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Effects of Downstream Vortex
Generators on Film Cooling a Flat
Plate Fed by Crossflow

Counter-rotating vortices, formed by the interaction of film-cooling jets and the hot gas
flow, adversely affect the performance of conventional film-cooling designs. Downstream
vortex generators have been shown to improve cooling effectiveness by mitigating the
effects of the counter-rotating vortices and by deflecting the cooling jet laterally. In this
study, computational and experimental methods were used to examine how cylindrical
film-cooling holes (D =3.2 mm, L/D =06, p/D =3, a =30 deg) with and without downstream
vortex generators perform when the coolant supply channel is perpendicular to the direc-
tion of the hot gas. For this study, the hot gas had a temperature of 650 K and an average
Mach number of 0.23. The hot-gas-to-coolant temperature ratio was 1.9, and two blowing
ratios (0.75 and 1.0) were studied. Results from the computational fluid dynamics study
show how crossflow affects the interaction between the film-cooling jet and hot gas flow
with and without downstream vortex generators. The experimental measurements were
based on infrared thermography in a conjugate heat transfer environment. Results were
obtained for film-cooling performance in terms of overall effectiveness, film effectiveness,
and local heat transfer coefficients. The downstream vortex generators can increase the lat-
erally averaged effectiveness by a factor of 1.5 relative to cylindrical holes, but this higher
performance is restricted to low crossflow velocities and higher blowing ratios.
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Keywords: computational fluid dynamics (CFD), fluid dynamics and heat transfer
phenomena in compressor and turbine components of gas turbine engines, heat transfer
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Introduction

Advanced gas turbines use film cooling to protect components in
the hot gas path. Although significant progress has been made over
the last 50 years [1-4], advanced cooling technologies can still
impact cycle performance. For example, a recent sensitivity study
on natural gas combined cycles suggests that a 44% improvement
in film-cooling effectiveness translates to a 2.5 percentage point
improvement (or 4% change) in the combined cycle efficiency rel-
ative to a 62% baseline [5].

Film cooling protects hot gas components in a gas turbine engine
by forming an insulating layer of cooler air to isolate the surface
from the hot gases [6]. With discrete cooling jets formed by inclined
circular holes, the interactions between the cooling flow and the hot
gases create a pair of counter-rotating vortices (CRVs) [7,8]. These
CRVs can cause the cooling jet to lift from the surface, and the insu-
lating layer of cooling air is subsequently replaced with hot gas
infiltration near the surface. Thus, CRVs can significantly diminish
the effectiveness of film cooling.
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Several prior efforts have been proposed to mitigate the impact of
CRVs on film-cooling performance. These prior methods have been
classified into four categories by Lee et al. [9]:

e Modity the shape and/or orientation of the film-cooling holes.
For example, shaped holes [10-14], compound-angle holes
[15-20], and slots have been used to reduce the negative
effects of CRVs.

e Change the layout of the film-cooling arrays such that the
CRVs entrain cooler air instead of hot gases. For example,
two rows of film-cooling holes arranged in a staggered
fashion provide cooler air to the downstream region between
the cooling jets.

e Incorporate modifications to mitigate CRV formation mecha-
nisms and/or minimize the strength of CRVs. For example,
transverse surface trenches [21] and upstream ramps [22]
have been studied as an approach to reduce the effects of
CRVs.

o Create vortical structures that have an opposite direction (i.e.,
anti-CRVs) to counteract conventional CRV degradation.
Some examples include struts [23], upstream and downstream
tabs [24,25], side jets to create anti-kidney vortices [26], and
vortex generators. [27-31].

Background: Vortex Generators for Film Cooling. This study
focuses on the use of vortex generators to create vortical structures
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with a different directional sense relative to conventional CRVs.
The use of vortex generators (VGs) was first proposed by Rigby
and Heidman in 2008 [27]. A V-shaped tetrahedron with an isosce-
les triangle at the base and an apex that is perpendicular to that tri-
angle was used as a VG. This VG, henceforth denoted as a delta
ramp, is placed downstream of the film-cooling hole with the
apex of the V-shaped tetrahedron facing the film-cooling hole.
Using RANS simulations, the delta ramp generates a pair of
anti-CRVs that entrains the film-cooling flow back to the surface
to increase the lateral spreading of the coolant film and counteract
the CRV performance degradation effects. In a later study, Zaman
et al. [28] experimentally concluded the following: (1) the best
height for the delta ramp is 0.75D, where D is the diameter of the
film-cooling hole; (2) sharp edges are better than having rounded
ones; and (3) the delta ramp should be placed 1D-3D downstream
of the film-cooling hole. Song et al. [29] conducted an experimental
study on the effects of the inclination angle of the delta ramp. For a
range of blowing ratios, the best film effectiveness was observed
with a delta ramp inclination of 20 deg.

Lee et al. [9] proposed a different type of VG, and this prior work
was the basis for the VG design considered in this paper. Instead of
a single delta ramp, a pair of rectangular plates arranged in a
V-shape is placed at a distance 1D downstream of the film-cooling
hole (see Fig. 1). The height of the VGs studied in this paper is
0.5D. Based on prior work, the film-cooling effectiveness is
improved by two mechanisms. First, the two rectangular plates
act as guide vanes that divert the cooling flow laterally. The delta
ramp generates a similar flow feature, but the diversion is due to
blockage instead of guide vanes. Most of the diverted flow from
the inclined portion of the delta ramp forms anti-CRVs. Second,
instead of shedding vortices like in the delta ramp, the leading
edges of the V-shaped VGs induce the formation of horseshoe vor-
tices with a direction (sense) that is opposite of the traditional CRV.
Along the downstream face of the V-shaped VGs, the vortices near
the surface entrain the cooler flow back to the surface. This reduces
jet lift-off and increases lateral film coverage as described in Lee
et al. [9]. Based on these previous RANS studies, VGs with this
functional design could increase film-cooling effectiveness by 50—
100% and outperform fan-shaped holes, W-shaped holes,
flow-aligned blockers, and upstream ramps.

(@)

)t [

S

Fig.1 V-shaped downstream vortex generators (DVGs): (a) plan
view and (b) schematic of horseshoe vortices formation along
the pressure and suction side of the DVGs (adapted from Lee
et al. [30]).
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This paper is an extension of previous efforts by Lee et al. [9,30].
Although this paper contains both numerical and experimental
results, the primary focus is the experimental verification in a con-
jugate heat transfer test rig. In addition, this paper compares the
present results in a crossflow coolant channel configuration,
whereas the previous efforts only considered plenum-fed coolant
supply configurations.

Background: Film-Cooling Effectiveness (Adiabatic and
Conjugate). As described by Goldstein [6], the film temperature
can be used as a representative reference temperature to estimate
the heat flux between the hot gas and a film-cooled surface.
Figure 2 depicts an analogous thermal resistance network without a
thermal barrier coating. The important quantities from Fig. 2 that
will be discussed include the film effectiveness, 7y, the film tempera-
ture, T}, and the external heat transfer coefficient due to film cooling,
hy. Although the film effectiveness, #;, depends on numerous factors,
it is typically defined (see Eq. (1)) as the ratio of the actual reduction
in driving temperature (7, — T¥) relative to theoretical maximum tem-
perature difference (T, — T ). As described by Bunker [4], adiabatic
wall experiments provide an ideal and limiting case for laboratory
studies, but the application of film cooling in a real engine does not
involve an adiabatic boundary. The term “adiabatic film effective-
ness” may be confusing in the context of a conjugate heat transfer
environment, so for the remainder of this paper, the term “film effec-
tiveness” will be used instead of “adiabatic film effectiveness.” This
paper will show how the film effectiveness varies for film-cooling
holes with and without downstream vortex generators with a
coolant supply channel that is perpendicular to the hot gas path.

The film temperature can be defined in terms of the film effective-
ness, 1; (see Eq. (2)). For the case of no film cooling (17;=0), the
film temperature is equal to T,, the freestream gas temperature.
When film cooling is present, the film temperature is a mixture of
T and T,. The film temperature also has a strong spatial variation
depending on the location relative to the cooling hole exit.

If film-cooling experiments are conducted under adiabatic condi-
tions (i.e., ky, = 0), then the local wall temperature is the same as the
local film temperature (see Eq. (3)). According to Bohn et al. [31],
the energy exchange between the fluid and the wall can alter the sec-
ondary flows near the surface. These secondary flow structures can
play an important role in the local film temperature and film effec-
tiveness. Ramachandran and Shih [32] have also shown the impor-
tance of thermal conductivity (Biot Number) for scaling heat flux
and temperature distributions. The computational portion of this
paper will consider both adiabatic and conjugate boundary condi-
tions along a flat plate.

Figure 2 also shows that the external heat transfer coefficient
changes when film coolant is present. The interactions between
the film-cooling jets and the hot gas can increase the local heat
transfer coefficients, so potential benefits in film effectiveness can
be offset by heat transfer augmentation. In this paper, experimental
measurements of both the local film effectiveness and the local heat
transfer coefficients will be discussed.
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Fig. 2 Schematic of film-cooling thermal resistance network
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Background: Film Cooling—Effects of Coolant Crossflow.
Numerous studies have considered the effects of a crossflow
coolant configuration. In 1997, Thole et al. [33] showed that the
downstream cooling film is affected by the cooling hole inlet condi-
tions and local separation bubbles inside the cooling holes. Kohli and
Thole [34] showed that perpendicular crossflow configurations had a
major effect on film effectiveness and discharge coefficients. On the
other hand, Kohli and Thole [34] showed that co-flow and counter-
flow configurations were very similar to a plenum-fed configuration.
In subsequent years, several studies have shown that crossflow
degrades the film cooling and discharge coefficient performance for
shaped holes [35—40]. Gritsch et al. [41] have shown that the film
effectiveness in the near-hole region could be altered by over 100%
for the perpendicular crossflow conditions. In addition to the signifi-
cant degradation for shaped film-cooling holes, Gritsch et al. [41] also
reported a mild improvement in film effectiveness for cylindrical
holes. Stratton [42] and Qenawy et al. [43] show how the perpendic-
ular crossflow generates secondary flow structures inside the cooling
hole that subsequently impact the downstream cooling jet structure.
More recently, Sperling and Mathison [44] reported that the coolant
swirl and flow biasing within the film-cooling jet could be less sus-
ceptible to freestream turbulence and temporal fluctuations.

Although the prior work considered either cylindrical and/or
shaped film-cooling holes, there are two relevant publications on
downstream vortex generators with perpendicular crossflow. In
2017, Song et al. [29] used particle imaging velocimetry to show
how a triangular pyramid vortex generator located immediately
downstream of the film-cooling hole produced an “anti-counter-
rotating vortex pair” to prevent lift-off and increase coolant jet
spreading near the surface. For a blowing ratio (BR) of 1.0, Song
et al. [29] reported that these downstream vortex generators
(DVGs) increased the area-averaged film-cooling effectiveness
from about 0.1 for a cylindrical hole to about 0.2 when a vortex

generator was located downstream of the hole. In 2022, Wang
et al. [45] also studied a perpendicular crossflow coolant configura-
tion for cylindrical and shaped holes with and without DVGs. Wang
et al. [45] reported that the film effectiveness for the cylindrical hole
increased from about 0.1 (no DVGs) to about 0.15 with DVGs.
Therefore, these prior studies using a different DVG design have
shown a film effectiveness improvement that is 1.5-2.0 times
higher than a baseline cylindrical hole. Neither the local heat trans-
fer coefficients nor the overall cooling effectiveness have been
reported in this prior work.

The DVG design discussed in this paper is shown in Fig. 1 and
differs from Song et al. [29] and Wang et al. [45]. This DVG
design was developed by Lee et al. [9,30] using a cooling supply
plenum configuration. The current paper will investigate the perfor-
mance of a DVG design that is identical to Lee et al. [30] except for
a perpendicular coolant crossflow configuration. In addition, local
heat transfer coefficients, film effectiveness, and overall cooling
effectiveness will be experimentally measured using a conjugate
heat transfer test facility.

Motivation and Objective. If the film-cooling effectiveness
(and internal cooling efficiency) can be improved, Uysal [5] has
shown large benefits in efficiency, greenhouse gas emissions, and
power for combined cycle systems. The objective of this effort is
to investigate whether a relatively new idea for DVGs is a feasible
approach to achieve higher film-cooling effectiveness in a perpen-
dicular crossflow configuration.

Computational Setup

The computational study described in this section seeks to
provide some qualitative understanding of the film-cooling jet for-
mation within the film-cooling hole and the subsequent interactions
with the mainstream as the coolant channel velocity is increased.
These computational fluid dynamics (CFD) results explain some
unexpected experimental results and guide the data analysis
reported in this paper.

Description of the Computational Fluid Dynamics Problem.
Figure 3 shows a schematic of the film-cooling configuration
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Fig. 3 Schematic of the computational problem studied
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Table 1 Summary of all CFD cases studied

Coolant channel Thermal BC on DVGs
Case BR velocity, Ve, coupon applied
1 0.75 20 m/s Adiabatic No
2 Yes
3 Conjugate No
4 Yes
5 40 m/s Adiabatic No
6 Yes
7 Conjugate No
8 Yes
9 1.0 20 m/s Adiabatic No
10 Yes
11 Conjugate No
12 Yes
13 40 m/s Adiabatic No
14 Yes
15 Conjugate No
16 Yes

studied computationally and experimentally. All dimensions are
given in terms of the film-cooling hole diameter, D =3.175 mm.
The geometry for the CFD is identical to the experimental facility
except for the distance from the inflow boundary on the hot gas
side, Ly;. Ly, was chosen to ensure that the CFD velocity profiles
match the previously published experimental velocity profiles [30].
The geometry of the downstream vortex generators is shown in Fig. 1.

The hot gas has a freestream temperature of 7,=650 K and a
freestream velocity of V,=107.5 m/s along the x-direction. The
flow in the boundary layer is assumed to be turbulent from the
leading edge of the flat plate. The coolant channel conditions
include an inlet temperature, 7.;, of 345K, which targets a
density ratio of DR=1.9. Two different “mean” coolant channel
velocities, Vy,, of 20 and 40 m/s and two blowing ratios of BR =
0.75 and 1.0 are studied for comparison. A summary of all simula-
tions performed is given in Table 1.

Formulation, Numerical Method of Solution, and Code. In
this study, the governing equations employed for the gas phase

hot-gas

are the ensemble-averaged continuity, Navier—Stokes, and energy
equations (often referred to as RANS) for a thermally perfect gas
with temperature-dependent thermal conductivity, viscosity, and
specific heat for air. The effect of turbulence is modeled using the
SST model with curvature correction and production limiter [46].
Though RANS models are known to underpredict lateral spreading
of film-cooling flows, Lee et al. [30] have shown that once vortex
generators are added downstream of the film-cooling hole, the
SST model provides excellent results. In that paper, the SST
model was validated by comparing the measured velocity profiles
upstream and downstream of the film-cooling hole, as well as the
wall temperatures.

In the current study, the film-cooling holes are fed in a crossflow
fashion, which produces a swirl in each film-cooling hole. For such
flows, Stratton et al. [42] showed the large eddy simulation solution
was between the k-¢ and SST predictions. In this study, the SST
model was chosen because the solutions generated in this study
will be compared with those of Lee et al. [30], which also used
the SST model.

For the conjugate simulations, the temperature-dependent
thermal conductivity given in Ref. [47] is used. The solid phase is
coupled to the gas by requiring the temperature and the heat flux
at the gas—solid interfaces to be the same. Solutions to the governing
equations were obtained using ANSYS FLUENT [48]. Since only
steady-state solutions were sought, the SIMPLE algorithm was
used. The fluxes for density, momentum, and energy at the cell
faces were interpolated by using the second-order upwind
scheme. Pressure and all diffusion terms were approximated by
using second-order accurate central formulas. For the solid phase,
there are only diffusion terms, and they were approximated by
using second-order accurate central formulas. For all computations,
iterations were continued until all residuals for all equations pla-
teaued to steady-state. At convergence, the scaled residuals were
less than 107> for continuity and momentum, less than 1077 for
energy, and less than 10~ for the turbulence quantities.

Verification and Validation. Verification was accomplished
via a grid-sensitivity study. Figure 4 shows the multi-block struc-
tured grid system used, where grid points were clustered to all
solid surfaces, smooth, and nearly orthogonal. The following
three grid sizes were examined: mesh 1, the coarsest grid, had

Fig. 4 Grid system used in the CFD model
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BR=1.0, Coolant flow rate=4000 SCFH (with VGs)
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Fig. 5 Grid sensitivity: C,, Cs, and nalongxaty=z=0

27.7 million cells; mesh 2, the baseline grid, had 46.6 million cells;
and mesh #3, the finest grid, had 54.1 million cells. Note that mesh 3
refined mesh 2 only in the regions where hot gas and the cooling
flow interact.

For all three grids, the first cell away from all solid surfaces has a
y+ less than unity. The grid-sensitivity study is performed using
parameters in case 14 (see Table 1). Figure 5 shows the pressure
coefficient (C,), the skin friction coefficient (Cy), and the centerline
film-cooling effectiveness (i) for all three mesh resolutions. In this
figure, the solutions of C,,, Cy, and 7 nearly coincide as the grid is
refined, except for a small difference in C,, around x/D =2 where
flow separation occurs. Based on this study, the baseline grid (see
Fig. 5) was used to generate all subsequent solutions.

Experimental Setup

The objective of the experimental effort is to evaluate the film-
cooling performance of the V-shaped DVGs developed by Lee
et al. [9,30] under conditions of perpendicular coolant crossflow.
Although the performance of this DVG design is encouraging for
a plenum configuration [30], the effects of perpendicular coolant
crossflow were not understood prior to this work. This paper will
discuss spatially resolved heat transfer coefficients, film effective-
ness, and average overall cooling effectiveness for a single row of
cylindrical film holes with and without DVGs.

Experimental Formulation and Approach. The experimental
approach is similar to Gritsch et al. [37] and Kneer et al. [49], but
the governing equation has been modified to eliminate the film tem-
perature from the regression model (see Eq. (4)). In prior work
[37,49], water-cooling channels were used to control the wall tem-
perature. The heat flux at the surface was found using a finite

Journal of Turbomachinery

element model. Equation (3) was used as the basis for a linear
regression model in which the heat transfer coefficient is simply
the slope of the regression equation. When the regression is per-
formed at each pixel in an infrared thermal image, local heat transfer
coefficients can be calculated for a set of experimental wall
temperatures.

The approach taken in this paper combines Egs. (2) and (3) to
eliminate the film temperature, as shown in Eq. (4). The gas temper-
ature, T, and the coolant inlet temperature, T, ;, are kept constant at
650 K and 345 K, respectively. Infrared temperature measurements
from both the hot and cold sides of the flat plate are used as bound-
ary conditions in a commercial three-dimensional finite element
solver (aNsys-Mechanical 2022 R1). The finite element model cal-
culates the heat flux distribution for the region of interest on the flat
plate. In this effort, the local surface heat flux, ¢¢’, and the local
surface temperature, 7, are varied by changing the heat transfer
coefficient on the cold side of the plate. Using data from the differ-
ent heat flux conditions, the local heat transfer coefficient, &¢, and
film effectiveness, 7y, were found from a linear regression analysis
performed at each pixel.

qf (Tg - TW)
=h —h &)
Ty—Tee \T,—T..) "

This approach is based on two key assumptions. First, the exter-
nal thermal resistance and the film temperature must be independent
of variations in the internal cooling channel velocity (i.e., the vari-
able used to change the heat flux in this study). The limits of this
assumption will be discussed in greater detail in subsequent sec-
tions. Second, the coolant exit temperature, 7, is assumed to be
equal to the coolant inlet temperature, 7.;. This assumption
implies that no heat is transferred to the coolant within the
coolant holes. To minimize heat transfer to the coolant inside the
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Fig. 6 Cross-section of film-cooled test article

cooling holes, the cooling holes are thermally isolated using air gaps
for 80-85% of the plate thickness (see Fig. 6).

A sequential perturbation analysis was completed to estimate the
error associated with this approach. From this analysis, the errors in
the heat transfer coefficient were less than 10%. However, the stan-
dard errors of the slope (heat transfer coefficient) were on the order
of +15-20%, and the standard error of the intercept was +20-30%
for the film effectiveness.

Test Facility. The test facility used in this effort has been
described previously by Ramesh et al. [50], so only the key features
will be described in this section. For the purposes of this paper, the
temperature ratio, To/T.;, has been held constant at a value of 1.88
to be consistent with prior work [30]. The hot gas temperature is
kept constant at 650 K, and a 3.2-mm-diameter type-K thermocou-
ple measures the gas temperature upstream of the film-cooling test
article. More details of the inlet temperature and velocity profiles
have been published previously [30]. The hot gas mass flow is
kept constant using a high-temperature flow control valve and an
orifice flowmeter. A flow conditioning section produces a
uniform flow entering a convergent nozzle at the inlet to the 101
x 101-mm test section. The test section is designed with three view-
ports that can be used for laser diagnostics and infrared imaging (see
Fig. 7). For the results discussed in this paper, sapphire windows
were used to measure infrared emission from the hot and the cold
surfaces. Stainless steel blanks were installed in the viewport
walls adjacent to the test article.

The coolant channel is a 127 x 6.4-mm rectangular channel. The
coolant temperature is measured upstream and downstream using
1.6-mm-diameter type-T thermocouples. These thermocouples are
located about 25 mm from the leading and trailing edges of the
test coupon. An electric preheater is used to control the temperature
of the cooling air. The average temperature is used as a control point
to maintain a constant coolant temperature near the center hole.
Since the coolant flow direction is normal to the hot gas flow direc-
tion, the flat plate test article is located at the intersection between
the coolant channel and the hot gas flow channel. The cooling air
flowrate is measured upstream of the film-cooling holes using a

Hot
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~ Flow
Bypass
cocling

i \ g _ air

~ Test

IR windows

exit

conditioning

section

(cold-side + hot-side)

film holes surrounded Hot Gas Coolant
by air gap / l Flow
L A '
= 46
0.5mm cover
for air gaps -
is not shown
R,
.
48.4
r  4mm

Fig. 8 Schematic of flat plate test article: origin of coordinate
system and region of interest

Coriolis flowmeter (accuracy +0.25% of reading) and downstream
of the test article using an Imperial V-20THD venturi meter (accu-
racy +0.75%). The film-cooling air flowrate is calculated as the dif-
ference between the cooling airflow measured upstream and
downstream of the test coupon. The resulting uncertainty in the
blowing ratio is +0.075 for the results presented in this paper.

A back pressure control valve is used to independently control
the film-cooling airflow. The independent variables for these exper-
iments are the cooling channel flow at the inlet to the cooling
channel and the blowing ratio.

Film-Cooling Geometry. The flat plate test coupons are
clamped between the external wall of the hot channel and the exter-
nal wall of the coolant channel. These stainless steel coupons were
additively manufactured and painted with four coats of Krylon High
Heat Max paint to increase the surface emissivity. The hot surface
of the test coupon is 101 mm x 66 mm, and the long side is oriented
parallel to the hot gas path, as shown in Fig. 8. A 3-mm-wide
sealing face (3 mm thick) encompasses the test article, and the
overall thickness of the test article is 9.5 mm.

The film-cooling holes are thermally isolated for 80-85% of the
test article thickness. Figure 8 also shows air gaps surrounding all
four sides of the region of interest. These gaps also extend
through 80-85% of the test article thickness, and the surfaces adja-
cent to stagnant air gaps are treated as adiabatic surfaces in the finite
element model. A 0.5-mm stainless steel sheet (not shown in Fig. 8
for clarity) is spot welded to the cold side to approximate a flush
surface with the interior wall of the coolant channel while maintain-
ing the insulating air gaps.

The cylindrical film-cooling holes have a diameter D =3.2 mm,
and the center hole is located along the mid-plane of the test

]

Hot gas
channel
Test
article Coolant
channel

Fig. 7 Schematic of test facility (insulation is not shown in this figure)
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Table 2 Film-cooling hole design and experimental constants

Parameter Design value
Cooling hole diameter, D 3.2 mm
Cooling hole pitch (p/D) 3
Cooling hole length (1/D) 6
Number of cooling holes 5
Mainstream gas temperature 650 K
Mainstream velocity, V, 110 m/s
Mach number—hot gas 0.22
Reynold’s number based on hole diameter 6180
(pgVeDlpg)
Mainstream turbulent intensity <2%
Approach boundary layer thickness (6/D) 1.1 (at LE of film
hole)

0.99 (x=-10D)
Temperature ratio (7/T.) 1.88
Coolant channel hydraulic diameter, Dy, 12.1 mm

coupon (a total of five cooling holes). Table 2 summarizes the
cooling hole design. The downstream vortex generators are rectan-
gular prisms oriented in a V-shape with a width of 0.4D, a height of
0.5D, and a thickness of 0.15D. See Fig. 1 for more details on the
vortex generator design.

The surface roughness for the DVG test article was measured
before and after painting. The centerline average roughness height
(Ra) was approximately 5 um before painting and about 2.5 um
after painting. As described by Bons [51], there are numerous cor-
relations to relate Ra to an equivalent sand grain roughness, k. In
a previous study by Searle et al. [52], the Schaffler [53] correlation
(ks =8.9 Ra) matched measured friction factors reasonably well for
additively manufactured surface roughness. To estimate the rough-
ness flow regime for the current work, the non-dimensional rough-
ness parameter, k* = p ks /u,,, has been evaluated. Based on the
CFD results, the shear velocity upstream of the film-cooling holes is
about 5.3 m/s, so k+<5. From a surface roughness perspective, the
flow can be considered hydrodynamically smooth.

Infrared Thermal Imaging. The dependent variables from this
experiment include the surface temperature distributions for both
the hot and cold sides of the test coupon. Two identical infrared
cameras (FLIR Model A8300sc) are used to measure these
surface temperatures. The cameras are calibrated against a black-
body source (Infrared Systems IR-564/301) prior to testing. In addi-
tion, “in situ” calibrations are used to characterize background
radiation, window transmissivity, internal reflections, and other
factors, as described by Ramesh et al. [S0]. The root-mean-square

Table 3 Experimental test plan—independent variables

Parameter Design value
Blowing ratio (p.Vi/pyVs) BR=0.75 &
BR=1.00
Nominal coolant channel velocity, Ve ; 10, 15, 20, 30, 40 m/s
Density ratio (p./pg) 1.91-1.94
(BR=0.75)
1.94-1.99
(BR=1.00)
Reynold’s number—coolant channel hydraulic 7300-29,300
diameter (Rep, = p.VeniDn/p)
Mach number—coolant channel <0.12
VR; (Ve i/ Vj) 0.25-1.03
(BR=0.75)
0.19-0.77
(BR=1.0)
VReh (Venif V) 0.1-0.4
Film mass fraction (115 /rinch) 19-4% (BR=0.75)
25-6%
(BR=1.00)

Journal of Turbomachinery

error between the infrared and the in situ calibration temperature
measurements is less than 3 K.

Test Conditions. The test facility conditions that are kept cons-
tant are summarized in Table 2. The independent variables are sum-
marized in Table 3. By varying the coolant channel velocity, the
heat transfer coefficient on the cold side of the test coupon
changes, and that, in effect, changes the wall temperature on the
hot side. Data collection is performed after the steady-state condi-
tion is reached, and the process data are averaged over a ten-minute
window. Each test condition is replicated.

Results and Discussion

Wall Temperature Contours. For BR=1.0, the hot-side
surface temperature measurements are shown in Fig. 9. The hot
gas flow direction is from left to right, and the coolant flow direction
is from top to bottom. The channel velocity was varied to produce a
range of coolant hole inlet velocity ratio conditions (0.19 < V¢, i/V;
<0.77). The advantage of the DVGs is clearly seen at the lowest
crossflow channel velocity (Fig. 9, top row). However, as the cross-
flow channel velocity increases, the DVG performance seems to
degrade, and cylindrical holes without DVGs perform better at
the highest crossflow channel velocity (Fig. 9, bottom row).

This degradation in cooling performance can also be observed if
the wall temperature is averaged over the region of interest and
plotted as a function of the hole inlet velocity ratio, as shown in
Fig. 10. At a blowing ratio of 0.75, the DVGs provide no significant
benefit (i.e., the average wall temperatures in the region of interest
are higher than the cylindrical holes). At a blowing ratio of 1.0, the
DVGs provide a benefit if the coolant channel velocity is less than
50-60% of the calculated mean cooling hole velocity. However, the
cooling effectiveness of the DVGs changes abruptly for an inlet
hole velocity ratio greater than 0.5.

Similar abrupt changes have been observed previously. For a
777-shaped cooling hole under perpendicular crossflow, Qenary
et al. [43] reported that the area-averaged effectiveness suddenly
increased for hole inlet velocity ratios of approximately 0.5, but
the impact on wall temperature was not reported. Although the
results of this study involve a different film-cooling hole than
Qenary et al., the transition in average wall temperature observed
for BR=1.0 occurs at nearly the same hole inlet velocity ratio
(i.e., 0.5). However, instead of an improvement, a degradation in
cooling performance is observed in the present work.

To gain more understanding of these cooling performance
curves, two blowing ratio conditions and two channel velocities
were selected for a CFD study. The CFD results provide a qualita-
tive understanding of the flow behavior inside the cooling hole.

Nature of Cooling Jet Flow From Computational Fluid
Dynamics. CFD simulations were performed to investigate the
measured hot-side surface temperatures, specifically the change in
slope for the DVGs at BR=1.0 (Fig. 10(b)). Test conditions for
the CFD were chosen on both sides of this experimentally measured
inflection point.

Figure 11 shows streamlines, velocity vectors, and temperature
contours within (and downstream of) the film-cooling hole. The
swirling flow created by the crossflow is apparent inside the film-
cooling hole. For the low coolant channel velocity condition and
BR =1, the swirl momentum relative to the axial momentum of
the film-cooling jet is small. The CFD results show the flow
through the film-cooling holes is more uniform, like a quiescent
plenum. This operating condition correlates with the conditions
on the low-velocity ratio side of the inflection point in Fig. 10(b)
(i.e., the DVG cooling performance was better than the baseline
in regard to the average wall temperature in the region of interest).

For channel velocity of 20 m/s and BR=0.75 (VR;=0.51), the
relative swirl momentum is larger, and the CFD results show the
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Fig. 9 Measured hot-side surface temperatures with DVGs (left) and without DVGs (right) for range of inlet hole velocity ratio

conditions (VR; = V¢ni/V;) and BR=1.0

cooling jet only interacts with one of the DVGs (see Fig. 11, upper-
left). This qualitative feature of the CFD flow is consistent with the
experimental results (see Fig. 10(a)), which indicate the DVGs
provide no significant benefit in regard to the average wall temper-
ature in the region of interest.

At the higher coolant channel velocities, the swirl momentum rel-
ative to the axial film-cooling jet is stronger. The CFD results
predict “lift-off” near the hole exit and entrainment of hot gas
under the cooling jet. At these higher hole inlet velocity ratio con-
ditions (VR;>0.5), the cooling jet only reacts with one of the
DVGs, and jet lift-off is predicted regardless of the BR.

Based on these results, the perpendicular coolant crossflow can
cause “lift-oft” at lower blowing ratio conditions than typically cited
for quiescent cooling plenum configurations. The momentum of the
cooling jet exiting the film-cooling hole is comprised of streamwise
and swirl components generated from the coolant crossflow velocity.
The swirl momentum can significantly impact the nature of the film-

001000-8 / Vol. XX, XX 2023

cooling flow and the film-cooling performance. If “lift-off” occurs,
only the fraction of the film-cooling jet intercepted by the DVG can
be redirected. In fact, once the cooling jet “lift-off” occurs, only the
leeward side of the vortex—generator pair can affect the lateral spread-
ing of the film-cooling jet. The benefit of the DVGs diminishes when
the cooling jet does not interact with both DVGs.

Overall Cooling Effectiveness. The overall cooling effective-
ness is a non-dimensional wall temperature as defined in Eq. (5),
so the average wall temperatures shown in Fig. 10 can be compared
on a non-dimensional basis (see Fig. 12). Overall cooling effective-
ness curves have not been reported previously for a perpendicular
coolant crossflow configuration.
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As described in Table 1, both conjugate and adiabatic CED sim-
ulations have been performed. The conjugate CFD predictions for
the average cooling effectiveness are also shown in Fig. 13. For
the low crossflow velocity and BR =0.75, the cooling effectiveness
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is slightly better (0.49 vs 0.47) with no DVGs. At a BR=0.75 and
higher crossflow velocities, the CFD predicts a cooling effective-
ness that is about the same for both configurations (i.e., 0.476). In
summary, for BR=1.0, the trend in overall effectiveness is
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Fig. 13 Local heat transfer coefficient contours (mean-square error is 10-15% based on regression analysis)

consistent with both the CED and experiment, but the differences
are much larger in the experiments. The differences between the
experiment and the model are most likely due to boundary condi-
tions. The air gaps surrounding the film-cooling holes (see Fig. 6)
are not included in the CFD model, and the walls of the test
section are not adiabatic in the experiment.

In theory, the cooling effectiveness curve should have a smooth
exponential relationship with coolant mass flowrate, the significant
change in slope that is observed in Fig. 12(b) (BR = 1.0 with DVGs)
may be indicative of jet “lift-off,” but more data are needed to
confirm that “lift-off” is responsible for the inflection observed in
these cooling technology curves.

Since the experimental approach is predicated on the assumption
that the film temperature does not change significantly as the
coolant channel velocity is varied, the subsequent discussion of
experimental results will be restricted to the data points in the blue-
shaded regions in Fig. 12. In other words, the data set will be
restricted to three inlet velocity ratios and two blowing ratios for
each film-cooling design. The lowest inlet velocity ratio is not
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replicated, so five data points will be included in the linear regres-
sion analyses.

Local Heat Transfer Coefficient Contours. The experimental
local heat transfer coefficients are shown in Fig. 13. The area of
interest shown in Fig. 13 includes all five cooling holes. The
white regions within the region of interest (ROI) represent
regions where the slope from the regression was less than zero.
These regions are ignored in the subsequent film effectiveness con-
tours and laterally averaged results. The DVGs exhibit significantly
higher local heat transfer coefficients relative to the cylindrical holes
without DVGs. At the lower blowing ratio, the heat transfer
enhancement is biased toward the upstream (windward) side of
the hole with respect to the cooling flow direction. The results in
Fig. 13 also show that the heat transfer enhancement decays
between the first hole (most upstream with respect to the coolant
flow) to the last hole in the row. To the authors’ knowledge, this
enhancement in heat transfer has not been presented previously
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Fig. 14 Experimental local film effectiveness contours (mean-square error is 20-30% based on regression analysis)

for “V-shaped” DVGs in a perpendicular coolant crossflow
configuration.

Local Film Effectiveness Contours. The local film effective-
ness measurements for BR=0.75 and BR=1.0 are shown in
Fig. 14. The white regions in this plot represent regions where the
regression coefficients are not physically realistic, so these
regions are ignored in subsequent analyses. The DVGs produce
more jet spreading and coverage than the cylindrical film holes
without DVGs, particularly for BR=1. When comparing the
effect of the blowing ratio, the lower blowing ratio (BR =0.75) gen-
erates better film effectiveness for the cylindrical holes without
DVGs. The opposite BR effect is observed for the DVGs. Based
on the CFD results from Fig. 11, the crossflow effects are more pro-
nounced at the lower blowing ratio, so the cylindrical holes perform
better, and the DVGs are less effective.

The local film effectiveness contours predicted by the CFD with
adiabatic walls are shown in Fig. 15. The enhanced jet spreading
and film coverage are predicted by the CFD, but the local film
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effectiveness values differ significantly from the experimental
values. Some plausible explanations include differences in the
boundary conditions (i.e., adiabatic versus conjugate), and the
experimental uncertainties in the film effectiveness are significant
(i.e., 20-30%).

Laterally Averaged Heat Transfer Coefficients. The laterally
averaged heat transfer coefficients for both blowing ratio conditions
and both film-cooling designs are shown in Fig. 16. For the DVGs,
film effectiveness values are not shown between the cooling hole
and the DVGs (i.e., x/D < 1.5). For x/D > 1.5, the local heat transfer
coefficient is approximately two times higher for the DVGs com-
pared to the cylindrical hole baseline. This level of heat transfer
augmentation from the DVGs has not been reported previously.

Laterally Averaged Film Effectiveness. In Fig. 17, the laterally
averaged experimental (Fig. 17, left) and CFD film effectiveness
results (Fig 17, right) are shown for two different blowing ratio con-
ditions. In all cases, the experimental film effectiveness results fall
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Fig.15 CFD predictions of local film effectiveness (BR = 0.75—VR; = 0.52; for BR=1.0—-VR; =

0.38)

between the CFD predictions for the perpendicular coolant cross-
flow and the plenum predictions of Lee et al. [30]. For BR =0.75,
the experimental data fall closer to the CFD predictions for perpen-
dicular crossflow. For BR = 1.0, the experimental data fall closer to
the CFD predictions for plenum flow. This result is consistent with
the CFD results from Fig. 11, which show the flow through the
cooling hole is more uniform for BR=1.0 and low channel
cooling velocities (i.e., more like a plenum flow).
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Fig. 16 Laterally averaged heat transfer coefficients—experi-
mental (+ 10-15%)
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For BR =1.0, Fig. 17 shows a relative improvement of about 1.5
times for the DVG design relative to the cylindrical holes without
DVGs. This is comparable to the improvement reported by Wang
et al. [45] for a different DVG design. However, the present work
also shows a much smaller impact for BR=0.75. In fact, at BR=
0.75, the measured film effectiveness profiles are nearly the same.
The CFD results are also very similar for BR =0.75 with crossflow.

In summary, although the DVGs show a dramatic increase in film
effectiveness for a quiescent plenum coolant supply, this benefit can
be diminished in a perpendicular coolant crossflow configuration,
depending on the blowing ratio and coolant channel velocity. The
current work shows the perpendicular coolant crossflow configura-
tion is a significant departure from prior work on “V-shaped”
DVGs.

Comparison to Prior Work. In Fig. 18, the laterally averaged
film effectiveness measurements are compared to other reported
studies on the baseline (i.e., no DVGs) cylindrical hole film-cooling
configuration. The work of Baldauf et al. [54] and Sinha et al. [55]
utilized a plenum supply without perpendicular crossflow effects.
The prior work of Gritsch et al. [41] included perpendicular
coolant crossflow effects at coolant channel Mach numbers of 0,
0.3, and 0.6. Only the data for coolant channel Mach numbers of
0 (i.e., plenum) and 0.3 are shown for the cylindrical hole compar-
ison. The channel Mach numbers evaluated in this paper are signif-
icantly less than 0.1. Another potential difference between Gritsch
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Fig. 18 Comparison of laterally averaged film effectiveness for
cylindrical holes (no DVGs) at BR=1.0 to prior experimental
efforts

et al. [41] and the current paper is the direction of the swirl that is
imposed on the coolant flow through the hole. In this paper, the
direction of the crossflow imposes a counter-clockwise swirl,
whereas in Gritsch et al. [41], the coolant jet had a clockwise
swirl. It is not clear whether the swirl direction would have a signif-
icant effect on the film’s effectiveness. Finally, the laterally aver-
aged data presented in this work represent the average over five
film-cooling holes, whereas prior crossflow studies have investi-
gated a single film-cooling hole.

Summary and Conclusions

In this paper, numerical and experimental results are presented to
evaluate a “V-shaped” downstream vortex generator design
described by Lee et al. [9,30] under conditions of perpendicular
coolant crossflow. For the experimental study, the hot gas temper-
ature is 650 K, the average Mach number in the freestream is 0.2,
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for lower blowing ratio conditions, the DVGs do not
improve cooling effectiveness (Fig. 12).

e The perpendicular coolant crossflow configuration is a signifi-
cant departure from prior work on “V-shaped” DVGs for a
plenum configuration. The amount of swirl in the film-cooling
hole depends on the coolant channel velocity and the film-
cooling blowing ratio (Fig. 11). Lower cooling channel veloc-
ities and higher blowing ratios are less susceptible to swirl
effects from the crossflow cooling configurations.

o Although the laterally averaged film effectiveness profiles for
the DVG configuration are greater than 0.3 (Fig. 17), the
DVGs produce heat transfer coefficients that can be two
times larger than cylindrical holes in a perpendicular crossflow
configuration (Fig. 16).

e The experimental approach outlined in this paper allows the
measurement of heat transfer coefficients, film effectiveness,
and overall cooling effectiveness in a single test campaign.
This experimental approach is predicated on independent
control of the cold-side convective heat transfer coefficient
while maintaining constant film-cooling parameters (i.e.,
blowing ratio, temperature ratio, etc.). The results from this
paper show that film-cooling parameters are not always inde-
pendent of the coolant channel velocity, particularly at high
inlet velocity ratios (i.e., VRi>0.5). In this paper, the experi-
mental technique has been restricted to the lowest coolant
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channel velocities (i.e., VRi<0.5), where the smallest interac-
tions between the film-cooling performance and the crossflow
velocity are predicted based on CFD simulations.
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Nomenclature

= convective heat transfer coefficient
thermal conductivity

pitch of cooling hole array

film hole diameter

length

thermal resistance

temperature

velocity magnitude

roughness parameter, p,, u.ks/ i,
q" = heat flux

TN ==
W

ks = equivalent sand grain roughness
u, = shear velocity
BR = blowing ratio, p.Vi/p,V,
CRV = counter-rotating vortex
DR = density ratio, p./p,
DVG = downstream vortex generator
Ma = Mach number
Ra = centerline average roughness height
ROI = region of interest

001000-14 / Vol. XX, XX 2023

TR = temperature ratio, T,/T.
VG = vortex generator
VR = velocity ratio (e.g., VR; = Ve, i/V5)

Greek Symbols

n = film effectiveness (see Eq. (1))
U = viscosity
p = density
¢ = overall cooling effectiveness (see Eq. (5))
Subscripts
¢ = coolant
ch = coolant channel
e = exit
ext = external (hot) surface
f = film
g = hot gas freestream
i = inlet
int = internal (cold) surface
J = cooling jet in film-cooling hole
w = wall (solid)
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