(a) Backbone and energizing sequence in Area 4 

(b) Bus voltages during blackstart process (c) Bus voltages during blackstart process 

 
(d) Power generation from solar and storage with varying ac-side load. 

 
(e) Instantaneous terminal voltage of the GFM-based hybrid solar-storage power plant 

Figure 4. Simulation results of the demonstrated black-start process in Area 4. 

Figure 3. NYPA power system and 7 sub-areas 
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9.3 Task B.1 Feeder-level Microgrid Energy Management  

Background: This task focuses on developing grid support functions for utility-scale MW-level 
PV systems, specifically tailored for extended outages. The aim is to achieve optimal resilience 
service performance and regulate the operation of the formed microgrid. Table I provides a 
summary of the state-of-the-art works in this area, revealing key observations: 1) Few studies 
concentrate on extreme outages lasting multiple days; 2) Existing approaches often rely on 
dispatchable distributed resources, which can be costly and unavailable for most distribution 
feeders. In contrast, renewables, expected to be prevalent in most distribution systems in the near 
future, are not extensively explored; 3) Limited consideration is given to cold load pickup (CLPU), 
a crucial factor impacting microgrid operation. While some models use fixed CLPU parameters 
based on assumed temperature and outage duration, this approach introduces significant CLPU 
estimation errors. Alternatively, candidate-based methods generate CLPU curves for all events, 
allowing the microgrid to select optimal CLPU scheduling. However, this becomes impractical 
during long outages due to the extensive candidate set. 

TABLE I: Comparison of STATE-OF-THE-ART Algorithms for Microgrid Resilience Service 

Ref. 
Microgrid Operation Setup Microgrid Unit Commitment Algorithm Setup Verified dynamic 

responses§ 
3-phase 

unbalanced 
system 

Outage 
duration 

Main energy 
source* 

Optimizat
ion 

stages 

Rolling 
horizon 

Foreca
st error 

CLPU  

Y/N CLPU 
events 

CLPU 
model  

[1]  < 1 hour DG RT    one fixed no real-time 
CLPU simulation  

[2]  up to days DG DA    one fixed  
[3]  up to days DG + BESS DA    one fixed  

[4]  several 
hours DG RT    one candidate  

[5]  several 
hours DG RT    one candidate  

[6]  several 
hours DG DA    multiple   

[7]  < 1 day DG DA+RT    multiple   
[8]  < 1 hour DG RT    one   
[9]  up to days DG DA    multiple  no CLPU  

[10]  < 1 day DG + BESS DA    multiple   

[11]  several 
hours DG + BESS RT    multiple   

[12]  multi-days BESS + PV DA    multiple   

Our 
Method  multi-days BESS + PV DA+RT    multiple adaptive 

verified by real-
time CLPU 
simulation 

*DG denotes dispatchable distributed generations; § Using openDSS, gridLAB or HIL simulation 
 
Task Objectives: 

 Develop an energy management system (EMS) for a hybrid PV plant to power a feeder-
level microgrid 

 Maximize the total serve load considering customer comfort and minimize the CLPU 
effect by using an adaptive CLPU model to accurately capture the CLPU consumption 
accounting for impacts of time-varying ambient temperature and uncertainties in 
scheduled outage duration.  
 



DE-EE0008770
Ning Lu

Page 67 of 146

Approach: Figure 1 illustrates the framework of the two-stage feeder-level microgrid EMS and 
provides a conceptual comparison of CLPU models. The EMS effectively coordinates day-ahead 
energy scheduling and intra-hour power dispatch. Notably, the adaptive CLPU model, in contrast 
to the fixed CLPU model, accurately considers the influences of temperature and interruptions in 
each time step. This precision aids the microgrid in mitigating energy and power deficits attributed 
to CLPU, ultimately facilitating optimal operation.

Figure 1.  Two-stage EMS: (a1) Flowchart of the 2-Stage MGUC, (a2) Scheduling Horizons and Intervals; 
Conceptual comparison of the CLPU models: (b1) Temperature; (b2) the fixed CLPU model, (b3) the adaptive 

CLPU model, grey shaded areas are the HVACs’ normal electricity consumption when there is no 
interruption.

Project Results and Discussions: In Fig. 2, it is evident that the adaptive CLPU model 
accurately captures CLPU dynamics. As presented in Table I, the EMS utilizing the adaptive CLPU 
model (AdaptCLPU) demonstrates the best overall performance, excelling in terms of served 
energy, critical load, baseload, and PV utilization. In contrast, the EMS employing the Fixed CLPU 
(FixCLPU) model provides the least served energy, primarily due to higher PV curtailment. The 
EMS without CLPU estimation (NoCLPU) results in the highest CLPU consumption [13].

TABLE II: Comparison of Microgrid Performance with and Without CLPU Estimation

Case
Served 

load
(kWh)

Served load in 
preferred periods 

(kWh)
Served 
critical 

load 
(kWh)

Served 
baseload 

(kWh)

Curtailed 
PV (kWh)

CLPU
(kWh)

Estimated 
CLPU (kWh)

total CLPU 
part

NoCLPU 54493 10196 1757 4734 21438 2999 7697 -
FixCLPU [12] 50737 7445 540 4814 20464 5877 5893 12885
AdaptCLPU 55173 7771 667 4857 22210 2591 6835 5565
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Figure 2.  Two-stage EMS: Comparing various CLPU models, high temperature during: (a) hours 12-16;
(b) hours 4-8.
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9.4 Task B.2 Community-level Dynamic Microgrid Energy Management 

Background: This task introduces a comprehensive and adaptive three-stage hierarchical 
multi-timescale (SA-HMTS) framework designed for scheduling and real-time dispatch of 
community microgrids (CMGs) equipped with hybrid PV systems. The primary goal is to restore 
loads during prolonged outages when transmission network support is unavailable, thereby 
enhancing the resilience of power distribution systems. Numerous strategies leveraging microgrids 
for load restoration have been proposed in the literature, as outlined in Table I. However, a holistic 
and computationally efficient approach for proactive scheduling and dispatch of distribution 
network-integrated CMGs during extended emergencies, with a focus on real-time uncertainty 
mitigation, prioritizing critical loads, optimizing resource allocation for self-sustained continuous 
operation, incorporating demand response, modeling cold-load pick-up, and expanding CMG 
support to the neighboring grid, remains unexplored. 

Table I: Comparison of state-of-the-art methods against proposed SA-HMTS framework. 

 
Task Objectives:  

 Develop an optimal decision-making framework that will enable CMGs to securely restore 
loads during extended duration outages caused by high impact low frequency (HILF) 
events.  

 Incorporate uncertainty mitigation mechanisms within the optimal decision-making 
framework for bolstering against the extreme volatility inherent to HILF events. 

 
Methodology Overview:  
The proposed optimal decision-making framework is depicted in Fig. 1. The Secure and 

Adaptive Three-Stage Hierarchical Multi-Timescale (SA-HMTS) framework consists of three 
hierarchical stages, each operating on a distinct timescale. The initial stage tackles a stochastic 
extended duration scheduling (EDS) problem, establishing reference plans for optimal resource 
allocation and determining the extent to which the Community Microgrid (CMG) can restore 
neighboring loads. The intermediate near-real-time (NRT) scheduling stage refines the EDS 
schedule closer to the dispatch time using newly obtained forecasts, followed by the Real-Time 
(RT) dispatch stage. 

To enhance decision robustness against forecast errors, a novel concept called delayed 
recourse is introduced. The framework encompasses decision-making for various load types and 
distributed energy resources, including energy storage (ES) systems, MW-scale PV generators, 
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and rooftop PV generators. It takes into account uncertainties in load demand, solar irradiance, 
and outage duration. The framework is validated using OpenDSS software and hardware-in-loop 
simulations. 

 
Project Results and Discussions: Table II presents the outcomes of the proposed approach 

in contrast to traditionally employed deterministic, stochastic, and robust optimization approaches, 
each utilizing a commonly employed two-stage approach. The objective of this comparison is to 
underscore the effectiveness of the proposed approach in the context of uncertainty-aware 
decision-making, as reflected in the resiliency metrics detailed in the table. Definitions of these 
metrics can be found in [16]. Across all compared scenarios, the proposed Secure and Adaptive 
Three-Stage Hierarchical Multi-Timescale (SA-HMTS) framework consistently demonstrates 
superior results in critical load supply, PV utilization, availability of adequate reserved limits with 
grid-forming Energy Storage (ES) systems, and CMG operational duration. 

 
Figure 1. Schematic layout of the proposed framework. 

 
Table II: Comparative analysis with existing approaches. 
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9.5 Task B.3 Mobile Storage powered Microgrid Energy Management  

Background: This task introduces a two-stage hierarchical energy management approach 
designed to securely manage feeder-level microgrids within a distribution system experiencing 
severe outages and a high presence of distributed rooftop residential PV. This approach solves a 
sequential rolling optimization problem to schedule main resources and adopts a dispatching 
scheme for real-time adjustments. It incorporates novel elements to effectively handle the 
considerable uncertainty associated with residential PV systems and optimize the utilization of 
microgrid resources. Table I provides a summary of the pros and cons of current state-of-the-art 
methods. As indicated in the table, existing methods have so far overlooked realistic operational 
conditions for the restoration of distribution systems during prolonged outages. The current 
distribution systems exhibit low controllability (limited controllable switches) and observability 
(behind-the-meter PV, uncertainty in forecasts, etc.), posing considerable challenges in securely 
operating feeder-level microgrids. 

TABLE I : Comparison of STATE-OF-THE-ART power system restoration strategies 

 Description Advantages Disadvantages 

Short-term Restoration [1]-
[4] 

During extreme events, outages 
last over multiple days. Existing 
approaches only consider a short 
restoration time scale ranging 
from 6-24 hours. 

Short-term restoration enables 
uninterrupted service to load 
even with limited microgrid 
resources. 

Proposed EMS must be able to 
ration the microgrid resources over 
multiple days to provide service to 
loads and better utilize the 
distributed residential PV. 

Realistic 
Distributio
n System 

High 
Controllability 
[5] 

Distribution systems have a 
limited number of controllable 
switches which splits the systems 
into load zones. But existing works 
consider direct control on loads. 

Direct control over loads helps 
to better prioritize and provide 
uninterrupted service to critical 
loads. 

Without this consideration most of 
the proposed approaches in 
literature are not implementable in 
current distribution systems. 

High 
Observability 
[6]-[7]  

High penetration of residential PV 
is an untapped resource during 
outages but most of these PV net-
metered and hence are not 
observable in the distribution 
system. But existing consider full 
observability and direct control on 
the PV systems. 

High observability leads to 
better forecasts and hence 
better utilization of PV systems 
and management of microgrid 
resources. 

Lack of observability of high PV 
leads to challenges in secure 
operation of the microgrid which can 
in turn lead to devastating failure in 
the system. 

 
Task Objectives: 

 Develop a two-stage hierarchical energy management approach for securely operating 
feeder-level microgrids within a distribution system facing severe outages and high 
distributed rooftop residential PV penetration. 

 Introduce innovative elements to effectively manage uncertainty associated with 
residential PV systems and address the oversight in existing methods regarding realistic 
operational conditions during extended outages in distribution systems. 

 Extend the proposed scheme to multi-feeder cases to improve utilization of resources 
and provide better service to loads [8]. 

 
Methodology Overview: In the proposed 2-stage hierarchical energy management framework, 

stage-1 schedules the microgrid for the next period (such as ½ or 1 hour) by taking into account 
future load and PV forecast. Stage-2 is the short term dispatching stage which determines the 
proper dispatch levels for the microgrid resources. The major issue with BTM PV is lack of real-
time data. Being net metered, dis-aggregating PV from load and forecasting just PV components 
becomes challenging and leads to significant forecast error as highlighted in Fig. 1. The low 
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accuracy in forecasting individual house PV and load leads to really large forecast errors at the 
feeder-level (as high as 2MW on a 3.5MW circuit). Handling such forecast errors becomes 
challenging since with limited microgrid resources. To securely operate the microgrid under such 
challenging conditions three innovative strategies are proposed: 

 Multi-Day Fuel Rationing 
 Learning-based Forecast Correction 
 Dynamic Reserve Management 

Details of these strategies are explained in [9]. 
 
Simulation Results: As shown in Table II, both on day-1 and day-3 we see that the proposed 

scheme with all the innovative forecast error management strategies performs better than the base 
scheme.  There is significant service to critical and non-critical loads, better utilization of PV, 
reduction in scheduled and unscheduled shutdown of the microgrid and minimum disruption to 
critical loads even up to 3 days of restoration. 

 
Figure 1. High forecast error in short-term and day-ahead forecast of aggregated BTM PV. (top) Real-time 

net load measurement, stage-1, and stage-2 forecast. (bottom) Total net load forecast error in stage-1 and 
stage-2 forecast. Zoomed plot shows stage-2 forecast is more accurate than stage-1 forecast during no PV 

duration and error is close to zero. 
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TABLE II: Performance on day-1 and day-3 of proposed scheme against a base scheme with basic energy 
management without any forecast error correction strategies over multi-day restoration. 

Metric 
Day-1 Day-2 

Base Case Proposed Scheme Base Case Proposed Scheme 

% of Critical Load (CL) Served 72.73% 79.2% 71.69% 76.44% 

% of Non-Critical Load (NCL) Served 71.1% 75.244% 67.76% 71.38% 

% of PV utilized 78.33% 86.92% 81.88% 90.35% 

Avg served duration of CL  37h 15m 39h 20m 34h 45m 3h 30m 

No. of interruptions in serving CL 8 9 10 7 

Total scheduled shutdown duration of 
microgrid 2h 40m 2h 30m 4h 5m 3h 30m 

Total unscheduled shutdown duration of 
microgrid 1h 0 1h 30m 30m 
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9.6 Task B.4 Reinforcement Learning-based Volt-Var Control for Distribution System 

Background: This task presents a reinforcement learning (RL) approach to solve a cooperative, 
multi-agent Volt-Var Control(VVC) problem for high solar penetration distribution systems. The 
ingenuity of our RL method lies in a novel two-stage progressive training strategy that can 
effectively improve training speed and convergence of the machine learning algorithm. In general, 
there are three popular VVC approaches: rule-based, optimization-based, and more recently, 
machine learning-based. Although rule-based approaches are widely used in the field due to the 
ease of implementation, they lack the ability to adapt to fast-changing operational conditions. The 
major drawbacks of optimization-based approaches are their strict requirement of accurate 
network models and complex computational platforms for implementation. Furthermore, the 
computational complexity increases exponentially as the system scale (e.g. number of controllable 
devices) increases.  

TABLE I: Comparison of STATE-OF-THE-ART missing data restoration methods 

 Description Advantages Disadvantages 

Rule-based System Widely used in current power 
system operation Fast and stable The optimality cannot be 

guaranteed 

Optimization-base system 
[1]-[2] 

With accurate system modeling, 
minimize the cost and loss while 
satisfying operation constraint 

provide a stable and 
optimal command after 

the optimization 
Optimal solution if system 

models are known 

Highly rely on the model 
accuracy and huge joint 

search space would cause 
scalability issue 

Suboptimal solutions when 
model is not accurate 

Machine 
Learning 
methods 

Multi-Agent 
Reinforcement 
Learning [5]-[7] 

Reinforcement Learning base 
approach under the centralized 
training, decentralized execution. 

Easy to implement, similar 
to single agent setting. 
Better performance in the 
cooperative setting 

The agents cannot learn directly 
from the decentralized 
environment. Cannot self-
correct in field deploy. Can 
reach suboptimal solutions. 

Muti-Agent 
Morkov 
Game[11]-[11]  

Model the process as Markov 
Game which training in 
decentralized environment 

Learn from a decentralized 
environment and can infer 
other agents’ behaviors in 
the training. Robust in 
decentralized in cooperative 
setting 

Inferring other agents’ intention 
increases the computational 
burden. The model complexity 
prevents be multi-agents be 
scaled up. Can reach 
suboptimal solutions 

 The proposed 
approach 

Separate the training process in 
2 stages. Stage-1 is individual 
training. Stage-2 is centralized 
cooperation training 

Training objectives 
explainable and trackable. 
Less training time, more 
robust and adaptive, allow 
for fine-tuning in real-time 

Require system models for 
more effective first stage 
training. Can reach suboptimal 
solutions. 

 
Task Objectives:  

 Develop a novel two-stage, progressive training strategy. 
 Propose a novel reward design and allocation mechanism to account for the contributions 

of all agents. 
 
Methodology Overview: The 2-stage progressive training framework and the system model 

are illustrated in the left and right figures in Fig. 1, respectively. Stage 1 is individual training, in 
which each agent learns to take three basic control actions: “generate-Q”, “consume-Q”, and “do-
nothing”, assuming all other agents are inert. Stage 2 is cooperative training, where the training 
focus on learning to generate the “optimal” magnitude of  in the presence of the other agents. In 



DE-EE0008770 
Ning Lu 

 

Page 76 of 146 
 

the second stage, we assume that all agents have gained understanding of when to “generate-Q”, 
“consume-Q”, and “do-nothing”. 

 

 
Fig. 1. The proposed 2-stage progressive training framework. “O” refers to observation, “r” refers to 

reward, “a” refers to action (Q command), and “DDPG” refers to Deep Deterministic Policy Gradient. The 
environment on the left is based on modified IEEE 123bus system. 

 
Simulation Results: As shown in Table I, the conventional decentralized VVC takes the least 

number of actions, which is measured by the cumulative  consumption, ∑ . However, it receives 
the lowest Voltage score, showing an inferior voltage regulation performance. Stage-1 policy does 
not consider coordination. Thus, PV1 always generates , causing more  violations. Stage-2 
policy has the highest voltage score, showing superior VVC control performance. By coordinating 
with other agents, ∑Q is significantly reduced in stage-2.  

If some nodal voltages fall outside of the designated interval  in a control interval, 
we consider this interval to be a voltage violation event. Then, we compare the duration of such 
voltage events in four use cases: base case, conventional, stage-1 policy, and stage-2 policy in 
the summer season. Table II summarizes the statistics of the durations of all voltage violation 
events in the three summer testing days. Conventional VVC is effective in reducing longer voltage 
violations while leading to many shorter voltage violations. This results in a large number of 
cumulative violations. Overall, the stage-2 policy exhibits optimal performance in terms of reducing 
the total voltage violation duration. 

 
TABLE II: VVC PERFORMANCE COMPARISON (THE SUMMER CASE) EVALUATION 

Algorithm Voltage Score     
Base Case 0.98756 - - - - 

Conventional 0.98995 93.859 0.01688 0.07611 0.09242 
Our method 

Stage1 
0.99286 452.43 0.41250 0.12527 0.04583 

Our method 
Stage2 

0.99556 144.03 0.01660 0.14361 0.11305 
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TABLE III: STATISTICS OF THE VOLTAGE EVENT 

Statistics Base Conventional Our method 
Stage 1 

Our method 
Stage 2 

Count 4031 30219 4831 3314 
Mean 6.74 1.16 2.64 2.08 

Standard deviations 15.83 1.075 4.16 2.86 
25 percentile 1 1 1 1 
50 percentile 2 1 1 1 
75 percentile 4 1 2 2 
Max Duration 95 43 47 44 

Nodes of Max Duration 2 5 1 2 
Integration Sum 27176 34940 12759 6914 
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9.7 Task B.5 Adopting Dynamic VAR Compensators (DVCs) to Mitigate PV Impacts 
on Unbalanced Distribution Systems 

Background: Table 1 presents a comprehensive overview of existing methods for addressing 
the optimal placement and control schemes for DVCs, along with a comparison of their strengths 
and weaknesses in relation to the proposed approach.  

 
Table I: A Review of Existing Methods and Our Contributions 

Category Methodology Descriptions Strength Weakness 

Device 

DVR [1-2] Add the missing voltage 
during a voltage sag 

Injects a voltage in series with the 
system voltage 

Can inject a voltage for a 
short time 
Unsuitable for systems 
with prolonged reactive 
power deficiencies  

D-
STATCOM 
[3-4] 

Compensate the bus 
voltage so as to provide 
improved power factor 
and reactive power 
control 

Generate the rated current at any 
network voltage  
Use of a relatively small capacitor on 
the DC bus 
Harmonic current compensation 
Load balancing 

Generating the 
harmonics distortion 
Designed for FIDVR 
mitigation 

Placement 

Analytical  
[5-7] 

Analytical method to 
determine the optimal 
location for placing DGs 

Easy to implement 

Only consider balanced 
systems 
A detailed 3-phase 
distribution system model 
is necessary 

Meta-
heuristic  
[8-9] 

Application of particle 
swarm optimization for 
optimal DGs allocation 
and sizing 

Simple to implement 
Less computational effort 

Combination 
[10-11] 

Combining genetic 
algorithms with particle 
swarm optimization to 
determine the optimal 
location and sizing of 
DGs 

Superior to the individual method in 
terms of solution quality and number of 
iterations 

Control 
scheme 

IEEE 1547 
[12] 

Include the functionality 
of local regulation of 
voltages through inverter 
VVC 

Simple design 
Easy implementation 

Non-adaptability 
Not taking all the benefits 
of DVC 

Delayed 
VVC [13] 

Actively adjusts its VAR 
output as a function of 
local bus voltage  

Control stability 

Cannot maintain a 
feasible voltage profile 
under certain 
circumstances 

Scaled VVC 
[14] 

Feedback-based VVC 
strategy by means of a 
diagonality scaled 
gradient projection 
method 

Control stability 
Set-point tracking 

Requires full centralized 
topology information  
Theoretical analysis only 
builds on 1-phase 

Adaptive 
VVC [15] 

Achieves both low steady 
state error and control 
stability, and makes 
control parameters self-
adaptive to external 
disturbances 

Achieve high set-point tracking 
accuracy and control stability 
Self-adaptive parameter selection 

Considers the node 
voltage where the 
inverter is located, not 
the voltage profile of the 
entire system 

Our method 
[16] 

Optimal dispatch, 
placement and control 
scheme for DVCs to 
minimize voltage 
variations and voltage 
regulator operations 

Consider unbalanced 3-phase 
systems 
Practical dispatch scheme that 
overcomes the limitations of 
communication in distribution 
systems  
Consider the voltage variation of the 
entire system 

Require short-term 
load and solar PV 
forecasting 

 



DE-EE0008770
Ning Lu

Page 79 of 146

Task Objectives:
Establish a multi-objective optimization framework to identify the optimal dispatch 
strategy and suitable placement for the DVC.
Introduce two supervisory control strategies to determine the appropriate instances for 
adjusting the Volt/VAR Curve (VV-C) when the operating condition changes.

Methodology Overview: Determine the optimal dispatch and suitable placement of the DVC to 
minimize voltage variations and voltage regulator operations. Next, consider two schemes for
updating the VV-C for the DVC. The first scheme, referred to as the shifted VV-C (Fig. 1(b)),
involves shifting the midpoint of the standard VV-C (Fig. 1(a)) to align with the average Q-V point
obtained from the optimal Q-V trajectory. In the second approach, known as the fitted VV-C (Fig.
1(c)), we employ linear regression to determine the slope that best fits the VV-C, ensuring it closely
matches the optimal Q-V trajectory.

(a)                                       (b)                                   (c)
Figure. 1. Volt/VAR Curves (VV-Cs) for (a) the standard VV-C, (b) a shifted VV-C with the midpoint 

adjustment, and (c) a fitted VV-C without a deadband, featuring only the new slope that best fits with the 
optimal Q-V trajectories of the DVC.

Simulation Results: Tables II and III show the statistics for voltage variation and voltage 
regulator operation for different cases: base case, standard VV-C, shifted VV-C, and fitted VV-C, 
respectively. These results demonstrate a substantial reduction in voltage variations compared to 
the standard VV-C when using the revised curves. To investigate the impact of different VV-C 
update frequencies on the DVC, tests were performed with update rates set at 30-, 60-, 120-, and 
240-min. The test results reveal that the optimal performance is attained with a 120-minute update 
frequency. As shown in Tables II and III, the proposed fitted VV-C can achieve a 0.3% reduction
in voltage violations and a 12.7% decrease in voltage regulator operations compared to the 
standard VV-C. Figure 2 presents a sample of the optimal Q-V trajectories and the VV-Cs fitted 
using the two proposed approaches: shifted VV-C and fitted VV-C.
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TABLE II:  Voltage Violation by Different VV-C 

VV-C  
(1) 

 
(2) 

 
(3) 

Out of limits (%) 
((1)+(3))/(T) 

Base 3,744 1,100,393 445,303 28.98 
Standard 3,462 1,102,683 443,295 28.83 

Shifted 

30-min 3,535 1,099,059 446,846 29.07 
60-min 3,670 1,108,645 437,125 28.45 
120-min 4,198 1,111,648 433,594 28.25 
240-min 4,536 1,096,431 448,473 29.24 

Fitted 

30-min 3,413 1,084,852 461,175 29.98 
60-min 3,456 1,099,197 446,787 29.06 
120-min 3,483 1,107,690 438,267 28.51 
240-min 4,399 1,105,347 439,694 28.66 

      *T: the total number of voltage points monitored during the scheduling period (1,549,440) 
 

TABLE III:  LTC and LVR Tap Changes by Different VV-C 

VV-C 
LTC LVR 

Total 3-ph Ph-A Ph-A Ph-C Ph-A Ph-B Ph-C 
150R 9R 25R 25R 160R 160R 160R 

Base 20 6 93 46 45 35 14 259 
Standard 20 6 90 47 45 34 14 256 

Shifted 

30-min 29 4 86 46 46 49 16 276 
60-min 24 4 85 44 43 37 15 252 
120-min 19 5 84 42 42 37 12 241 
240-min 23 7 81 47 45 32 14 249 

Fitted 

30-min 33 6 82 44 43 37 14 259 
60-min 24 6 83 42 40 38 14 247 
120-min 20 4 78 40 42 29 13 226 
240-min 21 5 79 41 45 32 15 238 

 
 

      
                                        (a) 08:00-10:00                                              (b) 10:00-12:00 
 

      
                                        (c) 12:00 – 14:00                                           (d) 14:00 – 16:00 
 

Figure. 2. Optimal Q dispatch of the DVC at Phase C in winter and local control schemes. 
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9.8 Task D.1 PV Power Tracking for Providing Power Reserves and Fast Frequency 
Response 

Background: There are several PV power curtailment and PV maximum power point estimation 
(MPPE) techniques proposed in the literature; however, not much work has been done to combine 
power curtailment and MPPE methods to achieve a better performance for both algorithms. In this 
task, we developed an algorithm that combines a modified robust perturb-and-observe (P&O) 
flexible power point tracking (FPPT) technique with a real-time curve-fitting-based MPPE that can 
be applied to both single-stage and two-stage PV system topologies. The algorithm was first 
introduced in the literature in our published paper [1]. By leveraging information provided by the 
MPPE, we were able to create a fast convergence technique for tracking power-reference changes 
within three steps of the FPPT, which can be used to help reduce frequency drops during grid 
disturbances. This is especially useful when operating the PV farm in low-inertia weak grids such 
as microgrids. In addition, as the U.S. energy policies move towards more renewable energy 
integration, this method can be utilized to allow utility-scale PV farms to provide frequency support 
while maintaining power reserves as if they were composed by battery-energy-storage systems, 
with the advantage of being much cheaper. 

Table I summarizes the advantages and disadvantages of the state-of-the-art methods. As can 
be seen in the table, up till now, all existing generative methods require the format of the input and 
output to be fixed. However, in practice, the duration of missing data (model output) varies from 
minutes to several hours, and the length and number of available measurements (model input) 
also vary case by case. To cope with the varying-length cases, traditional methods need either 
increase the output window to cover the longest event or train separate models for different 
scenarios.  

TABLE I : Comparison of STATE-OF-THE-ART ON PV Power Curtailment and MPPE Methods 

 Description Advantages Disadvantages 

Adaptive FPPT Method 
[13] 

Use physical system models to 
simulate responses to external 
disturbances in hope of restoring 
missing data segments. 

Robust and superior 
transient performance when 
compared to conventional 
P&O methods. 

Does not provide fast 
convergence or maximum 
power point estimation for 
maintaining power reserves for 
grid support. 

Use a subset of PV 
Inverters as MPP 

References [16]-[17] 

By operating a few pilot inverters 
at MPP, they could be used as 
references for estimating the total 
power available in a farm. 

Easy to implement.. Ideal 
for large farms with identical 
arrays. Can utilize 
conventional power setpoint 
tracking methods. 

Only applicable to large farms 
with identical arrays. Cannot 
provide fast frequency 
response. Can suffer 
performance if pilot arrays are 
not rotated regularly (as 
proposed in [16]). 

Real-time curve-fitting 
technique from [18]-[19] 

Utilize real-time curve fitting for 
finding incident irradiance and 
temperature at the panel with 
higher accuracy and without 
need for sensors. 

Can provide very accurate 
MPPE without need for 
sensors (cheaper 
implementation), based on 
conventional PI controllers. 

Requires an external ripple for 
proper convergence. Cannot 
provide fast and robust power-
setpoint tracking due to trade-
offs between speed and 
robustness in PI controller 
performance. 

Combined power 
curtailment and MPPE 
method introduced in 

[20]-[21] 

Methods that proposed the 
combination of power curtailment 
and MPPE methods for improved 
performance of both algorithms. 

Can quickly provide MPPE 
without the need for sensors 
while providing 
conventional tracking 
capability. 

Only applicable to two-stage PV 
system that operates on left 
side of the MPP. Does not 
provide fast frequency 
response support. 
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Task Objectives:  
 Develop a PV system power setpoint tracking algorithm capable of maintaining power 

reserves that can be used as back-up power for dealing with uncertainties and PV 
intermittency during the distribution grid blackstart process. 

 Develop a fast frequency response capability that is especially helpful when operating in 
weak grids with low inertia which can help maintain frequency above load shedding 
during disturbances. 
 

Methodology Overview: The circuit and control block diagram of a utility-scale PV system is 
shown in Fig. 1. A hierarchical control structure composed of a dc-link voltage controller cascaded 
with a current controller is used to generate the inverter modulation signal ‘m’. More details 
regarding the generation of the modulation signal and the PV array model are given in one of our 
papers [13]. The main novel functionalities developed in this task are related to the power setpoint 
tracking algorithm highlighted in the bottom left side of the figure. By utilizing information from an 
MPPE algorithm, the FPPT method can quickly find what should be the voltage reference for the 
dc-link ( *) to achieve the desired power injected into the grid.  

 
Fig. 1. Circuit and control system block diagrams of a utility-scale PV system. 

 
Simulation Results: Figure 2 demonstrates a comparison between one of the state-of-the-art 

power curtailment algorithms (from [12]) and the algorithm we present [1], which includes a fast 
convergence technique. Due to the fast convergence capability, the algorithm is able to quickly 
achieve new setpoints, reducing the overall tracking error (T.E.) from 9.166% to 1.758%. In Fig. 3, 
we setup a scenario in which a 2 MVA utility-scale PV plant and a 3.125 MVA diesel generator are 
used to pick-up cold-loads from a distribution grid in steps of 0.5 MVA. Fig. 4 demonstrates the 
microgrid frequency under one of the cold-load pick-ups. As shown in Fig. 16, the proposed method 
outperforms the state-of-the-art method from [12] by reducing the frequency nadir during the cold-
load pickup thanks to its faster power setpoint tracking convergence capability. 
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Fig. 2. Comparison of the power setpoint tracking performance under irradiance intermittency between 

(a) the proposed RST method and (b) the adaptive FPPT (state-of-the-art). 

 
Fig. 3. Configuration of a feeder-level microgrid. 
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Fig. 4. Frequency and voltage plots during microgrid cold-load pickup 
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9.9 Task D.2 A Real-Time EMT-TS Modeling Architecture for Feeder Blackstart 
Simulations 

Background: In this task, we developed and assessed an innovative real-time architecture for 
Electromagnetic Transient and Transient Stability (EMT-TS) modeling, specifically designed for 
distribution feeder restoration studies. Notably, we established, for the first time in the literature, a 
real-time EMT-TS testbed. This testbed features a grid-forming unit simulated in the EMT domain, 
operating as the slack bus of the phasor domain during the restoration process of a distribution 
feeder, even under unbalanced voltage conditions. While EMT tools offer in-depth analysis across 
a broad frequency range (compared to TS), their computational cost becomes impractical for 
simulating larger grids with numerous components. To address this, we integrated EMT-modeled 
power electronic systems into the TS-modeled distribution network. This co-simulation approach 
proves computationally feasible and provides an effective method for simulating grids under high 
penetration of Inverter-Based Resources (IBRs), such as Battery Energy Storage Systems 
(BESS). 

 
Task Objectives:  

 Introduce a new method to model a real-time EMT-TS testbed in which the grid-forming 
unit is modeled in EMT domain, operating as the slack bus of the phasor domain including 
unbalanced voltage conditions. 

 Present a coupling method for multiple coupling points between the EMT and phasor 
domains for moving devices across the feeder into the EMT domain as desired. 
 

Methodology Overview: Figure 1 displays the EMT-TS testbed, which consists of a microgrid 
connected to a distribution feeder via a point of common coupling (PCC). The components are split 
into two subsystems. The first includes DERs such as BESS, diesel generators, and PV systems, 
and a grounding transformer, which is needed to provide grounding when the feeder is 
disconnected from the substation. This subsystem is simulated at microsecond level in 
eMEGASIM, whereas the second is simulated in ePHASORSIM at the millisecond level, including 
distributed rooftop PVs, shunt capacitor banks, voltage regulators, ZIP load models, and the 
distribution feeder. Due to the parallel operation of the subsystems in real-time, there is a delay for 
events to propagate from one to another.  

 
Simulation Results: We apply load steps both to the proposed EMT-TS co-simulation 

architecture, and to a full EMT simulation of the exact same system to compare performance, with 
the full EMT being the benchmark. Two different types of grid-forming units are analyzed: a 2 MVA 
BESS (parameters from [14]), and a 3.125 MVA diesel generator (parameters from [15]). The 
voltage and frequency dynamic responses are shown in Fig. 2 for a step of 1978 kVA. The RMS 
error (RMSE) between the EMT and EMT-TS curves is included in the figure of each test, with the 
highest RMSE value corresponding to the phase with the largest deviation. A maximum voltage 
RMSE of 0.03 p.u. is observed for the BESS; however, note this is an extreme scenario and thus, 
represents the upper bound of the modeling error. A comprehensive list of test results is 
demonstrated in [1], showing that the EMT-TS testbed can greatly match its EMT counterpart, with 
the advantage of requiring only one tenth of the EMT testbed computational effort. 
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Fig. 1. Proposed EMT-TS co-simulation testbed framework. 

 
Fig. 2. Transient response comparison between an EMT-TS and a full EMT testbed. 
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9.10 Task D.3 A Grid-forming Voltage Control Strategy for Supplying Unbalanced 
Microgrid Loads using Inverter-based Resources 

Background: This task introduces a grid-forming (GFM) voltage control strategy designed for 
a battery energy storage system to uphold balanced three-phase output voltages while serving 
unbalanced loads. The proposed control scheme operates in a stationary reference frame (αβ) and 
regulates positive-sequence (PS) and negative-sequence (NS) voltages. Additionally, a grounding 
transformer (GT) is employed to mitigate the zero-sequence (ZS) voltage. The advantages and 
disadvantages of existing unbalance control methods are summarized in Table I [1]-[6].  

Based on the outcomes, a power-voltage unbalance curve is derived for various output 
transformer configurations, establishing the relationship between the power unbalance factor 
(PUF) and the voltage unbalance factor (VUF) for microgrid power scheduling. 

 
TABLE I. Comparison of STATE-OF-THE-ART unbalance voltage control methods 

Method Description Advantages Disadvantages 

dq-based 
control 

scheme [1]-
[5] 

Use two pairs of PI controllers, which 
situate in two reference frames while 
rotating in the opposite directions. 

Reliable, easy to 
implement 

Need band-stop filters, 
introduce filter delay and 
slow down regulation speed. 

αβ-based 
control scheme 

[11]-[11]  

Require one pair of PR controllers for 
voltage regulation in AC domain. 

Better unbalance 
regulation performance, 
simplified computational 
burden 

Hard to find the good control 
gains. 

 
Task Objectives:  

 Developed a grid-forming voltage control strategy to maintain balanced three-phase 
output voltages when serving unbalanced loads.   

 Derived the relationship between power and voltage unbalance and introduce a 
performance metric for regulating power unbalance to meet inverter voltage unbalance 
requirements.  

 
Methodology Overview: The topology and control scheme are illustrated in Fig. 1. The voltage 

reference of the inner voltage controller, , is generated using the conventional droop and 
secondary control methods [8]-[9]. Notably, there is no requirement for decomposing the positive-
sequence (PS) and negative-sequence (NS) components. The inner voltage control operates on 
an αβ-based controller, successfully achieving NS regulation without the need for an unbalance 
compensator, as depicted in Fig. 2. Furthermore, a grounding transformer (GT) has been 
incorporated into the circuit to alleviate the impact of zero-sequence (ZS) currents on voltage 
regulation, ensuring balanced Point of Common Coupling (PCC) voltage [10]. 

 
Simulation Results: As depicted in Fig. 3, when the data granularity is set at 5-min and 15-min 

intervals, the steady-state values of Point of Common Coupling (PCC) voltage and current remain 
consistent in both cases. This suggests that both control schemes exhibit commendable current 
tracking performance in steady-state conditions. However, the dynamic performance of the αβ-
based control scheme stands out significantly. Additionally, as illustrated in Fig. 4, when employing 
a Y-Yg output transformer, Voltage Unbalance Factor (VUF) [11]-[14] can be regulated within 3% 
only when Power Unbalance Factor (PUF) [7] is 30% or less. The introduction of a Grounding 
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Transformer (GT) to the Y-Yg output transformer enhances the system's capability to supply 
unbalanced loads, regulating VUF within 3% even when PUF is 55% or less, marking a substantial 
improvement. 

 
Figure 1. Topology and control structure of a three-phase grid-forming BESS. 

 

 
Figure 2. Control diagram of the αβ SRF-based inner voltage controller. 
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Fig. 3. Performance comparison of αβ-based and dq-based control methods. (a) Time-series waveforms 
of PCC voltage and current; (b) RMS profiles of PCC voltage and BESS current; (c) NS and ZS PCC voltage.

Fig. 4. PUF versus VUF for different transformer configurations.
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9.11 Task D.4 Under-frequency Load Shedding for Power Reserve Management in 
Islanded Microgrids 

Background: This task introduces under-frequency load shedding (UFLS) schemes specifically 
tailored to meet power reserve requirements in islanded microgrids (MGs) featuring only one grid-
forming (GFM) resource for frequency regulation. In instances where MG power consumption 
exceeds a predefined threshold, the MG frequency is gradually lowered to various setpoints, 
triggering UFLS for varying levels of load reduction. A detailed comparison between conventional 
UFLS and the proposed UFLS is provided in Table I. 

Traditionally, UFLS serves as an emergency response mechanism to avert frequency collapse 
in large-scale power systems [1][2]. In contrast, the proposed UFLS method prioritizes preserving 
power reserves in an islanded MG during regular operation to fulfill the power reserve requirement 
(PRR). 

TABLE 1: COMPARISON OF EXISTING AND PROPOSED UNDER-FREQUENCY LOAD SHEDDING 
SCHEMES 

Method Object Operation 
Condition 

Triggered 
by UFLS Execution Control 

Mechanism 
3-Phase 
Imbalan

ce 

Pow
er 

Surg
e 

Traditional 
UFLS 
method  

Recover 
system 
frequenc
y 

Emergency 
response 

Large 
frequency 
drops due to 
outages 

UFLS relays [3]-[5] Autonomous [3]-[5] 

No No Controllable loads [6]-
[9] 

Centralized [6]-[8] 
Decentralized [9] 

Developed 
UFLS 
method 
[10] 

Keep 
power 
reserve 
margin 

Normal 
operation 

Low power 
reserve 

Sectionalizers 

Autonomous 

No 
Yes 

 Smart meters;  
Controllable appliances Yes 

 
Task Objectives:  

 Develop the UFLS scheme capable of providing power reserve for the GFM device to 
maintain sufficient power regulation headroom. The scheme can operate an isolated 
microgrid autonomously for extended durations during outages without dependence on 
robust communication networks. 

 Implement a per-phase UFLS strategy to efficiently manage and mitigate three-phase 
imbalances within the grid. 
 

Methodology Overview: As depicted in Fig. 1, in an islanded MG, three controllable devices 
can be used to implement UFLS: sectionalizers (e.g., S1-S6), which can turn on/off an entire load 
group (LG); smart meters (e.g., SM1-SM6), capable of turning on/off an entire building/house; and 
controllable appliances (e.g., APP1 and APP2). In this task, we assume that there is only one GFM 
BESS in the islanded MG. This allows us to use the simplified frequency control structure depicted 
in Fig. 2 to modulate the system frequency as the UFLS control signal [11]-[13]. A UFLS device is 
characterized by four vital control parameters [14] [15]: the triggering frequency threshold (fTH), the 
tripping delay (τ1), fixed recovery delay (τ2), and the random recovery delay (τrand), as depicted in 
Fig. 3. 

Simulation Results: Simulation results confirm the effectiveness of the proposed methods in 
replenishing power reserves and sustaining phase power balance. In the context of appliance-
based UFLS, the power output of the BESS gradually diminishes and subsequently recovers while 
meeting PRR (see Fig. 4(b)). This contrasts with the sectionalizer-based scenario  (see Fig. 4(a)), 
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where an abrupt drop or immediate rebound is observed. Moreover, the appliance-based UFLS 
enables a more precise per-phase load shedding in a gradual fashion, contributing to better-
balanced three-phase voltage and the ability to serve more loads. 

 
Fig. 1. Configuration of an islanded MG powered by a single GFM BESS. 

 

 
Fig. 2. The proposed, simplified BESS control structure. 
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Fig. 3. An illustration of the UFLS response time delay, fixed recovery time, and random recovery delay 

during an UFLS event. 

 
(a) 

 
(b) 

Fig. 4. Simulation results of an UFLS event. (a) with sectionalizer-based UFLS; (b) with appliance-level UFLS. 
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9.12 Task D.5 Assessment of Transmission-level Fault Impacts on Distribution IBR 
Operation 

Background: This task presents a comprehensive analysis of the impact of transmission-level 
faults on distribution IBR operation by using a real-time transmission and distribution (T&D) co-
simulation platform. Currently, there are different T&D co-simulation platforms proposed for the 
integration study of a large amount of IBRs, and fewer of the work analyzed the impact of 
transmission-level on distribution IBRs. Table I summarizes the advantages and disadvantages of 
the state-of-the-art platforms and work. As can be seen in the table, most research focused on the 
power flow algorithm for the T&D co-simulation, the impact of IBRs on stability of the joint system.  
The system model is commonly built in phasor domain, especially the IBRs, which cannot 
accurately reflect the negative and zero sequence components contributed by IBRs under various 
operational conditions for fault assessments. 

TABLE I: Comparison of STATE-OF-THE-ART T&D Co-simulation Studies 

 Tran. 
Simulator 

Dist. 
Simulator Description Advantages Disadvantages 

[1], [2] MATLAB MATLAB Model the entire network (transmission 
and distribution) using dynamic 
phasors [1], proposed a coordinated 
T&D AC optimal power flow [2]. 

Simple and easy to 
implement. 
Provide a mathematical 
model for T&D co-
simulation power flow.  

Static models and verified only for 
simple networks without IBRs. 
Phasor domain model only 
Non-real-time modeling 

[3] OPAL-RT 
ePHASO
Rsim 
 

OPAL-
RT 
ePHASO
Rsim 
 

Both transmission and distribution 
network are modeled in phasor domain 
on the real-time platform. 

Can run in real time. 
Can only model in phasor domain and 
provide fewer modeling details.   
Didn’t consider the modeling of IBRs 

[4] MATLAB 
/SIMULIN
K 

MATLAB 
/SIMULI
NK 

Study the impact of aggregate 
DERs on dynamic stability for 
load changes and 
balanced/unbalanced faults using small 
test networks. 

Simple and easy to 
implement. 

Didn’t include the modeling of high-
penetration IBRs. 
Non-real time. 

[5]-[8] MATLAB OPEND
SS 

Focus on different coupled load flow 
algorithms to facilitate T&D co-
simulation.   

Provide a mathematical 
model for T&D co-
simulation power flow. 

Didn’t model a large T&D network with 
high-penetration IBRs. 
Non-real time. 

[9] InterPSS OPEND
SS Consider a simplified transmission 

model (in phasor domain) to simulate 
various transmission-level faults on IBR 
tripping in the distribution systems 
(modeled in phasor domain). 

Can run in real-time. 
Consider the modeling of 
high-penetration IBRs. 
Consider different kinds 
of transmission faults on 
distribution IBR 
operation. 

Phasor domain models cannot model 
the responses of IBRs accurately  
No IBR grounding considerations  
 

Our 
model  
[10] 

OPAL-RT 
eMEGAsi
m 
 

OPAL-
RT 
eMEGAs
im 
ePHASO
Rsim 

Consider an equivalent transmission 
network (in EMT domain) to simulate 
both symmetrical and 
unsymmetrical transmission faults 
on IBR operation in distribution (in 
EMT and phasor domain).  

Real-time simulation 
Consider both 
 symmetrical and 
unsymmetrical faults  

EMT-domain modeling requires 
higher computational cost.  

 
Task Objectives: 

 Developed a T&D co-simulation platform that can model high-penetration IBR 
penetration distribution systems under symmetrical and unsymmetrical fault scenarios. 

 Assess the impact of transmission-level faults on distribution IBR operation. 
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Methodology Overview: Using a real-
time transmission and distribution (T&D) co-
simulation platform, as shown in Fig. 1, we 
simulate both symmetrical and 
unsymmetrical faults at increasing electrical 
distances within the transmission system 
while evaluating IBR tripping across various 
phases and locations at the distribution level. 
The distribution includes three 3-phase IBRs 
(MW-level) and 86 1-phase rooftop PVs, 
which are all equipped with fault ride-through 
(FRT) [11]. The 1-phase IBRs are evenly 
throughout the feeder and across a, b, c 
phases. All 1-phase PVs are modeled in 
phasor domain using ePHASORSIM OPAL-
RT platform, and 3-phase IBRs are modeled 
in EMT domain [12] using eMEGASIM. This
configuration enables us to examine the effects of transmission-level faults on both 3-phase and 
1-phase IBRs across various feeder locations and across different phases. 

Simulation Results: Table II summarizes the percentage of IBRs tripped offline for all four fault 
types, where different IBR power-to-load ratios (PLRs) and the impact of voltage regulation 
(50%VR) are considered. It can be observed that:1) An increased PLR generally results in less 
IBR tripping as the combined fault current injections from distributed IBRs help raise the voltage 
levels along the distribution feeder; 2) The PCC fault results in the most pronounced voltage 
decline and leads to more instances of IBR tripping, as shown in Fig. 2; 3) 3-phase IBRs are more 
susceptible to transmission level faults, compared to 1-phase IBRs; 4) IBRs at non-faulty phases 
can also be tripped off due to the over voltage caused by unsymmetrical  faults; 5) The 
unsymmetrical tripping of 1-phase IBRs will cause severe power and voltage unbalance at high 
PLRs.

Fig. 1. Layout of the integrated T&D co-simulation 
testbed.
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Fig. 2 Nodal voltage on Phase for the SL2G fault at 50% PLR at different fault locations.

Table II: Trip Percentage of Distributed IBRs Under Different Transmission Faults (Ibr PLRs: 50%, 50%VR, 
100%, 300% )

The numbers in the cell represent results for 50%, 50%VR, 100%, and 300% PV PLRs, respectively.

Case Fault 
Loc.

Single Line-to-Ground 
Fault

(A-G Fault)

Double Line-to-Ground 
Fault

(A-B-G Fault)

Line-to-Line Fault
(A-B Fault)

Three Phase-to-Ground 
Fault

(A-B-C-G Fault)
3-ϕ
(%)

ϕ-A
(%)

ϕ-B
(%)

ϕ-C
(%)

3-ϕ
(%)

ϕ-A
(%)

ϕ-B
(%)

ϕ-C
(%)

3-ϕ
(%)

ϕ-A
(%)

ϕ-B
(%)

ϕ-C
(%)

3-ϕ
(%)

ϕ-A
(%)

ϕ-B
(%)

ϕ-C
(%)

1 PCC 100
100
100
100
62

0
0
0
68

0 100
100
100
100
57

100
100
100
55

0
0
0
41

0 0 0 0 100
100
100
100
57

100
100
100
50

100
100
100
63

2
Down
stream
SHORT

100

100
100
100
57

0
0
0
59

0 100

100
100
57
54

100
100
100
41

0
0
0
48

0 0 0 0 100

100
100
100
57

100
100
100
41

100
100
100
52

3
Down
stream
MEDIU

M

0 0 0 0 100

97
57
14
0

100 0 0 0 0 0 100 100

100
100
100
41

100

4
Down
stream
FAR

0 0 0 0 0 0 0 0 0 0 0 0

33
33
0
0

95
35
3
0

59
47
0
0

89
0
0
0

5 GTF 0 0 0 0 100 0

100
100
100
82

0 100 0

100
100
100
59

0 100 100 100 100
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9.13 Task D.6 Design of Delayed Stealth False Data Injection Attacks Against 
Battery Energy Management System 

Background: This task developed a deep reinforcement learning (DRL)-based delayed stealth 
false data injection attack (SFDIA) scheme that targets Battery Energy Management Systems 
(BEMS). Battery Energy Storage Systems (BESSs) are crucial components in an Advanced 
Distribution Network (ADN), providing both grid-following and grid-forming functions [12] in grid-
connected or microgrid operation modes. Given their significance, BESSs become a prominent 
target for False Data Injection Attacks (FDIAs). In TABLE I, we provide a comprehensive literature 
review on existing research pertaining to FDIAs against BESSs. Much of the previous work has 
focused on the impact of FDIAs on power grid stability, primarily employing persistent and repetitive 
attacks, as illustrated in Table I with scenario-based FDIAs. While these attacks are 
straightforward, they lack stealth and can be easily detected by certain Bad Data Detection (BDD) 
mechanisms, such as personnel observations or residual-based BDD. Other SFDIAs face 
challenges like high computational burden for real-time applications, compromised system 
accuracy, or insufficient stealth. 

TABLE I: Comparison of state-of-the-art FDIAs targeting the BESS 

Type Approach Attack 
Objectives 

Falsified 
Data BDD Implementation Advantage Disadvantage 

Scenario-
based 
(Non-

stealthy) 

Persistent 
and 
repetitive 
attacks [13] 

Power 
control 

Active 
power 
setpoints 

No 

Inject bias within the operation 
range to active power setpoints of 
BESS to cause power imbalance 
in an islanded microgrid  

Conscious 
manipulation 
 
Easy to 
implement 

1. Non-
stealthy 
2. Easy to be 
detected by 
personnel 
observations 
or BDD  

Persistent 
attacks [14] 

Mode 
control 

Mode 
command, 
etc. 

Falsify the mode command to 
disrupt the mode conversion from 
PQ to  to fail the microgrid 

Persistent 
attacks [15] 

ON/OFF 
control 

ON/OFF 
command 

Falsify the ON/OFF command to 
deteriorate power quality or 
destabilize the power system 

Persistent 
attacks [16] 

SoC 
estimation 

BESS 
voltage 

Different voltage bias is selected 
within the operation range to 
disrupt the SoC estimation 

Optimizat
ion-based 
(Stealthy) 

Instantaneo
us and 
delayed 
attacks [17] 

SoC 
estimation BESS status Yes 

Maximize the SoC estimation 
error with SE-based BDD 
considered to cause overcharging 
or over discharging  

Highly stealthy 
 
Maximize the 
SoC estimation 
error 

System info is 
required, long 
runtime, not 
robust in real-
time 
applications 

Machine 
learning- 

based 
(Stealthy) 

ANN-based 
attacks via 
MitM 
[18],[19] 

BESS 
operation 
status 

BESS 
status, 
commands 
and PCC 
meter  

No 

Utilize ANN to  replicate the 
normal behavior of BESS for 
enhanced stealth, and take the 
control of the authentic BESS by 
employing MitM techniques  

Medium stealthy 
 
Conscious 
manipulation 

Need to attack 
a large 
amount of 
data and easy 
to be detected 
by residual-
based BDD 

DRL-based 
delayed 
persistent 
and 
repetitive 
attacks [20] 

SoC 
estimation 

BESS 
measureme
nts 

Yes 

Novel DRL-based target SoC 
error attacking scheme to 
introduce a target SoC error at the 
desired time by only injecting 
battery voltage and current bias 

High stealthy 
and accuracy in 
real-time 
applications by 
conscious 
manipulation of 
SoC estimation 
errors. Attacks 
can be launched 
repeatitively. 

System info is 
required and 
off-line 
training is 
required 

Task Objectives:  
 Design a delayed, highly stealthy SFDIAs against BEMS for real-time applications.  



DE-EE0008770 
Ning Lu 

 

Page 103 of 146 
 

 Investigate the possible attacks against BEMS and apply the proposed attack scheme to 
the PARS platform. 
 

Methodology Overview: We developed a delayed SFDIA scheme targeting the SoC estimation 
in BESS, aiming to disrupt the operation of the BEMS within a specified future time range. As 
shown in Fig. 1, the system comprises the distribution grid, an ADN control center, and a BESS, 
including battery packs, a voltage-source inverter, a local battery energy management system, and 
a BESS controller. The ADN control center employs two BDD mechanisms: residual-based BDD 
and cross-validation of SoC. To attack SoC estimation, the  and  measurements of the battery 
must be falsified. Then, the altered values must be able to evade detection by the two BDD 
mechanisms. We frame the stealthy attack as a DRL problem. Through interactions with the grid 
and ADN control center environment and a carefully designed reward function, an agent, 
represented by a deep neural network, can be offline trained to generate attack measurement bias 
capable of passing BDD, inducing a target SoC error at desired times. The proposed DRL 
framework is depicted in Fig. 2.   

 
Simulation Results: We implemented the proposed DRL-based delayed SFDIA scheme in the 

BEMS of PV Plant Restoration use case. Within the BEMS, the PV plant serves to supply loads 
and charge BESS during the day, while the BESS sustains the system during the night. The SoC 
of the BESS is regulated within 20%~90%. In this context, we introduced two attack schemes. The 
first involves altering SoC to mislead the BEMS, causing it to believe there is enough energy stored 
in BESS. As illustrated in Fig. 3(a), the Delayed SFDIAs inject false data, gradually increasing the 
SoC error. Consequently, the BESS stops charging when the actual SoC is at 60%, resulting in a 
system shutdown when the attack concludes, with the actual SoC falling below the critical threshold 
of 20%. The second attack focuses on accelerating BESS degradation through over-discharging. 
In Fig. 3(b), a falsely elevated SoC is introduced to convince the BEMS that the BESS has sufficient 
energy to release. When the false SoC is around 20%, the actual SoC drops to approximately 5%. 
This deep discharge can significantly degrade the lifespan of the BESS. Additionally, for repeated 
launch of degradation attacks, it is crucial for the attack to remain stealthy even after it concludes. 
Thus, the false SoC must closely match the actual SoC at the end of the attack. 
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Figure 1. Layout of the integrated T&D co-simulation testbed.

   Figure 2 Proposed DRL framework for delayed SFDIAs against SoC estimation.

(a)                                                                  (b)
Figure 3. SoC profile of the test case (a) with SFDIAs against microgrid reliability, and (b) with SFDIAs for 

deep discharge of BESS
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9.14 Task D.7 Development of an Encoding Method on a Co-Simulation Platform for 
Mitigating the Impact of Unreliable Communication 

Background: This task focuses on 1) the development of an encoding method to mitigate the 
effects of unreliable communication links, and 2) create a hardware-in-the-loop co-simulation 
platform to assess the performance of the algorithm.  The power distribution network and 
distributed energy resources are simulated on an OPAL-RT-based real-time simulation 
environment, interconnected with energy management systems through a simulated 
communication network. We have conducted a thorough analysis of the pros and cons of current 
state-of-the-art approaches in comparison to our proposed methodology, and the findings are 
summarized comprehensively in Table I. 

TABLE I: State-of-the-art comparison of parameterization methods 

 Testbed Modeling Communication Issue Mitigation Method 
[1] Phasor domain distribution feeder model  Link outage  N/A 
[2] HIL based model + FPGA controller Communication latency N/A 

[3] Electromagnetic transients model + network 
simulator Communication latency N/A 

[4], [6] HIL based model + network simulator Communication latency 
and packet drop N/A 

[5] HIL based model + actual network link Corrupted data N/A 

[7] Phasor domain model + FPGA controller Corrupted data An ALM-based 
method. 

Propos
ed [8] Hybrid HIL based model + network simulator 

Communication latency, 
corrupted data and packet 
drop 

An enhanced ALM-
based method. 

 
Task Objectives:  

 Model the unreliable communication links between DERs and the central controller. 
 Test mitigation method for the impact of communication noise, errors, and missing data 

on distribution feeder nodal voltage control. 
 
Methodology Overview: The configuration of the asynchronous HIL co-simulation platform is 

shown in Fig. 1. The transmission network and distribution feeder are modeled with ePHASORSIM 
at the millisecond-level and the DERs are modeled using eMEGASIM so that their dynamic 
responses can be modeled with the microsecond-level. Two communication connections are set 
up to model the communication between the device level controller and the centralized controller. 

We assume that each feeder node is equipped with one user equipment (UE) for communicating 
with the base station (BS) tower and an LTE simulator is used to model wireless communication 
network between UEs and BS considering different communication interruptions. The configuration 
is shown in Fig. 2.  

The proposed mitigation method can be formulated as a matrix recovery problem [8]: 

* 1,
min P
L G

L G                           (1a) 

s.t. 
M L G                                    (1b) 

                                     P PG L                                (1c) 
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where ||·||* is the nuclear norm of a matrix (the sum of its singular values), ||·||1 is the sum of the 
absolute value of matrix entries while λ is a positive weighting factor. 

By solving (1), the optimal estimations for LTE communication data and communication errors 
can be obtained, where L m×n

s and G m×n
s . M is the accrual received data via the LTE link 

which may contain missing data and corrupted data. PΩ[·]: m×n
s → m×n

s is a linear operator that 
keeps the entries in Ω unchanged and sets those outside Ω (e.g., ) to zeros.

Figure 1. Architecture of the asynchronous HIL co-simulation platform.
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Simulation Results:
The simulation results demonstrate the efficacy of the setup for a controller-in-the-loop system 

that models system dynamics and allows algorithms to be developed and tested with realistic 
communication links considered in a laboratory environment. The one-minute distribution of the 
nodal voltage without control and with the centralized volt-var control (CVVC) from 12:00 to 22:00 
is summarized in Fig. 3. Both cases have a perfect communication link without any interruption 
and a control voltage margin (0.014 p.u.). As shown in Fig. 4, if no voltage margin is used, nodal 
voltage will drop below the desired voltage lower limit. While setting up a large voltage margins 
(e.g., 0.02 p.u.) can remove all voltage violations, it leads to frequent control actions, causing 
higher wear-and-tear and higher control cost. Fig. 5 demonstrates the impact of both missing and 
corrupted data caused by interrupted communication links on CVVC performance using the same 
settings as Case 3 and Case 4. The missing rate and corrupted rate are all set as 10%. The total 
number of voltage violations (TNVV), the max voltage violation magnitude (MVVM), and the 
average execution time (AET) are used as the evaluation metrics. 

(a)

3

(b)

Fig. 3.  Nodal voltage profiles: (a) no-control baseline case and (b) controlled case with perfect 
communication link.

Fig. 4. Phase a voltage at Node 50 when using different voltage control margins.

(a) (b)

12 14 16 18 20 22

0.975
1

1.05

Median RangeV
ol

ta
ge

 (p
.u

.)

Time (hour) 12 14 16 18 20 22

0.975
1

1.05

Median RangeV
ol

ta
ge

 (p
.u

.)

Time (hour)

12 14 16 18 20 22

0.975

1

1.025
 0 p.u.  0.014 p.u.  0.02 p.u. 

V
ol

ta
ge

 (p
.u

.)

Time (hour)

12 14 16 18 20 22

0.975
1

1.05

Median RangeV
ol

ta
ge

 (p
.u

.)

Time (hour)
12 14 16 18 20 22

0.975
1

1.05

Median RangeV
ol

ta
ge

 (p
.u

.)

Time (hour)



DE-EE0008770
Ning Lu

Page 109 of 146

(c)

Fig. 5. Nodal voltage profiles when there are missing and corrupted data sets: (a) no data 
recovery, (b) recovery using SVT, and (c) recovery using EALM-EDR.

TABLE II: Summary of Simulation Results

Method TNVV MVVM (p.u.) AET (second)
Unrecovered 799 0.0185 \

SVT [] 32 0.0029 0.9973
Proposed 23 0.0027 0.2688
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9.15 Task D.8 Real-Time Parameterization for a PV-farm Digital Twin using a Two-
Stage Optimization Approach 

Background: This task delves into the escalating relevance of Power System Digital Twins 
(PSDTs), propelled by the global shift towards decarbonization and electrification of power grids. 
PSDTs, serving as virtual counterparts to physical systems, are progressively utilized in the 
innovation and evaluation of new technologies within power systems. Contrasting with traditional 
power system simulation test beds, which are generally either hypothetical or static imitations, 
PSDTs offer dynamic simulation that mirrors real-time system changes. This document introduces 
an innovative technique for the real-time parameterization of a photovoltaic digital twin (PV-DT) 
employing high-resolution field data. This approach marks a significant departure from 
conventional practices, emphasizing the distinctive requirements in PSDT development. The 
benefits and limitations of existing PV-DT methods, in relation to our proposed methodology, are 
comprehensively analyzed and summarized in Table I.   

TABLE I: State-of-the-art comparison of parameterization methods 

 Model  
Input 

Model 
Output Description Advantage Disadvantage 

Model 
free 

based 

[16], 
[23], 
[24] 

5 min 
resolution 

Irradianc
e, PV 
power 
output 

Estimates variables, including 
tilt angle, azimuth angles, and 
albedo, which are related to 
irradiance. 

Parameterize and simulate 
PV systems without the 
use of electrical model 
analysis. 

1) Considers only the 
power, not the output 
voltage and current of the 
PV 
2) Performance varies 
greatly depending on 
weather conditions. 

MD 
model 
based  

[12]-[15] 
Manufactu

ral data 
sheet 

PV model 
paramete

rs 

Model the PV system 
equivalently using the MD 
model to estimate its 
parameters. 

Accurate electrical 
modeling of PV becomes 
possible. 

Increased model 
complexity longer 
computation times 

SD 
model 
based 

[17], 
[29] 

(Bench
mark 

method) 

5 min 
resolution 

Irradianc
e 

Estimate irradiance by 
employing an optimization-
based approach derived from 
the equations of the SD model 

1) Information such as tilt 
angle and albedo are not 
required. 
2) Can consider the 
uncertainty of irradiance 
measurement. 

Real-time 
parameterization of the 
SD model's model 
parameter was not 
conducted. 

[18]-
[21], 

[25],[26]
, 

Manufactu
ral data 
sheet 

PV model 
paramete

rs 
Estimate model parameter 
using the SD model’s 
equations and the Lambert W 
function. However, the 
uncertainty of the irradiance 
sensor was not considered. 

Can estimate model 
parameters that 
correspond to the V-I 
curve and V-P curve in the 
manufacturer's datasheet. 

1) Some papers do not 
consider the time-
variability of parameters. 
2) If the measured 
irradiance is inaccurate, 
the estimated parameters 
cannot be deemed 
accurate either. 

[22] 
(Bench
mark 

method) 

5 min 
resolution 

PV model 
paramete

rs 

Our 
method 

1 sec 
resolution 

Irradianc
e & 

PV model 
paramete

rs 

1) Considers the uncertainty of 
the irradiance measurement. 
2) Estimates model 
parameters using the SD 
model's equations and the 
Lambert W function. 

Can maximize the 
parameterization 
performance in utility-scale 
PV data at one-second 
intervals that are greatly 
affected by partial shading. 

The computation time 
increases because of co-
optimization 

 
Task Objectives:  

 Implement a two-stage optimization process for real-time PV-DT parameterization 
 Improve the steady-state and transient performance of the PV-DT 

 
Methodology Overview: The PV-DT framework is depicted in Fig. 1. Real-time measurement 

of voltage, current, and temperature ( , , and ) are used to estimate the irradiance 
assuming the five model parameters are known. If the modeling error exceeds pre-determined 
thresholds, or the estimated parameters deviates the parameters in use, the parameters will be 
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updated using the two-stage optimization algorithm.  The PV-DT is developed on the PARS OPAL-
RT platform and verified using two-week, second-by-second PV farm measurements.  

 
Fig. 1. Configuration of a utility-scale PV farm 

 
Simulation Results: Tables II and III presents the anticipated errors in comparison to actual 

PV farm operations in the Estimation stage and during Simulation, respectively.  
TABLE II: Comparison of Results across Three Optimization Methods 

Estimation 
Level 

Real-time 
parameterizati

on 
Irradiance 
Estimation  

Mean Absolute Percentage Error 
(MAPE) Root Mean Square Error (RMSE) 

 Current 
(%) 

 Voltage 
(%) 

 Power 
(%) 

 Current 
(A) 

 Voltage 
(V) 

 Power 
(kW) 

Base Case No No 34.83 2.21 36.19 286.37 26.56 305.89 

Method 1 [9] No Yes 1.58 1.25 0.33 11.15 14.65 2.41 
Method 2 

[16] Applied No 0.62 0.05 0.65 41.73 0.75 43.34 

Our Method 
[17] Applied Applied 0.17 0.04 0.20 1.50 0.66 1.86 

TABLE III: Comparison of Results across Three Optimization Methods 

Simulink 
Level 

Real-time 
parameterizati

on 
Irradiance 
Estimation  

Mean Absolute Percentage Error 
(MAPE) Root Mean Square Error (RMSE) 

 Current 
(%) 

 Voltage 
(%) 

 Power 
(%) 

 Current 
(A) 

 Voltage 
(V) 

 Power 
(kW) 

Base Case No No 34.96  2.11  36.25  288.2 26.36 306.87 

Method 1 [9] No Yes 1.31  1.06  0.25  7.73 13.38 1.49 
Method 2 

[16] Applied No 1.19  0.39  0.90  42.69 5.72 43.67 

Our Method 
[17] Applied Applied 0.29  0.22  0.13  2.76 2.79 0.89 
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The baseline PV-DT, using a fixed set of model parameters and relying on irradiance sensor 
measurements as inputs, demonstrated the least favorable performance. Method 1, utilizing a fixed 
set of model parameters but with calculated equivalent irradiance, showed improved performance 
compared to the baseline PV-DT. Method 2, incorporating real-time parameterization while still 
using irradiance sensor measurements as inputs, outperformed Method 1. The proposed model, 
which calculates equivalent irradiance and is enhanced by real-time parameterization algorithms, 
achieved the best performance among the four approaches. As shown in the table, the proposed 
method outperformed other methodologies in terms of current, voltage, and power, demonstrating 
MAPE improvements of 0.9%, 0.17%, and 0.87%, respectively, when compared with the second-
best model. 
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9.16 Task E.1 A Meta-learning Based Distribution System Load Forecasting Model 
Selection Framework 

Background: This task presents an automated, extendable and robust load forecasting model 
selection framework to solve the heterogeneous load forecasting tasks with different forecasting 
requirements and data availabilities in power distribution systems. In general, there are two types 
of methods achieving model selection: knowledge-based expert system (KES) and machine-
learning based methods. Table I summarizes the advantages and disadvantages of the state-of-
the-art methods. We can see that the KES methods are less flexible because the system needs to 
be updated manually whenever new forecasting models are introduced or new forecasting 
scenarios are considered. Meanwhile, there lacks a rigorous problem formulation as well as a 
generalized test case for the current machine-learning based methods.  

TABLE I: Comparison of STATE-OF-THE-ART load forecasting model selection methods 

 Description Advantages Disadvantages 

Knowledge-based Expert 
System Error! Reference s
ource not found.-Error! 
Reference source not 

found. 

Construct a rule-based model 
selection mechanism to determine 
which model to use under what 
forecasting scenarios, based on 
experts’ knowledge.  

Explainable and friendly to 
system operators, since the 
model selection rules are built 
based on human knowledge.  

Inflexible because the system 
needs to be updated manually 
whenever new models or scenarios 
are introduced.  

Machine-learning based 
methods Error! Reference s

ource not found.-Error! 
Reference source not 

found. 

Construct a mapping from forecasting 
task features to the optimal 
forecasting models to achieve model 
selection.  

Automated and easy to update 
when new models or 
forecasting tasks are 
considered. 

Less explainable, and currently 
there lacks are rigorous problem 
formulation for the model selection 
system.  
 

 
Task Objectives: 

 Provide a rigorous problem formulation for the machine-learning based model selection. 
 Develop a meta-learning based model selection framework to solve the heterogeneous 

load forecasting tasks in power distribution systems, which is automated, extendable and 
flexible. 

 
Methodology Overview: The meta-learning based load forecasting model selection framework 

is illustrated in Fig. 1. In the base-learning layer, all candidate forecasting model will be tested on 
each forecasting task to find out the best-performed model on each task. In the meta-learning 
layer, the features of forecasting tasks will be calculated as the input to train the meta-learner, the 
nature of which is a classifier, to construct the mapping from task features to the best-performed 
models. In the online application layer, the trained meta-learner will provide the forecasting model 
recommendation among candidate models for the new forecasting task, given the task features as 
the input.  

 
Simulation Results: As shown in Table II, the proposed model selection framework has 46% 

chance to identify the best-performed load forecasting model among 10 candidate forecasting 
models for a given load forecasting task, and 76% chance to provide a top-3 forecasting model. 
Consequently, the average forecasting error on 170 testing tasks is reduced: compared with the 
best-performed single forecasting model, the proposed model selection framework can reduce the 
Mean Absolute Percentage Error (MAPE) from 0.188 to 0.143, and reduce the System Error Ratio 
(SER) from 1.40 to 1.14. 
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As shown in Table III, when data granularity is 5-min and 15-min, Load-PIN outperforms all other 

models and shows 15-30% improvement compared with the second-best model. This shows that 
Load-PIN can extract information hidden inside the high-resolution data for forecasting the missing 
data segments. However, if the data resolution is too low, the Load-PIN does not show significant 
performance improvements. This is because in those cases, forecasting average values outweigh 
uncovering load shape details. 

 
Figure 1. The proposed meta-learning based load forecasting model selection framework, including base-

learning layer, meta-learning layer and online application layer.  
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TABLE II: Model performance on different rankings 

Ranking 1 2 3 4 5 6 7 8 9 10 
Classification accuracy 46% 17% 13% 6% 4% 3% 3% 3% 2% 3% 

SER 1.14 1.27 1.34 1.46 4.18 2.89 4.48 3.61 2.61 3.09 
Failure count 0 0 2 10 10 12 12 17 14 11 

 
 

TABLE III: Error comparison between our method and the best-performed single model 

 Average SER Average MAPE Failure Count 

Proposed meta-learning mechanism  1.14 0.143 0 
Best-performed single LF model 1.40 0.188 0 
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9.17 Task E.2 A TCN-based Hybrid Forecasting Framework for Hours-ahead Utility-
scale PV Forecasting 

Background: This task presents a hybrid forecasting framework for utility-scale PV farms to 
achieve hours-ahead PV forecasting, based on the Temporal Convolutional Network (TCN). In 
general, there are two types of PV forecasting models: physics-based model and data-driven 
model, as summarized in Table I. As can be seen, both physics-based model and data-driven 
model have advantages and disadvantages. There still lacks a deep fusion approach for integrating 
their advantages to further improve the forecasting accuracy. Besides, recent studies start to 
leverage the spatial-temporal correlations between the target site and its neighboring sites to 
improve the forecasting accuracy. However, how to automatically identify the most efficient 
neighboring network is still unsolved. 

TABLE I: Comparison of STATE-OF-THE-ART PV forecasting models 

 Description Advantages Disadvantages 

Physics-based 
model 

[11]-[13] 

An analytical model to describe the 
internal physical process of an actual PV 
system, therefore achieving PV 
forecasting by converting the Numerical 
Weather Prediction (NWP) results to PV 
forecasts.  

Do not rely on historical data, 
and the forecasting error only 
comes from NWP when the 
model is well-calibrated.  

Only available to the PV sites 
whose physical parameters are 
known, and the forecasting 
resolution and accuracy are limited 
by the NWP sources.  

Data-driven model 
[14]-[19] 

Use statistical or machine learning 
methods to construct the mapping from 
historical data or exogenous variables to 
the future PV output to achieve 
forecasting.  

Flexible to be implemented in 
any PV systems that has 
enough data. 

Rely heavily on the quality and 
quantity of the data of the target PV 
system, and the forecasting 
performance can be unstable if the 
model is not well-trained. 
 

 
Task Objectives: 

 Develop a hybrid PV forecasting framework that combines the advantages of both 
physics-based model and data-driven model.  

 Develop a neighboring site selection method that can automatically identify the most 
effective neighboring networks to help improve the forecasting accuracy for the target 
site.  

 
Methodology Overview: The proposed hybrid PV forecasting framework is in Fig. 1, including 

trend forecasting, fluctuation forecasting, and forecasting results reconciliation. In the trend 
forecasting stage, the physics-based model of the target site is built to forecast the hourly PV 
output by converting the hourly NWP to power. To enhance the trend forecasting, a TCN network 
is introduced to blend multiple NWP sources. In the fluctuation forecasting stage, another TCN 
network is used to extract the spatial-temporal correlations among the target site and its neighbors 
to achieve intra-hour forecasting. A neighboring site selection algorithm is proposed to 
automatically identify the most effective neighbors. Finally, the two forecasting results with different 
granularities will be reconciled by a third TCN network to generate the final forecasting results. 

 
Simulation Results: The proposed method is tested on 95 PV farms in North Carolina. As 

shown in Table II, our data-driven model equipped with the neighbor site selection algorithm can 
achieve 10% accuracy improvement while remaining the lowest model training time, compared 
with another 3 benchmarking models. As shown in Table III, our hybrid forecasting method can 
achieve 30% overall accuracy improvement for 6-hour ahead PV forecasting. 
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Fig. 1. The proposed hybrid PV forecasting framework, including trend forecasting, fluctuation 

forecasting and forecasting results reconciliation.  
 
 

TABLE II:  Forecasting performance evaluation (averaged on 95 sites) 

Scenarios Evaluation 
Metrics TCN CNN-LSTM VGG-8 GARNN 

Selected 
neighbors 

RMSE 39.80 51.88 48.52 43.81 
CI-90% 10.37 15.81 16.25 10.89 

Single site 
RMSE 52.86 55.80 61.77 56.71 
CI-90% 11.67 18.00 15.03 12.66 

All sites 
RMSE 49.92 57.74 54.30 42.15 
CI-90% 17.84 23.33 25.69 14.52 

Random 
neighbors 

RMSE 54.60 52.26 58.11 49.77 
CI-90% 13.96 16.07 15.22 11.33 

Average computation time ≈ 6min  ≈ 22min ≈ 31min ≈ 164min 
 

 
 
 

TABLE III: AVERAGE FORECASTING RMSE BEFORE AND AFTER RECONCILIATION UNDER DIFFERENT 
WEATHER CONDITIONS 

  5min 30min 2h 4h 6h Average 
Before  

reconciliatio
n 

Sunny 13.70 15.09 20.40 23.62 28.01 20.16 
Cloudy 26.37 37.70 68.80 106.02 142.70 76.32 
Rainy 19.90 26.84 36.44 59.33 91.80 46.86 

After  
reconciliatio

n 

Sunny 11.31 13.70 14.44 16.20 17.68 14.67 
Cloudy 28.66 40.68 56.71 60.64 64.00 50.14 
Rainy 21.07 27.55 34.70 37.11 43.17 32.72 
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Improveme
nt  

Sunny 17.45% 9.21% 29.22% 31.41% 36.88% 27.27% 
Cloudy -8.68% -7.90% 17.57% 42.80% 55.15% 34.30% 
Rainy -5.88% -2.65% 4.77% 37.45% 52.97% 30.18% 
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9.18 Task E.3 A GAN based Super-Resolution Method for Generating High-
Resolution Load Profiles 

Background: In the realm of data-driven applications, the significance of high-resolution load 
data has grown exponentially. Addressing this imperative, this task presents a a two-stage load 
profile super-resolution (LPSR) framework, ProfileSR-GAN[9]. In the first stage, a GAN-based 
model is adopted to restore high-frequency components from the low-resolution load profiles 
(LRLPs). The trdaditional LPSR methods mainly have two catagory: model-based and deep 
learning-based, which are based on Mean Square Error (MSE) loss. However, the current 
algorithms can introduce unrealistic details and cause over-smoothing in the reconstructed HR 
data. Table I summarizes the advantages and disadvantages of the state-of-the-art methods.  

 
TABLE I: Comparison of STATE-OF-THE-ART missing data restoration methods 

 Description Advantages Disadvantages 

Interpolation-based 
methods [1]-[4] 

Populate high-resolution data 
points based on prior 
knowledge and interpolation 
algorithms. 

A large amount of 
training data is not 
required, and the model’s 
prediction process is 
explainable 

Need prior knowledge and 
rule-based prediction is 
complex, which needs to be 
manually fine-tune for 
different scenarios. Low 
accuracy. 

Deep learning-based 
methods [5]-[8] 

End-to-end models based on 
deep neural networks, which 
are trained on a large amount 
of real data complete super-
resolution tasks to minimie 
MSE error. 

No prior knowledge 
modeling is required 
through manual work. 
Easy to train and deploy. 

Need a large amount of 
training data. 
Prediction is lack of high-
frequecy component and 
over-smoothed. 

 
Task Objectives: 

 Develop ProfileSR-GAN model for restoring realistic high-resolution load profile from low 
resolution ones. 

 
Methodology Overview: The ProfileSR-GAN framework is illustrated in Fig. 1. In the first stage, 

LR profiles and their corresponding weather data are used as inputs of the GAN-based model to 
generate HR profiles through adversarial training. In the second stage, a polishing network will 
remove unrealistic power fluctuations from the GAN generated HR profiles. The network comprises 
a generator with deep convolution layers for high-level feature extraction and transpose 
convolution layers for profile recovery. Residual blocks and batch normalization address gradient 
issues. The discriminator utilize LeakyReLU activation, with four convolutional layers and a fully 
connected layer for real/fake classification. The polishing network is similar to the generator but 
with fewer layers and no up-sampling transpose convolution layers. Three shape similarity metrics, 
Peak Load Error (PLE), Frequency Component Error (FCE), and Critical Point Error (CPE), are 
proposed to comprehensivly eavluate the realiticness compared with state of the art method. 

 
Simulation Results: As shown in Table II, the proposed ProfileSR-GAN model has significant 

improvement regarding realiticness. This shows that ProfileSR-GAN achieved 36%-62% 
improvements in shape-related evaluation metrics compared with the baseline methods. Table III 
is presented NILM as a case study to demonstrate that applying ProfileSR-GAN on upsampling 
can benefit downstream tasks that require the use of high-resolution load profiles. Simulation 
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results show that when using ProfileSR-GAN to upsample the low resolution profiles before 
conducting NILM, appliance-level activities can be better recognized by the NILM algorithms. 

 

k9n256s1

C
on

v-
1D

k6n128s2
k9n1s1

Raw HR 
profile

LR profile & 
Weather data

R
eL

U

k3n128s1

+ + +

k5n128s1

C
on

vT
ra

ns
C

on
vT

ra
ns

-1
D

C
on

vT
ra

ns
C

on
vT

ra
ns

-1
D

k7n64s3

k5n64s1

C
on

vT
ra

ns
C

on
v-

1D

B
N

-1
D

B
N

-1
D

C
on

vT
ra

ns
C

on
v-

1D

L
ea

ky
 R

eL
U

k5n4s2
k5n8s2

k5n16s2 k5n32s2

FC

Sig

Probability
 to be real

Real HR

C
on

v-
1D

C
on

v-
1D

Conv-1D

Generator

Discriminator

Fake HR

Real 
Profiles

Data

5 × residual block

HR profile

Stage 1: GAN-based SR Stage 2:Polishing

ConvTransConv-1D

ConvTransConv-1D

5 
× 

re
sid

ua
l b

lo
ck

k9n64s1

k3n64s1

k9n64s1

 
Figure 1. The two-stage ProfileSR-GAN architecture with corresponding kernel size (k), number of feature 

maps (n), and stride (s) indicated for each convolution layer. 
 
 

TABLE II: Model performances on the Pecan Street Test Case 

SR method LERP ASR SRP CNN 
ProfileSR 

GAN-
(unpolished) 

ProfileSR 
GAN 

(polished) 

MSE mean 0.55 0.44 0.42 0.41 0.61 0.51 
Gain / 20% 24% 25% -11% 7% 

PLE mean 1.38 0.99 0.92 0.91 0.86 0.73 
Gain / 28% 33% 34% 38% 47% 

FCE mean 7.22 5.83 5.36 5.38 4.81 4.65 
Gain / 19% 26% 25% 33% 36% 

CPE mean 0.65 0.41 0.29 0.31 0.26 0.25 
Gain / 37% 55% 52% 60% 62% 
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TABLE III: Performance Comparison of Different NILM Algorithms 

Applianc
e 

Metric
s Root mean square error (kW) Overall error (10-1) 

House
s LERP ASR SRP CNN 

ProfileS
R- 

GAN 
LERP ASR SRP CNN 

ProfileS
R- 

GAN 

Air-
condition

er 

1 1.063 1.049 1.024 1.016 0.969 0.780 0.883 0.403 0.430 0.346 
2 1.216 1.201 1.071 1.103 1.048 2.417 2.303 1.587 1.917 0.758 
3 1.348 1.350 1.134 1.199 0.922 4.949 4.925 2.620 3.004 1.102 
4 0.793 0.809 0.710 0.727 0.679 0.713 0.790 0.404 0.453 0.104 

mean 1.105 1.102 0.985 1.011 0.905 2.215 2.225 1.253 1.451 0.578 

Fridge 

1 0.105 0.106 0.105 0.105 0.106 0.145 0.155 0.128 0.144 0.040 
2 0.071 0.074 0.074 0.078 0.067 0.325 0.285 0.233 0.261 0.160 
3 0.102 0.104 0.089 0.088 0.084 2.703 2.712 1.258 1.539 0.482 
4 0.078 0.079 0.078 0.079 0.078 0.278 0.335 0.138 0.153 0.236 

mean 0.089 0.091 0.087 0.087 0.084 0.863 0.872 0.439 0.524 0.230 

Electric 
furnace 

1 0.118 0.116 0.106 0.106 0.090 0.329 0.362 0.162 0.138 0.130 
2 0.063 0.064 0.057 0.058 0.056 0.687 0.634 0.501 0.644 0.474 
3 0.299 0.299 0.220 0.243 0.201 0.571 0.569 0.689 0.654 0.349 
4 0.071 0.073 0.066 0.067 0.064 0.055 0.057 0.049 0.064 0.021 

mean 0.138 0.138 0.112 0.119 0.103 0.410 0.405 0.350 0.375 0.244 

Dish 
washer 

1 0.127 0.135 0.100 0.114 0.075 0.453 0.495 0.293 0.329 0.051 
2 0.364 0.365 0.321 0.333 0.224 1.378 1.362 0.832 0.990 0.151 
3 0.128 0.123 0.102 0.106 0.073 1.434 1.351 0.636 0.755 0.248 
4 0.089 0.086 0.105 0.095 0.087 0.065 0.049 0.163 0.123 0.025 

mean 0.177 0.177 0.157 0.162 0.115 0.832 0.814 0.481 0.549 0.119 

Microwa
ve 

1 0.085 0.084 0.083 0.084 0.083 0.114 0.124 0.130 0.138 0.156 
2 0.023 0.022 0.022 0.022 0.021 0.023 0.018 0.018 0.020 0.010 
3 0.028 0.028 0.013 0.014 0.013 0.468 0.453 0.037 0.055 0.023 
4 0.123 0.122 0.121 0.122 0.120 0.489 0.492 0.433 0.458 0.160 

mean 0.065 0.064 0.060 0.060 0.059 0.273 0.272 0.154 0.168 0.087 
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9.19 Task E.4 Synthetic load profile generation 

Background: This task presents a deep-learning framework, Multi-load Generative Adversarial 
Network (MultiLoad-GAN), for generating a group of synthetic load profiles (SLPs) simultaneously, 
considering the spatial-temporal correlations among a group of loads that are served by the same 
distribution transformer. SLPs are generated load profiles bearing similar characteristics as the 
real ones. In general, there are two approaches for generating SLPs: simulation-based and data-
driven. Table X.I summarizes the advantages and disadvantages of the state-of-the-art SLP 
generation methods and compares our algorithm with the existing ones. As can be seen in the 
table, up till now, all existing generative methods generate SLPs one at a time. There is no 
generative method proposed for generating a group of SLPs served by the same distribution 
transformer or the same feeder, where the SLPs have strong spatial-temporal correlations. 

 
Task Objectives 

 Enable the generation of correlated realistic SLPs in large quantity for meeting the 
emerging need in microgrid and distribution system planning. 

 Evaluate the realisticness of generated load profiles. 
 Develop an iterative data augmentation mechanism is to tackle data scarcity. 

 
Methodology Overview: The configuration of MultiLoad-GAN is shown in Fig. 1, it generates  

load profiles simultaneously. It is a GAN-based model and consists of two components: a generator 
network (G) and a discriminator network (D). 
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Fig. 1.   MultiLoad-GAN architecture with corresponding input dimension (ID), output dimension (OD), kernel 
size (K), stride (S), padding (P), output padding (OP) for each convolutional layer. The parameter is an example 
for generating weekly 15-min load group with 8 households 

 
Simulation Results: The realisticness of the generated load groups is evaluated by comparing 

the generated load groups with the “original positive samples” using two different kinds of 
realisticness metrics: statistics metrics based on domain knowledge and a deep-learning classifier 
for comparing high-level features. The performance indices are summarized in Table II and Fig. 2. 
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The results show that MultiLoad-GAN captures group-level characteristics better than benchmark 
methods, and the Automatic Data Augmentation (ADA) process significantly shorten the distance 
between MultiLoad-GAN generated data set and the real data set. This shows that the ADA 
process avoids MultiLoad-GAN to be over-trained so that it only generates load groups strongly 
resemble the “original positive samples”.  

 
TABLE I: Comparison of our Multiload-GAN model with the state-of-the-art generative methods 

 Description Advantages Disadvantages Model 
output 

Model-based methods 
[10][11] 

Use physical models, such 
as building thermodynamics 
and customer behavioral 
models, to simulate electricity 
consumption profiles. 

Explainable as the 
models reflect the laws 
of physics when 
describing the behavior 
behind field 
measurements 

Require detailed 
physics-based models 
with many inputs and 
require parameter 
tuning. 

Single load 
profile 
 
(When 
generating a 
load profile, 
the methods 
do not 
consider the 
spatial-
temporal 
correlations 
among a 
group of 
generated 
load profiles) 

Data-
driven 
methods 

Clustering 
based [12][13] 

Cluster existing load profiles 
into different categories so 
that by combining the load 
profiles across different 
categories, SLPs are 
generated. 

Easy to implement and 
can represent some 
realistic load profile 
characteristics. 

Lack of diversity when 
using combinations of a 
limited number of 
existing profiles. 

Forecasting 
based [14]-[17] 
(the 
benchmark 
method) 

Generate SLPs based on 
publicly available load or 
weather data. 

Easy to implement and 
flexible to generate load 
profiles with different 
lengths and 
granularities. 

Depend heavily on 
historical data. The 
generated load profiles 
have similar patterns 
with historical data, 
therefore, lack of 
diversity. 

SingleLoad- 
GAN-based 
[19]-[21] 
(the 
benchmark 
method) 

GAN-based generative 
methods to generate the SLP 
for one customer at a time. 

Learn from the real data 
distribution to generate 
diversified load profiles 
with high-frequency 
details. 

Hard to train. 

MultiLoad-
GAN 
(the proposed 
method) 

GAN-based generative 
methods to generate a group 
of spatial-temporal correlated 
load profiles simultaneously. 
Such load profiles can be 
loads served by the same 
transformer or feeder. 

Learn from the 
distribution of real data 
to generate diversified 
load profiles with high-
frequency details.  
Preserve the spatial-
temporal correlations 
between loads. 

Hard to train. 

Multiple 
spatial-
temporal 
correlated 
load 
profiles 
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(a)                                                          (b)  

Figure 2.  Distribution of DLC scores (a) without ADA and (b) with ADA. 
 

TABLE II: Results of DLC-based evaluation 

Indices Real 
data 

SingleLoad-
GAN LSTM MultiLoad-GAN MultiLoad-GAN  

(with ADA) 
Percent of Real 94.38% 19.69% 84.83% 99.06% 94.99% 

Mean Confidence 
Level 0.9371 0.1913 0.8919 0.9899 0.9491 

Fréchet inception 
distance  

with the  load 
group 

N/A 0.5173 0.00706 0.01106 0.000055 
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9.20 Task E.5 Power-Band based Data Segmentation (PBDS) Method for Enhancing 
Meter Phase and Transformer-Meter Pairing Identification 

Background:  We applied power-band-based data segmentation (PBDS) in two meter topology 
identification algorithms: customer phase identification and transformer-meter pairing 
identification. Through simulation on thirteen real feeders, our proposed algorithm outperformed 
existing approaches, significantly improving the accuracy of meter topology identification without 
introduction significant computational complexity.  

Table 1 presents a comprehensive overview of existing methods for addressing phase and 
transformer-meter pairing identification problems, along with a comparison of their strengths and 
weaknesses in relation to the proposed approach.  

TABLE I: A Review of Existing Methods and Our Contributions 
Category Methodology Descriptions Strength Weakness 

Phase 
Identification 

Signal injection 
[1] 

Detect a signal injected into a 
specific phase Extremely accurate 

Additional 
equipment required  

PMU [2] Measure the voltage phase angle PMU data required 
Real Power-
based  
[3-4] 

Customer loads on the same 
phase should match substation 
power measurements  

Simplicity 
Degradation 
depending on the 
AMI penetration 

Voltage-based 
[6-7] 

Customers on the same phase 
exhibit stronger voltage 
correlations than those on different 
phases 

Easily-interpretable 
Require only voltage from AMI 

Inefficient use of 
data 

ML-based 
[812] 

Unsupervised learning algorithms 
that solve the clustering problem 

High accuracy 
Identify phases without labels 

Uninterpretable and 
unexplainable 
Manual verification 
and retraining 
required if applied to 
other feeders 

PBDS 
(Proposed) 
[13-14] 

Power-band based data 
segmentation algorithm to 
extract highly correlated voltage 
segments on the same phase 

Easily-interpretable 
Identify phases without labels 
Require only real power and 
voltage from AMI 
Efficient use of data through 
data segmentation 

Parameter tuning 
required 

Transformer 
-Meter 
Pairing 
Identification 

Load summing 
[5], [15] 

Customer loads under the same 
DT should match DT power 
measurements 

Simplicity DT metering 
required 

Voltage-based 
[16-19] 

Analyze voltage correlation 
coefficient between all customers 
labeled on the same transformer 

Easily-interpretable 
Require only AMI data and 
customer DT labels 

Inefficient use of 
data 
Not provide a 
complete DT 
grouping result 
No solution provided 
for incorrect DT 
labeling 

Regression-
based 
[20-22] 

Estimate line impedance using 
linear regression and build up a 
secondary circuit 

Mathematical simplicity Requires reactive 
power from AMI 

PBDS 
(Proposed) 
[14] 

A two-stage algorithm based on 
PBDS to distinguish between a 
group of meters under the same 
DT and a group of meters under 
different DTs 

Present a method to correct 
abnormal DT-meter pairs  
Required only AMI data and 
customer DT labels 
Efficient use of data through 
data segmentation 

Cannot identify a 
transformer that 
serves only one 
customer 
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Task Objectives
Automated identification of smart meter phase and transformer-meter pairing 
relationships.

Methodology Overview: The configuration of the proposed phase identification algorithm is 
shown in Fig. 1(a). The PBDS steps are highlighted in the two shaded boxes. Two cases, known 
and unknown phase labels, are considered. The configuration of the proposed transformer-meter 
pairing identification algorithm is shown in Fig. 1(b). The PBDS is used to eliminate false positives. 

    

(a)                                                                                           (b)

Figure 1. Flowchart of the PBDS based, (a) meter phase identification methodology, (b) the two-stage 
transformer-meter pairing identification algorithm.

Simulation Results: The proposed method is tested on 13 real feeders in North Carolina. As 
shown in Tables II and III, the proposed phase identification algorithm achieves a 1.1% and 1.9% 
improvement in accuracy compared to benchmarking methods (i.e., Spectral Clustering and Co-
association Matrix Ensemble Clustering), respectively. As indicated in Table IV, our transformer-
meter pairing identification algorithm achieves an 84.6% reduction in the false positive rate.



DE
-E

E0
00

87
70

 
N

in
g 

Lu
 

 

Pa
ge

 1
28

 o
f 1

46
 

 

 
TA

B
LE

 II
. C

as
e 

1:
 P

ha
se

 Id
en

tif
ic

at
io

n 
R

es
ul

ts
 a

nd
 P

er
fo

rm
an

ce
 C

om
pa

ris
on

. 

 
 

 



DE
-E

E0
00

87
70

 
N

in
g 

Lu
 

 

Pa
ge

 1
29

 o
f 1

46
 

 

TA
B

LE
 II

I. 
C

as
e 

2:
 P

ha
se

 Id
en

tif
ic

at
io

n 
R

es
ul

ts
 a

nd
 P

er
fo

rm
an

ce
 C

om
pa

ris
on

. 

 
   

 



DE
-E

E0
00

87
70

 
N

in
g 

Lu
 

 

Pa
ge

 1
30

 o
f 1

46
 

 

TA
B

LE
 IV

. T
ra

ns
fo

rm
er

-M
et

er
 P

ai
rin

g 
Id

en
tif

ic
at

io
n 

R
es

ul
ts

 (I
D

: A
ve

ra
ge

 P
C

C
; I

D
T2

: T
op

-2
 P

C
C

). 

 
    

 



DE-EE0008770 
Ning Lu 

 

Page 131 of 146 
 

Reference 
[1] Shen, Zhiyu, et al. "Three-phase AC system impedance measurement unit (IMU) using chirp signal injection." 

2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2013. 
[2] Wen, Miles HF, et al. "Phase identification in distribution networks with micro-synchrophasors." 2015 IEEE 

Power & Energy Society General Meeting. IEEE, 2015. 
[3] Arya, Vijay, et al. "Phase identification in smart grids." 2011 IEEE International Conference on Smart Grid 

Communications (SmartGridComm). IEEE, 2011. 
[4] Arya, Vijay, et al. "Inferring connectivity model from meter measurements in distribution networks." Proceedings 

of the fourth international conference on Future energy systems. 2013. 
[5] Pezeshki, Houman, and Peter J. Wolfs. "Consumer phase identification in a three phase unbalanced LV 

distribution network." 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). IEEE, 
2012. 

[6] Olivier, Frederic, et al. "Phase identification of smart meters by clustering voltage measurements." 2018 Power 
Systems Computation Conference (PSCC). IEEE, 2018. 

[7] Mitra, Rajendu, et al. "Voltage correlations in smart meter data." Proceedings of the 21th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining. 2015. 

[8] Wang, Wenyu, et al. "Phase identification in electric power distribution systems by clustering of smart meter 
data." 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, 2016. 

[9] Hosseini, Zohreh S., Amin Khodaei, and Aleksi Paaso. "Machine learning-enabled distribution network phase 
identification." IEEE Transactions on Power Systems 36.2 (2020): 842-850. 

[10] Foggo, Brandon, and Nanpeng Yu. "Improving supervised phase identification through the theory of information 
losses." IEEE Transactions on Smart Grid 11.3 (2019): 2337-2346. 

[11] Blakely, Logan, Matthew J. Reno, and Wu-chi Feng. "Spectral clustering for customer phase identification using 
AMI voltage timeseries." 2019 IEEE Power and Energy Conference at Illinois (PECI). IEEE, 2019. 

[12] Blakely, Logan, and Matthew J. Reno. "Phase identification using co association matrix ensemble clustering." 
IET Smart Grid 3.4 (2020): 490-499. 

[13] Lee, Han Pyo, et al. "A novel data segmentation method for data-driven phase identification." 2022 IEEE Power 
& Energy Society General Meeting (PESGM). IEEE, 2022. Available online at: https://ieeexplore.ieee.org/ 

[14] Lee, Han Pyo, et al. "A Novel Power-Band based Data Segmentation Method for Enhancing Meter Phase and 
Transformer-Meter Pairing Identification." Submitted to IEEE Transactions on Power Delivery. Review. 2023. 
Available online at: https://arxiv.org/abs/2210.00155 

[15] Pappu, Satya Jayadev, et al. "Identifying topology of low voltage distribution networks based on smart meter 
data." IEEE Transactions on Smart Grid 9.5 (2017): 5113-5122. 

[16] Luan, Wenpeng, et al. "Smart meter data analytics for distribution network connectivity verification." IEEE 
Transactions on Smart Grid 6.4 (2015): 1964-1971. 

[17] Watson, Jeremy Donald, John Welch, and Neville R. Watson. "Use of smart meter data to determine distribution 
system topology." The Journal of Engineering 2016.5 (2016): 94-101. 

[18]  Weng, Yang, Yizheng Liao, and Ram Rajagopal. "Distributed energy resources topology identification via 
graphical modeling." IEEE Transactions on Power Systems 32.4 (2016): 2682-2694. 

[19] Blakely, Logan, and Matthew J. Reno. "Identifying errors in service transformer connections." 2020 IEEE Power 
& Energy Society General Meeting (PESGM). IEEE, 2020. 

[20] Short, Tom A. "Advanced metering for phase identification, transformer identification, and secondary modeling." 
IEEE Transactions on Smart Grid 4.2 (2012): 651-658. 

[21] Ye, C. H. E. N., et al. "Two-stage topology identification method for distribution network via clustering 
correction." 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia). IEEE, 2019. 

[22]  Blakely, Logan, and Matthew J. Reno. "Identification and correction of errors in pairing AMI meters and 
transformers." 2021 IEEE Power and Energy Conference at Illinois (PECI). IEEE, 2021. 

  



DE-EE0008770 
Ning Lu 

 

Page 132 of 146 
 

9.21 Task F.1 An Iterative Bidirectional Gradient Boosting Approach for 
Conservation Voltage Reduction (CVR) Baseline Estimation 

Background: In this subtask, we developed IBi-GBM, a novel iterative, bidirectional gradient 
boosting CVR baseline estimation algorithm designed to assess the efficacy of CVR in load 
reduction. Our approach introduces a hybrid methodology, incorporating a bi-directional framework 
and a hybrid similar day selection method. The proposed algorithm exhibits robust performance 
across different data resolutions (ranging from 5- to 60-minute intervals), various data types 
(including aggregated smart meter and SCADA data), and seasonal changes (specifically, summer 
and winter). Our findings reveal substantial variability in CVR performance across different feeders 
and seasons.  

In general, there are four main approaches for CVR baseline estimation: comparison-based, 
synthesis-based, load modeling-based, regression-based, and machine learning (ML)-based 
techniques. In Table 1, we offer a thorough literature review of current CVR baseline estimation 
approaches, highlighting their strengths and weaknesses in comparison to the proposed approach 

Table 1: A Review of Existing Methods and Our Contributions 
Category Methodology Descriptions Strength Weakness 

Comparison 
-based Field experiments [1] 

Compare performance 
between test and control 
groups 

Simplicity Dependent on control 
group 

Synthesis 
-based LTV [2] 

Aggregate LTV behaviors 
to estimate the CVR 
effects of a circuit 

Quick estimation 

Difficult to collect load 
share information for a 
feeder 
Requires LTV response of 
all existing electrical 
appliances 

Load 
Modeling 
-based 

LTV sensitivity  
[3], [4] 

Represent load 
consumption as a function 
of voltages, and calculate 
CVR factors from the 
identified LTV sensitivities 

Can estimate time 
varying CVR factors 

Cannot represent different 
load compositions 
depending on the load 
model used 

Regression 
-based 

Linear regression 
[5], [6] 
Multivariate regression 
[7]-[9] 

Loads are modeled as a 
function of several impact 
factors to calculate the 
CVR factor 

Interpretable 
Mathematical simplicity 

The margin of error may be 
larger than CVR effect 
Inability to capture the 
characteristics of nonlinear 
loads 

ML 
-based 

MSVR [10] MSVR-based model 

Interpretable 
Can approximate 
nonlinear behaviors of 
load 

Noniterative and uni-
directional 
Accuracy relies on the 
existence of similar profiles 
Results may not always be 
attainable for each test day 

MLP, LSTM, TCN 
[11]-[13] Uni-directional DL model 

Can capture complex 
and nonlinear 
relationships 

Uni-directional 
Fixed prediction length 
Demands a substantial 
volume of training data 

Load-PIN [14] GAN-based generative 
method 

Bi-directional 
Variable prediction 
length 
Can capture complex 
and nonlinear 
relationships 

Mathematically complex 
Lack of interpretability 
Computationally expensive 
for training 
Demands a substantial 
volume of training data 

Iterative 
bidirectional 

IBi-GBM 
IBi-LightGBM 
(Proposed) [15] 

Iterative, bidirectional 
GB-based algorithm 

Interpretable, capture 
nonlinear behaviors of 
load and bi-directional 
information for 
variable-duration 
events and require 
very few training data 

Accuracy relies on the 
existence of available 
similar profiles 

Task Objectives: Identify the baseline of CVR to enable performance evaluation of CVR based 
load reduction. 

 



DE-EE0008770
Ning Lu

Page 133 of 146

Methodology Overview: Accurate baseline estimation is crucial for utilities to assess the 
effectiveness of demand response (DR) programs. The baseline of a DR event is essentially the 
load profile that would exist if a DR action had not been implemented. Thus, to estimate the DR 
baseline, it’s essential to reconstruct the electricity consumption as it would be during the DR 
period, assuming that not DR actions are implemented. This process can be conceptualized as a 
missing data segments (MSDs) recovery problem. 

   As illustrated in Fig. 1, the proposed Iterative, Bidirectional Gradient Boosting Model (IBi-
GBM)-based CVR baseline estimation methodology involves three essential processes: the 
selection of similar days, the training of the GB model, and the iterative generation of baseline data 
points.

Fig. 1. A three-stage framework proposed for CVR baseline estimation, involving: 1) selecting similar 
days, 2) training the GB model, and 3) implementing IBi-GBM.

Simulation Results: Two real-world datasets (i.e., 15-min smart meter data and 5-min SCADA 
data) are used to develop and validate the performance of the two iterative bidirectional-GB based 
CVR baseline estimation algorithms. Tables II and III demonstrate that the proposed IBi-GBM 
exhibits robust performance across various data resolutions and in different seasons for virtual-
CVR days, and outperforms existing methods by achieving a 1-2% reduction in normalized Root 
Mean Square Error (nRMSE). Figure 2 shows the examples of the proposed IBi-GBM generated 
CVR baseline for the actual CVR days. After estimating the CVR baseline, CVR performance can 
be evaluated using the CVR factor in (1). The CVR factor for each time step is shown in Fig. 3.

(1)
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(a) 

 
(b) 

 
(c) 

Figure. 2. Examples of the IBi-GBM generated CVR baseline for (a) three feeders with 15-min smart meter 
data, (b) three substations with 5-min SCADA data in summer, and (c) three substations with 5-min SCADA 

data in winter.  
 

 
(a) 

 
(b) 

 
(c) 

Figure. 3. Average step-by-step CVR factors and 95% confidence intervals for (a) three feeders with 15-
min smart meter data, (b) three substations with 5-min SCADA data in summer, and (c) three substations 

with 5-min SCADA data in winter.  
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9.22 Task F.2 Load Profile Inpainting for Missing Load Data Restoration 

Background: This task presents a Generative Adversarial Nets (GAN) based, Load Profile 
Inpainting Network (Load-PIN) for restoring missing load data segments and estimating the 
baseline for a demand response event. In general, there are two categories of missing data 
restoration methods for load profile inpainting: model-based and data-driven. Table X.I 
summarizes the advantages and disadvantages of the state-of-the-art methods. As can be seen 
in the table, up till now, all existing generative methods require the format of the input and output 
to be fixed. However, in practice, the duration of missing data (model output) varies from minutes 
to several hours, and the length and number of available measurements (model input) also vary 
case by case. To cope with the varying-length cases, traditional methods need either increase the 
output window to cover the longest event or train separate models for different scenarios.  

TABLE I : Comparison of STATE-OF-THE-ART missing data restoration methods 

 Description Advantages Disadvantages 

Model-based methods 
[1]-[5] 

Use physical system models 
to simulate responses to 
external disturbances in 
hope of restoring missing 
data segments. 

Explainable as the 
models reflect the laws 
of physics when 
describing the behavior 
behind field 
measurements 

Require accurate 
distribution system models. 

Data-
driven 
methods 

similarity-
based [5]-[7] 

Groups load profiles by day 
type, weather conditions, and 
shape characteristics of load 
profiles. The missing data 
segments are restored by 
referencing to the data on the 
load profiles having the best 
similarity match. 

Straightforward, easy to 
implement and 
explainable 

Defined by human analysts, 
making the accuracy of the 
method dependent on 
subjective selections of 
similarity metrics and 
weights. 

regression-
based [11]-
[11]  

Include linear regression, 
Long Short Term Memory 
(LSTM), Stacked 
Autoencoder (SAE), 
Gaussian Regression, 
Support Vector Regression 
(SVR) 

Achieve higher 
estimation accuracy 
compared to the similar 
day approach because 
of their nonlinear 
learning capabilities, 
especially when using 
deep-learning models 

Compared with similarity-
based methods, the deep-
learning based methods are 
less explainable and having 
higher computing costs 
the data format of the input 
and output is required to be 
fixed. 

 
Task Objectives 

 Develop Load-PIN model for missing data restoration and baseline estimation.  
 The most distinct feature of the Load-PIN model is its flexibility in restoring variable-length 

data segments and its superior accuracy compared with the state-of-the-art methods.  
 
Methodology Overview: The Load-PIN framework is illustrated in Fig. 1. The model input z 

has three parts: 24-hour load and temperature profiles, and a Boolean mask indicating the event 
period as one and the normal period as zero. The load data resolution varies from 1-minute to 15-
minute and the missing data duration, , is less than 4 hours. The generator contains two 
stages: a coarse network for initial estimation and a fine-tuning network for polishing. The 
discriminator is a deep convolutional network with specially designed loss functions.  
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Simulation Results: As shown in Table II, when data granularity is 5-min and 15-min, Load-
PIN outperforms all other models and shows 15-30% improvement compared with the second-
best model. This shows that Load-PIN can extract information hidden inside the high-resolution 
data for forecasting the missing data segments. However, if the data resolution is too low, the 
Load-PIN does not show significant performance improvements. This is because in those cases, 
forecasting average values outweigh uncovering load shape details. 

 

Generator 

Coarse 

Layer gc gc gc gc gc gtc gc gtc gc 
ks 5 4 3 4 3 3 3 3 3 
kn 64 128 128 256 256 128 128 64 1 
st 1 2 1 2 1 2 1 2 1 

Refine 

Layer gc gc gc gc gc gc gcn attn*4 gcn*2 gtcn gcn gtcn gcn 
ks 5 4 3 4 3 3 3 3 3 3 3 3 3 
kn 64 64 64 64 64 128 256 64 1 2 128 2 128 
st 1 2 1 2 1 1 1 1 256 128 1 128 1 

Discriminator 
Layer cnn cnn cnn cnn cnn 

ks 4 4 4 4 4 
kn 16 32 64 128 256 
st 2 2 2 2 2 

Figure 1. The proposed Load-PIN framework. “GC” refers to a gated convolution block, “GTC” refers to a 
gated transpose convolution block, “CNN” refers to a convolutional block, and “Attention” refers to a self-

attention block. “ks” means kernel size, “kn” means number of kernels, and “st” means stride. 
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9.23 Task F.3 HVAC Load Disaggregation Method 1 

Background: Load disaggregation is an important technique in distribution system 
analysis. Its results can be used in many downstream tasks, for example, customer 
segmentation, resource identification, and rate recommendation. When the sampling rate 
of available data sets is less than 1 minute, non-intrusive load monitoring (NILM) methods 
are often used to disaggregate the electricity consumption curves of different appliances. 
However, in practice, inputs to many load disaggregation algorithms are 15-minute smart 
meter data and hourly weather data. This makes those NILM methods relying on second-
level meter data inapplicable. The goal of the proposed HVAC disaggregation algorithm 
is to filter out hidden portions of HVAC usage lying in total metering, using the row 
resolution smart meter profile and outdoor temperature profile, which are applicable for 
customer-level and aggregated-level load profiles. 

TABLE 1: A Review of Existing Methods and Our Contribution 
Methodology Description Disadvantage Advantage 
HMM-based 
method [1] 

HMM-based methods assume that 
appliances operate in distinct states, 
represented as hidden states within 
the HMM model.  

Exponential increases in 
complexity as the number of 
appliances rises. Requiring 
metering data with a sampling 
rate of 1 minute. 

Interpretability. 

Deep learning-
based method [2] 

State-of-the-art supervised learning 
methods 

Heavy reliance on large labeled 
sub-metered datasets. 

High Accuracy.  
 

Optimization-
based method [3] 

Steady-state-based and dictionary-
learning-based approaches using 
appliance signature matrices 

Low transferability. Requiring less 
training data and 
model 
complexity. 

Our method 
[4][5] 

Optimization-based approach and applicable to various smart meter data resolution with 
low dependency on labeled data set 

 
Task Objectives: Develop a HVAC load disaggregation model that is transferable and 

generalizable to diverse customers and customers with limited training data and no sub-
metered information. 

 
Methodology Overview: As shown in Fig. 1, there are three different steps in the 

proposed HVAC disaggregation algorithm. The inputs of the optimization algorithm 
include daily temperature and load profiles, base load dictionary, and HVAC electricity 
consumption references calculated by minimizing the mutual information (MI) between 
the ambient temperature profile and the temperature-insensitive load (i.e., total load 
minus the HVAC loads). In the end, a fine-tuning process is used to detect and remove 
the anomalies in the estimated HVAC load based on predetermined criteria extracted 
from the statistical characteristics of the HVAC loads.  

 
Simulation Results: The data sets used in this study were collected by Pecan Street 

Inc. from 1070 residential users in New York, Colorado, California, and Texas. The data 
sets include 1-minute electricity consumption of the total household and appliances (e.g., 
HVAC, water heater, and dryer). The 1-minute data is down-sampled to 1 hour to match 
the typical smart grid data. 230 users with only one HVAC unit and 90 days in Summer 
2019 are selected to illustrate the algorithm performance on cooling load disaggregation. 
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To measure the aggregated-level results, we randomly pick 10 to 500 customers and use 
the aggregated profiles.  

As represented in Table 2, when compared to all three benchmark models, our model 
demonstrates substantially higher accuracy and the lowest standard deviation in nMAE, 
indicating the superior performance and consistency of our model in accurately 
disaggregating HVAC load from smart meter data, even when dealing with varying data 
resolutions. The model exhibits satisfactory performances as shown in Table 3 where 
results are compared across different aggregation levels. 

 

 
Figure 1. Workflow of the proposed load disaggregation algorithm. 

 
TABLE  2. Customer-level HVAC Load Disaggregation Performance Comparison 

 
 

TABLE 3. Aggregated-level HVAC Load Disaggregation Performance Comparison 

 
 

References 
[1] Roberto Bonfigli, et al. “Non-intrusive Load monitoring by using active and reactive power in additive 

factorial hidden Markov models.” Applied Energy, vol. 208, pp. 1590–1607, 2017. 



DE-EE0008770 
Ning Lu 

 

Page 143 of 146 
 

[2] Michele D’Incecco, et al. " Transfer learning for non-intrusive load monitoring." IEEE Transactions on 
Smart Grid, vol. 11, no. 2, pp.1419-1429, 2019. 

[3] Alireza Rahimpour, et al. " Non-intrusive energy disaggregation using non-negative matrix 
factorization with sum-to-k constraint." IEEE Transactions on Power Systems, vol. 32, no. 6, pp 4430-
4441, 2017. 

[4] Hyeonjin Kim, et al. “An ICA-based HVAC load disaggregation method using smart meter data.” 2023 
IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2023 

[5] Hyeonjin Kim, et al. “A Contextually Supervised Optimization-based HVAC Load Disaggregation 
Methodology”, submitted to IEEE Transactions on Smart Grid 

 

9.24 Task F.4 Load Disaggregation Method 2 

Background: HVAC loads are widely used demand response (DR) resources 
nowadays, which takes 30% of residential and 40% of commercial building electricity 
consumption. However, in practice, only the total building electricity consumption is 
metered. Thus, load service providers and utility engineers mainly rely on HVAC load 
disaggregation algorithms for conducting DR potential studies. The existing methods are 
reviewed and listed in Table I in comparison to our proposed method. 

TABLE I: A Review of Existing Methods and Our Contribution  

 Description Advantages Disadvantages 

Edge-detection 
algorithm [17] 

Use edge-detection to 
directly identify on and off 
events of HVAC. 

Straightforward, 
interpretable, and 
easy to implement,  

Require high-resolution 
(1-min/5-min) data, sub-
optimal accuracy. 

Average Value 
Subtraction Algorithm 

[18] 

Sequentially separate 
the HVAC load with 
average values by 
considering the day 
types. 

Explainable.  
Mathematical 
simplicity. 

Require the classification 
of  day types and not 
generalizable to all sites.  

Data-
driven 
methods 

MLP and 
LSTM [19] 

Use MLP and LSTM as 
the classifier to detect on 
and off event of HVAC 
and the regressor to get 
the HVAC profile. 

Easy to implement and 
can capture complex 
and nonlinear 
relationships. 

Require the training of 
site-specific machine-
learning (ML) models. 
Requires high-resolution 
data. 

Random 
forest [20] 

Use random forest to 
aggregate and deploy 
extra trees to select the 
best feature. 

Increased 
interpretability and 
accuracy with manual 
feature extraction. 

The accuracy of the 
method is dependent on 
the feature selection. 

S2P CNN 
[21] 

Use sequence-to point 
convolutional neural 
network (S2P-CNN) and 
sliding window to 
separate HVAC profile. 

Quick estimation with 
the pre-trained model, 
higher accuracy, and 
better generalizability. 

The deep-learning based 
methods are less 
explainable and having 
higher computing costs. 

 
 

Task Objectives: Develop a modified S2P algorithm to use low resolution smart meter 
data as inputs for HVAC load disaggregation with great generalizability. 
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Methodology Overview: As shown in Fig. 1, the modified S2P algorithm is conducted 
in three steps: data augmentation, training and testing the model on one location, transfer 
learning (port the pre-trained model to other locations) with fine-tuning. First, the 
infrequently used loads (i.e., water heater and dryer loads) are removed from the total 
load profile. Then, the sub-metered HVAC data is removed from the residual load profile 
to obtain the base-load profiles. Next, the augmented load profiles are generated by 
shuffling the HVAC profiles against each base load profile. After data augmentation, the 
original N yearly 1-minute load profiles are expanded to N × N yearly 1-minute load 
profiles. Then, the model is trained using the augmented load profiles and their 
corresponding ambient temperature profiles. The trained S2P model is first tested for the 
same location. Then, it is ported to two other locations, and we further improve the 
pretrained model by fine-tuning. 

 

 
Figure 1. Architecture of the modified S2P HVAC load disaggregation algorithm. 

 
Simulation Results: We compared the proposed model with two benchmark models 

using data collected in Austin, Texas: Support Vector Machine (SVM) and the original 
S2P-CNN. We set up three cases to compare the performance improvements brought by 
data augmentation and adding temperature to the input: 1) using data sets collected from 
the 150 users for training, 2) using augmented data (150 × 150 users) for training, and 3) 
using augmented data for training and using both load and temperature data as model 
inputs. The trained model is tested on the remaining 50 Austin users. As shown in Table 
II, augmentation significantly reduces error variances (i.e., improved model consistency) 
and adding temperature to the inputs reduces the errors (i.e., improved accuracy). 

For new sites with limited amounts of sub-metered data, we can fine-tune the model 
for each household using the transfer learning algorithm. We use one weeks’ labelled 
data to demonstrate the efficacy of fine-tuning. As shown in Table III, the pre-trained 
model has shown satisfactory accuracy when directly used on new sites. And fine-tuning 
can considerably reduce the disaggregation errors and error variances. As shown in Fig. 
2, fine-tuning achieves noticeable improvements in HVAC disaggregation accuracy 
because it can identify some distinct user characteristics (e.g., the HVAC rated power). 
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The modified model shows significant improvement in disaggregation accuracy and 
consistency compared to previous methods in an area with labelled data sets. The model 
generalizability is also improved because the pre-trained model achieves satisfactory 
performance in other locations where there is no sub-metered HVAC load data for 
training. The proposed transfer learning technique using a small amount of labelled data 
at the new location to fine-tune the pre-trained model can also significantly improve the 
model performance. 

 
Table II: Performance Comparison for Different Load Disaggregation Method 

 
 

Table III: Performance Comparison for Different Locations (Boulder, CO & San Diego, CA) 

 
 

 
Figure 2. An example of load disaggregation results for one user located at Boulder, CO. 
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