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Abstract—Matrix multiplication is a core computational part of
deep learning and scientific workloads. The emergence of Matrix
Cores in high-end AMD GPUs, a building block of Exascale
computers, opens new opportunities for optimizing the perfor-
mance and power efficiency of compute-intensive applications.
This work provides a timely, comprehensive characterization of
the novel Matrix Cores in AMD GPUs. We develop low-level
micro-benchmarks for leveraging Matrix Cores at different levels
of parallelism, achieving up to 350, 88, and 69 TFLOPS for
mixed, float, and double precision on one GPU. Using results
obtained from the micro-benchmarks, we provide a performance
model of Matrix Cores that can guide application developers
in performance tuning. We also provide the first quantitative
study and modeling of the power efficiency of Matrix Cores at
different floating-point data types. Finally, we evaluate the high-
level programmability of Matrix Cores through the rocBLAS
library in a wide range of matrix sizes from 16 to 64K. Our
results indicate that application developers can transparently
leverage Matrix Cores to deliver more than 92% peak computing
throughput by properly selecting data types and interfaces.

Index Terms—AMD GPU, Matrix Core, Tensor Core, AMD
MI250, A100

I. INTRODUCTION

AMD GPUs have emerged as a fundamental building block
for exascale computing, exemplified by Frontier – the top 1
supercomputer in the world and the first supercomputer to
deliver throughput in the magnitude of ExaFlops [1]. High-
end AMD GPUs, in particular the Instinct MI200/300 series
that power up current exascale supercomputers, are consid-
ered to be strong contenders with Nvidia’s high-end GPUs,
represented by the Volta V100 GPU [2], which was used
to build pre-exascale supercomputers, and the Ampere A100
GPU, the successor of the V100. Besides the standard com-
puting units and memory components on AMD and Nvidia
GPUs, specialized hardware units for mixed-precision matrix-
multiplication operations, namely Matrix Cores in AMD GPUs
and Tensor Cores in Nvidia GPUs, are becoming one highly
sought-after feature that may determine their adoption and
success in the market with increasing demand on computing
power and power efficiency.

The growing societal and economic interests for deep learn-
ing (DL) applications have influenced the design of hard-
ware. The need for high-performance power-efficient matrix
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operations in DL applications has driven the development
of specialized hardware-level matrix computation units on
GPUs. For scientific workloads in high-performance comput-
ing (HPC), leveraging this specialized hardware and unlocking
its potential in accelerating floating-point computations could
bring significant application-level performance and system-
level power saving. Therefore, this work provides a timely,
in-depth characterization of AMD’s latest Matrix Core in
MI250X GPUs to prepare application developers for Frontier-
like HPC supercomputers.

Extensive works have explored the Tensor Core on Nvidia
GPUs [2]–[5]. Multiple works propose techniques for pre-
cision refinement to meet the need of accuracy in scientific
workloads [2], [3]. Other works proposed important parallel
algorithms, such as scan and reduction, tailored for the charac-
teristics of Tensor Cores [4], [5]. Findings from these studies
are likely to be applicable to AMD’s Matrix Cores, given
the similarity in their capability and programming interfaces.
However, most of these works have certain dependency on
low-level architectural characteristics. Therefore, our work
provides an in-depth study of AMD’s Matrix Core charac-
teristics to identify opportunities and gaps of leveraging this
novel hardware unit.

We first develop a set of low-level micro-benchmarks in the
rocWMMA APIs and the V_MFMA_* instructions for utiliz-
ing Matrix Cores at configurable levels. After validating the
micro-benchmarks, we quantify the achievable peak floating-
point matrix multiplication operations throughput in different
precisions and at different levels of Matrix Core utilization.
Further, we establish and validate the performance model that
correlates the peak performance with hardware usage. As we
focus on HPC workloads, we specifically evaluate single- and
double-precision datatypes in addition to mixed precision that
is widely used in machine learning. On one AMD GPU, Matrix
Cores achieve up to 350, 88, and 69 TFLOPS for mixed, float,
and double precision. In contrast, our benchmarks achieve up
to 290 and 19.4 TFLOPS for mixed and double precision on
Tensor Cores in Nvidia A100 (float is not supported).

We leverage the micro-benchmarks and further develop a
power sampling tool to understand the power efficiency of
Matrix Cores. Combining the two, we are able to quantify
the power consumption at different levels of throughput in
different precisions on Matrix Cores. From the results, we are
able to quantify the idle and dynamic power consumption. We
identify a linear correlation between the power consumption
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and delivered throughput, indicating that for each additional
TFLOPS, additional 5.8, 2.1, and 0.61 Watts are consumed
for double, single, and mixed precision, respectively. We note
that the power consumption at the peak of double-precision
operations on Matrix Cores could nearly reach the power cap,
while the peak throughput is about 76% of the theoretical
peak. The power efficiency of Matrix Cores is promising in
reducing the energy cost of compute-intensive workloads.

While the low-level micro-benchmarks identify the poten-
tial of delivering high throughput from Matrix Cores, wide
adoption in applications is only feasible through high-level
programming interfaces. To understand the impact of pro-
grammability on Matrix Cores in real applications, we evaluate
the rocBLAS library, whose current implementation leverages
an internal two-level tile strategy that may divide matrices
up to map computations onto Matrix Cores. However, as the
tiling decision is only implicitly determined at runtime by
the library, it is difficult to directly quantify the utilization of
Matrix Cores. To address this problem, we derive two metrics
that leverage hardware counters collected by rocprof. With
this profiling method, we compare the number of floating-
point operations respectively delivered from Matrix Cores and
SIMD units, when using matrix dimensions ranging from 16
to 65K. Our results indicate that application developers can
transparently leverage Matrix Cores to deliver more than 95%
peak computing throughput by properly selecting data types
and interfaces.
Our contributions are summarized as follows:
• We provide an in-depth understanding of the architecture

and programming interfaces of latest AMD Matrix Cores;
• We develop low-level micro-benchmarks for controlling

Matrix Cores utilization and leverage them for deriving a
performance model;

• We provide a quantitative study and modelling of the power
efficiency of Matrix Cores in different data precision;

• We evaluate and confirm the efficiency of high-level pro-
grammability through the rocBLAS library in utilizing Ma-
trix Cores.

II. THE ARCHITECTURE OF MATRIX CORE

The AMD Instinct GPU is a critical building block of
current Exascale computers. For instance, the Frontier su-
percomputer consists of 37,000 MI250X GPUs and delivers
1.1 ExaFlops throughput [1]. The AMD MI250X GPU is
based on the CDNA2 GPU architecture [6]. GPUs from this
architecture – the MI200 series – aim at accelerating deep
learning applications and HPC workloads. In this work, we
focus on the low-level characteristics of Matrix Core units in
AMD MI250X GPUs as it is a major component delivering
high-throughput matrix multiplication operations, critical for
compute-intensive machine learning and HPC workloads.

Each AMD MI250X GPU consists of two graphics compute
dies (GCD) incorporated in a single physical package. The
two GCDs are logically presented to users as two separate
devices. Each GCD is equipped with 64 GB HBM2e memory
and the two GCDs within one package are interconnected by
four links of the cache-coherent Infinity Fabric. Thus, one
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Fig. 1: An overview of the architecture of AMD’s Matrix
Cores, Compute Unit (CU), and SIMD units in AMD CDNA2
Graphics Compute Die (GCD).

GPU package has 128 GB HBM2e in total to deliver up to
3.2 TB/s bandwidth. Each GCD consists of 110 Compute Units
(CU) as the basic processing unit. One CU consists of four
Matrix Cores and four 16-wide single instruction multiple data
(SIMD) units. Figure 1 illustrates the architecture of Matrix
Cores and other important hardware units [6]–[8].

The Matrix Cores in this study are AMD’s second genera-
tion matrix-specialized processing units for performing matrix
fused multiply-add (MFMA) operations in high throughput.
They are designed to execute the 𝐷 ← 𝐴𝐵 + 𝐶 operation
for specific matrix shapes and data types. A single MFMA
operation is characterized by the datatypes and dimension
𝑚 × 𝑛 × 𝑘 of the matrices 𝐴, 𝐵, 𝐶, and 𝐷. In this notation, 𝐴
is of shape 𝑚 × 𝑘 , 𝐵 is 𝑘 × 𝑛, and 𝐶 and 𝐷 are both of shape
𝑚 × 𝑛. Datatypes must be identical for 𝐴/𝐵, and for 𝐶/𝐷. In
this paper, we use the notation typeCD← typeAB to represent
an MFMA operation, where 𝐶 and 𝐷 are of type typeCD, and
𝐴 and 𝐵 are typeAB.

Matrix Cores support six datatypes. In this work, we focus
on evaluating Matrix Cores for HPC applications and thus
evaluate the three IEEE 754 floating-point datatypes, i.e.,
FP16, FP32, and FP64, which are respectively designated
as half-, single-, and double-precision. Matrix Cores also
support 8-byte (INT8) and 32-byte (INT32) integer, along with
the half-precision datatype bfloat16, which are specifically
targeting machine learning workloads. Table I summarizes
the supported floating-point datatypes and shapes on AMD
MI250X’s Matrix Cores, each line corresponding to a single
assembly instruction (omitted in the table). AMD CDNA2 also
supports smaller shapes, where a Matrix Core can execute up
to four parallel MFMA operations on independent (𝐴, 𝐵, 𝐶, 𝐷)
matrices. For example, with the shape 16 × 16 × 4, one can
execute four parallel matrix FMA operations for the datatypes
FP32← FP16.
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TABLE I: The list of supported datatypes and shapes of
MFMA operations (𝐷 ← 𝐴𝐵 + 𝐶) on Matrix Cores (AMD)
and Tensor Cores (Nvidia) at the instruction level.

Types Shape
(C/D ← A/B) AMD CDNA2 Nvidia Ampere
FP64 ← FP64 16 × 16 × 4 8 × 8 × 4

FP32 ← FP32 16 × 16 × 4
✕32 × 32 × 2

FP32 ← FP16 16 × 16 × 16 16 × 8 × 8
32 × 32 × 8 16 × 8 × 16

FP16 ← FP16 ✕
16 × 8 × 8
16 × 8 × 16
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Fig. 2: The hierarchy of programming interfaces to AMD’s
Matrix Core and Nvidia’s Tensor Core. A higher-level com-
ponent typically relies on its direct lower-layer component.

AMD’s Matrix Cores are considered a strong contender to
Nvidia’s Tensor Cores, which provide similar mixed-precision
MMA computing capabilities. Matrix Cores, however, exhibit
several higher-level characteristics, from the perspective of
HPC computing, compared to the third-generation Tensor
Cores from the Nvidia Ampere architecture. The first aspect
lies in the 95.7 TFLOPS theoretical double-precision floating-
point performance, as documented by AMD [6], about four
times that of Nvidia’s Tensor Cores (19.5 TFLOPS). As the
use of double-precision is widespread in HPC applications, we
see a particular opportunity to use AMD Matrix Cores in this
context. In addition, AMD Matrix Cores offer more supported
matrix shapes as shown in Table I, which can ease algorithmic
adaptation and the utilization of Matrix Cores.

III. PROGRAMMING AMD’S MATRIX CORES

Figure 2 presents a hierarchical view of programming
interfaces to AMD Matrix Cores (based on MI250X) and
Nvidia Tensor Cores (based on A100), where a higher-level
programming interface relies on its direct lower-level interface.
We briefly describe these approaches from low-level program-
ming interfaces up to the application level as follows.
• CDNA2 Instruction Set [8]: As detailed in II, Matrix

Cores support a variety of datatypes and matrix shapes. Each
combination of datatype and matrix shape (i.e., each row
in Table I) is supported by one instruction in the format
V_MFMA_[typeCD]_[MxNxK][typeAB]. Those instruc-
tions read matrix elements from regular vector general-purpose
registers (“Architectural VGPRs”), and store the result in
a specific general-purpose registers file (the “Accumulation
GPRs”). Read and write accesses to those registers are possible
through specific instructions. Due to hardware limitations, sev-
eral no-op instructions might be required before the result data
can be read. Matrix Core instructions are executed collectively

by all 64 threads of a wavefront, where wavefront is equivalent
to warp in Nvidia’s terminology. For specific matrix shapes,
the V_MFMA_* instructions can perform one to four parallel
MFMA operations, on independent groups of smaller matrices:
𝑖 ∈ [[1, 4]], 𝐷𝑖 ← 𝐴𝑖𝐵𝑖 + 𝐶𝑖 .

While Nvidia provides Tensor Cores with a cross-
architecture low-level programming interface (PTX), the docu-
mentation of the architecture-specific instruction set (SASS) is
not officially provided. In particular, the HMMA and DMMA
instructions, which are equivalent to AMD’s V_MFMA_* in-
structions, are not officially documented.
• Compiler Intrinsics: A set of intrinsics are provided

in the LLVM compiler to program Matrix Cores at the
programming language level. Those builtins are of format
__builtin_amdgcn_mfma_[typeCD]_[MxNxK][typeAB],
and directly map to assembly-level Matrix Core-related
instructions. In addition, AMD provides a Python script to
get information on the mapping between matrix elements and
registers [9], providing a way for users to develop C-level
code, that can efficiently and directly leverage Matrix Cores.
This ability to program Matrix Cores at the programming-
language level facilitates compiler optimizations.

Nvidia provides extensive documentation on available in-
structions and register-element mapping for Tensor Cores, but
no direct C-level programming interface is officially provided.
Developers have to use either PTX assembly or higher-level
interfaces to use Tensor Cores.
• Low-level matrix multiply-accumulate APIs: The

rocWMMA C++ library provides a simplified way of
programming Matrix Cores using C++ templated functions.
WMMA stands for Wave Matrix Multiply-Accumulate, as
this library relies on the cooperation of the 64 threads in a
wavefront to perform a matrix multiply-accumulate (MMA)
operation, in the same fashion as the underlying Matrix Core
instructions. This library relies on the concept of a fragment to
represent matrices. A fragment is a C++ object which abstracts
the mapping of matrix elements to their respective registers.
rocWMMA exposes functions to load and read data from/to
fragments. These functions are translated at compile-time to
register loads and stores, without any user-knowledge of the
in-register data layout. In addition, a function mma_sync
performs the fused multiply-and-add operation using Matrix
Core instructions. rocWMMA is directly cross-compatible
with Nvidia’s counterpart, CUDA WMMA. However, as the
available choices for matrix datatypes and shapes are different
on Nvidia hardware, users must ensure that their use of the
WMMA library complies with hardware limitations.
• High-level Linear Algebra Library: The Basic Linear

Algebra Subprograms (BLAS) specification is widely used
in machine learning and HPC applications. This specification
defines a set of linear algebra routines. rocBLAS is AMD’s
implementation of the specification. rocBLAS tries to leverage
Matrix Cores whenever they are available, with no option
to opt-out at the user level. Such performance optimization
requires the datatypes to be compatible with Matrix Core
abilities, and is exploitable for specific operations, such as
GEMM. To use Matrix Cores, the library chooses at runtime
a strategy to map an operation on arbitrary-shaped matrices
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to the constrained fixed-shape Matrix Core abilities. This
is typically done by dividing the matrices into tiles, and
executing 16 × 16 × 16 operations on Matrix Cores. Nvidia
provides a similar implementation called cuBLAS for Tensor
Cores.
• Applications and HPC Libraries: Higher-level libraries

can be built atop BLAS to implement general-purpose al-
gorithms. An example is LAPACK (Linear Algebra PACK-
age) [10], which provides routines to solve systems of linear
equations and find eigenvalues of matrices. This library dele-
gates a significant amount of computation to the BLAS imple-
mentation. rocSOLVER is AMD’s implementation of a subset
of LAPACK routines. It relies on rocBLAS to execute matrix
operations, which naturally leads to opportunistic leveraging
of Matrix Cores in this high-level library. Finally, applications
can leverage these libraries to eventually utilize Matrix Cores.

IV. CHARACTERIZATION METHODOLOGY

In this study, we conduct our experiments on an AMD
testbed equipped with four AMD MI250X GPUs. From the
vendor’s datasheet, the maximum power consumption of a
GPU package is 560 Watt [11]. Compilation tools, kernel
drivers, and runtime libraries for the AMD platform are
provided as part of the ROCm platform version 5.3.3. We
also use an Nvidia testbed equipped with two Nvidia A100
GPUs for the comparative study. We use CUDA 11.5 for the
Nvidia platform. For experiments on the AMD platform, our
benchmarks run on a single graphics compute die (GCD), if
not specified differently. When comparing with one Nvidia
A100 GPU, we use one GPU package. We repeat experiments
at least ten times for each reported metric and report error
bounds if the variance exceeds 2%.

A. Benchmarks

We develop a set of micro-benchmarks that can be used to
utilize the Matrix Cores at different levels and quantify the
instruction latency for supported matrix shapes and datatypes.
The benchmarking kernel has the 64 threads of a single wave-
front perform collectively the same MMA operation within a
loop of 40 million iterations. The average instruction latency is
obtained by timing of the loop using the clock64() function
inside device kernel code. When measuring instruction latency,
one wavefront is used at a time. This micro-benchmark ap-
proach is similar to the approach for evaluating Tensor Cores
on Nvidia GPUs [12], where evaluated instructions are isolated
in a long-running loop. This benchmark excludes the impact
of data transfer to registers as no load/store operations are
performed. Thus, it allows getting latency information for
each instruction. When measuring throughput, the number of
wavefronts in the kernel can be configured at launch time.

The comparison between AMD and Nvidia GPUs is con-
strained by the notable difference on their hardware capability.
The first difference comes from the supported datatypes – only
matrix operations in mixed-precision F32← F16 and double-
precision F64 ← F64 are supported on both platforms. In
addition, supported instruction-level matrix shapes are differ-
ent on the two platforms, which requires adaptation of the

benchmark code. In the context of HPC workloads, we only
focus on the three supported IEEE 754 floating-point datatypes
– half-precision (FP16), single-precision (FP32), and double-
precision (FP64).

We use the AMD-developed HIP C++ runtime API and
kernel language to implement the benchmark. In particular,
we use the rocWMMA API, which allows high-level C++-
level access to Matrix Cores capabilities, while preserving
the semantic of the code down to the level of assembly
instructions. Since this API is cross-compatible with CUDA
WMMA API, we can use the same codebase for both AMD
and Nvidia platforms. To ensure that the compiled code is
actually coherent with the goal of each experiment, we check
the assembly-level instructions using the HIP compiler flag -S
or the cuobjdump tool to verify the number of Matrix/Ten-
sor Core instructions in use. We also ensure that compiler
optimizations did not affect measurement correctness.

We anticipate that wide adoption of Matrix Cores in large-
scale HPC applications is only feasible through high-level
programming interfaces, such as math libraries. From the
hierarchy of major programming approaches to Matrix Cores
presented in Figure 2, the rocBLAS library is the fundamen-
tal building block for other high-level software approaches.
Therefore, we evaluate the high-level programmability of Ma-
trix Cores by assessing the efficiency of the rocBLAS library in
utilizing Matrix Cores. In this study, we use the general matrix
multiplication (GEMM) routine in the BLAS specification,
which performs the operation 𝐷 ← 𝛼 · 𝐴𝐵+ 𝛽 ·𝐶, where 𝛼 and
𝛽 are scalars, and 𝐴, 𝐵, 𝐶, 𝐷 are arbitrary-size matrices. We
evaluate all supported combination of floating-point data types
in GEMM operations, including single (SGEMM), double
(DGEMM), and mixed types (HGEMM, HSS, HHS).

We adapt the default GEMM use case provided by
AMD in the rocBLAS library. The original code uses the
rocblas_{d,s}gemm function to perform a DGEMM or
SGEMM operation on GPU. We replace this function by
the generic rocblas_gemm_ex function, which executes
specific GEMM operations as identified by the datatype pa-
rameters. This allows running the mixed-precision GEMM
operations, which are not exposed through dedicated functions.
In our experiments, values in 𝐴 and 𝐶 are set to 1, while 𝐵

is set to the identity matrix. The result in 𝐷 should be a 𝑛× 𝑛
matrix filled with 2, which makes the correctness of results
easily verifiable.

B. Profiling Methods

For the micro-benchmarks written in WMMA APIs, as the
utilization of Matrix Cores and Tensor Cores can be explicitly
controlled, we can calculate FLOPS from the number of
executed Matrix Core or Tensor Core instructions and the
documented FLOPS per instruction from Nvidia and AMD’s
documentation, respectively.

As the documentation of rocBLAS indicates that no user
action is required to leverage Matrix Cores, we still need
to verify and quantify how Matrix Cores are being used.
However, in applications based on rocBLAS, the number
of floating-point operations cannot be trivially computed as



5

in the micro-benchmarks, since the high-level libraries may
not provide precise algorithmic descriptions, or unspecified
compilation-time optimizations may be employed. Therefore,
we use the performance counters provided by rocprof to
measure the number of floating-point operations. In particular,
non-zero values returned from counters related to Matrix
Cores, i.e., SQ_INSTS_VALU_MFMA_MOPS_F*, would in-
dicate that Matrix Cores are used in a rocBLAS-based appli-
cation. We use the approach proposed in [13], [14] to derive
the exact number of performed floating-point operations, from
performance counters. Eq. 1 presents the formula used for
double-precision floating-point operations. A similar formula
can be derived for single and mixed-precision by substituting
relevant counters for each datatype.

TOTAL FLOPS F64 = 512 · SQ INSTS VALU MFMA MOPS F64

+64 · SQ INSTS VALU ADD F64 + 64 · SQ INSTS VALU MUL F64

+128 · SQ INSTS VALU FMA F64 (1)

The counters in Eq. 1 refer to the various types of floating-
point operations that SIMDs and Matrix Cores can execute.
SQ_INSTS_VALU_MFMA_MOPS_F64 represents the num-
ber of floating-point operations performed by Matrix Cores;
at hardware-level, this counter is incremented once every
512 operations. SQ_INSTS_VALU_{ADD,MUL}_F64 des-
ignates the number of add/multiply operations, per-SIMD. This
number needs to be multiplied by 64 to account for 64 parallel-
running threads. Similarly, SQ_INSTS_VALU_FMA_F64
counts the number of fused multiply-add (FMA) operations
performed, per-SIMD. In this case, a factor of 2 · 64 = 128
needs to be added to account for the 64 parallel-running
threads, each executing a fused multiply-add operation, which
accounts for 2 floating-point operations. In addition, we use
the individual values for each of those counters to identify
the distribution of floating-point operations between regular
SIMDs and Matrix Cores.

C. Power Measurements

Measurement of power consumption is done through the
vendor-provided System Management Interface (SMI), namely
ROCm SMI library. Similar approaches through nvidia-smi
have been widely used on Nvidia GPUs [15], [16]. We
sample the power consumption, in Watts, through the kernel
execution lifespan. To collect this quantity on the AMD
platform, we develop a background sampling process that calls
rsmi_dev_power_ave_get() function to poll power pe-
riodically at a user-defined period. This function is part of
the ROCm SMI library and provides identical results as when
using the rocm-smi tool, while allowing to control sampling
frequency. Our results are based on a sampling period of
100 ms and each kernel execution is controlled to run suf-
ficiently long to gather at least 1000 samples. We also tried
shorter sampling periods like 10ms, delivering similar results.
In addition, we also validate our power measurements on our
AMD testbed by comparing with the Cray power measurement
counters dedicated to monitoring accelerator power consump-
tion, accessible through the /sys/cray/pm_counters
filesystem-based interface, as described in [17].

TABLE II: Measured latency of Matrix Core MFMA instruc-
tions on AMD MI250X GPU.

types (C/D ← A/B) 𝑚 × 𝑛 × 𝑘 latency (cycles)

FP32 ← FP32 32 × 32 × 2 64.0
16 × 16 × 4 32.0

FP32 ← FP16 32 × 32 × 8 64.0
16 × 16 × 16 32.0

FP64 ← FP64 16 × 16 × 4 32.0

V. COMPUTATIONAL PERFORMANCE

In this section, we evaluate the performance of Matrix Cores
in an MI250X GPU in three phases. In the first phase, we
validate the accuracy of our micro-benchmarks, in measuring
performance and controlling the utilization level of Matrix
Cores. In the second phase, we derive a throughput model
and compare the theoretical and actual reachable throughout
on one GCD. Finally, we present an overall comparison with
Nvidia A100’s Tensor Cores.

A. Micro-benchmarking

We first use the micro-benchmark to quantify the latency of
Matrix Core instructions, and then compare our measured re-
sults with vendor-provided datasheets for validating our micro-
benchmark. Using the micro-benchmark approach presented
in Section IV-A, we measure the latency of Matrix Core
instructions using a single wavefront. The measured latency
is presented in Table II. AMD documentations of values for
Matrix Core performance are expressed in number of Matrix
Core-performed floating-point operations per CU per cycle
(noted FLOPS/CU/cycle) [6]. From our measurements of the
latency 𝑐 of an 𝑚 × 𝑛× 𝑘 MFMA instruction, which performs
2𝑚𝑛𝑘 floating-point operations, we can deduce that a CU
(with four Matrix Core units) is able to provide 8𝑚𝑛𝑘/𝑐
FLOPS/CU/cycle. Using this relationship, we confirm that the
measured latency is consistent with AMD’s official data.

In the second experiment, we set up the micro-benchmark
to increase the level of Matrix Core utilization and measure
the obtained floating-point throughput at each configured level.
In this test, inside one computational kernel, each wavefront
iterates a number of 16×16×16 rocWMMA operations, which
are mapped to underlying Matrix Core MFMA instructions
at compilation time. We gradually increase the number of
wavefronts in use when launching the kernel to eventually
allows the benchmark to leverage all Matrix Cores on one
GCD. We compute the number of floating-point operations
performed on Matrix Cores as 2𝑚𝑛𝑘 · 𝑁iter · 𝑁 , where 𝑁

is the number of wavefronts, and 𝑁iter is the number of
𝑚 × 𝑛 × 𝑘 MFMA operations performed by each wavefront,
set to 𝑁iter = 107. We measure the total execution time of
the kernel by triggering HIP events, before and after the
kernel launch, and use this value to derive the floating-point
throughput. We are able to validate the micro-benchmark
by comparing the measured results with the kernel profiling
results obtained with rocprof.

B. Throughput Modelling

We leverage the micro-benchmarking results and the archi-
tectural information on the Matrix Cores to build a perfor-



6

0

20

40

60

80

100

120

140

160

180

200

4 8 16 32 64 128 256 512 1024 2048 4096

TF
LO

PS

Number of Wavefronts

theoretical peak (double)
measured peak (double)
theoretical peak (float)
measured peak (float)
theoretical peak (mixed)
measured peak (mixed)

Fig. 3: A comparison of the measured and the predicted
theoretical floating-point throughput on AMD Matrix Cores
in one MI250X GCD for three floating-point datatypes.

mance model of peak floating-point throughput at various level
of Matrix Core utilization. The model considers as input the
latency 𝑐 of a 𝑚×𝑛×𝑘 MFMA instruction, the clock frequency
𝑓 = 1700 MHz of the hardware device, and the number 𝑁WF
of wavefronts set when launching the benchmark. This model
is presented in Eq. 2. The threshold of 440 used for 𝑁WF is the
number of Matrix Cores in one GCD on MI250X, reflecting
the fact that no more than 440 wavefronts can execute Matrix
Core instructions at one time.

FLOPS(𝑁WF) =
2𝑚𝑛𝑘

𝑐
·min(𝑁WF, 440) · 𝑓 (2)

Figure 3 presents the results of achieved floating-point
throughput at an increased number of wavefronts for the three
floating-point datatypes (mixed, float, double) supported on
Matrix Cores. We include in this figure the theoretical peak
throughput, obtained using the model presented in Eq. 2 in
dashed lines. We use values multiple of four for the number
of wavefronts because four Matrix Cores are available on each
CU. For the number of wavefronts ranging between 4 and 440,
we increase at a doubling rate. However, as we reach 440
wavefronts, the number of wavefronts exceeds the number of
available Matrix Cores in one GCD. Therefore, we use values
multiple of 440; this is to avoid situations where the device is
partially utilized for part of the kernel lifespan. For example,
in a case where 660 wavefronts are launched, in a first phase,
440 will be able to execute immediately on the 440 Matrix
Cores, and will terminate at the same time. The remaining
220 wavefronts will then execute in a second phase, during
which half Matrix Cores will be idle.

Up to 440 wavefronts, we observe a linear increase of
the floating-point throughput with the number of wavefronts,
which is coherent with our model. Note that we use linear
scale for the y-axis but logarithmic scale for the x-axis because
the predicted and measured values are almost overlapping
if the y-axis is in logarithmic scale. When exceeding 440
wavefronts, the throughput reaches a plateau and gives a
sustained throughput of 175 TFLOPS for mixed-precision, 41
TFLOPS for double-precision, and 43 TFLOPS for single-
precision. We observe that our benchmark achieves a high level
of performance compared to the theoretical peak throughput –
the double-, single- and mixed- precision throughput achieved
respectively 85%, 90%, and 92% of the theoretical peak. These
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Fig. 4: The achieved floating-point throughput on Matrix Cores
on AMD MI250X and Tensor Cores on Nvidia A100, for the
four supported types in Table I.

close-to-peak performance on Matrix Cores are promising
for application developers porting codes onto AMD MI250X
GPUs to exploit the Matrix Cores’ full potential.

C. Comparison with Nvidia Tensor Cores

To provide a direct comparison of AMD’s Matrix Cores with
Nvidia’s Tensor Cores, we execute the same benchmark on
Nvidia A100, using the CUDA WMMA API and by adapting
the matrix shapes and datatypes to fulfill CUDA WMMA’s
requirements. In addition, to provide a fair comparison be-
tween the two vendors, we ensure that we evaluate the floating-
point throughput of one AMD GPU package by executing the
throughput benchmark in parallel on both GCDs in a single
MI250X GPU. The results of our evaluation are presented in
Figure 4, where the peak measurements are reported for all
possible datatypes. Note that not all datatypes are supported
by both platforms – while Nvidia A100 Tensor Cores do not
support single-precision, AMD MI250X Matrix Cores do not
support F16 ← F16 half-precision operations.

In these experiments, we achieve on Nvidia A100 a floating-
point throughput of 290 TFLOPS for mixed-precision, and
19.4 TFLOPS for double-precision. Compared to the vendor’s
datasheet, this is equivalent to 93% of the 312 TFLOPS peak
throughput in mixed-precision, and 99% of the 19.5 TFLOPS
peak throughput in double-precision. For AMD MI250X, we
achieve 350 TFLOPS in mixed-precision, which is 91% of
the advertised 383 TFLOPS. In single-precision and double-
precision, we reach 88 TFLOPS and 69 TFLOPS, respectively.
As the theoretical peak for both single and double-precision
is 95.7 TFLOPS, this represents 92% of the theoretical peak
for single-precision and 72% for double-precision. The perfor-
mance results indicate that MI250X Matrix Cores can provide
higher floating-point performance than A100 Tensor Cores,
which is critical to many HPC workloads.

In particular, the floating-point throughput for double-
precision Matrix Cores is ×3.5 higher on AMD MI250X than
on Nvidia A100. One reason for this is that MI250X has more
CU and a higher clock rate (1700 MHz) than Nvidia’s A100
SM and clock rate (1410 MHz). Also, one A100 SM performs
128 FP64 FLOPS per cycle, while each MI250X CU performs
256. We further observe that when scaling the benchmark
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from one GCD to two GCDs, the floating-point throughput for
double-precision does not scale accordingly. The percentage of
the theoretical peak achieved in the two-GCD (72%) scenario
is significantly lower than when using only one GCD (85%),
which could be explained by the near-cap power consumption
as detailed in Section VI.

AMD Matrix Cores outperform Nvidia Tensor Cores in
three out of the four supported floating-point operations,
giving 3.5× double-precision throughput. HPC workloads
may significantly benefit from its floating-point throughput.

VI. POWER EFFICIENCY

We evaluate multiple aspects of power consumption of Ma-
trix Cores, including static and dynamic power consumption,
as well as their power efficiency. As the power measurement
is instrumented at the whole physical package, we use both
GCDs on the MI250X GPU by running one process per GCD.
Figure 5 presents the power consumption at different levels
of throughput. We also insert a projected peak throughput for
two GCDs for the three floating-point data types, based on the
previous section, and the power cap published by the vendor.

We quantify the idle power of a whole GPU package to be
88 W on the AMD MI250X. We formulate several hypotheses
for the idle power use on the AMD GPU. First, the higher
amount of HBM2e memory present on MI250X (128 GB)
compared to A100 (40 GB) could be a significant factor. Also,
the cache coherent interconnect, Infinity Fabric, could increase
power consumption. In addition, differences in the system-
specific setup of power management strategies, i.e., Nvidia
A100 is kept in low-power mode while the AMD MI250X
is probably kept in performance mode, could explain this
difference.

We develop a model of power consumption for the three
Matrix Core operation data types as a function of throughput
in Eq. 3, where 𝑃𝐶 denotes the total power consumption in
Watt and 𝑇ℎ denotes the throughput in TFLOPS.

𝑃𝐶𝐷𝑇 =


5.88 · 𝑇ℎ + 130 for 𝐷𝑇 = 𝑑𝑜𝑢𝑏𝑙𝑒

2.18 · 𝑇ℎ + 125.5 for 𝐷𝑇 = 𝑓 𝑙𝑜𝑎𝑡

0.61 · 𝑇ℎ + 123 for 𝐷𝑇 = 𝑚𝑖𝑥𝑒𝑑

(3)

By comparing the modelled power (dashed lines) and the
measured power (solid lines) in Figure 5, we validate the accu-
racy of the power model. The 560 W GPU power cap, which
limits the instantaneous GPU power draw, is also represented.
Though mixed-precision (blue) and single-precision (gray)
operations reach very different peak throughput, i.e., 350 and
88 TFLOPS, their peak power consumption are similar, i.e.,
338 W for float and 319 W for mixed type. In contrast, the
double-precision operation can reach a significantly higher
power consumption, up to 541 W, at its peak throughput,
approximating the 560 W-power cap closely.

To further understand the power impact of Matrix Core
operations, we quantify the power efficiency for different
data types. Power efficiency is computed as the average
number of floating-point operations per second divided by the
average power consumption. We quantify the power efficiency
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Fig. 5: Measured power consumption at increased obtained
throughput for Matrix Core operations in three data types.

in TFLOPS per Watt for the various supported levels of
precision. This performance per Watt metric is widely used
to characterize power efficiency of computing systems [15],
[16]. The highest power efficiency is achieved in the mixed
precision operations, reaching 1020 GFLOPS/Watt.

In the previous section, single-precision and double-
precision Matrix Cores operations both exhibit a similar level
of floating-point arithmetic throughput. However, the power
consumption measured when using double-precision is sig-
nificantly higher than for single-precision. This observation
translates to the power efficiency of single-precision Matrix
Core operations (273 GFLOPS/Watt) to be approximately two
times higher than for double-precision Matrix Core operations
(127 GFLOPS/Watt). The use of single-precision Matrix Core
operations should be preferred to double-precision, as this
dramatically reduces the power consumption for similar levels
of floating-point performance. The mixed-precision power
efficiency (1020 GFLOPS/Watt) is 3.7× higher than the single-
precision power efficiency (273 GFLOPS/Watt).

Power-efficient and energy-aware applications should lever-
age the high power efficiency of double-precision operations
on Matrix Cores and further 4× and 8× power saving can
be achieved when switching to single and mixed-precision.

VII. HIGH-LEVEL PROGRAMMABILITY

In this section, we evaluate the efficiency of utilizing
Matrix Cores through high-level programming interfaces. In
particular, we evaluate the rocBLAS library, a building block
in other higher-level programming approaches, as presented in
Figure 2. For this evaluation, we use the GEMM routine in five
floating-point dataypes. We use matrices of dimension 𝑁 ×𝑁 ,
𝛼 = 𝛽 = 0.1, and increase the value of 𝑁 until exhausting the
GPU memory at 𝑁 = 65000.

Figure 6 presents the floating-point arithmetic through-
put achieved for the GEMM operation in double-precision
(DGEMM) and single-precision (SGEMM). We achieve a
maximum of 43 TFLOPS in single-precision at 𝑁 = 8192, and
37 TFLOPS in double-precision at 𝑁 = 4096. From Section V,
the reachable peak throughput on Matrix Cores is 43 and
41 TFLOPS in single- and double-precision, respectively.



8

0

10

20

30

40

50

1024 2048 4096 8192 16384 32768 65000

TF
LO

PS

MATRIX SIZE (N)

dgemm
sgemm

Fig. 6: Floating-point throughput achieved using rocBLAS for
a 𝑁 × 𝑁 × 𝑁 GEMM operation, in single-precision (sgemm)
and double-precision (dgemm).

Thus, the rocBLAS library reaches almost 100% and 90% of
the peak performance in the two datatypes without imposing
the low-level porting efforts onto programmers.

We observe a performance drop for SGEMM after 𝑁 =

8192, and for DGEMM after 𝑁 = 4096. One reason could
be the high memory footprint and increased data movement
above this point. This hypothesis is coherent with the fact
that the double-precision DGEMM exhibits a drop earlier
than single-precision SGEMM, due to the higher memory
footprint of double-precision matrices. As we further increase
the size of the matrices up to 𝑁 = 65000, the performance
for single-precision reaches values comparable to the observed
peak, likely because the hardware can hide more latency-
bound operations in this particular GEMM operation for larger
problems.

Application developers can leverage the rocBLAS library to
exploit near-peak floating-point throughput on Matrix Cores
in single- and double-precision with minimal porting efforts.

We evaluate half- and mixed-precision GEMM operations
in rocBLAS through HGEMM, HSS, and HHS operations.
While these operations all operate on half-precision 𝐴 and 𝐵

matrices, the datatype for the matrix 𝐶 and the output matrix 𝐷

can be either half- or single-precision as detailed in Table III.
Figure 7 presents the measured throughput for the three

operations. We observe that HHS outperforms HSS for all
matrix sizes above 1024. A peak throughput of 155 TFLOPS
is achieved for the HHS operation, which represents 88% of
the peak throughput attainable on Matrix Cores in one GCD
as measured in Section V. Note that HSS and HHS only
differ in the datatype of 𝐶 and 𝐷, where HHS has 𝐶 and
𝐷 in half-precision while HSS has them in single-precision.
Thus, the performance gap between the two could come from
type casting. As shown in Section II, the only operation
supported by Matrix Cores on half-precision matrices is the
mixed-precision FP32 ← FP16 MFMA operation. Therefore,

TABLE III: Datatypes for the three rocBLAS half- and mixed-
precision GEMM operations in rocBLAS.

Operation typeAB typeCD Compute type (𝛼 and 𝛽)
HGEMM FP16 FP16 FP16

HHS FP16 FP16 FP32
HSS FP16 FP32 FP32
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Fig. 7: Floating-point throughput achieved using rocBLAS
for a 𝑁 × 𝑁 × 𝑁 GEMM operation in three mixed-precision
datatypes (hgemm, hss, hhs).

mapping operations to Matrix Cores could imply casting
between single and half-precision, depending on the desired
GEMM operation.

Similar to DGEMM and SGEMM, we also observe a
performance decrease at 𝑁 = 8192 for HHS and 𝑁 = 16384
for HSS, which can be similarly explained by the cost of data
movements being a limiting factor. One surprising result is that
HGEMM, which only operates in FP16 values, is consistently
outperformed by HSS and HHS for all matrix sizes. Our
further profiling and analysis show that HGEMM does not
utilize Matrix Cores at all in the executions, explaining the
low performance.

Applications using the mixed-precision rocBLAS GEMM
operations needs to use HSS and HHS to fully exploit
Matrix Cores for delivering most floating-point operations.

Figure 8 presents the percentage of floating-point operations
performed by Matrix Cores in a rocBLAS GEMM operation
at various matrix sizes, as derived from counters in IV-B. We
observe that for DGEMM, SGEMM, and HHS/HSS, more
than 90% of floating-point operations are performed on Matrix
Cores for matrix sizes with 𝑁 > 16, and sustained above
99% for 𝑁 > 256. As HGEMM does not utilize Matrix
Cores, this indicates that matrix operations for the HGEMM
routine are exclusively executed on SIMD units, which exhibit
lower peak performance than Matrix Cores. Therefore, we can
quantify the speedup achieved through the use of Matrix Cores
in GEMM applications if we use HGEMM as the reference
performance on SIMD units. Using values from Figures 6
and 7, this leads to 2.3×-7.5× speedup by Matrix Cores over
SIMD units in mixed-precision, and up to 2.2× speedup in
the single- and double-precision, with exception for double-
precision at 𝑁 = 16384 and 𝑁 = 32768.

Our profiling results also show that HHS and HSS do not
utilize Matrix Cores for the smallest 𝑁 = 16 matrix. This is
unexpected, as exactly one Matrix Core instruction would be
required to perform a matrix FMA in mixed-precision for it.
One reason could be that as a 𝛼/𝛽 scaling operation needs
to be performed and cannot be mapped to Matrix Cores, the
cost of running all operations on SIMD units is lower than
distributing the matrix FMA and scaling operations between
Matrix Cores and SIMD units.
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routines delivered from Matrix Cores at increased matrix sizes.

To characterize the performance of rocBLAS, we further es-
tablish a model for the distribution of floating-point operations
between SIMD units and Matrix Cores in rocBLAS GEMM.
Figure 9 presents our model, along with measurements of the
number of floating point operations performed respectively on
SIMD units and Matrix Cores, for SGEMM and DGEMM.
The number of floating-point operations required to perform
a GEMM operation 𝛼𝐴𝐵 + 𝛽𝐶 on matrices of shape 𝑁2 is a
polynomial of 𝑁 . This polynomial is of degree three, due to
the algorithmic complexity of the matrix multiplication 𝐴𝐵.

We evaluate various values for the coefficients of this poly-
nomial, and compare the resulting model with the measured
numbers of floating-point operations performed respectively
by SIMD units and Matrix Cores. We find that for one
HGEMM, SGEMM, or HHS/HSS operation, 2𝑁3 arithmetic
floating-point operations are performed on Matrix Cores and
3𝑁2 operations are performed on SIMD units. The number
of Matrix Core operations is consistent with the 2𝑁3 compu-
tational complexity of the matrix FMA operation performed
by Matrix Cores. Moreover, we infer that the number of
SIMD operations is induced by the 𝛼/𝛽-scaling of matrix
values, which cannot be performed on Matrix Cores, and is
consistent with the 𝑁2 term. The overlapping of the model
and experimental values for 𝑁 ≥ 32 in Figure 9 validates our
model. For 𝑁 = 16, we observe deviation from the model
likely because the optimization strategy used in rocBLAS
differs for larger matrices.

For a GEMM operation, this model indicates that the num-
ber of floating-point operations performed on Matrix Cores is
2
3𝑁-times higher than the number of math SIMD operations.
This model shows that the proportion of Matrix Core floating-
point operations dominates the number of SIMD operations
in rocBLAS GEMM. In particular, using this model, we find
that for 𝑁 ≥ 32, more than 95% of floating-point operations
are performed on Matrix Cores.

VIII. RELATED WORKS

System Characterization and Performance Evaluation.
Leinhauser et al. [14] designed an instruction roofline model
for AMD GPUs (specifically the AMD MI60, AMD MI100,
and Nvidia V100 GPUs). They use rocprof to gather metrics
and the kernel times and derive a model for instruction inten-
sity and instructions per cycle. They demonstrate the model in
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Fig. 9: The number of floating-point operations executed on
Matrix Cores and SIMD units, respectively, for each matrix
size in the rocBLAS GEMM routine.

a specific plasma simulation code. Godoy et al. [18] evaluated
the DGEMM kernels from the perspective of portability in
multiple frameworks and programming languages, including
Julia, Python, and Kokkos, and used them in Nvidia A100 and
AMD MI250X GPUs. They conclude that the Julia version is
comparable to the HIP one. Eberius et al. [19] performed a
strong scaling analysis on an Nvidia A100 and AMD MI250X
GPUs together with an extended roofline model by adding a
new metric of saturated problem size to allow more precise
characterization of these GPU’s performance.

Matrix Cores and Tensor Cores. Markidis et al. [2] eval-
uated the Tensor Cores in an Nvidia Tesla V100 GPU through
the lens of programmability, performance, and precision. In
particular, they noted that the memory traffic has a high
impact on the overall performance of the matrix multipli-
cations despite the integration of L1 data cache and shared
memory subsystem in the GPU. A related analysis is done by
Sun et al. [12], which uses microbenchmarks to evaluate the
Tensor Cores available on Ampere architecture (A100 GPU).
They find little differences between operations in FP16 or
FP32. Other works also explored new algorithms in precision
refinement and parallel reduction on Tensor Cores [3]–[5].

Applications. As Tensor Cores and Matrix Cores are rel-
atively new, related applications are scarce. An application
for the convolutional neural network (Winograd algorithm)
was optimized by Guo et al. [20] using MI210 GPUs, with
a speedup of 1.2x in comparison to the AMD’s MIOpen
baseline. Feng et al. [21] performed a study using Tensor
Cores together with a neural network to allow the Tensor Cores
to use arbitrary precisions, aside int1 and int4, testing with
DGEMM and convolution kernels. Chalmers et al. [22] use
hipBone, a Computational Fluid Dynamics application based
on Nek5000/NekRS, to leverage the fine-graining present on
Nvidia Tesla V100, AMD MI100 and AMD MI250X.

IX. DISCUSSION AND CONCLUSIONS

In summary, we provide a timely characterization of
the floating-point operations on Matrix Cores on AMD
GPUs, a building block of Exascale supercomputers. Our
micro-benchmarking results show that the high floating-
point throughput from Matrix Cores, reaching 350, 88, and
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69 TFLOPS for mixed, float, and double precision on one
AMD GPU, can provide the much-needed throughput in HPC
workloads, where floating-point matrix operations are ubiqui-
tous. Our analysis and modeling of the power consumption
on Matrix Cores at different activity levels further confirm
the high power efficiency of double-precision operations and
a potential 4×-8× further reduction in power consumption
when switching to single or mixed precision. Finally, as
wide adoption in real applications is likely through high-
level programming interfaces, we evaluate the efficiency of the
rocBLAS library in utilizing Matrix Cores. Our results show
that the rocBLAS library can deliver near-peak floating-point
throughput on Matrix Cores in single- and double-precision in
applications with minimal porting efforts.
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