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[leave space for DOI, which will be inserted by ANS]

ABSTRACT

The general multigroup infinite medium k-eigenvalue neutron transport equation is used to derive
analytic expressions for the infinite medium k-eigenvalue, the scalar neutron flux and adjoint, and the
sensitivity of 𝑘∞ to perturbations in the multigroup nuclear data of a single species isotropic elastic
scattering material. In the appendix, we present the multigroup nuclear data for U-235 and U-238
along with the corresponding k-eigenvalue, flux, adjoint, and sensitivity profiles, which include the
sensitivity of 𝑘∞ to the total, fission, capture, and scattering macroscopic cross sections as well as to
the group-to-group scattering cross section matrix, group neutron production, and the unconstrained
and constrained fission neutron energy distribution.

Keywords: analytic, sensitivity coefficient, mulitgroup, infinite medium, k-eigenvalue

1. INTRODUCTION

Analytic benchmarks are used in the nuclear engineering community to verify the numerical results of neutron
transport simulations. The neutron transport equation is intractable to analytic solutions except under certain
stringent conditions. The art of benchmarking is to find a balance between simplifying the mathematics
of the underlying equations representing a nuclear system and remaining true to some description of the
real-world, i.e., we do not want to simplify our problem so much that it does not correspond to any physical
system. This paper addresses a gap in our verification test sets, namely, we are limited in our methods
for verifying that nuclear data sensitivity calculations are correct. The most popular approach is to make
multiple direct perturbations of the nuclear data, calculate the resulting k-eigenvalues, and extract sensitivity
coefficients from the perturbed data set. This method is an art of its own and has its own challenges, e.g.,
large perturbations can activate non-linear effects, there is statistical uncertainty associated with the results,
and calculating the perturbed data set is computationally expensive. The work presented in this paper offers
a new verification method. We continue the theory established in a well-known analytical benchmark test
set for criticality code verification [1] and expand it to include analytic nuclear data sensitivity coefficients.

2. THEORY

Without derivation, we begin by writing down the general multigroup infinite medium k-eigenvalue problem
for a single species isotropic elastic scattering material.

Σ𝑇 𝜙 = Σ𝑆 𝜙 + 1
𝑘∞

𝜒 𝜈Σ𝐹 𝜙 (1)
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In this work, we consider 𝐺 energy groups with 𝐺 being the fastest energy group and one being the slowest.
The notation we have employed in Equation (1) emphasizes that this is a matrix-vector-scalar equation with
the following terms defined:

• total neutron macroscopic cross section

Σ𝑇 =

©­­­­«
Σ𝐺𝑇 0 0 0

0 Σ(𝐺−1)𝑇 0 0

0 0 . . . 0
0 0 0 Σ1𝑇

ª®®®®¬
= 𝐺 × 𝐺 matrix (2)

• neutron scattering macroscopic cross section, Σ𝑔′𝑔𝑆 , from energy group 𝑔 to energy group 𝑔′

Σ𝑆 =

©­­­­«
Σ𝐺𝐺𝑆 0 0 0

Σ(𝐺−1)𝐺𝑆 Σ(𝐺−1) (𝐺−1)𝑆 0 0
...

...
. . . 0

Σ1𝐺𝑆 Σ1(𝐺−1)𝑆 · · · Σ11𝑆

ª®®®®¬
= 𝐺 × 𝐺 matrix (3)

Notice that, without loss of generality, we have assumed neutrons do not up-scatter, i.e., they do not
gain energy from scattering, hence, the scattering matrix is lower triangular. We require that summing
over all out-going energies, i.e., summing the columns of the scattering matrix, results in a vector of
neutron scattering macroscopic cross sections, Σ𝑔𝑆 =

∑𝐺
𝑔′=1 Σ𝑔′𝑔𝑆 .

• fission neutron energy distribution

𝜒 =

©­­­­«
𝜒𝐺

𝜒(𝐺−1)
...

𝜒1

ª®®®®¬
= 𝐺 × 1 vector (4)

• 𝜈 = number of neutrons emitted from each fission event
Σ𝐹 = neutron fission macroscopic cross section

𝜈Σ𝐹 =
(
𝜈Σ𝐺𝐹 𝜈Σ(𝐺−1)𝐹 · · · 𝜈Σ1𝐹

)
= 1 × 𝐺 vector (5)

• scalar neutron flux

𝜙 =

©­­­­«
𝜙𝐺

𝜙 (𝐺−1)
...

𝜙1

ª®®®®¬
= 𝐺 × 1 vector (6)

• infinite medium k-eigenvalue
𝑘∞ = scalar (7)

We require that there are no (𝑛, 𝑥𝑛′) reactions, 𝑥 > 1, included in Σ𝑆 , and the scattering cross section includes
only isotropic elastic scattering and no higher order moments. Hence, we write Σ𝐶 = Σ𝑇 − Σ𝑆 − Σ𝐹 , where
Σ𝐶 is the neutron capture cross section, i.e., zero neutrons emitted. Thus, for each energy group 𝑔 the total
neutron macroscopic cross section is the sum over its constituents.

Σ𝑔𝑇 = Σ𝑔𝐶 + Σ𝑔𝐹 +
𝐺∑︁

𝑔′=1
Σ𝑔′𝑔𝑆 (8)



2.1. Derivation of the Infinite Medium k-Eigenvalue

With these definitions in place, we can now turn to deriving an analytic expression for 𝑘∞. We start by
grouping the total and scattering macroscopic cross section matrices on the left hand side of Equation (1).(

Σ𝑇 − Σ𝑆

)
𝜙 =

1
𝑘∞

𝜒 𝜈Σ𝐹 𝜙 (9)

We then apply the inverse of the resulting matrix to both sides of the equation in order to isolate the scalar
neutron flux. Notice that this is tantamount to solving the neutron transport equation itself.

𝜙 =
1
𝑘∞

(
Σ𝑇 − Σ𝑆

)−1
𝜒 𝜈Σ𝐹 𝜙 (10)

Next, we introduce a mathematical trick in order to eliminate the scalar neutron flux from this equation. Left
multiply the equation by 𝜈Σ𝐹 .

𝜈Σ𝐹 𝜙 =
1
𝑘∞

𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
𝜒 𝜈Σ𝐹 𝜙 (11)

Realize that 𝜈Σ𝐹 𝜙 is a scalar and can be cancelled out on both sides of the equation. This leaves us with an
analytic expression for 𝑘∞, which requires only one matrix inversion to calculate. Recall that by assumption(
Σ𝑇 − Σ𝑆

)
is a lower triangular matrix, which is non-singular when every entry on the diagonal is non-zero.

Hence, if the assumptions are satisfied, we should always be able to calculate the inverse and compute 𝑘∞. In
other words, in-group scattering must be non-zero for any of the equations derived in this paper to certainly
be computationally tractable.

𝑘∞ = 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
𝜒 (12)

Equation (12) is a powerful statement that says the k-eigenvalue of the infinite medium system under scrutiny
can be expressed solely as a function of the multigroup nuclear data set. This result immediately indicates
that the sensitivity of 𝑘∞ to perturbations in any of the nuclear data on the right hand side of Equation (12)
can also be analytically determined without appealing to advanced adjoint based sensitivity methods [2].
In fact, the only reason the adjoint flux is necessary in these methods is to invert the transport operator,(
Σ𝑇 − Σ𝑆

)
, and calculate the indirect effect that perturbing system parameters has on the flux itself. Here,

we are explicitly inverting the transport operator instead, and the scalar neutron flux has been cancelled out
of the equation.

2.2. Calculating the Scalar Neutron Flux and Adjoint

Before turning our attention to deriving these analytic sensitivity coefficients, we will briefly discuss how
we can calculate the scalar neutron flux and the adjoint. With 𝑘∞ known by Equation (12), we can gather
all of the terms in Equation (1) on the left hand side.(

Σ𝑇 − Σ𝑆 − 1
𝑘∞

𝜒 𝜈Σ𝐹

)
𝜙 = 𝐿 𝜙 = 0 (13)

Next, we notice that the kernel of the linear map 𝐿, which is also known as the null space of 𝐿, is the flux
vector we are interested in calculating.

ker
(
𝐿

)
=

{
𝜙 ∈ R𝐺 | 𝐿 𝜙 = 0

}
= 𝐿

−1
0 (14)



There are two notes on the practicality of performing this calculation. First, realize that you have to take
the outer product of 𝜒 and 𝜈Σ𝐹 to generate a 𝐺 × 𝐺 matrix that can be combined with the other matrices.
Second, it is actually quite easy to compute the kernel of 𝐿 using a scientific numerical code library such
as Python’s “SciPy” package, e.g., flux = scipy.linalg.null space(L), where we recognize that the
sign ambiguity of the resulting vector may need to be removed if we use this method.

Next, we turn to calculating the adjoint flux vector. Again, without derivation, we will write down the
general multigroup infinite medium adjoint k-eigenvalue problem.

Σ𝑇 𝜙
†
= Σ𝑆

𝑇

𝜙
† + 1

𝑘∞
𝜈Σ𝐹

𝑇
𝜒𝑇 𝜙

† (15)

Here, we have used superscript-𝑇 to denote the matrix-vector transpose operation. We can also solve this
equation to find an analytic expression for 𝑘∞.

𝑘∞ = 𝜒𝑇
(
Σ𝑇 − Σ𝑆

𝑇
)−1

𝜈Σ𝐹

𝑇 (16)

Notice that this expression has to give you the same result for 𝑘∞ as Equation (12). Use this fact to check
that the implementation of these equations is correct. Finally, we can use Equation (15) to define the linear

map, 𝐿
†
, that is needed to calculate the adjoint flux vector.

ker
(
𝐿
† )

=

{
𝜙
† ∈ R𝐺 | 𝐿

†
𝜙
†
= 0

}
=

(
𝐿
†)−1

0 (17)

where
𝐿
†
= Σ𝑇 − Σ𝑆

𝑇

− 1
𝑘∞

𝜈Σ𝐹

𝑇
𝜒𝑇 (18)

2.3. Derivation of the Analytic Sensitivity Coefficients

We now turn our attention to deriving the analytic sensitivity coefficients of 𝑘∞ with respect to any one of
the multigroup nuclear data. The sensitivity coefficients that we are interested in describe the fractional
change in 𝑘∞ due to a fractional change in a system parameter, 𝛼. Here, we have used 𝛼 to represent any
one of the multigroup nuclear data.

𝑆𝑘∞,𝛼 =
𝛼

𝑘∞

𝜕𝑘∞
𝜕𝛼

(19)

This is done, in practice, by directly taking the first partial derivative of Equation (12) with respect to 𝛼.

𝜕𝑘∞
𝜕𝛼

=
𝜕

𝜕𝛼

{
𝜈Σ𝐹

} (
Σ𝑇 − Σ𝑆

)−1
𝜒 + 𝜈Σ𝐹

𝜕

𝜕𝛼

{(
Σ𝑇 − Σ𝑆

)−1}
𝜒 + 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕𝜒

𝜕𝛼
(20)

Note that all we have done is applied the triple product rule from differential calculus to Equation (12).

2.3.1. Neutron Emission Sensitivities

Conceptually, the 𝜈 and 𝜒 sensitivity coefficients are the easiest to understand. In both cases, Equation (20)
reduces substantially. Consider the sensitivity coefficients for 𝜈 and 𝜒 in group 𝑔.

𝑆𝑘∞,𝜈𝑔 =
𝜈𝑔

𝑘∞

𝜕

𝜕𝜈𝑔

{
𝜈Σ𝐹

} (
Σ𝑇 − Σ𝑆

)−1
𝜒 =

1
𝑘∞

[
𝜈Σ𝐹

]
𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒 (21)



𝑆𝑘∞,𝜒𝑔 =
𝜒𝑔

𝑘∞
𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕𝜒

𝜕𝜒𝑔
=

1
𝑘∞

𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
[𝜒]𝑔 (22)

Here, we have used [·]𝑔 to denote vectors where all of the entries have been zeroed out except for the data in
the 𝑔th energy group. Hence, we can interpret these sensitivity coefficients as the ratio of two k-eigenvalues,
where the k-eigenvalue in the numerator corresponds to the system in which we have zeroed out all of the
entries in the 𝜈 or 𝜒 vectors except for energy group 𝑔. In other words, this tells us how much the 𝜈 or 𝜒

data in group 𝑔 impacts the overall k-eigenvalue. This means that both sensitivity profiles should sum to
one over all of the energy groups, i.e.,

∑𝐺
𝑔=1 𝑆𝑘∞,𝜈𝑔 = 1 and

∑𝐺
𝑔=1 𝑆𝑘∞,𝜒𝑔 = 1. However, we recall that the

𝜒 fission neutron energy distribution is a discrete probability distribution with the natural constraint that it
also sums to one over all of the energy groups, i.e.,

∑𝐺
𝑔=1 𝜒𝑔 = 1. Thus, the “correct” 𝜒 sensitivity profile

will reflect this constraint. We accomplish this by applying the following formula [3].

𝑆𝑘∞,𝜒𝑔 = 𝑆𝑘∞,𝜒𝑔 − 𝜒𝑔

𝐺∑︁
𝑔′=1

𝑆𝑘∞,𝜒𝑔′ = 𝑆𝑘∞,𝜒𝑔 − 𝜒𝑔 (23)

This constrained sensitivity profile now has the property that it sums to zero over all of the energy groups,
i.e.,

∑𝐺
𝑔=1 𝑆𝑘∞,𝜒𝑔 = 0. Use these sums to check that the implementation of these equations is correct.

2.3.2. Cross Section Sensitivities

Next, we turn to deriving the analytic sensitivity coefficients for the multigroup nuclear cross section data.
For this, we only need the first two terms on the right hand side of Equation (20).

𝜕𝑘∞
𝜕𝛼

=
𝜕

𝜕𝛼

{
𝜈Σ𝐹

} (
Σ𝑇 − Σ𝑆

)−1
𝜒 + 𝜈Σ𝐹

𝜕

𝜕𝛼

{(
Σ𝑇 − Σ𝑆

)−1}
𝜒 (24)

Now, we actually have to carry out differentiating the inverse matrix with respect to 𝛼.

𝜕𝑘∞
𝜕𝛼

=
𝜕

𝜕𝛼

{
𝜈Σ𝐹

} (
Σ𝑇 − Σ𝑆

)−1
𝜒 − 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1
(
𝜕Σ𝑇

𝜕𝛼
− 𝜕Σ𝑆

𝜕𝛼

) (
Σ𝑇 − Σ𝑆

)−1
𝜒 (25)

If we apply the distributive property to the difference of matrices, then we recover three terms that correspond
to the contributon components of the overall sensitivity, which are often discussed in advanced adjoint based
sensitivity methods [2]. Thus, these equations can also be used to check that the components of a more
advanced sensitivity method are working properly.

𝜕𝑘∞
𝜕𝛼

=
𝜕

𝜕𝛼

{
𝜈Σ𝐹

} (
Σ𝑇 − Σ𝑆

)−1
𝜒

− 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑇

𝜕𝛼

(
Σ𝑇 − Σ𝑆

)−1
𝜒

+ 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑆

𝜕𝛼

(
Σ𝑇 − Σ𝑆

)−1
𝜒 (26)

The first term on the right hand side corresponds to the fission source contributon, the second term corre-
sponds to the collisional contributon, and the third term corresponds to the scattering source contributon.
Notice that the collisional contributon is the only mechanism by which we can achieve negative sensitivity
coefficients, i.e., positively perturbing the removal operator of the neutron transport equation will decrease



the k-eigenvalue, similarly for the other contributons, positively perturbing the fission and scattering source
operators will increase the k-eigenvalue. Before we write down the analytic sensitivity coefficients for
each of the macroscopic cross sections, we note that these are also constrained sensitivities. Indeed, Equa-
tion (8) provides the constraint, which is the relationship between the total macroscopic cross section and
its constituents. In this case, however, we explicitly account for the constraint when we calculate the colli-
sional contributon for the constituent cross sections and when we calculate the fission and scattering source
contributons for the total cross section. We will demonstrate this first for the capture cross section sensitivity.

𝑆𝑘∞,Σ𝑔𝐶
= −

Σ𝑔𝐶

𝑘∞
𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑇

𝜕Σ𝑔𝐶

(
Σ𝑇 − Σ𝑆

)−1
𝜒

= − 1
𝑘∞

𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 [
Σ𝐶

]
𝑔,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒 (27)

Here, we have used [·]𝑔,𝑔 to denote matrices where all of the entries have been zeroed out except for the
data in the (𝑔, 𝑔)th energy group, i.e., we have taken the capture cross section data in the 𝑔th energy group
and put it on the (𝑔, 𝑔)th diagonal entry of the otherwise zero matrix. Notice that the capture cross section
sensitivity does not require calculation of either the fission or scattering source contributon. This will not
be true for the other sensitivity coefficients. We see this first for the fission cross section.

𝑆𝑘∞,Σ𝑔𝐹
=
Σ𝑔𝐹

𝑘∞

[
𝜕

𝜕Σ𝑔𝐹

{
𝜈Σ𝐹

} (
Σ𝑇 − Σ𝑆

)−1
𝜒 − 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑇

𝜕Σ𝑔𝐹

(
Σ𝑇 − Σ𝑆

)−1
𝜒

]
=

1
𝑘∞

[ [
𝜈Σ𝐹

]
𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒 − 𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 [
Σ𝐹

]
𝑔,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

]
(28)

Next, we see this for the scattering cross section.

𝑆𝑘∞,Σ𝑔′𝑔𝑆 =
Σ𝑔′𝑔𝑆

𝑘∞

[
−𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑇

𝜕Σ𝑔′𝑔𝑆

(
Σ𝑇 − Σ𝑆

)−1
𝜒

+𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑆

𝜕Σ𝑔′𝑔𝑆

(
Σ𝑇 − Σ𝑆

)−1
𝜒

]
=

1
𝑘∞

[
−𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 [
Σ𝑔′𝑔𝑆

]
𝑔,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

+𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 [
Σ𝑆

]
𝑔′ ,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

]
(29)

The notation
[
Σ𝑔′𝑔𝑆

]
𝑔,𝑔

means that we put the Σ𝑔′𝑔𝑆 group-to-group scattering cross section on the (𝑔, 𝑔)th

diagonal entry of the otherwise zero matrix. On the other hand,
[
Σ𝑆

]
𝑔′ ,𝑔

means that we have zeroed out
the scattering cross section matrix except for the (𝑔′, 𝑔)th entry. Notice that we can collapse this sensitivity
matrix by summing over all of the out-going energies to find the sensitivity of 𝑘∞ to the multigroup
macroscopic scattering cross section Σ𝑔𝑆 .

𝑆𝑘∞,Σ𝑔𝑆
=

𝐺∑︁
𝑔′=1

𝑆𝑘∞,Σ𝑔′𝑔𝑆 (30)



Finally, we write down the analytic expression for the sensitivity coefficient for the total cross section.

𝑆𝑘∞,Σ𝑔𝑇
=
Σ𝑔𝑇

𝑘∞

[
𝜕

𝜕Σ𝑔𝑇

{
𝜈Σ𝐹

} (
Σ𝑇 − Σ𝑆

)−1
𝜒

−𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑇

𝜕Σ𝑔𝑇

(
Σ𝑇 − Σ𝑆

)−1
𝜒

+𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝜕Σ𝑆

𝜕Σ𝑔𝑇

(
Σ𝑇 − Σ𝑆

)−1
𝜒

]
(31)

We need to recognize a stardard sensitivity trick before we can move forward. Namely, Σ𝑇
𝜕Σ𝑋

𝜕Σ𝑇
= Σ𝑋, where

Σ𝑋 is a constituent of Σ𝑇 . This reflects the fact that perturbing Σ𝑇 perturbs each of its constituents by the
same amount.

𝑆𝑘∞,Σ𝑔𝑇
=

1
𝑘∞

[ [
𝜈Σ𝐹

]
𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

−𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 [
Σ𝑇

]
𝑔,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

+𝜈Σ𝐹

(
Σ𝑇 − Σ𝑆

)−1 𝐺∑︁
𝑔′=1

[
Σ𝑆

]
𝑔′ ,𝑔

(
Σ𝑇 − Σ𝑆

)−1
𝜒

 (32)

Notice that
[
Σ𝑇

]
𝑔,𝑔

is a zero matrix except for the (𝑔, 𝑔)th entry which is defined by Equation (8). This
means that we can separate it into its constituent parts.[

Σ𝑇

]
𝑔,𝑔

=

[
Σ𝐶

]
𝑔,𝑔

+
[
Σ𝐹

]
𝑔,𝑔

+
𝐺∑︁

𝑔′=1

[
Σ𝑔′𝑔𝑆

]
𝑔,𝑔

(33)

Inserting this expression into the equation above and matching it to the other cross section sensitivities leads
us to conclude that the total cross section sensitivity coefficient is a sum of the constituent cross section
sensitivities.

𝑆𝑘∞,Σ𝑔𝑇
= 𝑆𝑘∞,Σ𝑔𝐶

+ 𝑆𝑘∞,Σ𝑔𝐹
+

𝐺∑︁
𝑔′=1

𝑆𝑘∞,Σ𝑔′𝑔𝑆 (34)

However, we also know by examining Equation (12) that perturbing each of the cross sections by the same
amount should cancel out and leave us with the original unperturbed value for 𝑘∞. This means that we also
expect the total cross section sensitivity to be zero for these infinite medium systems.

𝑆𝑘∞,Σ𝑔𝑇
= 0 (35)

These sensitivity properties should be used to check that the implementation of these equations was done
correctly, i.e., check that Equation (32) and Equation (34) are both zero.



3. CONCLUSIONS

In this paper, we have derived analytic sensitivity coefficients for general multigroup infinite medium k-
eigenvalue problems. The work presented here is entirely self-contained in that all of the assumptions
and notation have been clearly stated and each step of the mathematical derivations have been explicitly
recorded and commented upon. All that is left for the reader to do is to generate a set of multigroup
nuclear data cross sections that is suitable to their needs and apply these equations judiciously. An example
of this process is presented in Appendix A. The objective of this work is to give the nuclear engineering
community a new method to verify that their sensitivity calculations agree with theory. This can be useful
for verifying more advanced sensitivity and uncertainty analysis methods. In the future, we hope to extend
these equations to account for multiple isotopic species and to investigate analytic sensitivity coefficients for
multipole-multigroup nuclear data representations. We also hope to investigate the use of these equations
in constructing an analytic upper sub-criticality limit benchmark.

ACKNOWLEDGEMENTS

This work is supported by the Department of Energy through Los Alamos National Laboratory (LANL)
operated by Triad National Security, LLC, for the National Nuclear Security Administration (NNSA) under
Contract No. 89233218CNA000001.

REFERENCES

[1] A. Sood, R. A. Forster, III, and D. K. Parsons. “Analytical Benchmark Test Set for Criticality Code
Verification.” Technical Report LA-13511, Los Alamos National Laboratory, Los Alamos, NM, USA
(1999).

[2] B. T. R. Christopher M. Perfetti and W. R. Martin. “SCALE Continuous-Energy Eigenvalue Sensitivity
Coefficient Calculations.” Nuclear Science and Engineering, volume 182(3), pp. 332–353 (2016). URL
https://doi.org/10.13182/NSE15-12.
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APPENDIX A. URANIUM EXAMPLES

All of the analytic expressions derived in Section 2 are general and exact given the assumptions that we
specified are satisfied. It is beneficial to understand the mathematical structure of these simple k-eigenvalue
sensitivity coefficients, because it fosters the engineering intuition that is required to analyze more realistic
systems. However, we realize that presenting examples will reinforce our understanding of the mathematics.
To that end, we will look at the multigroup nuclear data and corresponding flux, adjoint, and sensitivity
profiles for U-235 and U-238.

The multigroup nuclear data presented in Figure 2 was generated using the multigroup tally options in
MCNP6®[4]. We set up two infinite medium k-eigenvalue problems consisting purely of U-235 and U-238.
Energy dependent cell flux tallies were specified (F4:n CELL) as well as the following special treatments:

https://doi.org/10.13182/NSE15-12
https://doi.org/10.13182/NSE14-17


(FT4 MGC 1) calculates the multigroup cross sections; (FT4 SPM 0) calculates the angle integrated scatter-
ing probability matrix; and (FT4 FNS 0) calculates the prompt fission neutron energy distribution.

We compare the continuous energy k-eigenvalues calculated with MCNP6®to the multigroup k-eigenvalues
calculated with Equation (12) in Table I. Notice that the additional physics not accounted for in our
assumptions makes a relatively small but important impact on the k-eigenvalue. This is an interesting result
that highlights the importance of including all relevant physics in our neutron transport simulations, because,
in both cases, the k-eigenvalue is underestimated.

Table I. Continuous vs. Multigroup k-Eigenvalues

Isotope Continuous Multigroup
U-235 2.280142 ± 0.000042 2.268976
U-238 0.310186 ± 0.000060 0.303270

Figure 1 compares the scalar neutron flux and adjoint for both systems. We find that these are non-self
adjoint systems, with U-238 only having a non-zero adjoint beyond the fission energy threshold. Figure 3
compares the sensitivity profiles for each uranium isotope. We see common behavior between the two sets
of profiles, e.g., the constituent cross section sensitivities both sum to zero, which is what we expected from
theory. However, the scattering cross section sensitivity matrices deserve some special attention. The results
agree with intuition, i.e., 𝑘∞ is not sensitive to in-group scattering. This means that the integrated scattering
sensitivity profile is solely a function of out-group scattering. We also find that the infinite medium
k-eigenvalue is particularly sensitive to certain scattering pathways. This could be a result of neutrons
avoiding fission resonances or neutrons heading towards capture resonances. Hence, accurate knowledge of
the nuclear data cross section resonances is important to the sensitivity and uncertainty analysis of nuclear
systems. Thus, investigation of the analytic multipole-multigroup sensitivity coefficients is warranted to
further understand the dominant sensitivity mechanisms of our k-eigenvalue problems.

Figure 1. Scalar Neutron Flux and Adjoint
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Figure 2. Nuclear Data
(Top to Bottom: Neutron Emission, Cross Sections, Scattering Matrix)
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Figure 3. Sensitivity Profiles
(Top to Bottom: Neutron Emission, Cross Sections, Scattering Matrix)
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