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The Jordan-Wigner transformation is a powerful tool for converting systems of spins into sys-
tems of fermions, or vice versa. While this mapping is exact, the transformation itself depends on
the labeling of the spins. One consequence of this dependence is that approximate solutions of a
Jordan-Wigner–transformed Hamiltonian may depend on the (physically inconsequential) labeling
of the spins. In this work, we turn to an extended Jordan-Wigner transformation which remedies
this problem and which may also introduce some correlation atop the Hartree-Fock solution of a
transformed spin Hamiltonian. We demonstrate that this extended Jordan-Wigner transformation
can be thought of as arising from a unitary version of the Lie algebraic similarity transformation
(LAST) theory. We show how these ideas, particularly in combination with the standard (non-
unitary) version of LAST, can provide a potentially powerful tool for the treatment of the XXZ and
J1 − J2 Heisenberg Hamiltonians.

I. INTRODUCTION

The difficulty in mathematically describing many phys-
ical systems depends on the framework one uses to treat
them, so that a problem which is difficult from one per-
spective may be simple from another. For example, con-
strained motion in classical mechanics is more easily de-
scribed by using the Lagrangian formalism than by di-
rectly applying Newton’s laws.

One manifestation of this phenomenon in quantum
mechanics is the concept of duality: a system which is
strongly correlated in one picture becomes weakly corre-
lated in another.[1] The one-dimensional spin-1/2 XXZ
Hamiltonian

HXXZ =
∑
⟨pq⟩

[
1

2

(
S+
p S−

q + S−
p S+

q

)
+∆Sz

p S
z
q

]
, (1)

in which nearest-neighbor sites p and q have an
anisotropic Heisenberg interaction, provides a textbook
example of this kind of duality.[2] Although this prob-
lem can be somewhat tedious to solve in the language of
spins, the Jordan-Wigner (JW) transformation[3]

S+
p 7→ c†p ϕ

†
p, (2a)

S−
p 7→ cp ϕp, (2b)

Sz
p 7→ n̄p = np −

1

2
, (2c)

ϕ†
p = ϕp = eiπ

∑
k<p nk , (2d)

np = c†p cp, (2e)

converts the spin Hamiltonian into a Hamiltonian of spin-
less fermions which, at ∆ = 0, is non-interacting and thus
trivially solvable.

Recently, this result inspired us to examine the JW
transformation as a tool for solving more general spin
systems.[4] In the nearest-neighbor XXZ model, the JW
strings ϕp cancel out, accounting for the simplicity of
the fermionic Hamiltonian at ∆ = 0. This is not true in

general, which perhaps explains why the JW transforma-
tion has not seen as much use in the description of spin
systems as it could do. However, when written in the
language of fermions, the JW strings (which are many-
body operators) act on single determinants as Thouless
transformations[5] which one can readily handle. Our re-
sults suggested that although the presence of these addi-
tional transformations complicates the implementation,
one could obtain significantly improved results by using
fermionic methods for the JW-transformed Hamiltonian
in lieu of using equally expensive computational tech-
niques on the underlying spin Hamiltonian.

In this paper, we explore two improvements upon our
initial work. First, as the reader may have noticed, the
JW transformation depends on the order of the fermions
because the summation in Eqn. 2d defining the JW string
for site p runs over sites k < p. Although this depen-
dence is of no real consequence when one solves the JW-
transformed Hamiltonian exactly, approximate solutions
will generally give different results for the same physical
system with sites indexed in different orders. We provide
examples in Sec. II, and wish to overcome this limita-
tion. Additionally, we seek to incorporate size-extensive
correlation techniques. Our previous work treated the
fermionic JW-transformed Hamiltonian with Hartree-
Fock followed by configuration interaction. Hartree-Fock,
when all symmetries are broken, is extensive,[6] mean-
ing that the energy scales properly with system size, but
the configuration interaction correction is not.[7, 8] We
would prefer to use standard coupled cluster theory,[8–10]
but this is precluded by the JW strings. Here, we em-
ploy the Lie algebraic similarity transformation (LAST)
theory[11] to add a thermodynamically extensive corre-
lation correction to the Hartree-Fock treatment of the
JW-transformed Hamiltonian.
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II. ORDERING DEPENDENCE IN THE
JORDAN-WIGNER TRANSFORMATION

To motivate our work, let us briefly examine the re-
sults of Hartree-Fock calculations on JW-transformed
spin Hamiltonians for different orderings of the sites.

Consider, then, the one-dimensional (1D) XXZ model
previously introduced. The JW-transformed Hamilto-
nian is

H 7→
∑
⟨pq⟩

[
1

2

(
c†p ϕ

†
p ϕq cq + hc

)
+∆ n̄p n̄q

]
. (3)

The notation ⟨pq⟩ denotes that sites p and q are nearest
neighbors.

In a conventional ordering in which sites are numbered
such that the nearest neighbors of site p are sites p ± 1,
the JW strings cancel out. For example,

c†p ϕ
†
p ϕp+1 cp+1 = c†p e

iπ
∑

k<p nk eiπ
∑

k≤p nk cp+1 (4a)

= c†p e
2 iπ

∑
k<p nk eiπ np cp+1. (4b)

Using the fact that

eiπ nk = 1− 2nk (5)

so that

e2 iπ nk = (1− 2nk)
2
= 1− 4nk + 4n2

k = 1, (6)

we get

c†p ϕ
†
p ϕp+1 cp+1 = c†p (1− 2np) cp+1 = c†p cp+1 (7)

since c†p np = c†p c
†
p cp = 0. Thus, in this simple ordering,

there are no JW strings to concern ourselves with, and

H 7→
∑
⟨pq⟩

[
1

2

(
c†p cq + hc

)
+∆ n̄p n̄q

]
. (8)

On the other hand, there are n! ways to label the n
sites, and only two labelings are such that the nearest
neighbors of site p are p± 1 for all p. Different labelings
produce different JW-transformed Hamiltonians, most of
which have strings. This means that in general we expect
to get different results when we approximately solve a
JW-transformed Hamiltonian with different labelings of
the same underlying lattice.

This is not simply an academic concern. Figure 1
demonstrates this phenomenon for the Hartree-Fock so-
lutions of the JW-transformed 6-site 1D XXZ model with
open boundary conditions and various labeling schemes.
Although relabeling the lattice sites does not affect the
exact result, we can clearly obtain quite different numer-
ical results by labeling the sites in different ways. Fortu-
nately, we can generalize the JW transformation in such
a way as to eliminate dependence on the labeling of the
sites.

III. EXTENDED JORDAN-WIGNER
TRANSFORMATIONS

The Jordan-Wigner transformation as introduced in
Eqn. 2 is a special case of what we shall refer to as an
extended Jordan-Wigner (EJW) transformation in which
we write

S+
p 7→ c†p ϕ

†
p, (9a)

S−
p 7→ cp ϕp, (9b)

Sz
p 7→ n̄p, (9c)

ϕ†
p = ei

∑
q θpq nq , (9d)

where the real parameters θpq satisfy the constraints

θpp = 0, (10a)

|θpq − θqp| = π. (10b)

A generic spin Hamiltonian Hs of the form

Hs =
∑
p

Hp S
z
p +

∑
p ̸=q

[
Wpq S

z
p S

z
q (11)

+
1

2
Vpq

(
S+
p S−

q + S+
q S−

p

) ]
becomes, under this transformation, a θ-dependent
fermionic Hamiltonian Hf (θ):

Hf (θ) =
∑
p

Hp n̄p +
∑
p ̸=q

[
Wpq n̄p n̄q (12)

+
1

2
Vpq

(
c†p ϕ

†
p ϕq cq + c†q ϕ

†
q ϕp cp

) ]
.

This extended transformation has been mentioned in
the literature,[12] but to the best our knowledge has not
been used in actual calculations. Instead, θ has been
restricted to take on specific values. For example, the
Jordan-Wigner case is

θJWpq =

{
0 q > p,

π q < p.
(13)

In addition to the Jordan-Wigner limit, this extended
Jordan-Wigner also encapsulates a lattice version of the
Chern-Simons transformation (see, for example, Ref. 13)
in which one writes

θCS
pq = arg(r⃗p − r⃗q) (14)

where r⃗p, for example, is a vector pointing to site p.
We prefer a different approach. Rather than choosing a

specific form or specific values for the θpq, we treat them
as variational parameters in an optimization in which
we solve the transformed Hamiltonian with Hartree-Fock
theory. To do so, we write the fermionic wave function
as

|HF(t)⟩ = e
∑

ia tai c†a ci |0⟩ (15)
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FIG. 1. Left panel: Hartree-Fock energy errors for different lattice labelings in the JW-transformed 6-site XXZ model with
open boundary conditions and Sz = 0. Right panel: Labeling schemes corresponding to the different curves, from #1 to #4,
top to bottom.
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FIG. 2. Hartree-Fock energy errors for different lattice la-
belings in the EJW-transformed 6-site XXZ model with open
boundary conditions and Sz = 0, using the same lattice la-
belings as in Fig. 1.

where |0⟩ is some important lattice determinant; in the
reference determinant |0⟩, sites i are occupied (corre-
sponding to ↑ spin in the spin picture) and sites a are
unoccupied (↓ spin in the spin picture). The complex
amplitudes tai are variational parameters specifying the
Hartree-Fock wave function, and the Hartree-Fock energy

EHF(t,θ) =
⟨HF(t)|Hf (θ)|HF(t)⟩

⟨HF(t)|HF(t)⟩
(16)

depends on both the wave function amplitudes t and the
Hamiltonian parameters θ with respect to which we may
then variationally minimize it.

It may not be entirely obvious, but this extended
Jordan-Wigner transformation has an interesting conse-

quence: the resulting energy is, if fully optimized, in-
variant to the ordering of the sites. Figure 2 demon-
strates this numerically. We provide a detailed proof in
Appendix A 1, but the substance of the proof is simple.
Changing the ordering of the sites permutes the Hamilto-
nian parameters Hp, Vpq, and Wpq in a way which is not
consequential but also permutes the rows and columns
of the matrix θ. We can always relabel sites after the
transformation, and adjust values in the matrix θ, such
that the fermionic Hamiltonian with sites expressed in
the two different orders is the same. In this we take
advantage of the fact that adjusting a particular value
θpq → θpq +2π is of no consequence because as we noted
previously, e2π inq = 1.
Instead of combining Hartree-Fock theory with the

EJW approach discussed here, one could imagine opti-
mizing the ordering of the lattice sites with a standard
JW transformation. As there are n! distinct labelings of
an n-site lattice, however, such an optimization naively
scales combinatorially with system size. In contrast, op-
timizing the EJW parameters θ along with the Hartree-
Fock parameters t has the same scaling with system size
(albeit with a larger prefactor) as does a single Hartree-
Fock calculation with a traditional JW transformation.

IV. LIE ALGEBRAIC SIMILARITY
TRANSFORMATION THEORY

A. An Alternative Perspective on Extended
Jordan-Wigner Transformation

One might be uncomfortable with treating Hamilto-
nian parameters as variational objects. To show that
this is safe in this context, we now wish to provide an
alternative perspective on the same basic idea, in which
the Hamiltonian is extracted from a standard JW trans-
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formation and we have a wave function which depends
on both t and a symmetric matrix θ. Along the way,
we will also see how we can introduce correlations via a
slight modification of the transformation. We have given
the previous perspective first as it might perhaps pro-
vide greater insight, but a purely wave function–based
approach is conceptually simpler and we will use this
language from now on.

Consider, then, Lie algebraic similarity transformation
theory. In LAST, we write a wave function

|LAST⟩ = eα2 |Ψ0⟩, (17a)

α2 =
1

2

∑
pq

αpq np nq (17b)

where the matrix α is symmetric and αpp = 0; |Ψ0⟩ is a
reference wave function which should be expressable as
a (short) linear combination of Slater determinants, for
reasons which will become apparent presently. Because
using the LAST wave function in a variational manner
is computationally forbidding, we follow traditional cou-
pled cluster theory in using the exponential correlator to
transform the Hamiltonian, to

H̄ = e−α2 H eα2 , (18)

and solve a similarity-transformed Schrödinger equation.
The similarity transformation can be evaluated by using
the commutator expansion, just as in traditional coupled
cluster theory:

H̄ = H + [H,α2] +
1

2
[[H,α2], α2] + . . . , (19)

Unlike in standard coupled cluster, the commutator
expansion is non-terminating. Fortunately, it is instead
resummable.[11] Because these ideas are somewhat non-
standard, we will rederive them here; see Ref. 11 for
more details.

Consider, then, the transformation of a single annihi-
lation operator:

c̄p = e−α2 cp e
α2 =

∑ 1

n!
(cp α

n
2 )c (20)

where the notation (cp α
n
2 )c means the n-fold commuta-

tor

(cp α
n
2 )c = [[[[cp, α2], α2], α2], . . .]︸ ︷︷ ︸

n commutators

. (21)

We will use the fact (proven for completeness in Ap-
pendix A 2) that

(cp α
n
2 )c = cp α

n
1,p, (22a)

α1,p =
∑
k

αpk nk. (22b)

This being the case we see that

c̄p = cp e
α1,p . (23)
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FIG. 3. HF and oo-uLAST in the JW-transformed 6-site 1D
XXZ model with open boundary conditions and Sz = 0. Note
that Hartree-Fock and oo-uLAST coincide for ∆ > 0.

Similarly, one obtains

c̄†p = c†p e
−α1,p . (24)

This means that a generic two-body fermionic Hamil-
tonian

H =
∑

hpq c
†
p cq +

1

4

∑
hpqrs c

†
p c

†
q cs cr (25)

becomes, after similarity transformation,

H̄ =
∑

hpq c
†
p e

−α1,p eα1,q cq (26)

+
1

4

∑
hpqrs c

†
p e

−α1,p c†q e
−α1,q eα1,s cs e

α1,r cr.

Working with such a Hamiltonian is generally difficult
due to the exponential one-body operators, but as in the
case of the JW-transformed Hamiltonian, we may read-
ily evaluate matrix elements between Slater determinants
since the exponentials of the one-body operators eα1,p are
simply Thouless transformation operators. It is for this
reason that the reference wave function |Ψ0⟩ must be a
single determinant or a short linear combination of de-
terminants.
Now suppose we have a unitary version of LAST

(uLAST). Unitarity means that the symmetric matrix
α must be purely imaginary so that the operator α2 is
antihermitian. We thus write α = iθ, where θ is then
real and symmetric, with θpp = 0, and we choose the
reference wave function |Ψ0⟩ to be a single determinant
which we will optimize together with the LAST param-
eters to get what we will refer to as orbital-optimized
uLAST (oo-uLAST). In this case, the wave function is

|uLAST⟩ = ei θ2 eT1 |0⟩, (27a)

θ2 =
1

2

∑
θpq np nq, (27b)

T1 =
∑

tai c
†
a ci, (27c)
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for some reference determinant |0⟩. The expectation
value is

EuLAST =
⟨0|eT

†
1 e−i θ2 H ei θ2 eT1 |0⟩
⟨0|eT †

1 eT1 |0⟩.
(28)

This can undoubtedly be minimized, for fixed H, with
respect to the parameters t and θ. In practice, we
can absorb the parameters θ into defining a similarity-
transformed Hamiltonian H̄(θ) (and in this case, the sim-
ilarity transformation is also unitary). In the special case
that H is the JW transformation of a spin Hamiltonian
Hs, then H̄(θ) takes precisely the form of the extended
JW transformation of Hs.
All of this means we have two distinct but equivalent

perspectives on the extended JW transformation ideas
we have discussed. On the one hand, we can consider a
more complicated transformation from spins to fermions,
where the transformation itself depends on a matrix of
coefficients θ satisfying the constraints of Eqn. 10. We
then approximate the ground state of this transformed
Hamiltonian as a single determinant, and minimize the
energy with respect to both the transformation param-
eters and the wave function parameters. On the other
hand, we can imagine instead using the standard JW
transformation of Hs which we then solve with orbital-
optimized unitary LAST. In either case, the resulting
energy is independent of the labeling of the sites in the
underlying spin Hamiltonian Hs.

B. Lie Algebraic Similarity Transformation as a
Correlated Method

Thus far, we have seen that oo-uLAST provides a dif-
ferent way of thinking about the Hartree-Fock solution
of a spin Hamiltonian with an extended JW transforma-
tion. We must note an important but subtle point: the
energy minimum of oo-uLAST may not correspond to
the Hartree-Fock solution of any JW-transformed Hamil-
tonian. That is, unitary LAST eliminates the ordering
dependence and may additionally introduce correlations.
From the perspective of extended JW transformations,
these correlations occur when the θ parameters, even
starting from the variationally optimal ordering in a stan-
dard JW sense, differ from x and x+π (we will see whence
the x momentarily). Figure 3 demonstrates this for the
same 6-site XXZ model we saw previously.

This should perhaps not be too surprising. After all,
LAST was originally introduced as a correlated method.
Previous experience, on the other hand, had taught us
that unitary LAST is not as accurate as a non-unitary
version of the theory (and indeed frequently has no effect
without reference reoptimization). The formal similarity
between uLAST on the one hand and JW-transformation
on the other does, however, suggest that the non-unitary,
similarity-transformed LAST (ST-LAST) as introduced
in Ref. 11 is a natural language in which to add correla-

tions atop our other results without dramatically chang-
ing the cost.
To add correlations with ST-LAST, we begin by vari-

ationally minimizing the oo-uLAST energy of the JW-
transformed Hamiltonian to obtain the parameters θ and
t. Once we have done so, we incorporate additional corre-
lations by solving the standard ST-LAST equations:[11]

E =
⟨Φ|H̃|Φ⟩
⟨Φ|Φ⟩

, (29a)

0 = ⟨Φ|np nq (H̃ − E)|Φ⟩, (29b)

where

|Φ⟩ = eT1 |0⟩, (30a)

H̃ = e−α2−i θ2 H eα2+i θ2 , (30b)

and where we set T1 and θ2 to their oo-uLAST values and
obtain the coefficients in α2 from the amplitude equation
of Eqn. 29b. In practical implementation, we can absorb
both α2 and i θ2 into a non-unitary extended JW string.
Finally, we must note that there is a redundancy in the

LAST parameterization of the wave function (and thus
also in the extended JW transformation). If we shift all
αpq for p ̸= q by a constant δ, then we shift α2 in a trivial
way:

α2 =
1

2

∑
p ̸=q

αpq np nq → 1

2

∑
p ̸=q

(αpq + δ) np nq (31)

= α2 +
1

2
δ
∑
p ̸=q

np nq

= α2 +
1

2
δ
(
N2 −N

)
where N is the fermionic total number operator. Acting
on number eigenstates, shifting all the LAST parame-
ters by a constant just multiplies the LAST wave func-
tion by a constant and does not change the similarity-
transformed Hamiltonian at all. It is this constant that
gives rise to the factor of x we mentioned at the beginning
of this subsection.

V. RESULTS

We have seen that oo-uLAST yields results which are
invariant to the labeling of sites in a lattice and may,
in addition, provide correlation. Here, we wish to ex-
plore the practical consequences of treating spin Hamil-
tonians with oo-uLAST. We also wish to investigate the
degree to which we can supplement oo-uLAST with non-
unitary similarity-transformed LAST, as previously de-
scribed. To this end, we will consider two spin Hamilto-
nians: the XXZ model given in Eqn. 1 and the J1 − J2
model

HJ1−J2
= J1

∑
⟨pq⟩

S⃗p · S⃗q + J2
∑
⟨⟨pq⟩⟩

S⃗p · S⃗q (32)
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FIG. 4. Spin arrangments in various 1D and 2D lattices. Top row: 1D spin structures. Top left: Block ferromagnet (for large
negative ∆ in the XXZ model). Top middle: Néel structure (large positive ∆ in the XXZ model, small J2/J1 in the J1 − J2

model). Top right: Period 2 Néel structure (large J2/J1 in the J1 − J2 model). Bottom row: 2D spin structures. Bottom left:
Block ferromagnet (for large negative ∆ in the XXZ model). Bottom middle: Néel structure (large positive ∆ in the XXZ
model, small J2/J1 in the J1 − J2 model). Bottom right: Striped structure (large J2/J1 in the J1 − J2 model).

in which nearest neighbor sites (denoted by ⟨pq⟩) have
an isotropic Heisenberg interaction with coefficient J1,
and next-nearest-neighbor sites (denoted by ⟨⟨pq⟩⟩) in-
teract with strength J2. We will take J1 = 1. In both
Hamiltonians, each site is spin 1/2.

Before we discuss our detailed numerical results, we
must say a few words about the model Hamiltonians we
will examine. The XXZ model has, in the thermody-
namic limit, three phases with ⟨Sz⟩ = 0. For ∆ < −1,
the ground state is a block ferromagnet, in which each
site in one half of the lattice is ↑-spin and each site in
the other half is ↓-spin. For ∆ > 1, the ground state
is instead a Néel antiferromagnet, while for |∆| < 1 the
ground state is an XY phase in which each site has, on
average, ⟨Sz⟩ = 0 with the magnetism oriented in the
x− y plane.[14] Similarly, the J1 − J2 model has (in two
dimensions) a Néel antiferromagnetic ground state for
J2 ≲ 0.4, and striped antiferromagnet for J2 ≳ 0.6. For
intermediate values of J2, the nature of the ground state
is still under a certain amount of discussion.[15–17] In
one dimension, the J1 − J2 model with J1 > 0 has a
Néel antiferromagnetic ground state for J2 ≲ 1/2 and a
frustrated phase for J2 ≳ 1/2.[18]
We study finite systems in this work, for which there

are of course no phase transitions. Nonetheless, one still
observes multiple kinds of magnetic orderings which in
the exact wave function evolve smoothly from one to an-
other as we adjust parameter values (∆ or J2 for the
XXZ or J1−J2 model, respectively). With Hartree-Fock
and oo-uLAST, we generally see solutions which cross
one another instead. Similarity-transformed LAST solu-
tions also cross one another, though not necessarily at the
same parameter values at which the oo-LAST reference

states cross. Note that because we do not impose any
kind of lattice symmetry, the frustrated phase in the 1D
J1−J2 model becomes a kind of “period 2” Néel arrange-
ment as J2 dominates over J1. Figure 4 show the various
magnetic structures in our various model Hamiltonians.

We should also briefly touch on the way in which we
solve the equations for the wave function amplitudes tai ,
θpq, and αpq. Although the most computationally ef-
ficient implementation uses a non-orthogonal version of
Wick’s theorem[19, 20] to evaluate matrix elements of the
Hamiltonian between two different Slater determinants,
our testing implementation here uses a full configuration
interaction code instead. This facilitates implementation
and testing but limits us to 12-16 sites, even though the
formal scaling of our energy evaluation for Hamiltoni-
ans of the form given in Eqn. 11 is O(N5), where N is
the number of sites. This scaling arises because evaluat-
ing the energy for a generic two-body spin Hamiltonian
requires O(N2) distinct matrix elements, each of which
may be evaluated in O(N3) time.

Given the energy and the analytic gradient, we begin
by choosing a single lattice-basis determinant from those
with the lowest energy at some extreme value of the pa-
rameter (e.g. ∆ = ±2 or J2 = 0 or 1) and initialize the
tai amplitudes of Hartree-Fock to zero; we then minimize
the energy using the conjugate gradient algorithm, and
use the converged solution from one parameter value as
the initial guess for the next. We take a similar approach
for oo-uLAST, in which we initialize tai to zero and θpq
to random numbers. For ST-LAST, we take an approach
inspired by traditional coupled cluster theory. At each
parameter value, we initialize αpq = 0 and compute the
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FIG. 5. Energy errors in the 12-site 1D XXZ Hamiltonian with Sz = 0. Left panel: Open boundary conditions. Right panel:
Periodic boundary conditions. Note that for ∆ ≥ 0, oo-LAST and HF coincide.
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diagonal of the Jacobian:

Jpq,pq =
∂Rpq

∂αpq

∣∣∣∣
α2=0

(33)

where the residual is

Rpq = ⟨Φ|np nq (H̃ − E)|Φ⟩ (34)

in terms of the state |Φ⟩ and transformed Hamiltonian H̃
defined in Eqn. 30. We use this diagonal approximation
in a quasi-Newton scheme, iteratively solving

αpq → αpq + δαpq, (35a)

0 = Rpq + Jpq,pq δαpq, (35b)

and accelerating convergence using the DIIS
algorithm.[21] Once the residual is sufficiently small, we
switch to a standard Newton-Raphson approach. To

handle the singularities implied by the invariance of
LAST to shifting αpq by a constant, we set ⟨α2⟩ = 0 at
each iteration and regularize the linear equations

J−1 → (J + ω 1)
−1

J (J + ω 1)
−1

(36)

for ω some small positive constant (in this case, 10−8).
Finally, we must specify an ordering for the sites. We

order sites sequentially along the x direction, then the
y direction, and do not use a serpentine labeling of the
lattice. Thus, for an nx ×ny lattice, the label ix,y of site
(x, y) is

ix,y = x+ (y − 1)nx. (37)

A. One-Dimensional Hamiltonians

Let us begin with one-dimensional (1D) results. Fig-
ure 5 shows results for the 12-site XXZ model in open
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FIG. 7. Site labeling in quasi-1D systems. Left panel: Labeling for a 2 × 6 lattice. Right panel: Labeling for a 6 × 2 lattice.

boundary conditions (OBC) and periodic boundary con-
ditions (PBC), while Fig. 6 does the same for the 12-site
J1 − J2 model.

In the XXZ model, HF and oo-uLAST coincide for
∆ ≥ 0. In other words, in this region the oo-uLAST
restores the permutational invariance of the transforma-
tion, but does not add any correlation. On the other
hand, HF and oo-uLAST differ significantly for ∆ < 0
and it would appear that oo-uLAST is therefore provid-
ing at least some degree of correlation. These results
are exactly analogous to what we see for the 6-site XXZ
model in Fig. 3. While for 12 sites we cannot exclude the
possiblity that some ordering of lattices sites exists for
which HF and oo-uLAST agree for ∆ < 0 (because there
are, with open boundary conditions, 1/2×12! ∼ 2.4×108

permutations to check), we have checked that in 6 sites
and periodic boundary conditions, oo-uLAST does not
match the HF result for any lattice ordering.

We have found three distinct oo-uLAST solutions in
OBC: one for ∆ ≳ −0.75, a second for ∆ ≲ −1, and a
third for ∆ between −0.75 and −1. In PBC, we find only
two solutions.

Turning to the ST-LAST results, we see that ST-LAST
greatly improves results except in what is roughly the
Néel regime (∆ ≳ 1), where its effects are markedly
smaller. There appears to be roughly three distinct so-
lutions, although we have had considerable difficulty in
resolving where exactly the solutions cross. Of course HF
is exact at ∆ = 0, as we discussed earlier, and thus so too
are oo-uLAST and ST-LAST. Note that as we approach
large |∆|, the XXZ Hamiltonian of Eqn. 1 is dominated
by the ∆Sz Sz term or, upon JW-transformation, by a
term ∆ n̄ n̄ (see Eqn. 8). Mean-field states, whether in
terms of spins or fermions, are eigenstates of this term,
so in the limit of very large |∆|, JW-HF is again exact.

Results for the 1D J1 − J2 model are qualitatively
similar. Again, there is a point (J2 = 1/2) at which
Hartree-Fock is already exact. At this point, the system
is fully dimerized.[22] For J2 < 1/2, HF and oo-uLAST
are identical, while for J2 > 1/2 they differ. Again, ST-
LAST offers significant improvement upon oo-uLAST,
although the improvement is smaller than in the XXZ
model. Finally, we note that we observe several solu-
tions, particularly in the periodic case. This plethora of
stationary points of the oo-uLAST energy appears to be
the method’s principle drawback.

B. Quasi-One-Dimensional Hamiltonians

In one dimension, there is an apparently natural order
for the lattice sites (we can just label them sequentially)
but in two dimensions, this is not the case. To see this in
action, we consider quasi-1D “ladder” systems in which
the lattice is 2× n or n× 2 and in which the JW strings
with the labeling we have identified in Eqn. 37 differ; we
depict these two different labeling schemes in Fig. 7 for
clarity.

We do not wish to belabor the point, but as Figs. 8
and 9 make clear, we obtain very different Hartree-Fock
results, depending on the labeling. This ambiguity is
completely resolved in oo-uLAST, which additionally ap-
pears to provide a substantial degree of correlation in the
XXZ model. The inclusion of a non-unitary similarity-
transformed LAST provides quantitatively accurate total
energies in the XXZ ladder Hamiltonian, at least for the
region |∆| ≲ 1 which can be rather difficult to capture in
the language of spins. For the J1 − J2 model, we see the
same basic features, although note that we have been un-
able to systematically converge the ST-LAST equations
for the J1 − J2 ladder Hamiltonians with open boundary
conditions. We note also that in the J1 − J2 ladder with
periodic boundary conditions, HF is exact at J2 = 1/2
(for some choice of lattice labeling) as are, of course, oo-
uLAST and ST-LAST. As in the 1D case, JW-HF be-
comes exact in the large |∆| limit.

C. Two-Dimensional Hamiltonians

Finally, Fig. 10 shows results for the 4 × 4 XXZ
and J1 − J2 Hamiltonians with periodic boundary con-
ditions. Clearly, our HF results are worse in 2 × n sys-
tems than they are in 1D, and worse yet in genuinely
2D systems, but oo-uLAST affords significantly improved
performance. Once we include ST-LAST for correlation,
the energetic accuracy is genuinely quite high, although
we note that there are many solutions which differ only
slightly in energy from one another and whose presence
complicates the generation of a complete curve for en-
ergy as a function of ∆. We have not included ST-
LAST in the J1 − J2 model, as we have not been able
to converge to a real energy at every point, and rather
than showing energy errors we plot total energies. We
have also included a curve we call “LC-J2CI,” which is a
method which works directly in the language of spins.[23]
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This method is a linear combination of seven configura-
tion interaction doubles based upon the spin version of
the antisymmetrized geminal power wave function. In
the language of conventional electronic structure meth-
ods, one might think of it as a linear combination of
multireference configuration interaction states. It is re-
markable that even a simple Hartree-Fock solution of the
JW-transformed Hamiltonian is of roughly comparable
quality.

D. Correlation Functions

While total energies are generally the first thing we
compute since they emerge naturally in the course of op-
timizing the wave function, they are not necessarily the
most interesting. A more relevant quantity in the context

of spin systems are the spin-spin correlation functions.
We will confine ourselves to the 1D case with periodic

boundary conditions, and define the Sz − Sz and S⃗ · S⃗
correlation functions as, respectively,

F (z)
p =

∑
q

⟨Sz
q S

z
q+p⟩, (38a)

F (0)
p =

∑
q

⟨S⃗q · S⃗q+p⟩ = F (z)
p +

1

2

∑
q

⟨S+
q S−

q+p + S−
q S+

q+p⟩,

(38b)

where here we will take sites to be numbered in increasing
order from one side of the lattice to the other. After
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Jordan-Wigner transformation, these become

F (z)
p =

∑
q

⟨n̄q n̄q+p⟩, (39a)

F (0)
p = F (z)

p +
1

2

∑
q

⟨c†q ϕ†
q ϕq+p cp + cq ϕq ϕ

†
q+p c

†
q+p⟩,

(39b)

where we recall that n̄q = nq − 1/2 and where the expec-
tation values are taken with respect to a Hartree-Fock or
oo-uLAST wave function. We do not include ST-LAST
results in this section because the non-unitary similarity
transformation in ST-LAST requires a biorthogonal ex-
pectation value as in traditional coupled cluster theory.

One important thing to note is that the Sz − Sz cor-
relation function is indepenent of the LAST parameters
θ since exp(i θ2) commutes with the operator n̄q n̄q+p.
Thus, any differences between the Sz − Sz correlation
functions of HF and oo-uLAST are simply due to the
differences between the t amplitudes defining the mean-
field wave functions.
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Figure 11 shows correlation functions F
(0)
p and F

(z)
p

for the 12-site XXZ model at four different values of ∆.
We have picked these values as they bracket what be-
come the phase transitions in the thermodynamic limit.

Generally, the S⃗ · S⃗ correlation functions from both HF
and oo-uLAST are quite accurate (and of course are ex-
act at ∆ = 0, where recall that HF is exact) except at
∆ = −1.1. We note that the correlation functions im-
prove as we move deeper into the ferromagnetic region
∆ ≲ −1 (data not shown). The Sz −Sz correlation func-
tions are of somewhat lower quality, though oo-uLAST
offers a sigificant improvement over HF. Since the Sz−Sz

correlation function is independent of θ, the improve-
ments afforded by oo-uLAST simply reflect an under-
lying single determinant with a more physically correct
structure.

VI. CONCLUSIONS

The Jordan-Wigner transformation is a textbook ex-
ample of a duality: certain spin-1/2 systems which are
difficult to treat as spins can be readily handled af-
ter transformation to a system of spinless fermions, es-
sentially because two-body spin operators like S+

p S−
q

convert to one-body fermionic operators c†p cq together
with JW strings. Because these strings are many-
body operators and are frequently written in the form
ϕp =

∏
k<p (1− 2nk), the JW transformation has not

been as widely exploited for the treatment of spin sys-
tems as it perhaps should be. Yet while the JW
strings are sufficiently cumbersome that they preclude
a more sophisticated fermionic treatment, their action
on fermionic determinants is simple, and we can treat
the JW-transformed Hamiltonian with Hartree-Fock the-
ory without undue difficulties. Hartree-Fock-Bogoliubov
or symmetry-projected mean-field methods[24–29] are
also straightforward. While the symmetries of the JW-
transformed Hamiltonian are generally complicated by
the presence of strings, Sz symmetry in the underly-
ing spin Hamiltonian translates to number symmetry of
the fermionic Hamiltonian, so number-projected Hartree-
Fock-Bogoliubov,[25, 28] known in the chemistry commu-
nity as the antisymmetrized geminal power,[30, 31] could
be applied readily.

On the other hand, these simple mean-field methods
are not generally adequate for fermionic systems, and
we cannot expect them to be adequate for general JW-
transformed spin systems either. While we cannot eas-
ily use traditional methods such as coupled cluster the-
ory to correct the deficiencies of an HF treatment, our
Lie algebraic similarity transformation theory is ideally
suited to the task, because in practice its effect is simply
to generalize the JW strings in providing a similarity-
transformed Hamiltonian which is solved at the mean-
field level. In doing so, we should emphasize, we obtain
extensive results (i.e. the LAST correlation energy and
the Hartree-Fock mean-field energy both scale correctly
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FIG. 11. Correlation functions in the 12-site periodic XXZ model in 1D with Sz = 0. Top row: S⃗ · S⃗ correlation functions for
∆ = −1.1, ∆ = −0.9, ∆ = 0.9, and ∆ = 1.1, respectively, from left to right. Bottom row: Sz − Sz correlation functions for
these same values of ∆.

with system size). The combination of LAST and HF for
JW-transformed systems offers excellent results at a quite
reasonable computational cost. Moreoever, this combi-
nation remedies perhaps the principle deficiency in the
HF treatment of a JW-transformed Hamiltonian by pro-
viding results which are independent of the way in which
we label sites. We do not care to speculate about the
implications of this invariance for other computational
techniques which also require the user to specify a label-
ing of sites or orbitals, since it is, on first blush, simply
due to the form the JW transformation. But in the con-
text of JW transformation, the improvements provided
by LAST appear to be significant indeed.

Note that, while for these spin systems we obtain sig-
nificantly better results by using fermionic mean-field
methods on the JW-transformed Hamiltonian than by
using equivalently costly spin-based methods, we do not
imply that one should always prefer fermionic methods
to spin-based approaches. Indeed, some spin Hamilto-
nians can be exactly solved by a spin-based mean-field
approach while their JW-transformed fermionic counter-
parts cannot be exactly solved by fermionic mean-field
theories.[32]

Finally, our approach here of solving a Hamiltonian of
spins by using the JW-transformation to convert it into a
fermionic Hamiltonian stands as an interesting contrast
to the program used in carrying out electronic structure
calculations on a quantum computer, where the fermionic
Hamiltonian is, by JW transformation, converted to a
qubit (i.e. spin) form.[33, 34] There is a spin-based coun-
terpart to fermionic LAST,[35] and its unitary version
might be of interest in this context.
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Appendix A: Mathematical Details

1. Invariance of oo-uLAST

Recall that the extended Jordan-Wigner transforma-
tion writes

S+
p 7→ c†p ϕ

†
p, (A1a)

Sz
p 7→ n̄p, (A1b)

ϕ†
p = ei θpq nq , (A1c)

where θpp = 0 and where

|θpq − θqp| = π. (A2)

Conventionally, we might choose θpq = θqp + π for p > q,
but this choice is not essential.

A generic spin Hamiltonian

Hs =
∑
p

Hp S
z
p +

∑
p ̸=q

[
Wpq S

z
p S

z
q (A3)

+
1

2
Vpq

(
S+
p S−

q + S+
q S−

p

) ]
,

becomes, upon this extended Jordan-Wigner transforma-
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tion, a fermionic Hamiltonian

Hf (θ) =
∑
p

Hp n̄p +
∑
p ̸=q

[
Wpq n̄p n̄q (A4)

+
1

2
Vpq

(
c†p ϕ

†
p ϕq cq + c†q ϕ

†
q ϕp cp

) ]
.

Now suppose we label the sites of that same spin
Hamiltonian differently, transform it to a fermionic
Hamiltonian as before, and then, after transformation,
relabel the fermions to coincide with the labeling scheme
of our original Hamiltonian. For example, a 4-site Hamil-
tonian with sites ordered 1−3−2−4 could be transformed
to a fermionic Hamiltonian, after which the fermions can
be relabeled in the order 1− 2− 3− 4. This gives us two
fermionic Hamiltonians with identical matrix elements
Hp, Wpq, and Vpq, but different strings. The string oper-
ators for the two different orders are each parameterized
by a matrix θ obeying the constraints we have already
laid out. Note, however, that the θpq are variational pa-
rameters to be optimized, each in the range [−π, π) and,
upon this optimization of the strings and mean-field wave
function, we will obtain the same final result.

As we relabel, we may not have θpq = θqp + π for
p > q but recall that factors of 2π are irrelevant so we
are free to remove them. For example, with sites ordered
as 1− 3− 2− 4 we would have

θ(1) =

 0 θ13 θ12 θ14
θ13 + π 0 θ32 θ34
θ12 + π θ32 + π 0 θ24
θ14 + π θ34 + π θ24 + π

 . (A5)

Here, for convenience, we have labeled the rows and
columns of the matrix θ by the site to which they cor-
respond. Putting the fermions in the canonical order
1− 2− 3− 4 requires swapping the middle two rows and
columns of the matrix, to

θ(2) =

 0 θ12 θ13 θ14
θ12 + π 0 θ32 + π θ24
θ13 + π θ32 0 θ34
θ14 + π θ24 + π θ34 + π

 . (A6)

We can define θ32 = θ23 + π, which would give us

θ(2) =

 0 θ12 θ13 θ14
θ12 + π 0 θ23 + 2π θ24
θ13 + π θ23 + π 0 θ34
θ14 + π θ24 + π θ34 + π

 . (A7)

Dropping the 2π gives us the same matrix θ as we would
have obtained had we directly labeled the sites in the
order 1−2−3−4, and of course we obtain the same result
from these two orders upon variational optimization.

2. Resumming the Similarity Transformation in
LAST

We have said that

(cp α
n
2 )c = cp α

n
1,p,

where we recall that

α1,p =
∑
q

αpq nq

and that the notation (cp α
n
2 )c means the n-tuple com-

mutator of α2 with cp. Here, we wish to establish this
inductively.

First, we note that it is trivially true for n = 0, which
just says that if we have no commutators of α2 with cp,
then the result is cp.

We also note that definitionally,(
cp α

n+1
2

)
c
= [(cp α

n
2 )c , α2]. (A8)

Inserting our inductive hypothesis gives us(
cp α

n+1
2

)
c
= [cp α

n
1,p, α2] (A9a)

=
(
cp [α

n
1,p, α2] + [c†p, α2]α

n
1,p

)
(A9b)

using the fact that [AB,C] = A [B,C] + [A,C]B. Be-
cause α1,p and α2 commute, we are left with

(
cp α

n+1
2

)
c
=

1

2

∑
rs

[cp, nr ns]α
n
1,p (A10a)

=
1

2

∑
rs

αrs

(
[cp, nr]ns (A10b)

+ nr [cp, ns]
)
αn
1,p

after inserting the definition of α2. Since cp and nr com-
mute unless p = r, and αpq = αqp, we reduce this to

(
cp α

n+1
2

)
c
=

1

2

∑
q

αpq

(
[cp, np]nq (A11)

+ nq [cp, np]
)
αn
1,p.

Using

[cp, np] = cp c
†
p cp − c†p cp cp = cp

(
1− cp c

†
p

)
= cp (A12)

yields

(
cp α

n+1
2

)
c
=

1

2

∑
q

αpq (cp nq + nq cp) α
n
1,p. (A13)

Finally, we note that cp and nq commute unless p = q
but that for p = q the operator part is irrelevant because
αpp = 0. This gives us

(
cp α

n+1
2

)
c
= cp

(∑
q

αpq nq

)
αn
1,p = cp α

n+1
1,p , (A14)

completing the proof.
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