
Modbus RTU for Embedded Cyber Secure Inverter Controller 

 

 

 

A thesis submitted in partial fulfillment 
 of the requirements for the degree of 

 Master of Science in Electrical Engineering 

 

by 

 

Brady McBride 
University of Arkansas 

Bachelor of Science in Engineering, 2021 

 

 

 

 

May 2023 
University of Arkansas 

 

 

 

 

 

 

This thesis is approved for recommendation to the Graduate Council.  

 

 

______________________________  
H. Alan Mantooth, Ph.D. 
Thesis Director  

 

 

______________________________   ______________________________ 
Chris Farnell, Ph.D.                               Jia Di, Ph.D. 
Committee Member                                                   Committee Member 

  



Abstract 
 

 The Modbus communication protocol is a widely adopted communication standard in industrial 

control systems. This communication protocol is known for being reliable and straightforward to 

implement while being versatile in terms of its operating parameters while supporting multiple formats 

over various hardware infrastructures and architectures. Many intelligent devices such as Programmable 

Logic Controllers (PLCs), Human-Machine Interfaces (HMIs), Internet-of-Things (IoT), and various 

Operational Technologies (OT) utilize Modbus for their communication systems. These types of systems 

must communicate with each other through a standardized and central communication process. To 

support the integration of these modular systems, a Field-Programmable Gate Array (FPGA) can act as 

an embedded central routing fabric for this communication to take place.  

Embedded systems are versatile enough to interface with various devices and systems to 

accomplish various goals. Additionally, embedded systems require relatively small physical designs to 

minimize the required resources to facilitate the intended application by providing low-level system 

access. This minimization of system resources goes hand in hand with reducing the financial cost of a 

proposed solution or system. As remotely collaborating researchers often use FPGAs to prototype 

designs that are required to have a method for data transmission among systems, it is imperative to 

provide a baseline standard for communications among devices and systems. 

A typical method of implementing the Modbus RTU communication protocol in an embedded 

environment is using integrated logic architectures within the FPGA called “Intellectual Property (IP) 

cores.” IP cores can be designed using integrated logic or circuit designs to function as an embedded 

processor. These IP cores can then perform the required computational actions to support the Modbus 

RTU communication protocol by utilizing high-level programming languages such as the C programming 

language. 

The hardware description language of Very High-Speed Integrated Circuit Hardware Description 

Language (VHDL) allows for the control of real hardware at the logic gate and signal level. These logic 

gates and signals can be designed and controlled to perform desired actions based on the system 



design. Programming an FPGA using VHDL allows an individual to access the lowest abstraction level of 

the system during FPGA development. This level of abstraction is referred to as the register-transfer level 

(RTL), which gives access to manipulating values and variables at the register level. This register-level 

manipulation provides precision over creating the logical circuit within the FPGA, thus minimizing the 

required code to perform desired operations. 

The Modbus RTU communication protocol can be implemented within an FPGA using VHDL 

programming to establish a standardized and embedded serial communication pathway. This 

implementation provides a standardized communication protocol to streamline research efforts among 

researchers, thus increasing the efficiency of research efforts. Additionally, this Modbus RTU 

implementation requires fewer resources when compared to typical communication protocol 

implementations that utilize an IP core, reducing the hardware requirement for effective research efforts. 
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Chapter 1 

Introduction 

1.1 – Motivation 

 The modern power grid is an essential component of our critical infrastructure that plays a 

significant role in contemporary society. Our reliance on the availability and reliability of the electric utility 

grid makes it an essential component to facilitate the needs of individuals, such as performing a role in 

providing access to food, clean water, and sanitary conditions. Beyond servicing critical needs, the power 

grid is in virtually every amenity and aspect of our daily lives. As society continues to grow and develop, 

the demands on the electric power grid continue to increase. Additionally, with more substantial 

considerations of where this power is sourced, the transition to alternative sources, such as renewable 

energy, is continually in demand [1]. This newfound transition to renewable energy is often achieved with 

distributed energy resources (DERs), which naturally require network communication and coordination 

with the larger power grid. This, combined with a push for a “smart grid” to service society’s electrical 

needs with a more efficient and resilient electric grid, has increased the complexity of this critical 

infrastructure. To address the dynamically changing demands of the modern power grid, there has been a 

rise in the addition of network-connected grid devices [2]. 

 While the addition of communication and networking infrastructure into the electric grid supports a 

more effective and efficient system, this change also introduces additional vulnerabilities to which these 

systems were not previously prone. Cyber attackers can utilize these networks to traverse once-isolated 

systems and gain access to previously “untouchable” critical infrastructure. As more critical components 

of the electric grid are connected to various networks, a resulting increase in the occurrences and the 

potential threat for cyber-physical attacks is undesirable [3]. In response to the looming threat of cyber-

attacks on society’s critical infrastructures, governments such as the federal government of the United 

States have increased funding towards critical infrastructure improvements to enhance the electric grid’s 

resiliency and cyber defense capabilities [4]. To effectively address both the cyber and physical demands 

at a dynamic level, researchers need focused and effective efforts to respond to these problems. 
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 As the growing availability of improving technologies is coupled with the widespread efforts of 

retrofitting the electric power grid to meet the ever-increasing energy demands, improvements in how 

these evolving technologies and techniques are utilized must be introduced. As the market transition to 

alternative energy sources arises, so does the necessity for cost-effective and impactful power and cyber-

physical research solutions and methods to this problem. Money and time are two of the most imperative 

and finite resources required to address these issues. To continue creating more reliable and resilient 

critical infrastructure, adequate financing to support these efforts is essential. The time required to foster 

these innovations is arguably equal to the funding of these research efforts is the time required to foster 

these innovations. As the threat of cyber-attacks is consistent and growing, it is imperative to respond 

proactively and with swiftness. 

 To address the challenges of substantial research investments regarding money and time, 

improving efforts to lower solution costs while increasing collaborative research productivity is paramount. 

As technological advancements in the electric power grid require improved or additional electronic 

hardware, one method of reducing financial expenses is to utilize equipment with a lower fiscal cost. The 

drawback often seen with the reduction in the price of more affordable equipment and hardware is a 

comparable reduction in these devices’ capability and computational resources. Thus, a lower-cost 

implementation requires research solutions that function on hardware with lower computational 

capabilities. Presenting research solutions that minimize the required computational and hardware 

resources effectively addresses the constant challenge of limited fiscal resources. The second finite 

resource is time. Bad actors are always persistent in their efforts to improve their cyber-attack capabilities. 

To be proactive in meeting these often-restless adversaries, vital considerations to the development time 

for research solutions must be made. By standardizing components of the research efforts, an increase in 

progress efficiency among collaborators is possible. In research, multiple entities often collaborate on the 

same project while being geographically distanced. By providing standardized solutions and components, 

researchers have a common platform during the design and development phase that promotes rapid 

prototyping between collaborators. 



 

3 
 

The Modbus RTU communication protocol is widely adopted within Industrial Control Systems 

(ICS). This communication protocol is commonly used as a standardized method of communication as it 

is open-source and known for being reliable. Embedded systems, such as FPGAs, are often used in ICS 

applications [5]. These embedded systems can integrate serial communication capabilities, such as 

Modbus RTU. An embedded processor architecture is a typical method of providing embedded systems 

with Modbus RTU functionality. These embedded processor architectures are often called “Intellectual 

Property cores” or “IP cores.” Embedded processors utilize logical algorithms to describe the embedded 

processor architecture and essentially function as a processor inside an embedded system, such as an 

FPGA. These embedded processors are then used to execute code from higher-level programming 

languages such as C. Such an implementation of the Modbus communication protocol using the ARM 

Cortex-M0 embedded processor can be seen in [6]. A similar method of Modbus RTU implementation 

within an embedded Linux system can be seen in [7]. These researchers continued their work to develop 

a data acquisition and monitoring system can be seen in [8] that is based on the embedded processor-

operated Modbus RTU of [7]. The work presented in [9] is an example of using an embedded processor 

to utilize the Modbus RTU communicational protocol to control an industrial plant (crop) factory system. 

The work in [10] utilizes an ARM Cortex A-9 embedded processor to utilize Modbus RTU to manage the 

communication in their production control system. 

This thesis presents the design and development of a Modbus RTU communication protocol 

implementation using VHDL within an FPGA that does not require an embedded processor. Thus, the 

required resources to utilize the Modbus RTU communication protocol are less when compared with the 

typical industry method of using an embedded processor. This reduction in required resources addresses 

the concern of cost-effective and resource-efficient solutions for communication within embedded 

systems. This custom Modbus RTU communication protocol resides within a low-cost FPGA mounted 

within a Unified Controller Board (UCB) to provide standardized communication to support multiple 

modules within the controller architecture for a multi-level cyber-hardened solar inverter. This approach 

provides a standardized serial communication protocol that operates as the routing fabric and 

communication between cyber-defense-related modules within the controller of a solar inverter. 

Implementing the Modbus RTU communication protocol was successfully developed while keeping the 
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required space smaller than typical embedded processor-based implementations. This work will discuss 

the design and development of an embedded Modbus RTU implementation designed to work within a 

low-cost FPGA while providing researchers with a reliable and resilient communication protocol to support 

data transmission. 

1.2 – Solar Energy Technologies Office Project Contribution 

 The work presented in this thesis contributes to a greater project sponsored by the Department of 

Energy (DEO) Solar Energy Technologies Office (SETO). This SETO project is named “Multilevel 

Cybersecurity for Photovoltaic Systems” and addresses cybersecurity at both the inverter and system 

levels for photovoltaic energy systems. The embedded Modbus RTU implementation in this thesis 

contributed to this SETO project by providing a common and standardized data transmission point 

throughout the inverter controller architecture. The Modbus RTU implementation controls the FPGA’s 

routing fabric, giving access to shared memory for multiple modular cybersecurity-focused components 

within the inverter controller architecture. Further details regarding the SETO project and its relevance to 

this thesis’ contents will be discussed in Chapter 3. 

1.3 – Thesis Organization 

The list below sequentially outlines the contents and structure of this thesis: 

• Chapter 1 discusses the motivation for designing and developing a Modbus RTU implementation 

using VHDL within an FPGA to provide a standardized serial communication protocol that utilizes 

fewer hardware resources. 

• Chapter 2 defines the background concepts and fundamental knowledge considered in the 

design process. Additionally, this chapter discusses additional information that may be pertinent 

to the reader, such as topics related to hardware, communication protocols, and coding. 

• Chapter 3 explains the system components and the design and development for creating the 

custom Modbus RTU implementation. Additionally, this chapter will discuss in further detail the 

involvement and application of this Modbus RTU implementation concerning the greater efforts of 

the SETO project. 
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• Chapter 4 demonstrates the experimental test setup and results of the various testing phases for 

this work. This chapter will discuss testing involving simulations, hardware, application, and the 

resiliency of this implementation. 

• Chapter 5 concludes this design and development of the Modbus RTU communication protocol 

within an FPGA. This chapter also discusses additional steps taken to increase the throughput of 

this communication implementation. It outlines recommendations and actions to use encryption 

and message authentication techniques to secure packet contents when transmitting data.  
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Chapter 2 

Background 

2.1 – Introduction 

 As mentioned in the previous chapter, the primary motivation for this work is to provide a method 

of standardized communication to assist with improving the effectiveness of research efforts while 

simultaneously reducing the associated costs. As the risk of cyber-physical attacks and events is a 

constant and ever-moving target, it is imperative to be proactive and adequate to address these threats. 

The solutions presented by researchers and industry professionals must be current and conscious of 

these changing challenges and the limited resources available to manage them. These contemporary 

concerns are addressed regarding communication systems by implementing the Modbus RTU 

communication protocol within a standardized embedded device that requires fewer resources than 

typical embedded methods. The remainder of this chapter will discuss the concepts of the Modbus RTU 

communication protocol and the pertinent information regarding serial communication, associated 

hardware, and power electronics. 

Additionally, the work presented in this thesis is in conjunction with a greater project focused on 

improving the cyber-physical security of power grid congrid-connected photovoltaic energy generation 

farms. This project is funded by the U.S. Department of Energy (DOE) Solar Energy Technologies Office 

(SETO) and is titled “Multilevel Cybersecurity for Photovoltaic Systems” (Award #DE-EE0009026). 

2.2 – Power Electronics and SMA Inverter  

As mentioned in the introduction of this section, the work presented in this thesis covers the 

contributions of developing the communication protocol implementation for developing a cyber-hardened 

photovoltaic inverter. The solar inverter used in this research project is an SMA Sunny Highpower PEAK 

3 utility grid-connected photovoltaic (PV) inverter (henceforth referred to as an “SMA inverter”). This SMA 

inverter is a 60 Hz commercial off-the-shelf grid-connected PV inverter rated for 1500 volts of direct 

current (VDC) for 125 kW of power [11]. 
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 The SMA inverter is integrated with a Modbus interface that allows the device to communicate 

with various modules utilizing the Modbus communication protocol. This SMA inverter supports the 

Modbus TCP and Modbus UDP configurations of the Modbus communication protocol. Modbus TCP 

allows for both the reading and writing of registers, while Modbus UDP only supports the writing of 

registers. While the work presented in this thesis discusses developing a Modbus implementation using 

the Modbus RTU configuration, the existing hardware in the controller architecture allows for the 

conversion of Modbus RTU to that of Modbus TCP. This topic will be discussed in more detail in Chapter 

2.5 and Chapter 3.2.1. 

 The SMA interface supporting the Modbus communication protocol was a significant determining 

factor in developing a Modbus RTU communication protocol implementation for this project. Modbus is a 

standardized communication protocol widely used and supported in applications such as distributed 

industrial control systems and inverter-based technologies [12]. 

2.3 – Serial Communication 

 Serial communication is a method that sequentially transmits data over a communication bus, bit-

by-bit, as seen in Figure 2.1. This data transmission configuration only requires a few wires to send 

signals between devices. Thus, the infrastructure needed for serial communication is relatively low [13]. 

Within the family of serial communication, several communication standards exist. Two of the most 

common communication standards are RS-232 and RS-485. This project implements Modbus RTU under 

the RS-232 communication standard and will be the primary standard of discussion.  

 

Figure 2.1. Sequential data transmission of serial communication [13] 
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Serial communication supports asynchronous and synchronous data transfer. In synchronous 

data transfer, the transmission of each bit of data is controlled by an external clock signal shared between 

the sending and receiving devices. This synchronization with a clock signal ensures that the data transfer 

across the communication pathway is coordinated and the interpretation of the data is read. This 

configuration requires additional infrastructure as the communication method’s integrity relies on the 

synchronization between the sending and receiving devices [14]. As opposed to synchronous data 

transfer, asynchronous data transfer requires less infrastructure to implement as it is not reliant on a clock 

signal to orchestrate the transfer of data. Asynchronous data transfer sends a serial bit stream at a 

predetermined transmission rate. The message is then interpreted by the receiving device while reading 

the data bit-by-bit at the predetermined transmission rate. This data transmission rate is called the “baud 

rate” and represents the number of bits transmitted per second [14]. 

2.3.1 – RS-232 Serial Communication Standard 

 The RS-232 communication standard outlines the signals connected from the transmitting and 

receiving devices and characterizes the signals' electrical characteristics. The serial data exchange in the 

RS-232 standard protocol is carried out by controlling the voltage level on the communication bus and the 

rate the data is transmitted. To indicate a binary ‘0’ or binary ‘1’ signal on the communication line, the 

voltage level is modified with respect to a ground reference. The binary value of ‘0’ is asserted when the 

voltage level of +3 V to +13 Vdc is read on the line, and a binary value of ‘1’ is declared when the voltage 

level is -3 V to -13 Vdc [14]. A diagram of the voltage-binary logic can be seen in Figure 2.2 

 

Figure 2.2. Voltage-Binary logic of RS-232 communication protocol [14] 
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The most basic wiring configuration to carry out serial communication requires three signal 

connections: Transmit (TX), Receive (RX), and Ground (GND). This wiring configuration can be seen in 

Figure 2.3. The wire connection from the transmitting device’s TX port is fed into the port of the receiving 

device’s RX port and vice versa. The voltage level across these signal lines is then changed to indicate 

the previously mentioned binary ‘0’ or ‘1’ value depending on the voltage with reference to the shared 

ground wire. This communication bus infrastructure allows for a dedicated signal pathway for both 

directions from each device’s perspective. This configuration is called “full duplex” and allows for the 

simultaneous sending and receiving of data on each bus communication line [13].  

 

Figure 2.3. Three-wire serial communication connection diagram [15]  

 

2.3.2 – Universal Asynchronous Receiver-Transmitter (UART)  

Universal Asynchronous Receiver-Transmitter (UART) is used by embedded systems as a 

method for device-to-device hardware communication [16]. This system utilizes a three-wire setup to 

carry out the communication between devices. As this is an asynchronous system, a clock signal is not 

used to synchronize the output of transmission bits. 

UART is configured to send data across a serial bus from one UART interface to another. A 

UART interface processes data in parallel, as seen in Figure 2.4, and sends that data across a serial bus 

line at a predetermined baud rate. As the data is sent sequentially, the UART system must frame the data 

in a manner that allows the system to determine when the start and stop of transmission are received. 

This process is referred to as “data framing” and consists of four components: start bit, data frame, parity, 
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and stop bit(s) [16]. These components together create the packet structure of the data transmission, as 

shown in Figure 2.5. A UART transmission line maintains a high voltage when waiting to receive data 

transmission. Then, it reads the incoming data when the line is pulled low by the incoming binary ‘0’ of the 

start bit. The size of the data frame is predetermined in the transmission configuration. Once the start bit 

is active, the UART device will process the incoming data at the predetermined baud rate. The parity bit 

allows the UART system to determine if the received message was error-free. To determine if the parity 

bit is to be a binary ‘0’ or ‘1’, the number of bits with a binary ‘1’ value is counted. If the number of binary 

‘1’s’ in the data frame is even, then the data frame is considered to have “even parity,” and the even 

parity bit is asserted by the transmitting device. This same parity calculation is done by the receiving 

device to confirm that the calculated parity value during the transmission was correct. Finally, the stop bit 

returns the voltage level of the UART device to a high signal for one or two clock cycles (a predetermined 

number of clock cycles is used).  

 

Figure 2.4. UART interface connection with Data Bus [16] 

 

Figure 2.5. Packet structure of UART message [16] 
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2.4 – Modbus RTU 

 The Modbus RTU serial communication protocol is an open-source communication protocol 

widely adopted within the Industrial Control Systems (ICS) and automation industries. The packet 

structure of this communication protocol is relatively simple and is known for its reliability in carrying out 

serial communication. Because of the known reliability of this communication protocol, it is virtually 

supported in all communication infrastructure in the marketplace in the field of control systems and 

automation. The Modbus RTU communication protocol is typically implemented within an RS-232 or RS-

485 interface [17]. 

 The Modbus RTU communication protocol connects a supervisory or controlling device to a 

Remote Terminal Unit (RTU) within ICS and automation systems. This configuration is typical in 

supervisory control and data acquisition (SCADA) systems, where a master (client) device is responsible 

for communicating with one or more slave (server) devices to carry out data-based algorithms or controls. 

The high-level operation of the master and slave relationship consists of the master device sending a 

command to the slave device. This command is then deciphered, verified for integrity, and carried out by 

the slave device. These actions consist of two fundamental operations: reading and writing data. This 

data transmission may then be used to carry out control algorithms or functions of the system as 

intended. 

 The essential function of the Modbus RTU communication protocol is to connect various control 

instrumentation to logic controllers or to provide a data transmission pathway between two systems that 

are reliant on sharing data. The bulk of this thesis will focus on the latter, where the implementation 

design and goal are to be capable of transmitting data between various systems. Additionally, the scope 

of this work only requires the ability to read and write data to and from holding registers. Thus, the 

remainder of this background section will focus on the information pertinent to data movement between 

holding registers using Modbus RTU and any associated methods or communication protocol 

transformations. 
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2.4.1 – Data Representations and Configurational Parameters 

 Data transmission within the Modbus RTU communication protocol occurs at a predetermined 

baud rate and must be maintained at both the transmitting and receiving devices. Baud rates are typically 

standardized and occur at 9600, 19200, or 115200. This work was initially created to operate at a baud 

rate of 9600 bits-per-second. The potential to drive at higher baud rates, customize, and scale will be 

discussed in Chapter 5. 

 The Modbus communication protocol supports the transmission of two types of data: coils and 

holding registers. Coils represent a single bit of data, typically as a Boolean value of binary ‘1’ or ‘0’, 

respectively ‘ON’ or ‘OFF’ in an active high scenario. These coils represent the discrete status value of a 

system where an application may be a variable being asserted, indicating the status of a system. Holding 

registers represent 16-bit unsigned values capable of representing the hexadecimal values from 0x000 to 

0xFFFF (0 to 65535) [17]. 

 The first two bytes of a Modbus RTU packet contain the value of the device ID or the identifying 

value for which device the transmission is intended. If a device receives a message with a device ID 

matching its own, it carries out the command request from the master device. The value of the device ID 

can vary from 0x01 to 0XFF (1 to 255), where 0x00 (0) is reserved for a specific broadcast function. The 

broadcast function is intended for the master to send a command to all slave devices to be fulfilled by all 

devices. 

2.4.2 – Read and Write Commands 

 The Modbus communication protocol uses a master and slave relationship architecture to 

perform the function commands based on the received function code. In this architecture, a master device 

is responsible for issuing orders to the slave device. The slave device responds to those commands and 

fulfills the requested operation. Modbus RTU supports eight different function operations that can be used 

to read or write from discrete coils or holding registers, denoted by their unique respective function codes. 

The eight supported function codes for these data types can be seen in Table 1. 
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Table 1 – Modbus RTU Function Commands 

Function Code Function Operation Data Value Type 

0x01 (01) Read Coil Discrete 

0x02 (02) Read Input Status Discrete 

0x03 (03) Read Multiple Holding Registers 16-bit 

0x04 (04) Read Input Registers 16-bit 

0x05 (05) Write Single Coil Discrete 

0x06 (06) Write Single Holding Register 16-bit 

0x0F (15) Write Multiple Coils Discrete 

0x10 (16) Write Multiple Registers 16-bit 

 

 The remainder of this thesis will discuss the reading and writing of holding registers using the 

Modbus RTU communication protocol. This is due to the scope of work for the greater project only 

requiring access to data stored in holding registers. Additionally, as this thesis covers a custom 

implementation of the Modbus RTU communication in an embedded system, the required resources were 

able to be minimized by only containing a partial implementation of the Modbus RTU protocol. The 

utilized read and write function codes for this project are 0x03 and 0x10 which represent the actions to 

read and write multiple holding registers, respectively.  

2.4.3 – Packet Structure 

 The Modbus RTU packet structure consists of two main configurations, read packets and write 

packets, while each packet structure can further be broken down into multiple components. A Modbus 

RTU packet’s components are device address (ID), function code, address of a register in memory, 

number of registers requested, number of bytes more in the packet transmission, the data values, and the 

checksum. 

 The device address (ID) denotes the unique identifier for the slave device. Each slave device is 

programmed to only respond to requests explicitly made to itself. The function code is the operation 

carried out, such as reading or writing to holding registers. The address of the register in memory is the 
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value that indicates where the data being read or written is coming from or being written in memory. This 

data is separated into high (“Hi”) and low (“Lo”) bytes to form 16-bit data. The number of registers 

requested specifies how many registers are to be read or written to. The value for the number of bytes 

more indicates how many additional bytes of data will be following this value in the serial data stream. 

This is used to point to the device how much more data it is to expect to be coming through the serial 

transmission. The data values represent the data being read from memory or written to memory. This 

data is separated into high (“Hi”) and low (“Lo”) bytes to form 16-bit data. Finally, the checksum cyclical 

redundancy check (CRC) is a calculation performed by the master and slave device to verify message 

integrity. 

 In addition to the components of the reading and writing of holding registers, there are packet 

components for error handling. An error message is sent in response to a command request from the 

slave device back to the master device when a command cannot be carried out for any reason. The 

additional components of the error message are the modified function code indicating to the master that 

the slave device experienced an error and the error code indicating what the error experienced was. 

Breakdown of Packet Structure 

 An example of the packet structure of a Modbus RTU transmission issuing a read command can 

be seen below in Figure 2.6. To break down each component of this packet structure, the remainder of 

this subsection will go over each component in sequentially highlighted figures. 

 

Figure 2.6 – Modbus RTU read holding register command 

 

The first component of the Modbus RTU packet structure is the device address, which can be 

seen below in Figure 2.7, highlighted in brown. The device address component is an 8-bit unique 

identifier that is used to dictate which slave device a command is intended for. Each slave device has its 
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own unique device address and is programmed to only respond to messages addressed to its unique 

device identifier. The next component is the function code, or operational code, which can be seen below 

in Figure 2.7, highlighted in blue. This function code indicates to the slave device what the requested 

operation is. In this example, the requested operation is hexadecimal 0x03, which indicates the operation 

requested is a read command. 

 

Figure 2.7 – Read holding register breakdown 1 of 3 

 

 The next component of the packet structure is the address of the first register in the request, 

which can be seen below in Figure 2.8, highlighted in brown. This is a 16-bit value that indicates what the 

first address in memory is to index the read request. This packet component is sent in two 8-bit values 

representing the Hi and Lo bytes of the 16-bit value. The next component in the packet structure is the 

number of registers to read, which is shown below in Figure 2.8, highlighted in blue. This is a 16-bit value 

that indicates how many registers are to be read back to the master device. This packet component is 

sent in two 8-bit values representing the Hi and Lo bytes of the 16-bit value. 

 

Figure 2.8 – Read holding register breakdown 2 of 3 

 

 The final component of the Modbus RTU packet structure is that of the cyclical redundancy check 

(CRC). The CRC is a 16-bit value that is calculated and sent with the message contents. The calculation 

method of the CRC will be discussed in section 2.4.4. The role of the CRC is to confirm message integrity 



 

16 
 

and validity through a cyclical and robust algorithm of calculations and data modification. This packet 

component is sent in two 8-bit values representing the Hi and Lo bytes of the 16-bit calculated value. This 

packet component has its Hi and Lo bytes switched, where the Lo byte is sent before the Hi byte. 

 

Figure 2.9 – Read holding register breakdown 3 of 3 

 

Read and Write Command and Response Structure 

 As the packet structure of a Modbus RTU request command is arranged in a certain manner, the 

response packet sent back from the slave device to the master device is similarly structured. While the 

read and write packets have similar packet components, there are some significant differences in the 

resulting message packet. The remainder of this subsection will discuss the request message and the 

responding message of both read and write commands, respectively.  

 First, the read command from the master device and the read response from the slave device for 

the Modbus RTU communication protocol are discussed. The packet structure of both the command and 

response can be seen below in Figure 2.10. From the figure, the read command sent from the master 

device is intended for the device with the unique device address of 0x11, and the function code of 0x03 

indicates a request to read multiple holding registers. The address to index of the first register to be read 

is 0x006B, and the master device is requesting 0x0003 (3) 16-bit registers. Finally, the CRC is calculated 

and attached to the end of the Modbus RTU packet. 

 After this read holding register command request is sent from the master device, the slave device 

fulfills the request by providing data from the requested holding registers. The first two 8-bit components 

of the response packet contain the device address and function code repeated back from the original 

read request. The next component is an 8-bit value that represents how many more bytes of data will 

exist in the remainder of the packet transmission, excluding the CRC component. This portion is so the 
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master device knows how much data it is expecting to receive in the transmission. The CRC value is the 

final component attached to the packet structure of the read response. 

 

Figure 2.10 – Modbus RTU, read holding register command and response packet structure 

 

Next, the write request and response will be discussed. The write command for holding registers 

has a similar structure to the read command. The first six bytes of the packet structure are the same for 

the write command as the read command. This contains the information of the device address, function 

code, address of the first register to index, and the number of registers to be written to the holding 

registers. The next byte of information in the request is the number of bytes of data that will be contained 

in the transmission. The next portion is the actual data that is to be written to the 16-bit registers. This 

data is separated into bytes by the Hi and Lo byte. Finally, the CRC is the last component of the Modbus 

RTU packet structure for the write command.  

After the write command request is sent from the master device, the slave device fulfills the 

request by storing the data in memory and providing a confirmation that the requested data has been 

written to the associated holding registers. The write response packet structure is very similar to the 

packet header information contained in the write command. The first six bytes of the response packet are 

the same as the first six bytes of the command packet. This information is repeated back to the master 
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device from the slave device to confirm that the data was written to the holding registers at the requested 

location. The final component of the write response is the CRC packet component. 

 

Figure 2.11 - Modbus RTU, write holding register command and response packet structure 

 

2.4.4 – Cyclical Redundancy Check (CRC) 

 The Modbus RTU communication protocol uses a 16-bit cyclical redundancy check (CRC-16) to 

confirm the integrity and accuracy of the message contents that are transmitted in both request and 

response messages. The CRC-16 calculation is known for being robust and reliable, with an ability to 

detect 99.9985% of errors [18]. The CRC calculation follows an algorithm that consists of various logical 

XOR operations with multiple values and register value bit-shifts. The flowchart for the CRC-16 algorithm 

can be seen below in Figure 2.12. Each byte of data is sent through this CRC algorithm, and the final 

value of the “CRC16” variable is the value that is used for the CRC component of the Modbus RTU 

packet. 
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Figure 2.12 - Cyclical Redundancy Check (CRC) flowchart [19] 

   

2.4.5 – Message RTU Framing 

 The Modbus RTU is an asynchronous communication protocol. As there is not a clock that 

synchronizes the transmission of messages between a master and slave device, a method for defining 

the timing of a packet is used. To accomplish this, a frame with a recognized beginning and end point is 

established. This method allows for the identification of partial messages to be detected, and an error can 

be reported. 



 

20 
 

To help define the framing convention of Modbus RTU, a unit of measurement referred to as a 

“character” is utilized. A character is defined as a 4-bit hexadecimal portion of data, where two characters 

exist in each 8-bit byte in a message. The time for a character to be transmitted is variable and 

dependent on the baud rate of the serial transmission. If operating at a baud rate of 9,600 bits per 

second, a character consisting of four bits will take approximately 416.7μs (microseconds) to transmit. 

The time values in the following paragraph will assume operation at a baud rate of 9,600 bits per second. 

 The end of a message is defined as a period of at least 3.5 characters, or 1.4583ms 

(milliseconds), of silence in the transmission. An example of this silent interval of at least 3.5 characters 

can be seen below in Figure 2.13. As the data transmission operates in an asynchronous format, the data 

must be sent sequentially and serially in a continuous stream of characters [20]. If a silent interval of at 

least 1.5 characters, or 625μs (microseconds), occurs during the transmission, the message is 

considered incomplete, and the request is not fulfilled by the slave device. An example of acceptable and 

unacceptable continuous message framing can be seen below in Figure 2.14. This framing structure 

allows for the error checking of messages before the CRC is verified, and if the message does not 

conform to the framing standard, then the message is discarded. 

 

Figure 2.13 – RTU message frame [20] 

 

 

Figure 2.14 – RTU message framing. Acceptable message framing (left). Unacceptable message framing 
(right) [20]. 
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2.4.6 – Modbus TCP 

 The Modbus TCP configuration of the Modbus communication protocol allows for the 

transmission of data through the TCP / IP data transfer protocol [21]. The ethernet interface is used to 

carry out this communication. How the Modbus TCP packet is structured is similar to Modbus RTU, with 

an additional header added to the packet to facilitate transmission through the TCP / IP data transfer 

protocol. As seen below in Figure 2.15, the Modbus RTU packet is stripped of the slave (device) ID and 

the CRC components, and the Modbus Application Protocol (MBAP) header is added to the Modbus RTU 

packet. This allows for the transfer of data over the physical ethernet layer. 

 

Figure 2.15 – Modbus TCP packet components [21] 

  

2.5 – Power Electronics Unified Controller Board (UCB) 

 Common architecture Printed Circuit Boards (PCBs) is shared among collaborating researchers. 

These common architecture PCBs, colloquially referred to as Unified Controller Boards (UCBs) in this 

paper, provide researchers with a common platform during the design and development phase of projects 

that promotes rapid prototyping between collaborators. UCBs are intended for multi-purpose use in 

projects related to topics such as control systems, power electronics, cyber security, and real-time 

simulation peripherals. To ensure effectiveness in any project, a UCB must be capable of interacting with 

multiple peripherals through various inputs and outputs of different data types and communication 

methods. These boards may be responsible for serving as the hardware to operate multiple dependent 
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and independent processes simultaneously. In this project, the UCB serves as the hardware to host solar 

inverter control algorithms, facilitates various modular cybersecurity detection and system integrity 

processes, and acts as the common pathway of communication between interconnected modules [22]. 

 The common architecture and interface of utilizing a UCB among researchers increase the 

efficiency of the research process. These devices allow for the design flexibility of utilizing multiple 

topologies within the UCB, as these devices are equipped with a multitude of components and systems to 

provide a standardized environment. This standardized hardware setup allows for a lower overall platform 

cost as a new device does not need to be created when transitioning to new or various research projects. 

These flexible and unified systems also enable researchers to take advantage of code and design reuse 

to promote rapid prototyping between various developmental phases. The common point of reference 

provided by a UCB helps facilitate collaboration among researchers in various fields of expertise, such as 

power electronics, cybersecurity, and control system research. 

 

Figure 2.16 – Image of Unified Controller Board (UCB) 
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2.5.1 – UCB Architecture 

 The main components within the architecture of the UCB consist of two digital signal processors 

(DSPs), a field-programmable gate array (FGPA), various communication peripherals and hardware, and 

input/output (I/O) pins. A diagram of the UCB’s architecture can be seen below in Figure 2.17. The UCB 

contained two single-core Texas Instruments (TI) F28335 Control Card DSPs. The FPGA within the UCB 

is a Lattice MachX02-7000 model with 6864 lookup tables (LUTs), 240 kb of embedded block RAM 

(EBR), 256 kb of flash memory, and 484 pins with 334 I/O pins. In addition to the hardware devices, the 

UCB contains two 8-channel Serial Peripheral Interface (SPI) analog to digital converters (ADCs) and four 

40-pin insulation-displacement contact (IDC) connectors. The communication peripherals and 

components will be discussed in the following subsection. 

 

Figure 2.17 – UCB architecture diagram 
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 The UCB interfaces with multiple external systems within the scope of the SETO project. These 

external systems are LabVIEW, a human-machine interface (HMI) tool, a Raspberry Pi computer, and the 

power electronics within the SMA inverter. A diagram of these external system connections can be seen 

below in Figure 2.18. These external connections are used for various components of the multi-level 

cybersecurity effort of the SETO project and will be discussed in detail in Chapter 3. 

 

Figure 2.18 – SETO hardware architecture system component block diagram 

 

2.5.2 – Communication Peripherals and Capabilities 

The UCB allows for a multitude of peripheral devices to be connected, often in more than one 

configuration, due to the flexibility of the UCB design. By providing multiple pathways of connection, 

devices that utilize the same communication hardware can be integrated without the concern of 

competing resources. In terms of communication, this UCB contains an XPORT Modbus TCP processor 

and serial communication interfaces such as USB Serial UART via FTDI chipset and an integrated JTAG 

that can be utilized for serial connections. The FPGA itself can act as the board’s routing fabric and 

communication management, which allows for pinouts to be assigned internally and externally throughout 
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the board. These pinouts can be utilized to make internal connections with devices such as the DSPs or 

external connections using the serial communication hardware or the four expansion headers (40-pin 

IDCs). 

The devices that are connected and integrated with the UCB are a Raspberry Pi as a web server, 

two DSPs hosting solar inverter control algorithms, and LabVIEW acting as the HMI for managing inverter 

control algorithms and firmware bootloader used by the DSP. The Raspberry Pi is connected through a 

USB-Mini serial port equipped with an FTDI chip to support serial communications. The DSPs are 

connected to the FPGA’s routing fabric through internal pin sets. LabVIEW is connected through the 

XPORT connector via Ethernet on the board, which converts Modbus TCP format into Modbus RTU 

format for serial communications. The connections are highlighted and can be seen in the UCB 

architecture diagram in Figure 2.19 and the SETO project hardware block diagram in Figure 2.20. 

 

Figure 2.19 – UCB architecture diagram – communication component highlighted 
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Figure 2.20 – SETO hardware architecture system components block diagram – communication 
pathways highlighted 

 

2.5.3 – UCB’s FPGA 

An FPGA is an integrated circuit that can be programmed to implement logical operations through 

Hardware Descriptions Languages (HDLs) such as Very High-Speed Integrated Circuit Hardware 

Description Language (VHDL) or Verilog. This highly versatile application of an FPGA allows for the 

entirety of the UCB to be implemented as an embedded system that is capable of meeting various system 

architecture needs. The customizable nature of an FPGA allows it to be programmed to facilitate many 

required logic-based algorithms to implement communication protocols. The UCB contains a Lattice 

MachX02-7000 FPGA that acts as the central routing fabric for the multiple system components in the 

board. The location of the FPGA can be seen within the UCB architecture diagram of Figure 2.21 below. 
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Figure 2.21 – UCB architecture diagram – FPGA highlighted 

 

 The specifications of the Lattice MachX02-7000 contain 6,468 look-up tables (LUTs), 240 kb of 

embedded block RAM, 256 kb of flash memory, and 484 pins with 334 I/O pins. As one of the main goals 

of the work presented in this thesis is to reduce the required size of an implementation of the Modbus 

RTU communication protocol, the more pertinent specification of the FPGA to address this goal is that of 

the LUTs. 

2.6 – FPGA Environment and VHDL 

An FPGA is an integrated circuit that can be programmed to implement logical operations through 

Hardware Descriptions Languages (HDLs) such as Very High-Speed Integrated Circuit Hardware 

Description Language (VHDL) or Verilog. This highly versatile application of an FPGA allows for the 

entirety of the UCB to be implemented as an embedded system that is capable of meeting various system 
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architecture needs. The customizable nature of an FPGA allows it to be programmed to facilitate many 

required logic-based algorithms to implement communication protocols. As VHDL is akin to a low-level 

language, the use of VHDL within the FPGA allows for these goals and design considerations to be 

accomplished. 

2.6.1 – FPGA Overview 

 An FPGA is a semiconductor device that utilizes configurable logic blocks (CLBs) in a matrix 

array, as seen in Figure 2.22, that are connected by programmable interconnects [23]. The nature of 

FPGA allows them to be reprogrammable indefinitely. This programmability is conducive to the research 

process, where multiple prototypes of a system may need to be created and tested throughout the design 

process. The architecture of an FPGA allows for the creation of digital hardware circuits within the CLBs. 

This allows for designs as simple as basic combinational logic circuits to more complicated designs such 

as those of IP cores or processor architectures [24]. 

 

Figure 2.22 – FPGA Architecture with Configurable Logic Blocks [24] 
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 The FPGA used within this research project is the model MachX02-7000 created by Lattice [25], 

herein referred to as “MachX02”. This specific model of FPGA is also referred to as a Complex 

Programmable Logic Device (CPLD). That is because this model of FPGA possesses components of both 

the CPLD and the FPGA. The main application of a CPLD is like that of an FPGA in terms of 

programmability, though a few distinct differences in their capabilities exist. FPGAs are typically known for 

being better for applications that are more complex in their design. When programming an FPGA, the 

program data is stored in volatile memory and is lost upon powering the device off. In contrast, a CPLD is 

equipped with electrically erasable programmable read-only memory (EEPROM), which allows for faster 

startup of the device and is non-volatile memory.  

 Effectively, Lattice has improved the capabilities of the MachX02 by adding EEPROM to their 

FPGA device. This allows for the FPGA programming to have the attributes of a fast start-up, and the 

programmed device memory is non-volatile in nature. This allows for a program to persist after a loss of 

power and assists in the efficiency of the design process and helps facilitate rapid prototyping. Though, 

the common memory of the device, the RAM, is still volatile in nature. Upon power loss, the stored data in 

this shared common memory will be lost. 

The available resources of the MachX02 are 6,468 Look Up Tables (LUTs), 240 kb of Embedded 

Block RAM (EBR), 256 kb of flash memory, and 484 total pins with 334 input/output (I/O) pins. The LUTs 

of an FPGA with respect to this project are akin to the available storage space of a typical personal 

computer. The input and output pins of the FPGA are what are used as the infrastructure to transfer 

signals external to the FPGA. The LUTs are the most pertinent measurement of resource utilization with 

respect to creating the custom Modbus RTU communication protocol. 

The LUTs of an FPGA are internal to the architecture of the CLBs, as seen below in Figure 2.23. 

The structure of each LUT allows for the storing of four bits of data into each LUT and is accessed by a 

multiplexer (MUX), as seen below in Figure 2.24. When programming an FPGA with the user’s design 

implementation, in this case, VHDL code, the data for the programming is stored in these LUTs. 
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Figure 2.23 – The internal architecture of a typical FPGA [26] 

 

Figure 2.24 – Internal structure of a 4-bit LUT, (a) 4:1 MUX, (b) 2:1 MUX [26] 
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 Before the program data is stored in the LUTs, the user’s coding in the hardware description 

language goes through a process referred to as “synthesis” that converts the text-based code into a 

netlist. The netlist is a resulting build component that describes the electrical circuit connections that will 

be formed by the gates and flip-flops of an FPGA. Once the netlist is created, a process referred to as 

“place-and-route” (P&R) is carried out. The P&R process assigns the netlist elements to the physical 

components of an FPGA and to the physical resources of the FPGA [27]. This information is then used to 

create a binary file that is used for programming the user’s code into the FPGA. 

2.6.2 – VHDL Overview 

 VHDL stands for “VHSIC Hardwar Description Language,” whereas the “VHSIC” portion stands 

for “Very-High-Speed Integrated Circuit.” VHDL is a hardware description language used in digital circuit 

design that is used to describe hardware models in a human-readable format during the design of digital 

circuits [28]. Within VHDL, there are three distinct modeling styles, or architectural, styles: dataflow, 

structural and behavioral [29]. 

 The dataflow style of modeling is used to describe combinational circuits by mapping how data 

flows through the system [30]. The dataflow style describes typical digital logic hardware that is used in a 

system design. A typical way of describing this data is through one or concurrent signal assignments. For 

an arbitrary example, signal “a” and signal “b” may be put through the logical “XOR” operation and 

assigned to signal “c.” If a concurrent signal assignment is made, the resulting signal “c” may then be 

compared with an additional logical operator of signal “d.” 

 The structural style of modeling defines an entity by describing a set of interconnected 

components [30]. This is done by connecting various instantiated components of a system to define the 

functionality of the intended circuit design [28]. This style of modeling is most efficient when a top-level 

architecture describes the interconnection between lower-level entities. 

 The behavioral style of modeling describes how a model behaves through algorithms. This is 

considered the most abstract style of modeling as the code does not directly describe hardware or logical 

circuit implementation [30]. The behavioral style of modeling utilizes one or more processes that contain 

an algorithm of sequential statements. These processes can run in parallel, while the statements inside 



 

32 
 

each process are sequentially carried out. The work presented in this thesis utilizes solely the behavioral 

architectural modeling style. This is due to the ability to use Next State Logic (NSL), or a state machine, 

within VHDL. 

 Within the behavioral style of modeling through VHDL, a syntax exists to create state machine 

behavior. Next-state logic can be implemented within a process statement by declaring an enumeration 

type for each state of the state machine [31]. These states are implemented as case statements, where 

each case is assigned a unique identifier. Within each case statement, an individual may describe an 

action to be taken for that specific case, such as modifying the values of a variable or performing a gate-

level operation. These states can be organized where the conclusion of one case statement leads to a 

different user-defined case statement. With this architecture, an NSL system can be designed to 

accomplish a task through with respect to the algorithmic flow of a state machine. An example of a simple 

state machine is the algorithmic state machine (ASM) that detects the sequence of bits in the order of 

“1010,” seen below in Figure 2.25. 

 

Figure 2.25 – Resetting ASM – Detects bit sequence of “1010” 

   

2.6.3 – Intellectual Property Cores  

 An Intellectual Property (IP) core is a reusable functional block of logic are data that can be used 

within an FPGA used for a specific application [32]. IP cores are typically a singular module that is 

capable of operation on its own and is part of a larger system or design. The modular format of the IP 

core often allows it to be utilized in various applications where the specific functionality of that IP core 
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may be needed. One example of an application of an IP core is to implement a processor architecture 

within the hardware environment of an FPGA. This processor architecture allows for some aspects of a 

conventional computational processor. One common application is utilizing a high-level programming 

language, such as C, to be used in an FPGA-based project. As the IP of the IP core stands for intellectual 

property, it is common that these modular logic blocks require licensing rights to be observed when used. 

The licensing availability of IP cores ranges from strictly prohibited, requiring explicit permission, to open-

source licensing and availability. 

 An IP core resides within the CLBs of an FPGA and requires use of the available resources of the 

FPGA to function. As the IP core is a physical digital logic representation of a system, the FPGA that 

houses the IP core must have enough resources to implement the IP core and any additional code that 

will be utilizing the IP core. The IP core is essentially a component of the final code-based implementation 

within an FPGA that operates in conjunction with any additional user components. A diagram depicting an 

IP core residing within an FPGA with additional digital logic code-based components of the user can be 

seen in Figure 2.26. An example of this IP core (seen in blue) may be an embedded processor 

architecture that is connected to the user’s components (seen in green) that work in conjunction to 

complete a specified task or implement a system. 

 

Figure 2.26 – Diagram of IP core and user code components using the available resources of an FPGA; 
Illustrates an IP core resides with user modules 
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Chapter 3 

Modbus RTU FPGA Implementation via VHDL 

3.1 – Introduction 

As UCBs are capable of a wide variety of applications and often host multiple integrated systems, 

the efficient use of physical and memory space is of great concern. To ensure that a project has access 

to the required system resources for each aspect of its design, software optimization is often necessary 

during the design process. Concerning the custom implementation of the Modbus RTU communication 

protocol presented in this thesis, strong consideration for conserving available resources can be achieved 

through coding the communication protocol with VHDL. While the most significant design concern of this 

project regards the minimization of resource utilization, the second most significant concern is that of 

providing a standardized communication method between modules for this SETO project to facilitate 

efficient research collaboration. 

The standardized format of Modbus RTU, coupled with its wide use and reliable method of 

transmitting data, makes it a strong candidate when selecting a standardized communication protocol. As 

mentioned previously, Modbus RTU is widely used in ICS and is known for being reliable and relatively 

straightforward to implement. The modular components that implement various cybersecurity-focused 

applications into the solar inverter controller of the SETO project are all capable of communicating 

internally with the FPGA via Modbus RTU. The SMA solar PV inverter model also supports the Modbus 

RTU communication protocol. This communication protocol, coupled with the previously mentioned 

favorable aspects of Modbus RTU, justifies its use as the main mode of data transmission within the 

SETO project. 

3.2 – System Components 

 This subsection covers the system components of the Modbus RTU communication protocol 

implementation and the respective modular components of the greater SETO project that require data 

transmission through this protocol. Section 3.2.1 discusses the modular components of the SETO project 

that require Modbus RTU communication, along with a summary of their application. 



 

35 
 

3.2.1 – SETO Modules Requiring Communication 

 The UCB utilized in this project contains all the hardware required to implement the Modbus RTU 

protocol and interface with the various cybersecurity-focused modular components of the SETO project. 

The architecture of the SETO project concerning Modbus RTU data transmission can be categorized into 

three main hardware components with an additional external human-machine interface (HMI). These 

components are the FPGA, the two DSPs, and a Raspberry Pi (RPi). A diagram of the interconnects of 

this architecture can be seen in Figure 3.27 below, also pictured with an image of the UCB and an image 

of the UCB connected to a Raspberry Pi and non-SETO project-related power electronics board. 

 

Figure 3.27 – Diagram of SETO project architecture interconnects (right), UCB (top left), and UCB 
connected to Raspberry Pi and power electronics board (bottom left) 

 

 These three major components of the SETO project are connected via the Modbus RTU 

implementation within the FPGA. The Modbus RTU within the FPGA is the routing fabric for all 

communication and data transmission within the SETO project. The FPGA is the link between the DSPs 

and RPi that provides access to the shared common memory register bank within the FPGA. This shared 

register memory is the central point for all data that may need to be accessed by multiple modules within 
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the SETO project. Additionally, the UCB supports a Modbus TCP connection through local ethernet, 

which allows for a remote connection to this system. A network connection diagram of these 

interconnections can be seen below in Figure 3.28. 

 

Figure 3.28 – SETO module network interconnection diagram of FPGA, DSPs, Raspberry Pi, and 
ethernet/internet (numbers after module name denote SETO task identifiers) 

FPGA 

 The Modbus RTU implementation within the FPGA is the component of the SETO project that 

acts as the central routing fabric for all communication between modules and can be seen in the 

hardware architecture system component block diagram below in Figure 3.29. In addition to containing 

the Modbus RTU implementation, the FPGA contains three additional components of the SETO project 

that require access to data transmission. 
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Figure 3.29 - SETO hardware architecture system component block diagram, FPGA highlighted 

 

The three additional modular components of the SETO project operated within the FPGA are the 

firmware bootloader, Digital Twin, and hardware-level protection features. The firmware bootloader is a 

VHDL component responsible for downloading a binary bit file of inverter control algorithms into the 

FPGA, used within the Digital Twin architecture. Additionally, this firmware bootloader is used to update 

or load new inverter controller firmware into the DSPs. The Digital Twin (DT) architecture within the FPGA 

can emulate the ANPC inverter controller algorithm of the SMA inverter. This system performs various 

system checks on the firmware to verify its integrity, safety, and authenticity. Additionally, this DT 

component can orchestrate the hotpatching between inverter controller firmware seamlessly between two 

DSPs in real-time. A diagram of the DT within the UCB and its relation to the Modbus RTU 

communication protocol can be seen below in Figure 3.30. The diagram depicts the DT residing within the 

UCB and the connection between the DSPs, the FPGA acting as the routing fabric, and the Modbus RTU 

communication protocol implementation. Additionally, a Modbus TCP interconnect can be seen using the 

XPORT adapter. This adapter within the UCB can convert Modbus RTU packets to Modbus TCP packets 

and vice versa to utilize ethernet network connection capabilities.   
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Figure 3.30 – Diagram of Digital Twin within UCB of SETO project, Modbus RTU communication 
components outlined in red (top right) 

 

Raspberry Pi 

 The RPi contains four components of the SETO project and is connected to the FPGA through a 

Modbus RTU connection, which can be seen in the hardware architecture system component block 

diagram below in Figure 3.31. These four processes are a web server, Snort Intrusion Detection System 

(IDS), a blockchain implementation, and a Device-Level IDS. The web server operates the collection of 

historical operational data of the solar inverter and provides a human-machine interface (HMI) for the user 

to access operational status information. The Snort IDS operates as a network-based IDS to mitigate any 

cyberattacks from the network external to the UCB and Raspberry Pi. The blockchain application 

manages the integrity and handling of various file systems within the SETO project. Finally, the device-

level IDS mitigates unwanted access to the device at a system level. All these components rely on data 

that is held within the shared memory registers residing within the FPGA and is accessed through the 

Modbus RTU communication protocol. 
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Figure 3.31 - SETO hardware architecture system component block diagram, Raspberry Pi highlighted 

 

DSP 

The DSP contains three components of the SETO project and is connected to the FPGA through 

a Modbus RTU connection that can be seen in the hardware architecture system component block 

diagram below in Figure 3.32. These three components are the primary resilient controls, inverter 

communications, and the device-level IDS. The primary resilient controls control the SMA inverter with an 

algorithm resistant to various detrimental cyber-physical events. Internal communications are responsible 

for sending and retrieving data from the shared memory of the FPGA used within the inverter controller 

algorithm. Finally, the device-level IDS is another portion of the security component we saw earlier in the 

Raspberry Pi. Additionally, the DSPs contain their unique flash memory used for various communication 

and inverter controller functions. The DSPs can be seen in the UCB architecture diagram below in Figure 

3.33. 
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Figure 3.32 - SETO hardware architecture system component block diagram, DSPs highlighted 
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Figure 3.33 - UCB architecture diagram – DSPs highlighted 
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LabVIEW 

The various HMI setups used in the design process and final implementation of this project was 

created with the software LabVIEW. LabVIEW and the FPGA are communicated through a Modbus TCP 

connection converted from the Modbus RTU format through the XPORT module on the UCB. During the 

design and development of this Modbus RTU implementation, various LabVIEW HMIs were used to test 

and troubleshoot the embedded Modbus RTU implementation. The final LabVIEW HMI facilitates three 

processes regarding the SETO project. These processes are the bootloading of inverter controller 

firmware, the firmware integrity and validation modules using the DT, and the interface to facilitate 

hotpatching between DSPs. The application and use of the various LabVIEW HMIs will be discussed in 

further detail in Chapter 4, Test Setup and Experimental Results. 

3.2.2 – Communication and Bus Infrastructure 

 The serial bus infrastructure for this Modbus RTU implementation within an embedded system is 

based on a modified communication and bus infrastructure project by Dr. Chris Farnell with the National 

Center for Reliable Electric Power Transmission (NCREPT) at the University of Arkansas. This 

communication and bus infrastructure created a basic custom serial communication protocol to send and 

receive data between power electronic systems and LabVIEW HMIs. This basic serial communication 

protocol was designed by creating a state machine using next-state logic (NSL) with the behavioral 

modeling style of VHDL within an FPGA. To create the custom Modbus RTU implementation, this prior 

existing communication and bus infrastructure was utilized, and a new NSL algorithm was developed. 

 The main components of the communication and bus infrastructure are the bus interface, bus 

master, first-in-first-out (FIFO) registers, local memory, and the shared common memory. The bus 

interface and bus master are VHDL component files that describe their respective hardware architecture. 

The FIFOs, local memory, and shared common memory are architectural resources in the form of 

registers. These components form the infrastructure to facilitate the NSL algorithm of the Modbus RTU 

VHDL implementation and manage the asynchronous serial flow of signals during transmission. 
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Bus Interface 

 The bus interface architecture component is the VHDL implementation that describes the 

hardware infrastructure to support the signal transmissions between components. The architecture of this 

component is the Common Bus Architecture (CBA) developed by Texas Instruments. The CBA was 

created as a scalable and convenient method to connect logical blocks within a system-on-chip (SoC), 

such as an FPGA [33]. As the bus interface VHDL module was created based on the CBA communication 

infrastructure, it can be instantiated multiple times. As this method of implementation is scalable, these 

instantiations each have their signal pathway assigned to their designated resources. The serial bus 

instantiations internal to the FPGA wave signal pathways are routed to the common memory, as seen 

below in Figure 3.34, to give the various SETO module components access to the shared common 

memory. These internal signals share a common serial communication bus. The internal signals 

connected to the common memory are connected to the external communication peripherals through the 

Modbus RTU NSL algorithm that prepares the individual data components for transmission. 

 

Figure 3.34 - SETO module network interconnection diagram of FPGA, DSPs, Raspberry Pi, and 
ethernet/internet. Red arrows indicate the internal serial bus infrastructure of the Bus Interface. 
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Bus Master 

 The bus master architecture component is the VHDL implementation that describes the hardware 

infrastructure that manages access to the common serial communication bus internal to the FPGA. As 

this is a shared communication resource with multiple Modbus RTU module instantiations, the use of a 

bus master to prevent bus contention from occurring is employed. The bus master module establishes 

and manages the common bus through three components or signals. The first set of corresponding 

signals manages when access to the common bus is requested and when access has been granted. 

These corresponding signals handle requests for bus control and ensure that only one device is utilizing 

the common bus at one time. Additionally, a component ensures data is available when a bus request is 

asserted. This addresses the potential of corrupted or unavailable data gaining access to the common 

bus. The final considerable component of the bus master is the priority encoder. As different modules 

within the UCB and SETO project have varying degrees of critical system impact, it is imperative to 

implement a system to manage communication access priorities. A priority level is assigned to each 

component within the FPGA to ensure the most critical components of the greater project have prioritized 

access to the common bus to carry out their data transmissions. 

First-In-First-Out Registers (Read and Write) 

 One of the major components that allow for the full-duplex transmission and instantiation of 

multiple Modbus RTU modules is the FIFO registers. Each Modbus RTU module contains a set of two 

FIFO registers, one for incoming communication and one for outgoing communication. These register 

components are paramount to the throughput of the Modbus RTU communication. In the event multiple 

packet transmissions are in queue to have access to the common bus, the messages can still be 

handled. All incoming and outgoing transmissions are first stored in these FIFO registers before being 

processed by the NSL algorithm. 

 The Modbus RTU NSL algorithm utilizes these FIFO registers for incoming and outgoing data. If 

the data is coming into the Modbus RTU module, the NSL algorithm handles the packet components one 

byte at a time using the FIFO register. These bytes are popped out of the FIFO register and handled by 

their respective case statements of the NSL algorithm for each transmission. If multiple packet 
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transmissions are in this FIFO, the Modbus RTU packet components contain enough information to 

determine the beginning and end of a packet’s contents. If a packet component is incomplete or 

inaccurate, error handling can discard the packet and respond accordingly. Like the incoming data, the 

Modbus RTU module handles the packet components of outgoing data one byte at a time. 

Local Memory (RAM) 

 Each Modbus RTU module implementation contains its unique and local personal memory in the 

form of RAM. This memory access facilitates the packet component processing of the Modbus RTU NSL 

algorithm. All the incoming and outgoing bytes of data are stored in their unique memory registers. These 

values stored in the memory registers are then used for the Modbus RTU algorithm and the CRC 

calculation. As an incoming message is decoded or an outgoing message is formed, all packet 

components pass through these memory registers and are stored and utilized by the Modbus RTU NSL 

algorithm. 

Shared Common Memory 

 The shared common memory of the FPGA acts as the common holding area of all UCB-based 

data required by SETO project modules. This shared common memory, in conjunction with the FPGA, 

acts as the routing fabric for all data flow within the UCB. When a read or write command is sent to one of 

the Modbus RTU modules, all data is stored in or read from this shared common memory. Each register 

in this shared common memory is 16-bits wide. 

3.3 – Modbus RTU Design 

 This section will discuss the design process of the embedded Modbus RTU design while 

discussing the parameters and components of the NSL algorithm in detail. Subsection 3.3.1 will discuss 

the design parameters considered during the development process. Subsection 3.3.2 will overview the 

NSL algorithm used to create this embedded Modbus RTU implementation. Subsection 3.3.3 discusses 

the processing of incoming Modbus RTU commands, while subsection 3.3.4 elaborates on how these 

command requests are fulfilled and the corresponding response message. Finally, the CRC algorithms 
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are discussed in subsection 3.3.5, while subsection 3.3.6 will cover the error handling in case of a CRC 

validation failure. 

3.3.1 – Design Parameters 

 This custom implementation of the embedded Modbus RTU functionality must follow specific 

standardized communication protocol parameters. As a primary goal of this thesis work is to improve the 

efficiency and effectiveness of researchers by providing a standardized method of data transmission 

among multiple interfaces, it is imperative that the design of this Modbus RTU implementation conform to 

the required standards. 

RS-232 

 The most basic standardization about serial communication to conform to is the RS-232 format. 

This recommended standard defines the voltage levels a signal uses to determine if that signal is 

asserting a binary ‘0’ or ‘1’. A signal is valid under RS-232 when it is in the range of +3 V to +15 V or the 

range of -3 V to -15 V. A voltage signal is characterized as asserting a binary ‘0’ if the signal voltage lies 

in the defined positive range and asserting a binary ‘1’ if the signal voltage lies in the defined negative 

range [34]. This voltage level is essential to consider as the signal voltage levels sent to the peripheral 

communication devices of the UCB need to be capable of meeting this standard. As the FPGA of this 

work supports positive and negative voltage levels of 3.3 V, this device can meet the signal level voltage 

standard of the RS-232 format. 

Full Duplex 

 Another design consideration to conform to the RS-232 format is the transfer type used to send 

and receive messages. RS-232 can operate as a full duplex system, which utilizes two signal pathways 

among four connection points. This provides dedicated transmission and receiving bus line connections 

for the system. The full duplex infrastructure allows for the simultaneous sending and receiving of 

messages. This is achieved by connecting the transmission signal output of the transmitting device to the 

receiving signal input of the receiving device and the transmission signal output of the receiving device 

into the receiving signal input of the transmission device, as seen below in Figure 3.35. 
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Figure 3.35 – Full duplex signal transmission connections 

 

Baud Rate 

 The speed at which bits are serially transmitted within the Modbus RTU communication protocol 

is customizable and explicitly follows a strict standard. Though, common baud rates for transmission are 

typically used. The baud rate used for this implementation of Modbus RTU operates at a baud rate of 

9,600 bits per second. This baud rate puts the transmission of each bit of data at one ninety-six 

hundredth of a second, or 104.167μs per bit. 

Modbus RTU Framing 

 As Modbus RTU is an asynchronous serial communication protocol, it does not utilize an external 

clock to manage the beginning and end of packet transmission. To account for this, a framing method for 

Modbus RTU defines the beginning and end of messages. This is done by defining parameters for 

durations of silence on the serial line that indicate when a message transmission has ended. The unit to 

measure these durations of silence is referred to as a character. Each character consists of 11 bits: a 

start bit, 8 bits of data, a parity bit (or an additional stop bit if no parity is implemented), and a stop bit [20]. 

As the baud rate is configured as a variable parameter, the baud rate chosen for the system dictates the 

length of time of one character. The chosen baud rate for this design is 9,600 bits-per-second and 

equates to transmitting one bit of data at 104.167μs per bit. The end of a message frame is dictated by a 

duration of silence of at least 3.5 characters, while a message is considered invalid if a silence of 1.5 

characters occurs in the middle of the message frame. Table 2 below shows the character time durations 

used within the design process concerning framing messages. 
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Table 2 – Modbus RTU Framing Time Measurements 

Value (at 9600 baud rate) Duration (time) 

Single bit 104.167μs 

1.5 Characters 1718.766μs 

3.5 Characters 4010.430μs 

 

 To achieve a minimum delay of 3.5 characters between transmissions, a duration of silence of 

3.675 characters was targeted. This 3.675 characters is 0.175 characters over the required minimum 

silence (approximately 4.7%) and provides adequate room for unforeseen errors in timing. The 

approximate time for 3.675 characters to pass at a baud rate of 9,600 bits-per-second is 4200μs. As the 

Modbus RTU VHDL implementation uses a next-state logic algorithm (covered in the following sections), 

a calculation concerning the period of the clock of FPGA is made. The clock of the FPGA operates at a 

frequency of 25 Mhz. To properly frame the Modbus RTU message, a counter is incremented to a 

specified number before putting the system into a state that is ready to send or receive the next message. 

This counter requires two clock cycles per increment. The chosen value to increment to that indicates a 

period of 3.675 characters (4200μs) has passed is 52,500. The calculation for this value can be seen 

below. 

25 𝑀ℎ𝑧 ∙ 4200μs = 105,000 clock cycles →  
105,000 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

2 
𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡

= 𝟓𝟐, 𝟓𝟎𝟎 𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕𝒔 

 

3.3.2 – Next State Logic Algorithm - Overview 

 The core of the custom Modbus RTU implementation is carried out through the behavioral 

architecture modeling style of VHDL. As mentioned in the background section, this modeling style allows 

for using next-state logic (NSL) algorithms. These NSL algorithms carry out lines of code sequentially 

based on case statements within the defined process of the VHDL code. This allows for a state machine 

to be created that can carry out the functions of the Modbus RTU communication protocol within an 

embedded system, such as an FPGA. 
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 An example via code snippet of case statements being used to implement the Modbus RTU 

communication protocol can be seen below in Figure 3.36. In this figure, the declaration of the beginning 

of the case statement process can be seen on line 737, where the code “case CS_FIFO_Bus is” is 

present. Next, on lines 739 and 751, the term “when S0=>” and “when S1=>” are present. These lines of 

code denote the beginning of a unique case statement with the identifiers of “State 0” and “State 1”, 

respectively. The contents of S0 consist of a perpetual loop that checks to see if a command is being 

received into the FIFO, along with asserting the reset state for all pertinent register values. This case 

state is both the reset state and the beginning of the receiving command process. The code content of S1 

begins the first steps of processing the received command. It stores the first incoming data byte in the 

FPGA’s local RAM at the hexadecimal address “0x00” for later use when fulfilling the requested read or 

write command. 

 

Figure 3.36 – Case statements of next state logic algorithm with VHDL behavioral architectural modeling 
style 
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 The NSL algorithm of the Modbus RTU implementation contains approximately 250 unique case 

states to carry out the communication protocol. These unique case states can be sorted into four 

categories: command request processing, command response processing, CRC calculation or 

verification, and error handling. Each category will be discussed in detail in their subsection below. 

 The state diagram of the high-level overview for the NSL algorithm can be seen below in Figure 

3.37. The basic pathway for the NSL upon the slave device receiving a request from the master device is 

to determine if the function is a read or write command. Next, the packet values are stored in the local 

RAM for processing. Once the CRC calculation is verified to confirm transmission integrity, the requested 

action is performed, and the appropriate response packet is formed and sent back to the master device. 

 

Figure 3.37 – Overview of the state diagram of the Next-State-Logic algorithm for the Modbus RTU VHDL 
implementation 
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3.3.3 – Command Request Processing Algorithm 

 This subsection will discuss the portion of the NSL algorithm that processes the request 

commands within the Modbus RTU VHDL implementation. This is the portion of the algorithm that 

processes and assesses Modbus RTU packets sent from the master device and received by the slave 

device instantiation. The remainder of this subsection will continuously reference the state diagram of the 

command request processing NSL algorithm below in Figure 3.38. 

 

Figure 3.38 - State diagram of the next-state-logic algorithm used for the processing of a Modbus RTU 
command request received by the slave device 
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Receiving Message 

This portion of the NSL algorithm begins by waiting in a cyclical state for a signal to be asserted 

from the bus interface to indicate that a message is available in the incoming FIFO register. When an 

incoming Modbus RTU message is sent from the master device, the signals that carry the packet 

contents first travel across the common bus line. The message transmitted to the slave device has its 

packet contents stored in the incoming FIFO register of the Modbus RTU instantiation. Once the incoming 

FIFO register has message contents available, the bus interface asserts a signal indicating there are 

available message contents ready to be processed. 

Once a message is available in the incoming FIFO register and the signal indicating available 

message contents is asserted, a process to store the incoming message components in the local memory 

begins. First, the message header contents of the device address, function code, Hi and Lo byte of the 

address to index, and the Hi and Lo byte of the number of registers is stored in the local memory. Next, 

the received CRC value is stored in the local memory. The NSL algorithm then branches into two 

potential paths depending on whether the command request is a write or read request. This is determined 

by evaluating the value of the function code stored in the local memory, and the algorithm routes the 

process to the corresponding case statement pathway. An excerpt of the VHDL code that routes the NSL 

algorithm based on the contents in the local memory indicating a read or write request can be seen below 

in Figure 3.39. 

 

Figure 3.39 – VHDL code in NSL algorithm that routes state pathway based on read or write request 
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Read Request 

If the request received from the master device is a read request, then the NSL algorithm 

proceeds by verifying the contents and integrity of the message. This is accomplished by recomputing the 

CRC calculation based on the received message. If the calculated CRC value matches the received CRC 

value, then the message is considered valid, and the NSL algorithm proceeds to the request fulfillment 

portion of the algorithm covered in subsection 3.3.4. If the calculated CRC value does not match the 

received CRC value, the NSL algorithm routes to an algorithm that forms an error response and sends 

the error message back to the master device to indicate the received message is invalid. 

Write Request 

If the request received from the master device is a write request, then the NSL algorithm stores 

the received data from the incoming FIFO register in the local memory. Once the data contents are stored 

in the local memory, the NSL algorithm proceeds by verifying the contents and integrity of the message. 

This is accomplished by recomputing the CRC calculation based on the received message. If the 

calculated CRC value matches the received CRC value, then the message is considered valid, and the 

NSL algorithm proceeds to the request fulfillment portion of the algorithm covered in subsection 3.3.4. If 

the calculated CRC value does not match the received CRC value, the NSL algorithm routes to an 

algorithm that forms an error response and sends the error message back to the master device to 

indicate the message was invalid. 

3.3.4 – Command Response Processing Algorithm 

This subsection will discuss the portion of the NSL algorithm that processes the command 

responses within the Modbus RTU VHDL implementation. This is the portion of the algorithm that fulfills 

the command request and forms the Modbus RTU response packet that is sent from the slave device to 

the master device. The remainder of this subsection will continuously reference the state diagram of the 

command request processing NSL algorithm below in Figure 3.40. 
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Figure 3.40 - State diagram of the next-state-logic algorithm used for the processing and fulfillment of the 
Modbus RTU command response received by the slave device 

 

Sending Response 

This portion of the NSL algorithm begins by separating the command request fulfillment and 

response process based on whether the request was a read or write command. The basic pathway of the 

read and write command fulfillment consists of preparing the data to be read out or written in, forming the 

corresponding message header, and calculating the CRC value to be attached to the packet. All these 
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message components are put in the outgoing FIFO register, and the bus interface sends the constructed 

Modbus RTU packet along the shared common serial bus line to the correct master device. The 

remainder of this subsection will discuss in detail both of the NSL algorithm pathways based on the read 

or write fulfillment and response processes. 

Read Response 

 If the command request to be fulfilled is a read request, the Modbus RTU VHDL implementation 

must provide the requested data to the master device. The first steps in the NSL algorithm for this 

process are to form the header contents of the read response and place them in the outgoing FIFO 

register. The first contents of the header consist of repeating the original device address and function 

code. The final component of the Modbus RTU packet header for the read response is to include the 

value of how many bytes of data will be included in the Modbus RTU packet. This is an 8-bit value that 

indicates to the master device how much data it needs to expect during the transmission of this packet. 

 Once the header components of the packet are placed in the outgoing FIFO register, the data to 

be read to the requesting master device needs to be prepared. To retrieve this data, the NSL algorithm 

uses the received value of the starting address to index and the number of requested registers stored in 

the local RAM during the previous portion of the algorithm. These values are then used to retrieve the 

data from the shared memory. The retrieving of data is carried out by the bus interface and made 

available to the NSL algorithm. Next, the specified data values are populated into the outgoing FIFO 

register and the local RAM. Once all requested data has been retrieved from the shared memory, the 

CRC calculation is performed, and the resulting value is placed into the outgoing FIFO register. As this is 

the last component of the Modbus RTU packet that needs to be created, a signal is sent to the bus 

interface to indicate the message is available and ready to send. Finally, the bus interface sends the 

formed Modbus RTU response message containing the requested data to the master device. 
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Write Response 

If the command request to be fulfilled is a write request, the Modbus RTU VHDL implementation 

must store the data in the shared memory at the specified register addresses and respond to the 

requesting master device that the action was successfully carried out. Before the data can be written into 

the shared memory of the FPGA, it must first be converted into 16-bit values. The incoming data values of 

the Modbus RTU write packet are received in 8-bit values with Hi and Lo byte components. The NSL 

algorithm handles this by first combining the Lo and Hi bytes into a 16-bit value and then subsequently 

storing this 16-bit value in the shared memory of the FPGA. This cyclical process is carried out for all 

received data values as the received data is processed. 

Once the received data has been written to the shared memory of the FPGA, the NSL algorithm 

proceeds by forming the header components of the Modbus RTU response packet. The header 

components consist of repeating the original device address, function code, and Hi and Lo byte of the 

address of the first register to index. Next, a 16-bit value of the number of recorded registers will be 

included in the response packet. This value is calculated within the NSL algorithm using an incremental 

counter in conjunction with the cyclical process of storing data in the shared memory of the FPGA. This 

value is included so the master device can verify that the correct number of registers was recorded. This 

16-bit value is broken into Hi and Lo bytes and placed into the outgoing FIFO register. 

The final component to creating the response message is computing and including the CRC 

value in the packet. The CRC is calculated based on the message packet components created and 

placed into the outgoing FIFO register. As this is the last component of the Modbus RTU packet that 

needs to be created, a signal is sent to the bus interface to indicate the message is available and ready to 

send. Finally, the bus interface sends the formed Modbus RTU response message containing the 

requested data to the master device.  

3.3.5 – Cyclic Redundancy Check 

 The NSL algorithm portion that carries out the calculations for the CRC-16 value is relatively 

complex to implement in VHDL due to the various content structures of a Modbus RTU packet. Within this 

Modbus RTU implementation, the CRC-16 value must be calculated to verify message integrity for 
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incoming read and write messages, read and write responses, and error-handling responses. To address 

this challenge, three different implementations for the CRC-16 calculations were made using NSL. As the 

CRC-16 algorithm utilizes nested for loops, it became more effective to write the HDL code for each of 

these three cases individually instead of creating additional nested layers. A unique CRC-16 algorithm 

was created for each of the previously mentioned scenarios. 

3.3.6 – Transmission Error Handling 

 If a Modbus RTU packet is received from the master device and the CRC value calculated within 

the NSL algorithm does not match the CRC value received in the incoming message, the message must 

be declared invalid. If a message is declared invalid, the NSL algorithm will discard the message and will 

not fulfill the received request. To communicate back to the master device that the message was invalid, 

an error response Modbus RTU message is formed and sent. 

The contents of the error response consist of five bytes of data. First, the originally received 

device address is repeated and placed into the outgoing FIFO register. Next, the original value of the 

function code byte has its highest bit incremented by ‘1’ and is placed in the outgoing FIFO register. For 

example, if the original function code is “0x03,” representing a read request, the binary value is 

“0b00000011”. The highest bit is incremented, resulting in a binary value of “0b10000011” or hexadecimal 

“0x83”. This newly modified value in the response packet indicates to the master device that an error has 

occurred. The next part of the response packet is an 8-bit value containing the error code placed into the 

outgoing FIFO register. For this work, the error code did not need to be unique to the error experienced, 

and a value of “0x01” was utilized. This helps reduce the amount of code required in this Modbus RTU 

implementation while also allowing the user to receive an indication of an error, and further investigation 

may be necessary. The final component of the error response packet is the calculated CRC value. This 

value is calculated and placed into the outgoing FIFO register. As this is the last component of the error 

response Modbus RTU packet that needs to be created, a signal is sent to the bus interface to indicate 

the message is available and ready to send. Finally, the bus interface sends the formed Modbus RTU 

response message containing the requested data to the master device. 
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3.4 – Modbus RTU, Multiple Instantiations 

 The custom Modbus RTU implementation of this work operates on the RS-232 standard and is a 

single point-of-service system. This means the Modbus RTU communication protocol within the FPGA is 

designed to only communicate with a single master device and only fulfill the requests from that device. 

To utilize multiple communication pathways with the Modbus RTU communication protocol, the code to 

create this Modbus RTU implementation has been instantiated multiple times. There are three 

instantiations of this embedded Modbus RTU module in the SETO project system. A network diagram 

highlighting the location and connection of the three embedded Modbus RTU instantiations can be seen 

below in Figure 3.41. This figure illustrates the SETO module network interconnections and highlights the 

three embedded Modbus RTU modules of the system. These three module instantiations are designed to 

serve only the requests from their specific master devices. Although the common serial bus is shared 

between instantiations, the requested commands will be processed accordingly. 

 

Figure 3.41 - SETO module network interconnection diagram highlighting the three embedded Modbus 
RTU instantiations servicing the Raspberry Pi, Ethernet connection, and DSPs 
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 The communication pathways for these three modules are supported through various 

infrastructure components. The first connection for the Raspberry Pi is serviced through a mini-USB 

connection via the TI port on the UCB, seen below in Figure 3.42. The second connection to the local 

network through the Ethernet physical layer is supported through an XPORT module on the UCB. This 

XPORT module converts the Modbus RTU packets into Modbus TCP packets and vice versa. This 

communication is then utilized with various systems on the network, such as the web server, data logger, 

and LabVIEW HMI used by the operator. The third connection for the two DSPs is an internal connection 

made within the UCB. Various input and output pins within the FPGA are connected to the DSPs via wire 

tracing in the printed circuit board (PCB). 

 

Figure 3.42 – Mini-USB connection for Modbus RTU communication with Raspberry Pi through TI port on 
UCB 
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Chapter 4 

Test Setup and Experimental Results 

4.1 – Introduction  

 The work presented in this research addresses the challenge of creating an embedded Modbus 

RTU communication protocol architecture with respect to the bounds of finite available resources. 

Additionally, it is valuable to be aware of the time investments required for researchers to collaborate and 

integrate their respective works. The proposed design addresses these challenges by providing a 

standardized communication pathway common to industrial control systems, such as solar photovoltaic 

farms, while requiring fewer resources than typical embedded system implementations.  

 This section will provide the results of the various experimental setups used within the testing and 

development process of this embedded Modbus RTU implementation. As the design process was 

relatively complex, there were multiple testing and troubleshooting milestones before the final product. 

This testing and troubleshooting process involved five unique testing phases. During the design and 

development, the five testing phases were first VHDL simulations, then testing within a developmental 

board equipped with an FPGA, next using the UCB of the SETO project, followed by resiliency testing 

with the Python programming language, and finally testing with the bootloader and hotpatching LabVIEW 

HMI. A relative timeline of these testing phases with their associated chapters can be seen below in 

Figure 4.43. Most of this chapter will discuss the various testing setups and incremental results of those 

tests. The final subsection of this chapter will discuss the results with respect to the resource-efficient 

implementation of this embedded communication protocol architecture. 

 

Figure 4.43 - Timeline of the testing process for the embedded Modbus RTU implementation 
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4.2 – Test Setup 

 The Modbus RTU communication protocol and the associated hardware this system architecture 

operates on are described in Chapter 2. As these systems are individually relatively complex, integrating 

these various elements requires a multitude of software and hardware to perform adequate testing. This 

subsection will discuss the various hardware and software-based components used throughout the 

various testing setups. A detailed discussion of each testing setup and its use of these components will 

be in the corresponding subsections discussing each testing phase. 

Hardware 

The hardware used in this testing setup consists of the UCB, a Lattice breakout board equipped 

with a MachX03D FPGA, a Raspberry Pi 3 operating on Linux, and a personal computer operating on 

Windows. The UCB is the device that holds the final version of the embedded Modbus RTU 

communication protocol and acts as the central routing fabric and controller for the SETO project. The 

Lattice breakout board is a device that supplements the design process of FPGA-based projects. This 

breakout board contains an FPGA and various pinouts that can be utilized. This device aimed to test early 

versions of the embedded communication protocol. While the FPGA chip in this device is not the same as 

the model of the UCB, the functionality for this testing iteration was equivalent to the FPGA within the 

UCB. 

The two types of computers used to perform the various tests of this work are a Raspberry Pi 3 

and a personal computer. These devices operate on the Linux and Windows operating systems, 

respectively. Testing on these two devices allowed for different testing environments to ensure the 

embedded communication protocol implementation was functional on the platforms utilized by different 

modules of the SETO project. Additionally, the method by which each operating system manages its 

serial bus interfaces differs. This difference will be discussed more in Chapter 4.6.  
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Software 

 This testing setup uses the Lattice Diamond software, various created LabVIEW HMIs, a serial 

communication testing application called XCTU, and the “MinimalModbus” Python package. The Lattice 

Diamond software is used throughout the development and testing phases. This software is the 

workspace and environment used to code within VHDL and program the coding into the FPGA. This 

software also supports the simulation application ModelSim, which is used to perform simulations of the 

embedded Modbus RTU implementation during the development and testing phases. The various 

LabVIEW HMIs were created for the UCB testing and bootloader and hotpatching testing phases by 

providing an interface to interact with the embedded Modbus RTU architecture. These HMIs are created 

to be capable of communicating through the Modbus RTU protocol. The XCTU application is a basic 

serial communication troubleshooting tool that allows for testing the embedded Modbus RTU functionality. 

The “MinimalModbus” Python package allows for interfacing with Modbus RTU devices over serial ports, 

such as USB, using the Python programming language. 

4.3 – Simulation Testing and Results 

 The simulation testing phase using the ModelSim application within the Lattice Diamond software 

was the first phase of testing and troubleshooting during the development process of this work. The main 

purpose this phase of testing served was to troubleshoot bugs and gain informative perspectives while 

developing the embedded Modbus RTU architecture. These simulations through ModelSim allow for the 

fine-grain perspective of signals and variables. This zoomed-in view provided through the simulation 

process allows for viewing how these signals and variables change on a significantly smaller scale 

relative to the 25 MHz clock period of 40 nanoseconds. This high-fidelity simulation gives insight into how 

each variable and signal changes within the design and at what point they change. 

The nature of designing embedded systems within FPGAs creates real physical logical and 

hardware-based connections within the device’s configurable logic blocks. As the laws of physics don’t 

allow for the instantaneous transition of an electrical voltage [35], the timing for signal propagation is an 

imperative limitation of the laws of physics to be aware of. Additionally, metastability [36] is of potential 

concern if these delayed signal propagations leave a register or device in a non-steady state at the time 
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of reading or using these signals. As VHDL is a hardware description language, the code describes the 

architecture of physical and logical components. In some cases, consideration for data propagation delay 

needs to be taken. The simulation environment provided by the ModelSim software helps facilitate a 

perspective aware of these considerations. An example of a case where the register data of a variable is 

not available within the typical one-clock cycle is when storing data in RAM. Through trial and error, it was 

found that this process takes two clock cycles for the data to be available on the logical hardware to be 

stored in RAM. To overcome this, two nearly identical and sequential case statements are created, as 

seen in Figure 4.44 below. The ModelSim simulation waveform of this coding can be seen below in 

Figure 4.45. 

 

Figure 4.44 – VHDL code of nearly identical case statements to account for propagation delay when 
storing values in RAM 

 

 

Figure 4.45 – VHDL simulation of code from Figure 4.44, depicting the gate-level simulation of redundant 
case statements to allow RAM data to be available on physical hardware before storing 
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The high-fidelity simulation waveforms, seen below in Figure 4.46, allow for viewing case 

statements and register values with a high amount of detail. The figure below depicts five values over 

approximately seven clock cycles in the VHDL testbench used to verify the CRC functionality. The 

process of the NSL algorithm in the figure is the recalculation and the verification of the received CRC 

value. These five signals are the clock signal (clk), the current state of the NSL algorithm 

(CS_FIFO_Bus), the value holding the received CRC value (Chk_Sum_reg_o), the register holding the 

temporary value of the ongoing CRC calculation (CRC16_Temp_reg_o), and a register value used to 

indicate if the CRC calculation matches the received CRC value (CRC_Pass_reg_o). The current state of 

the NSL algorithm switches to the subsequent case statement on the low-to-high transition of the clock 

signal. 

 

Figure 4.46 – High fidelity simulation results of CRC calculations, showcasing case statement, and CRC 
register value transitions 

 

Storing Data into Local RAM 

 One of the most pertinent resources the NSL algorithm uses to process commands, fulfill 

requests, and formulate the appropriate responses is the ability to store data in a local RAM or memory. 

Access to memory unique to each instantiation of the Modbus RTU implementation gives that unique 

module a location to store data unique to that system without adding the complexities of utilizing a shared 

memory for these backend operations. The insights given by the simulation testing aided the design and 

development of this work by adding perspectives on where and how the data stored in this local memory 

is available. 
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 As previously mentioned in Chapter 3, as an incoming Modbus RTU message enters the 

communication module via the incoming FIFO register, it is subsequently stored in the local memory. The 

contents of the FIFO are popped out byte-by-byte and sequentially placed into the module’s local 

memory, as seen in the simulation screenshot of Figure 4.47 below. The first component from the 

incoming FIFO register is the 8-bit value of the device address placed in the local RAM at address ‘0’ and 

can be seen in the hexadecimal radix of the figure. Each address of the local RAM corresponds to a 

particular byte in the structure of the Modbus RTU packet. As the structure of the Modbus RTU packets 

varies between read or write and requests or commands, not every address location is used by every 

packet. Within this register mapping, each component has a static register address except for the data 

and CRC bytes. As the total length of the data is a dynamic value, the addresses of the register mapping 

used to store this data are also dynamic. Additionally, the CRC values are referenced within the register 

mapping according to the number of registers within the data contents. The CRC’s reference address is 

based on the total number of data registers, N, where the address values of the Hi and Lo-byte of the 

CRC variables are N+7 and N+8, respectively. Table 3 below depicts the register mapping used for the 

local RAM when storing and retrieving data during the processing and response processes. 

 

Figure 4.47 – Simulation results showcasing the NSL algorithm storing the incoming message 
components (top horizontal blue line) into the local RAM (diagonal blue lines) to be used for various 

references and calculations 
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Table 3 – Register mapping for local RAM of Modbus RTU packet structure components  

Address in RAM Variable Stored Address in RAM Variable Stored 

00 Device Address N = Increment Number of Total Data 

01 Function Code 07 Data Hi-Byte 

02 Starting Address Hi 08 Data Lo-Byte 

03 Starting Address Lo 07+N Data + N Hi-Byte 

04 Number of Registers Hi 08+N Data + N Lo-Byte 

05 Number of Registers Lo 07+N, Final CRC Hi-Byte 

06 Number of Byte More 08+N, Final CRC Lo-Byte 

 

CRC Calculations and Verifications 

 The CRC calculation and verification process is one of the vital components of the Modbus RTU 

communication protocol that makes it well known to be a reliable and resilient method of communication 

within industrial control systems. Creating the three CRC verification or creation algorithms previously 

mentioned in Chapter 3 was one of the more difficult components of the Modbus RTU communication 

protocol to implement. It was pertinent to minimize the number of nested loops within the NSL algorithm 

when verifying or calculating a CRC value. The simulations of this portion of the NSL algorithm offered 

valuable insights into how the CRC process behaved, which helped design the corresponding case 

statements within VHDL. 

 The utilization of the simulation software's advanced feature to display the FPGA's clock-by-clock 

cycles can provide an unparalleled advantage in terms of gaining access to intricate and precise details of 

the state machine’s values and variables. This is because it enables the observer to view the minute 

fluctuations in the FPGA's functions, which would have been difficult to notice otherwise. By taking 

advantage of this feature, one can acquire a much deeper insight into the working of the state machine 

and make informed decisions based on this data to assist with the design and troubleshooting process. 

This ability to observe the FPGA's state at the scale of clock-by-clock cycles offers a significant boost to 

the precision and accuracy of the system's analysis and testing processes. This high-fidelity waveform 
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perspective offered by the simulation software of the CRC validation algorithm completing its verification 

process can be seen below in Figure 4.48. In this waveform, the “Chk_Sum_reg_o” variable highlighted in 

red contains the received 16-bit CRC value from an incoming message. This value is recalculated 

through the CRC NSL algorithm using the received contents of the Modbus RTU message and is stored 

in the “CRC16_Temp_reg_o” variable highlighted in blue. If the value of these two variables matches, the 

message’s contents have been verified, and a bit is asserted in the “CRC_Pass_reg_o” variable, 

highlighted in white, to indicate that the message contents have been confirmed. The final confirmation of 

the CRC calculation for response messages and validation for received messages can be seen in Figure 

4.49 and Figure 4.50, respectively. 

 

Figure 4.48 – Simulation waveform of register-level CRC verification process when validating a received 
CRC from an incoming message, the received value (red) is recalculated (blue) based on the received 

message contents, and a flag (white) is asserted if the values match 

 

 

Figure 4.49 – Simulation of a read command depicting the results of the verification of the received CRC 
value (blue) and the calculation of the response CRC value (white), the yellow bars represent the data 

that is used within the CRC calculation for the subsequent highlighted CRC value 
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Figure 4.50 - Simulation of a write command depicting the results of the verification of the received CRC 
value (blue) and the calculation of the response CRC value (white), the yellow bars represent the data 

that is used within the CRC calculation for the subsequent highlighted CRC value 

 

Final Simulation Test – FPGA, DSP, and RPi Instantiations 

 The final portion of the simulation testing requires instantiating the developed embedded Modbus 

RTU implementation into three separate modular communication pathways. As mentioned in Chapter 3, 

the three systems within the SETO project that require communication with the FPGA’s routing fabric are 

the XPORT for HMI use, the internal wire connections to the DSPs, and the serial port for the Raspberry 

Pi. These three modules are instantiated using the inherent capability of VHDL to create a copy of a 

design entity within an embedded architecture covered in Chapter 2. 

 To incorporate three different modules of the embedded Modbus RTU implementation, the signal 

pinouts needed to be coordinated and assigned. Once the three sets of transmission and receiving pins 

are assigned, the VHDL testbench is created to validate the functionality in a simulated environment of 

the three embedded Modbus RTU instantiations. Below in Figure 4.51 are the simulation waveforms 

depicting the operation and response of the three modules to write commands sent through each 

communication pathway. The function commands and responses for each module can be seen with the 

XPORT in white, the DSP in blue, and the RPi in yellow. 
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Figure 4.51 – Simulation waveform of master device write commands and slave device responses for 
three Modbus RTU module instantiations: XPORT module (white), DSP module (blue), and Raspberry Pi 

module (yellow) 

 

4.4 – Development Board Testing and Results 

The developmental testing phase using the Lattice MachX03D Breakout Board, also referred to 

as a development board and seen below in Figure 4.52, was the initial phase of testing and 

troubleshooting the NSL algorithm on physical hardware during the coding development process. The 

main purpose this phase of testing served was for the preliminary confirmation of the NSL algorithm 

working on hardware and to identify any potential timing issues while developing the embedded Modbus 

RTU architecture. As the environment the simulation testing phase provides is ideal, it is imperative to 

incorporate real hardware testing into the design and development process. This subsection will discuss 

some of the processes, challenges, and results of this testing phase. 

 

Figure 4.52 – Lattice breakout board equipped with a MachX03D FPGA (model LCMX03D-9400HC) 
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As mentioned in the previous subsection, the issue of metastability and data validity can present 

itself in a physical system. This phenomenon's first occurrence emerged while testing basic Modbus RTU 

write commands. The response message received from the embedded Modbus RTU module contained 

an invalid value for the CRC command. Upon investigation, it was found that the referenced RAM 

address of the local memory was occasionally incorrect, which resulted in an incorrect CRC calculation. 

The invalid data was most likely a result of the physical hardware not having access to the correct signal 

value when the NSL algorithm referenced the value. This issue was remedied by utilizing redundant case 

statements in the NSL algorithm like the redundant statements previously referred to in Figure 4.44. 

The second challenge during this initial hardware testing phase was the timing of message 

transmissions. As mentioned in Chapter 2, the Modbus RTU protocol follows a message timing and 

framing structure. The timing issue experienced was an inconsistency in received message responses. 

The algorithm would occasionally enter a fringe state when receiving back-to-back incoming messages 

and remain stuck until additional data was fed into the incoming FIFO register. The NSL algorithm could 

execute an error response. To properly address this challenge, an additional 3.5-character timing delay 

feature was added to the NSL algorithm code at the end of the response portion of the NSL algorithm. 

This timing delay addition appeared to assist with the reset state process of the NSL algorithm. 

 Once the data metastability and timing issues were addressed, the Modbus RTU algorithm 

appeared functional in the initial hardware testing phase. The operation of a write command and the 

subsequent reading of that stored data through a read command can be seen below in Figure 4.53. In 

this figure, the blue text is the command manually sent using the XCTU software, and the red text is the 

response received via USB from the embedded Modbus RTU algorithm. The first manual command 

writes the data in 16-bit registers of “0x0001, 0x8000, 0x2000, 0x2000, 0x4000, 0x08000, 0xFFFF” to 

seven registers in the shared memory starting at address 0x0100.  The subsequent manual command 

requests the data that was written to the shared memory to be read back through XCTU. To rule out the 

possibility of the algorithm only parroting received data, the NSL algorithm was further tested with 

consecutive write and read commands storing and accessing data from dynamic and overlapping 

registers. The test results below in Figure 4.54 confirmed that the NSL algorithm passed this more 
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scrupulous testing. This final test concluded the initial testing phase of the NSL algorithm on the hardware 

of the developmental board. 

 

Figure 4.53 – Communication between the XCTU software and the embedded Modbus RTU module via a 
USB connection, the blue bytes in hexadecimal represent the manually input command request while the 

red bytes are the response from the FPGA 

 

Figure 4.54 – Additional image of communication between the XCTU software and the embedded 
Modbus RTU; each manual command (blue) is requesting to read a different number of registers while 

the responses (red) deliver accordingly 

 

4.5 – UCB Testing and Results 

 The UCB testing phase is the second assessment of the NSL algorithm utilizing physical 

hardware and the infrastructure of the final physical hardware setup for the SETO project. This section 

will discuss the testing of the NSL algorithm in a setup that utilizes all three instantiations of the 

embedded Modbus RTU during a single test. A diagram of the integration scheme used for these three 

instantiations can be seen below in Figure 4.55. This testing configuration allows for simultaneous 
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reading and writing from multiple devices. Additionally, this testing phase confirms the accuracy and 

availability of data being stored in the shared memory of the FPGA. The communication pathways of the 

three instantiations of the embedded Modbus RTU implementation consist of a USB connection to a 

Linux device equipped with Python, a USB connection via an external FTDI chip to the XCTU software, 

and the XPORT ethernet connection to a LabVIEW HMI. 

 

Figure 4.55 – Connection diagram of three embedded Modbus RTU instantiations for the UCB testing in 
the hardware phase 

 

Serial Port Instantiation (RPi) 

 The instantiation that operates through the TI serial port connection via USB connects to the 

Raspberry Pi device. For this testing phase, the Raspberry Pi was running on the Kali Linux operating 

system. The RPi uses the “MinimalModbus” Python package to communicate with this Modbus RTU 

instantiation. A basic exert of this “MinimalModbus” code can be seen in Figure 4.56, which performs a 

read register command followed by a write register command. The “MinimalModbus” Python code acts as 

the master device for the embedded slave device. The Python code created for this Modbus RTU 

instantiation was set on a delay-controlled loop to read, modify, and store the data back into the FPGA. 

This was done by reading sixteen 16-bit registers from the shared memory of the FPGA and storing these 

values into a local Python list variable. These values were then incremented by one, and a write 

command was made to store these modified values back into the shared memory of the FPGA. 
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Figure 4.56 – Basic Python code using the “MinimalModbus” package to use Modbus RTU to read and 
write with registers within the FPGA through embedded Modbus RTU 

 

External FTDI Instantiation (XCTU) 

The instantiation that operates through the external FTDI chip, seen in Figure 4.57 and Figure 

4.58, connects via USB to a personal computer running the XCTU software. The XCTU software was 

used to manually read variables to confirm that the values stored by the other instantiations were 

available and correct. Additionally, XCTU was used to manually store values in various registers of the 

shared memory of the FPGA. 

 

Figure 4.57 – External FTDI chip for converting between serial communication and the USB standard 
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Figure 4.58 – Connection of pins from IDC-D on UCB to jumper wires of FTDI chip (seen in the top right 
of Figure 4.57) utilizes the signals of Tx, Rx, and a ground reference 

 

XPORT Instantiation (LabVIEW) 

 The instantiation that operates through the XPORT module connects to a personal computer via 

an ethernet connection. The personal computer runs the LabVIEW software, where an HMI was created 

to connect to the embedded Modbus RTU components. This LabVIEW HMI allows reading and writing 

registers in a loop. This is used to confirm the accuracy and availability of data stored in the shared 

memory of the FPGA in conjunction with the other instantiations. Additionally, the register address to read 

and write data to and from can be changed dynamically to confirm data integrity and availability.  
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Figure 4.59 – LabVIEW interface created to facilitate the testing of the embedded Modbus RTU algorithm, 
three columns (from left to right) represent the configuration setup and error reporting, the register values 

to write, and the register values being read, respectively 

 

Results of Three Modbus RTU Instantiation Integration 

To validate the accuracy and availability of the data, the three embedded Modbus RTU 

instantiations were set up to allow for the dynamic changing of data within the registers. To confirm this, 

the data within the shared memory registers were constantly being changed from one device while the 

other two devices read that changing data. This process was performed with each device to confirm the 

accuracy of data transmissions from each instantiation. Additionally, an offset for the address of registers 

to read and write was used for each device. This was done to confirm that the data and register 

addresses were dynamic in nature to confirm that the NSL algorithm was working as intended. The result 

of this testing procedure was a successful validation that the three embedded Modbus RTU modules 

were working as intended. All data was accurate and readily available to each device, while zero 

anomalies occurred during this testing phase. 
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Internal DSP Modbus RTU Testing 

 The previous paragraphs discussed testing the three embedded Modbus RTU instantiations in 

the UCB hardware device. To confirm that the internal signals between the FPGA and DSP are working 

as intended, a new testing configuration was used. This testing configuration utilizes an external “Small 

UCB,” seen in green in Figure 4.60, to connect with the Code Composer Studio (CCS) software. This 

software, in conjunction with the Small UCB, allows for the debugging of variable values within the DSP 

while keeping the serial TI port available. 

The DSP operates on code made with the C programming language. To communicate with the 

FGPA via Modbus RTU, code in C was created by another researcher that was used for this data 

communication pathway. To confirm the validity of the data processed via embedded Modbus RTU, a 

two-system testing setup was used. The CCS software component allows for manipulating and viewing 

variables within the DSP. The second component utilized was the LabVIEW HMI through the UCB’s 

XPORT connection. To confirm that the internal connection between the FPGA and DSPs is functioning 

correctly, data was stored and read between the CCS software and the LabVIEW HMI. This testing phase 

confirmed the functionality of the internal communication pathway between the FPGA and the DSPs. 

 

Figure 4.60 – UCB connected with a “Small UCB” (seen in green) through a ribbon cable to provide 
access to the external debugger for troubleshooting with Code Composer Studio 
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4.6 – Python Resiliency Testing and Results 

 Having confirmed the functionality of the integration of the three embedded Modbus RTU 

instances in the previous testing phase, the next course of action is to conduct resilience testing aimed at 

identifying the potential failure rate of data transmissions. To perform this test, the NSL algorithm was put 

through a high iteration process of writing and reading dynamic data consecutively while logging the 

outcome of these events. This section discusses the setup and actions to perform an exhaustive test on 

the reliability of the embedded Modbus RTU NSL algorithm. 

Timing 

 One of the potential operating system-specific environmental challenges to consider is the 

differences in the overall time it takes to service a request between a Linux and Windows-based 

operating system. In an operating system, an interrupt is a signal indicating that the system needs to stop 

the current process and process new instructions [37]. The amount of time it takes to process an interrupt 

depends on many factors, such as specific hardware, software, and type of interrupt. The Linux operating 

system is known for requiring less overhead and fulfilling software interrupts with a faster response time. 

In contrast, Windows is known for requiring more overhead to service its more complex features. The 

beginning of this testing phase addresses this concern by investigating the timing differences between 

Modbus RTU actions in Python when fulfilled on a Windows device and a Linux device. Additionally, this 

timing data was needed by another module of the SETO project regarding blockchain development. 

 To perform this test, a Python program was created using the “MinimalModbus” Python package 

that loops through many consecutive read and write commands while recording the time to fulfill each 

action. As expected, the average time to fulfill a Modbus RTU command was higher on the Windows 

device when compared to the Linux device. The results for the Windows device can be seen in Figure 

4.61, while the results for the Linux device can be seen in Figure 4.62. The average time for the Windows 

and Linux devices to fulfill a Modbus RTU command is approximately 172ms and 161ms, respectively. 

Additionally, the number of errors received from the “MinimalModbus” package was reported to be zero 

for each test. 
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Figure 4.61 – Results from testing the average time to fulfill a Modbus RTU read and write command on a 
Windows device 

 

 

Figure 4.62 - Results from testing the average time to fulfill a Modbus RTU read and write command on a 
Linux device 

 

Data Accuracy 

The next step of this testing phase is to verify the accuracy of stored and received data. To 

perform this test, the previous Python program was modified to add dynamically changing data in the 

read and write process. The program operates by writing sixty-four 16-bit register values into the shared 

memory of the FPGA. Those values are then read back and compared with the previously written values. 

If these two Python data lists do not match, a variable is incremented to count the occurrences of invalid 

data. For the next iteration of write and read commands, the data written into the shared memory of the 

FPGA is first incremented by one at each component of the list. This process is then looped for a total of 

10,000 iterations. The results of this test are nominal, and zero occurrences of a failed message or 

incorrect data occurred, as seen below in Figure 4.63. 
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Figure 4.63 - Results from testing the accuracy of data for 10,000 iterations of Modbus RTU read and 
write commands; the results were nominal, all data passing the accuracy check 

 

4.7 – Bootloader and Hotpatching Testing and Results 

The bootloader and hotpatching testing phase are the first attempt at integrating the NSL 

algorithm with pertinent modules of the SETO project. This integration effort tests the embedded Modbus 

RTU with the digital twin and firmware validation modules. This section will discuss the testing of the NSL 

algorithm in a setup that utilizes a LabVIEW HMI with the embedded Modbus RTU communication 

pathway to boot load inverter controller firmware, assist with performing firmware validation, and access 

the data of the ANPC inverter digital twin emulation. 

This testing phase takes place in the physical system of the UCB. It is facilitated with a LabVIEW 

HMI that has been modified from a previous LabVIEW HMI created by Dr. Chris Farnell during the 

preliminary design of the digital twin architecture of the SETO project. The main page of the LabVIEW 

HMI can be seen below in Figure 4.64. This figure has four sections highlighted in blue, red, yellow, and 

orange. The blue section represents the configuration settings for the Modbus RTU communication 

protocol, and the backend of this section can be seen in Figure 4.65. The red section displays the 

interface to start the bootloading, emulation, and hotpatching. Additionally, this section provides feedback 

for various status indicators and firmware validation and hotpatching results. The backend for this section 

can be seen in Figure 4.66. The yellow section displays the configuration settings and status indicators 

for storing the ANPC inverter controller firmware in the shared memory of the FPGA. The backend that 

facilitates this process can be seen below in Figure 4.67. The tab that is highlighted in orange at the top is 
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the datalogger of the HMI that is responsible for displaying the three-phase inverter waveforms of the 

inverter controller firmware that has been loaded. The datalogger HMI can be seen in Figure 4.70, while 

the backend for this process can be seen in Figure 4.68. 

 

Figure 4.64 – LabVIEW HMI for bootloader and hotpatching features of the SETO project, 1) (blue) 
configuration settings for Modbus RTU, 2) (red) interface for bootloading, digital twin emulation, 

hotpatching, and DFTr, 3) (yellow) interface for bootloading of ANPC inverter firmware and status 
indicator, 4) (orange) datalogger for digital twin ANPC inverter emulation waveforms 
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Figure 4.65 – LabVIEW HMI backend of Modbus RTU configuration settings shown in Figure 4.64 

 

 

Figure 4.66 - LabVIEW HMI backend of interface and indicators for bootloading, digital twin emulation, 
hotpatching, and DFTr showed in Figure 4.64 
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Figure 4.67 - LabVIEW HMI backend of bootloading process of ANPC inverter firmware and status 
indicator shown in Figure 4.64 

 

 

Figure 4.68 - LabVIEW HMI backend of datalogger of the Digital Twin emulation of ANPC inverter shown 
in Figure 4.64 
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 This testing phase, in the beginning, presented some challenges as it exposed a bug within the 

coding of the NSL algorithm. Initially, the symptom of this bug appears to be related to a timing issue of 

serial communication. The initial attempt to establish the communication connection of Modbus RTU 

communication within LabVIEW would often fail and need to be reattempted numerous times before 

succeeding. Once the connection was established, the system worked as intended. During this 

troubleshooting, this symptom was referred to as the “latch on” issue, as the embedded Modbus RTU 

algorithm needed multiple attempts to establish the initial connection. This timing issue was solved with 

two different code updates. The first update is adjusting the 3.5-character framing time for clock drift or 

slight timing deviations. The 3.5-character delay was given an additional 5% timing buffer to ensure the 

algorithm abides by the minimum required delay. The second update delays the algorithm’s beginning to 

ensure the reset states and variables have properly settled. This could have been an instance where the 

metastability of register values after the reset state was not as intended when the NSL algorithm started 

its process. Once these code updates were made, the embedded Modbus RTU “latched on” as intended 

and performed nominally. 

 To test the integration of the embedded Modbus RTU with the hotpatching, bootloading, and 

DFTr modules of the SETO project, various inverter controller firmware was used. The first step of this 

testing process was to take an inverter control firmware as a binary file from the local computer hosting 

the LabVIEW HMI and store it in the shared memory of the FPGA. This step utilizes the LabVIEW HMI 

backend of Figure 4.67 to perform an iterative action of writing the binary file into the address location for 

holding inverter controller firmware. The writing process iterates through the binary file by partitioning the 

data into sixty-four 16-bit register values and sequentially writing them into the shared memory of the 

FPGA through Modbus RTU write commands. A screenshot of this process in action can be seen during 

the bootloading process in Figure 4.69. Additionally, as the UCB of the SETO project holds multiple 

inverter controller firmware, the functionality for various firmware storage locations was tested and 

verified. 
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Figure 4.69 – LabVIEW HMI running the bootloader sequence to load inverter controller firmware into the 
ANPC inverter Digital Twin of the SETO project for the firmware validation of the DFTr module 

 

 As the inverter controller firmware has now been successfully stored in the shared memory of the 

FPGA using the embedded Modbus RTU pathway, the next step is to test the integration of the digital 

twin emulation process. The embedded Modbus RTU’s contribution to this process is initiating the digital 

twin emulation process and retrieving the resulting data from the shared memory of the FPGA to display 

within the LabVIEW HMI. First, a Modbus RTU command is sent from the LabVIEW HMI to the digital twin 

module within the FPGA to initiate the emulation and data-logging process. Once completed, the data is 

read from the FPGA’s shared memory into the LabVIEW HMI datalogger page. The available emulation 

data from the shared memory of the FPGA is retrieved through a Modbus RTU read command 

sequentially, sixty-four 16-bit register values at a time. The backend for this process was previously 

mentioned above in Figure 4.68. The results of this process were nominal, and a screenshot of a resulting 

emulated ANPC inverter three-phase waveform can be seen below in Figure 4.70. 
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Figure 4.70 – LabVIEW HMI datalogger view of ANPC inverter controller output waveforms of a three-
phase system 

 

 The final portion of this testing phase is to confirm the integration functionality of the embedded 

Modbus RTU with the DFTr firmware validation and digital twin hotpatching modules. The embedded 

Modbus RTU is responsible for sending the start commands and providing the configuration settings from 

the LabVIEW HMI to the DFTr and hotpatching FPGA modules. To perform the hotpatching, the 

configuration setting of the hotpatching command is sent through the embedded Modbus RTU 

communication pathway to the FPGA. Once the hotpatching module receives this command, it performs 

its function and returns various variable data indicating the status of the hotpatching process. The 

resulting status of the hotpatching module is returned to the LabVIEW HMI via a Modbus RTU read 

request. Regarding the DFTr module, this FPGA module is run during the bootloading of inverter 

controller firmware. The resulting bootloading status and any potential errors found during the firmware 

validation process are returned to the LabVIEW HMI via a Modbus RTU read request. A screenshot of the 

resulting status indicators of these processes can be seen below in Figure 4.71, where the DFTr found a 

short circuit scenario within the inverter controller firmware and has defaulted to loading a known good 

backup firmware. The algorithm for loading backup firmware, DFTr, and hotpatching is not discussed in 
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this thesis work. These modular components within the SETO project require integration with Modbus 

RTU but are not part of this work. 

 

Figure 4.71 – LabVIEW HMI interface output of results of DFTr SETO module indicating a short circuit 
error exists in the inverter controller firmware 

 

4.8 – Resource Utilization 

 One of the primary goals of this work is to create an embedded Modbus RTU implementation 

within a low-cost FPGA with limited space and efficiently use the limited available resources. To correctly 

measure this metric, a baseline for resource utilization of a commercial off-the-shelf implementation must 

be established. A primary provider of embedded system architecture devices and solutions is Intel’s 

Altera line of products. The Nios II embedded processor architecture by Altera provides the processing 

requirements to fulfill the Modbus RTU communication protocol functionality by compiling a Modbus RTU 

implementation coded using the C programming language. This setup also requires the C code 

containing the Modbus RTU protocol algorithm to be stored on the FPGA device. 

 Within low-cost FPGAs, there are limited RAM and flash storage resources available. The 

MachXO2-7000HC has 240 kilobits of RAM and 256 kilobits of flash storage. In contrast, an available 

open-source C code implementation of Modbus RTU requires 36 kilobytes of storage. This storage 

requirement is orders of magnitude larger than available on the FPGA of this work. To store the required 

Modbus RTU C code for use with an embedded processor in the MachXO2-7000HC FPGA, external 

storage is required. To utilize this external storage, transmitting data from the external store into the 
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embedded processor within the FPGA requires a method of communication. A communication protocol 

such as SPI can be used with an Execute-in-Place (XIP) method to execute code directly from the 

external storage [38]. A diagram of this setup utilizing external storage components and implementation 

methods can be seen in  

 

Figure 4.72 – Diagram of a typical industry method for implementing Modbus RTU within an embedded 
system using external storage to house the related Modbus RTU C code and a method of retrieving the 

code to be executed from the external storage 

 

The most relevant technical requirement to measure the impact of resource allocation within the 

FPGA is that of the LUTs previously mentioned in Chapter 2. This is due to the LUTs being the most 

constrained resource of the FPGA for the embedded SETO modules. To implement the Nios II embedded 

processor architecture, a minimum of 2800 LUTs is required within the FPGA [39]. The embedded 

Modbus RTU presented in this thesis work requires 2561 LUTs to store all three modular communication 

pathways for the RPi, DSP, and LabVIEW connections. A diagram comparing the typical industry method 

of implementation with the embedded Modbus RTU of this work can be seen in Figure 4.73. The design 

summary containing the resource utilization of this implementation within the UCB’s FPGA can be seen in 

Figure 4.74, where the design without any Modbus RTU modules is on the left, and the design with the 

three Modbus RTU modules is on the right. The difference in LUTs between these two summaries can be 

calculated as the stated 2561 LUTs. The presented implementation is approximately 9% smaller than a 

commercial off-the-shelf application. Additionally, this difference in utilized resources does not account for 
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the space required to host the C programming language code of the Modbus RTU protocol for the Nios II 

embedded processor architecture. 

 

Figure 4.73 – Comparison of typical industry embedded processor-based Modbus RTU implementation 
and the embedded Modbus RTU presented in this work 

 

 

Figure 4.74 - Resource allocation comparison within the FPGA of the project without (left) and with (right) 
the three embedded Modbus RTU instantiations  
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Chapter 5 

Conclusions and Future Work 

5.1 – Summary of Conclusions  

The industrial control systems field widely embraces the Modbus RTU communication protocol 

due to its reliability and ease of implementation. It offers flexibility in operating parameters and supports 

multiple formats and hardware infrastructures. Many devices like PLCs, HMIs, IoT, and OT use Modbus 

RTU, requiring a centralized communication process to connect modular systems. An FPGA can be an 

embedded central routing fabric to facilitate this communication. 

Embedded systems are expected to be versatile enough to interface with various devices while 

being physically small to require less “real-estate” space and resource-efficient to minimize costs. To 

establish a baseline standard for communication among systems, a typical method of implementing the 

Modbus RTU communication protocol in an embedded environment is to use IP cores as embedded 

processors within the FPGA. The VHDL hardware description language allows hardware control at the 

logic gate and signal level, providing precision over creating the logical circuit within the FPGA. This 

precision can be used to create an efficient embedded Modbus RTU implementation with respect to the 

previously stated challenges. 

This work has presented the Implementation of the Modbus RTU communication protocol using 

VHDL programming within an FPGA to establish a standardized and embedded serial communication 

pathway that assists with streamlining research efforts and increasing efficiency. This implementation 

requires fewer resources than typical communication protocol implementations, reducing hardware 

requirements for effective research efforts. In conclusion, the two challenges within the cyber-physical 

research field of efficient collaborative systems and cost-effective solutions have been effectively 

addressed by this presented embedded Modbus RTU implementation. 
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5.2 – Summary of Future Work 

 While this presented work has successfully met all the milestones to fulfill its role of providing the 

communication routing fabric for the SETO project, two potential points of improvement have been 

identified to continue this work. The first improvement is an increase in the communication configuration 

of the baud rate. The system currently operates at a baud rate of 9,600 but could be improved to a baud 

rate of 115,200, increasing the system throughput. The second potential upgrade is a proof-of-concept 

modification that would add encryption and message authentication features to the data requested from 

slave devices. The remainder of this section will discuss these future works in further detail, discuss 

current steps taken to accomplish these milestones and provide the author’s perspective on the next 

steps to accomplish these tasks. 

Increase Baud Rate to 115,200 

 While the operational baud rate of 9600 bits-per-second works effectively to provide 

communication capabilities for this project, the throughput can be improved while potentially further 

reducing the overhead-related resource allocation by upgrading to a system capable of a higher baud 

rate. Within serial communication, some common baud rates are 9,600, 19,200, and 115,200 bits-per-

second. The embedded Modbus RTU NSL algorithm can be modified to increase the baud rate from 

9,600 to 115,200, thus decreasing the time it takes to send and receive messages. This will result in the 

entire system of the UCB spending less overhead on servicing the communication protocol with respect 

to time. 

 While this increase in the transmission rate is not in the original scope of work, some efforts have 

been put into addressing this potential improvement. The author’s limited time and resources did not 

allow this enhancement to be completed. Currently, the bus interface for serial communication allows for 

scaling the baud rate by using a global VHDL variable. Upon adjusting the system from a baud rate of 

9,600 to 115,200, the embedded Modbus RTU functioned as expected within the ModelSim simulations 

and the development board with XCTU. The preliminary testing of this higher baud rate failed when 

testing within the UCB with a LabVIEW HMI for troubleshooting. The researcher was not able to identify 

the issue with their available time. If one was to continue this work, one should first investigate potential 
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timing and framing issues that may become apparent at the higher transmission rate. Additionally, there 

could be an additional hardware-related challenge within the UCB that is not preset within the 

development board. 

Encryption and Message Authentication 

An additional enhancement that was preliminarily explored is the proof-of-concept for the 

encryption and message authentication of Modbus RTU for the responses of read commands. This would 

allow data being received from the shared memory of the FPGA to be encrypted and authenticated using 

a set of keys known only to authorized users. Modbus is not traditionally a form of secure messaging as 

the entire message contains plain text, and the CRC is only intended for message integrity and not 

message security. To achieve this cyber-security focused improvement, an embedded processor 

architecture and changes to the VHDL code could be used in conjunction to perform the data encryption 

and message authentication before sending responses to read commands. 

The author, in conjunction with Dr. Qinghua Li’s research team at the University of Arkansas, 

determined for this proof-of-concept effort that the AES-128 encryption model and the SHA-256 message 

authentication model should be used. Like the commercial off-the-shelf embedded processor architecture 

of the Altera Nios II processor, IP cores exist for AES-128 and SHA-256 encryption and message 

authentication, respectively. To implement this, it would require reworking the response portion of the 

Modbus RTU algorithm, originally seen in Figure 3.40, to feed the data to be encrypted and authenticated 

into these IP cores before sending out the response message. A diagram of the NSL algorithm with the 

modified addition of these IP cores can be seen below in Figure 5.75 and is colored in black. This will 

effectively provide a Modbus RTU message that has the data portion of the packet encrypted and 

authenticated, where the decryption and authentication will be performed on the client side of the 

communication. The original decryption and authentication of this data were intended to be performed on 

a Raspberry Pi using the appropriate Python packages. 

This work has been postponed indefinitely due to the limited time and resources of the associated 

researchers. Additionally, this system would require an FPGA with additional available resources. Adding 

these encryption and message authentication IP cores increased the project size of the SETO UCB 
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program to exceed the available LUTs of the FPGA to a LUT utilization of approximately 125%. If one is 

to continue this work, the team at NCREPT is creating an improved version of the UCB that could support 

the addition of these IP cores. 

 

Figure 5.75 - State diagram of the next-state-logic algorithm used for the processing and fulfillment of the 
Modbus RTU command response received by the slave device modified with the AES-128 encryption and 

SHA-256 message authentication IP cores (seen in black) incorporated into the algorithm 
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5.3 – Discussion on the Limitations of Low-Cost FPGAs 

 While one of the main goals of this project was to develop an embedded Modbus RTU application 

suitable for a low-cost FPGA, there are some potential drawbacks to utilizing these low-cost integrated 

circuits. At the time of writing, a single MachXO2-7000HC FPGA can be purchased for approximately $23 

and was initially released in 2012. While this FPGA could fit multiple cyber-physical security-focused 

modules to be used for the controller architecture of a solar inverter, there are limitations to the 

capabilities of this device. Regarding the capabilities of different FPGA manufacturers, Lattice products 

are typically known for being equipped with the least available resources compared with other 

manufacturers, such as Altera and Xilinx. Excluding market anomalies, the price of an FPGA typically 

goes together with the device’s capabilities, as seen in Figure 5.76. 

 

Figure 5.76 – Conceptual comparison between the capabilities of an FPGA with respect to cost 

 

 Previously mentioned in the future work subsection was the proof-of-conceptual project to encrypt 

outgoing Modbus RTU messages while adding a message authentication hash to validate the message 

contents. As this additional code required more LUTs than the Lattice FPGA had available, the research 

efforts for this addition were discontinued. The encryption and message authentication functionality, along 



 

93 
 

with the other SETO modules within the FPGA, would require approximately 8,125 LUTs, while the 

Lattice MachXO2-7000HC only contains 6,468 LUTs. Comparatively, the MachXO3D-9400HC from 2019 

can be purchased for $22 and contains 9400 LUTs. A comparison of the available resources between 

these two Lattice FPGA models that were released approximately seven years apart can be seen below 

in Table 4. 

Table 4 – Comparison of resources between Lattice’s MachXO2-7000HC and MachXO3D-9400HC 

Resource Lattice MachXO2-

7000HC (2012) 

Lattice MachXO3D-

9400HC (2019) 

Delta (%) 

Look Up Tables (LUTs) 6864 9400 +37% 

EBR SRAM (kbits) 240 432 +80% 

Flash Memory (kbits) 256 2700 (up to) +955% 

 

 Based on the available resources of the MachXO3D-9400HC, the encryption and message 

authentication features previously mentioned could be implemented using this FPGA along with the 

original SETO modules. While the cost difference between these two devices is negligible at the time of 

writing, the capability between them is significantly noticeable. This is due to the improvements in 

available technologies between the release dates of the two models. While the financial benefits of a low-

cost FPGA allow for the application and development of cost-effective solutions, additional benefits can 

be obtained from utilizing more capable and contemporary hardware. At this time, researchers at the 

University of Arkansas are developing a second version of the UCB equipped with this MachX03D-

9400HC FPGA. If one seeks to continue securing and authenticating the normally non-secure Modbus 

RTU message in conjunction with additional FPGA-based system modules, this improved UCB could 

support such functionality. 
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Appendices 

Appendix A: Code 

A-1 Modbus RTU Algorithm: FPGA VHDL Code 

---------------------------------------------------------------------------------- 
-- Company:  University of Arkansas (NCREPT) 
-- Engineer: Brady McBride 
--  
-- Create Date:   6Jun2022 
-- Design Name:   Digital_Twin_UART 
-- Module Name:   Digital_Twin_UART - Behavioral 
-- Project Name:   Bus Interface for Modbus RTU 
-- Target Devices:   LCMXO2-7000HC-4FG484C (UCB v1.3a) 
-- Tool versions:   Lattice Diamond_x64 Build 3.10.2.115.1 
--  
-- Description:  
-- This module provides an RS232 UART interface which allows access to the memory locations of the 
device. 
-- Default configuration is 1 start bit, 1 stop bit, no parity, and 9600bps. 
-- This module uses the Common Bus Architecture. 
-- This module is based off the serial communication work of Dr. Chris Farnell - cfarnell@uark.edu 
-- 
---- Modbus RTU Communications: 
-- In the project we will construct packets to facilitate Modbus RTU communication between the slave 
device and a master device.  
-- Using packets we can implement operational commands and check sums which allow for easily 
implementing a user GUI.  
-- You may use various Serial Interface programs to communicate with this including the old version of X-
CTU (Version 5.2.8.6),  
-- Termite, HypterTerminal, or the Custom LabVIEW Interface created for this project (LabVIEW-
CommEx_Bus_Interface_v1.1b_9Jun2019). 
-- A key to remember is that you will need to create packets in Hex-Mode not the standard ASCII-Mode. 
-- All packets will begin with a the device address and end with a CheckSum.  
-- The CheckSum is the CRC-16 Modbus calculation. A useful calculator can be found here:  
https://crccalc.com/ 
-- Be sure to click the "CRC-16" button at the top and then click the "Modbus" line item to single out this 
calculation. 
-- This algorithm provides use for the Modbus RTU reading and writing of holding register data types. 
-- All reads and writes are configured to use the "multiple holding register" access commands. 
-- Read multiple holding registers.  Functional code: 0x03 
-- Write multiple holding registers.  Functional code: 0x10  
-- 
-- The following examples are from: https://ipc2u.com/articles/knowledge-base/modbus-rtu-made-
simple-with-detailed-descriptions-and-examples/ 
-- 
-- 
-- 
---Modbus RTU Read Packet (OP_ID = 0x03) 
-- The Register Read Command Packet is used to provide register data internal to the CPLD to the 
requesting master device.  
-- The following example breaks down a read request packet.  
-- The packet below writes 7 16-bit registers starting at register 0x0100; Values listed below.  
--  
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-- Device  | Functional | Start   | Number of | Checksum 
-- Address | Code       | Address | Registers | CRC 
-- 0x11    | 0x03       | 0x006B  | 0x0003    | 0x7687 
-- 0x1103006B00037687 
-- 
-- An example of a response for this read command is below 
-- 
-- Device Address | Functional Code | Number Bytes More | Register Data  | Checksum CRC 
-- 0x11     | 0x03            | 0x06              | 0xAE4156524340 | 0x49AD 
-- 0x110306AE415652434049AD 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
---Modbus RTU Write Packet (OP_ID = 0x10) 
-- The Register Write Command Packet is used to update registers internal to the CPLD.  
-- The following example breaks down a write request packet.  
-- The packet below writes 7 16-bit registers starting at register 0x0100; Values listed below.  
-- 
-- Device Address | Functional Code | Start Address | Number of Registers | Number of Bytes More | 
Register Data | Checksum CRC 
-- 0x11           | 0x10            | 0x0001        | 0x0002              | 0x04                 | 0x000A0102    | 0xC6F0 
-- 0x11100001000204000A0102C6F0 
-- 
-- An example of a response for this write command is below 
-- 
-- Device Address | Functional Code | Starting Address | Number of Registers | Checksum CRC 
-- 0x11           | 0x10            | 0x0001           | 0x0002              | 0x1298 
--m 0x1110000100021298 
-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- Revisions:-- 
-- 
-- 
-- 
-- Additional Comments:  
--  
-- 
---------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.std_logic_1164.all;  
use IEEE.std_logic_unsigned.all;  
use IEEE.numeric_std.all;  
use IEEE.std_logic_arith.all; 
entity RS232_Usr_Int is 
 generic( 
    Baud : integer := 9600;    --115,200, originally 
9,600 bps 
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    clk_in : integer := 25000000);   --25MHz  
    Port (  clk : in  STD_LOGIC; 
    rst : in  STD_LOGIC; 
    rs232_rcv : in  STD_LOGIC; 
    rs232_xmt : out  STD_LOGIC; 
    Data : INOUT  std_logic_vector(15 downto 0); 
    Addr : OUT  std_logic_vector(15 downto 0); 
    Xrqst : OUT  std_logic; 
    XDat : IN  std_logic; 
    YDat : OUT  std_logic; 
    BusRqst : OUT  std_logic; 
    BusCtrl : IN  std_logic 
     ); 
end RS232_Usr_Int; 
architecture Behavioral of RS232_Usr_Int is 
 type state_type is 
(S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16,S17,S18,S19,S20,S21,S22,S23,S24,
S25,S26,S27,S28,S29,S30,S31,S32,S33,S34,S35,S36,S37,S38,S39,   
S40,S41,S42,S43,S44,S45,S46,S47,S48,S49,S50,S51,S52,S53,S54,S55,S56,S57,S58,S59,S60,S61,S6
2,S63,S64,S65,S67,S68,S69,  S70,S71,S72,S73,   
S100,S101,S102,S103,S104,S105,S106,S107,S108,S109,S110,S111,S112,S113,S114,S115,S116,S117
,S118,S119,S120, S130, S131, S132, S133, S134, S135,S136,S137,S138,S139, S140, S141, S142, 
S143, S144, S145, S146, S147, S148, S149, S150, 
S300,S301,S302,S303,S304,S305,S306,S307,S308,S309,S310,S311,S312,S313,S314,S315,S316,S317
,S318,S319,S320,S321,S322,S323,S324,S325,S326,S327,S328,S329,S330,S331,S332,S333,S334,S33
5,S336,S337,S338,S339,S340,S400,S401,S402,S403,S404,S405,S406,S407,   
E1,E2,E3,E4,E5,E6,E7,E8,E9,E10,E11,E12,E13,E14,E15,E16,E17,E18,E19,E20,E21,E22,E23,E24,E25, 
D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16,D17,D18,D19,D20); 
  signal CS_RS232_R, NS_RS232_R, CS_RS232_W, NS_RS232_W, CS_FIFO_Bus, 
NS_FIFO_Bus: state_type; 
 signal rx_done,tx_done :STD_LOGIC:= '0'; 
 signal temp_rcv: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal i,j: STD_LOGIC_VECTOR (15 downto 0):= (others => '0'); 
 signal uartclk : STD_LOGIC:= '0'; 
 signal u: integer; 
 signal rs232_rcv_s,rs232_rcv_t: STD_LOGIC:= '1'; 
 signal txbuff: STD_LOGIC_VECTOR(9 downto 0):= (others => '1'); --buff used to transmit 1 
bytes with start and stop bits 
  
 --Declare Signals for FIFO Serial Read 
 signal STD_FIFO_R_WriteEn, STD_FIFO_R_ReadEn: STD_LOGIC:= '0'; 
 signal STD_FIFO_R_DataIn, STD_FIFO_R_DataOut: STD_LOGIC_VECTOR(7 downto 0):= 
(others => '0'); 
 signal STD_FIFO_R_Empty, STD_FIFO_R_Full: STD_LOGIC:= '0'; 
  
 --Declare Signals for FIFO Serial Write 
 signal STD_FIFO_W_WriteEn, STD_FIFO_W_ReadEn: STD_LOGIC:= '0'; 
 signal STD_FIFO_W_DataIn, STD_FIFO_W_DataOut: STD_LOGIC_VECTOR(7 downto 0):= 
(others => '0'); 
 signal STD_FIFO_W_Empty, STD_FIFO_W_Full: STD_LOGIC:= '0'; 
  
 --Declare Signals for Bus Interface 
 signal Bus_Int1_WE, Bus_Int1_RE, Bus_Int1_Busy: STD_LOGIC:= '0'; 
 signal Bus_Int1_DataIn, Bus_Int1_DataOut, Bus_Int1_AddrIn: STD_LOGIC_VECTOR(15 downto 
0):= (others => '0'); 
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 --Declare Signals for Registers 
 signal LD_busy,LD_busy2,LD_rx,LD_tx,LD_temp_data,LD_temp2: STD_LOGIC:= '0'; 
 signal LD_Temp_Addr_High,LD_Temp_Addr_Low,LD_Temp_Data_High: STD_LOGIC:= '0'; 
 signal LD_Temp_Data_Low,ld_temp_cmd: STD_LOGIC:= '0'; 
 signal LD_Num_More,LD_Chk_Sum: STD_LOGIC:= '0'; 
  
 signal LD_Reg_Num_H,LD_Reg_Num_L: STD_LOGIC:= '0'; 
 signal LD_Reg_Num: STD_LOGIC:= '0'; 
  
 signal LD_Base_Addr: STD_LOGIC:= '0'; 
 signal LD_Reg_Addr_H,LD_Reg_Addr_L: STD_LOGIC:= '0'; 
 signal LD_Reg_Addr: STD_LOGIC:= '0'; 
 signal LD_Reg_Cnt: STD_LOGIC:= '0'; 
 signal LD_Data_Temp_H,LD_Data_Temp_L: STD_LOGIC:= '0'; 
 signal LD_CRC16_Temp: STD_LOGIC:= '0'; 
 signal LD_A_Poly: STD_LOGIC:= '0'; 
 signal LD_Is_Read: STD_LOGIC:= '0'; 
 signal LD_Carry_Over: STD_LOGIC:= '0'; 
 signal LD_CRC_Pass: STD_LOGIC:= '0'; 
  
  
  
  
 signal busy,busy_reg_o,busy2,busy2_reg_o,rx,rx_reg_o,tx,tx_reg_o: STD_LOGIC:= '0'; 
 signal temp_data_reg_o, temp_data: STD_LOGIC_VECTOR(15 downto 0):= (others => '0'); 
 signal temp2_reg_o, temp2: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal Temp_Addr_High_reg_o, Temp_Addr_High: STD_LOGIC_VECTOR(7 downto 0):= (others 
=> '0'); 
 signal Temp_Addr_Low_reg_o, Temp_Addr_Low: STD_LOGIC_VECTOR(7 downto 0):= (others 
=> '0'); 
 signal Temp_Data_High_reg_o, Temp_Data_High: STD_LOGIC_VECTOR(7 downto 0):= (others 
=> '0'); 
 signal Temp_Data_Low_reg_o, Temp_Data_Low: STD_LOGIC_VECTOR(7 downto 0):= (others 
=> '0'); 
 signal Temp_Cmd_reg_o, Temp_Cmd: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
  
 signal Num_More_reg_o, Num_More: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
  
 signal Reg_Num_H_reg_o, Reg_Num_H:STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal Reg_Num_L_reg_o, Reg_Num_L:STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
  
 signal Chk_Sum_reg_o, Chk_Sum: STD_LOGIC_VECTOR(15 downto 0):= (others => '0'); 
 signal Base_Addr_reg_o, Base_Addr: STD_LOGIC_VECTOR(15 downto 0):= (others => '0'); 
 signal Reg_Addr_H_reg_o, Reg_Addr_H: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal Reg_Addr_L_reg_o, Reg_Addr_L: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal Reg_Addr_reg_o, Reg_Addr: STD_LOGIC_VECTOR(15 downto 0):= (others => '0'); 
 signal Reg_Cnt_reg_o, Reg_Cnt: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal Data_Temp_H_reg_o, Data_Temp_H: STD_LOGIC_VECTOR(7 downto 0):= (others => 
'0'); 
 signal Data_Temp_L_reg_o, Data_Temp_L: STD_LOGIC_VECTOR(7 downto 0):= (others => 
'0'); 
  
  
 signal CRC16_Temp_reg_o, CRC16_Temp: STD_LOGIC_VECTOR(15 downto 0):= (others => 
'0'); 
 signal A_Poly_reg_o, A_Poly: STD_LOGIC_VECTOR(15 downto 0):= (others => '0'); 
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 signal Is_Read_reg_o, Is_Read: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal Carry_Over_reg_o, Carry_Over: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
  
 signal CRC_Pass_reg_o, CRC_Pass: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
  
 --Signals for Counters 
 signal Rcv_Cnt_rst,Rcv_Cnt_INC: STD_LOGIC:= '0'; 
 signal Rcv_Cnt_Out: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal Buf_Cnt_rst,Buf_Cnt_INC: STD_LOGIC:= '0'; 
 signal Buf_Cnt_Out: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal Reg_Cnt_rst,Reg_Cnt_INC: STD_LOGIC:= '0'; 
 signal Reg_Cnt_Out: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal CRC_Cnt_rst,CRC_Cnt_INC: STD_LOGIC:= '0'; 
 signal CRC_Cnt_Out: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal XOR_Cnt_rst,XOR_Cnt_INC: STD_LOGIC:= '0'; 
 signal XOR_Cnt_Out: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal XOR2_Cnt_rst,XOR2_Cnt_INC: STD_LOGIC:= '0'; 
 signal XOR2_Cnt_Out: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
 signal RAM_Cnt_rst,RAM_Cnt_INC: STD_LOGIC:= '0'; 
 signal RAM_Cnt_Out: STD_LOGIC_VECTOR(7 downto 0):= (others => '0'); 
  
  
 --Signals for RAM (Storing Temp Packet Data) [256 Max] 
 type ram_type is array (0 to (2**8)-1) of std_logic_vector(7 downto 0);  
 signal RAM : ram_type; 
 signal RAM_wea: STD_LOGIC:= '0'; 
 signal RAM_address,RAM_Data_In,RAM_Data_Out : std_logic_vector(7 downto 0); 
 ----User defined variables 
 -- CM is the Clock Divder 25MHz/CM=115,200 Baud 
 constant CM : integer := clk_in/Baud; 
 -- CN is the read offset for serial input 
 constant CN : integer :=CM/2;    
 ----End User defined variables 
  
  
 --declare STD_FIFO 
 COMPONENT STD_FIFO 
 Generic ( 
  DATA_WIDTH   : integer;  -- Width of FIFO 
  FIFO_DEPTH   : integer;  -- Depth of FIFO 
  FIFO_ADDR_LEN  : integer  -- Required number of bits to represent 
FIFO_Depth 
 ); 
 Port (  
  CLK     : in  STD_LOGIC;                                       
  RST     : in  STD_LOGIC;          
  WriteEn : in  STD_LOGIC;      
  DataIn  : in  STD_LOGIC_VECTOR (7 downto 0);     
  ReadEn  : in  STD_LOGIC;                                 
  DataOut : out STD_LOGIC_VECTOR (7 downto 0);   
  Empty   : out STD_LOGIC;                                 
  Full    : out STD_LOGIC                                      
 ); 
 end COMPONENT; 
  
 --declare Bus Interface 
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 COMPONENT Bus_Int 
   PORT( 
  clk : IN  std_logic; 
  rst : IN  std_logic; 
  DataIn : IN  std_logic_vector(15 downto 0); 
  DataOut : OUT  std_logic_vector(15 downto 0); 
  AddrIn : IN  std_logic_vector(15 downto 0); 
  WE : IN  std_logic; 
  RE : IN  std_logic; 
  Busy : OUT  std_logic; 
  Data : INOUT  std_logic_vector(15 downto 0); 
  Addr : OUT  std_logic_vector(15 downto 0); 
  Xrqst : OUT  std_logic; 
  XDat : IN  std_logic; 
  YDat : OUT  std_logic; 
  BusRqst : OUT  std_logic; 
  BusCtrl : IN  std_logic 
    ); 
    END COMPONENT; 
  
 --declare Std_Counter Component 
 component Std_Counter is 
 generic  
 ( 
  Width : integer  --width of counter 
 ); 
 port(INC,rst,clk: in std_logic; 
   Count: out STD_LOGIC_VECTOR(Width-1 downto 0)); 
 end component; 
  
   
   
begin 
 --Instantiate STD_FIFO for Reading Serial Data 
  STD_FIFO_R: STD_FIFO  
  Generic Map 
  ( 
  DATA_WIDTH  => 8,  -- Width of FIFO 
  FIFO_DEPTH  => 512, -- Depth of FIFO 
  FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth 
  ) 
  Port Map 
  (  
  CLK => clk, 
  RST => rst,  
  WriteEn => STD_FIFO_R_WriteEn, 
  DataIn => STD_FIFO_R_DataIn, 
  ReadEn => STD_FIFO_R_ReadEn, 
  DataOut => STD_FIFO_R_DataOut, 
  Empty   => STD_FIFO_R_Empty, 
  Full   => STD_FIFO_R_Full  
  ); 
   
 --Instantiate STD_FIFO for Writing Serial Data 
  STD_FIFO_W: STD_FIFO  
  Generic Map 
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  ( 
  DATA_WIDTH  => 8,  -- Width of FIFO 
  FIFO_DEPTH  => 512, -- Depth of FIFO 
  FIFO_ADDR_LEN => 9 -- Required number of bits to represent FIFO_Depth 
  ) 
  Port Map(  
  CLK => clk, 
  RST => rst,  
  WriteEn => STD_FIFO_W_WriteEn, 
  DataIn => STD_FIFO_W_DataIn, 
  ReadEn => STD_FIFO_W_ReadEn, 
  DataOut => STD_FIFO_W_DataOut, 
  Empty   => STD_FIFO_W_Empty, 
  Full   => STD_FIFO_W_Full  
  ); 
 --Instantiate Bus Interface 
 Bus_Int1: Bus_Int PORT MAP ( 
          clk => clk, 
          rst => rst, 
          DataIn => Bus_Int1_DataIn, 
          DataOut => Bus_Int1_DataOut, 
          AddrIn => Bus_Int1_AddrIn, 
          WE => Bus_Int1_WE, 
          RE => Bus_Int1_RE, 
          Busy => Bus_Int1_Busy, 
          Data => Data, 
          Addr => Addr, 
          Xrqst => Xrqst, 
          XDat => XDat, 
          YDat => YDat, 
          BusRqst => BusRqst, 
          BusCtrl => BusCtrl 
        ); 
   
 --instantiate Rcv_Cnt_8 
 Rcv_Cnt: Std_Counter 
 generic map 
 ( 
  Width => 8 
 ) 
 port map(  
   clk => clk, 
   rst=> Rcv_Cnt_rst, 
   INC=> Rcv_Cnt_INC, 
   Count=>Rcv_Cnt_Out); 
    
 --instantiate Buf_Cnt_8 
 Buf_Cnt: Std_Counter 
 generic map 
 ( 
  Width => 8 
 ) 
 port map(  
   clk => clk, 
   rst=> Buf_Cnt_rst, 
   INC=> Buf_Cnt_INC, 
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   Count=>Buf_Cnt_Out); 
    
 --instantiate Reg_Cnt_8 
 Reg_Cnt1: Std_Counter 
 generic map 
 ( 
  Width => 8 
 ) 
 port map(  
   clk => clk, 
   rst=> Reg_Cnt_rst, 
   INC=> Reg_Cnt_INC, 
   Count=>Reg_Cnt_Out); 
    
  --instantiate CRC_Cnt_8 
 CRC_Cnt: Std_Counter 
 generic map 
 ( 
  Width => 8 
 ) 
 port map(  
   clk => clk, 
   rst=> CRC_Cnt_rst, 
   INC=> CRC_Cnt_INC, 
   Count=>CRC_Cnt_Out); 
    
 --instantiate XOR_Cnt_8 
 XOR_Cnt: Std_Counter 
 generic map 
 ( 
  Width => 8 
 ) 
 port map(  
   clk => clk, 
   rst=> XOR_Cnt_rst, 
   INC=> XOR_Cnt_INC, 
   Count=>XOR_Cnt_Out);  
 --instantiate XOR_Cnt_8-2 
 XOR2_Cnt: Std_Counter 
 generic map 
 ( 
  Width => 8 
 ) 
 port map(  
   clk => clk, 
   rst=> XOR2_Cnt_rst, 
   INC=> XOR2_Cnt_INC, 
   Count=>XOR2_Cnt_Out); 
 --instantiate RAM_Cnt_8-2 
 RAM_Cnt: Std_Counter 
 generic map 
 ( 
  Width => 8 
 ) 
 port map(  
   clk => clk, 
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   rst=> RAM_Cnt_rst, 
   INC=> RAM_Cnt_INC, 
   Count=>RAM_Cnt_Out);    
 ----Registers  
 Reg_Proc: process 
 begin 
  wait until clk'event and clk = '1'; 
  if rst = '0' then 
   busy_reg_o <= '0'; 
   busy2_reg_o <='0'; 
   rx_reg_o <= '0'; 
   tx_reg_o <= '0'; 
   temp_data_reg_o <= (others => '0'); 
   temp2_reg_o <= (others => '0'); 
   Temp_Addr_High_reg_o <= (others => '0'); 
   Temp_Addr_Low_reg_o <= (others => '0'); 
   Temp_Data_High_reg_o <= (others => '0'); 
   Temp_Data_Low_reg_o <= (others => '0'); 
   Temp_Cmd_reg_o <= (others => '0'); 
   Num_More_reg_o <= (others => '0'); 
    
   Reg_Num_H_reg_o <= (others => '0'); 
   Reg_Num_L_reg_o <= (others => '0'); 
    
   Chk_Sum_reg_o <= (others => '0'); 
   Reg_Addr_H_reg_o <= (others => '0'); 
   Reg_Addr_L_reg_o <= (others => '0'); 
   Reg_Addr_reg_o <= (others => '0'); 
   Data_Temp_H_reg_o <= (others => '0'); 
   Data_Temp_L_reg_o <= (others => '0'); 
   Reg_Cnt_reg_o <= (others => '0'); 
   Base_Addr_reg_o <= (others => '0'); 
    
   CRC16_Temp_reg_o <= (others => '0'); 
   A_Poly_reg_o <= (others => '0'); 
   Is_Read_reg_o <= (others => '0'); 
   Carry_Over_reg_o <= (others => '0'); 
   CRC_Pass_reg_o <= (others => '0'); 
    
    
    
    
    
  else 
  if (LD_busy = '1') then busy_reg_o <= busy; end if; 
  if (LD_busy2 = '1') then busy2_reg_o <= busy2; end if; 
  if (LD_rx = '1') then rx_reg_o <= rx; end if; 
  if (LD_tx = '1') then tx_reg_o <= tx; end if; 
  if (LD_temp_data = '1') then temp_data_reg_o <= temp_data; end if; 
  if (LD_temp2 = '1') then temp2_reg_o <= temp2; end if; 
  if (LD_Temp_Addr_High = '1') then Temp_Addr_High_reg_o <= Temp_Addr_High; end if; 
  if (LD_Temp_Addr_Low = '1') then Temp_Addr_Low_reg_o <= Temp_Addr_Low; end if; 
  if (LD_Temp_Data_High = '1') then Temp_Data_High_reg_o <= Temp_Data_High; end if; 
  if (LD_Temp_Data_Low = '1') then Temp_Data_Low_reg_o <= Temp_Data_Low; end if; 
  if (LD_Temp_Cmd = '1') then Temp_Cmd_reg_o <= Temp_Cmd; end if; 
  if (LD_Num_More = '1') then Num_More_reg_o <= Num_More; end if; 
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  if (LD_Reg_Num_H = '1') then Reg_Num_H_reg_o <= Reg_Num_H; end if; 
  if (LD_Reg_Num_L = '1') then Reg_Num_L_reg_o <= Reg_Num_L; end if; 
   
  if (LD_Chk_Sum = '1') then Chk_Sum_reg_o <= Chk_Sum; end if; 
  if (LD_Reg_Addr_H = '1') then Reg_Addr_H_reg_o <= Reg_Addr_H; end if; 
  if (LD_Reg_Addr_L = '1') then Reg_Addr_L_reg_o <= Reg_Addr_L; end if; 
  if (LD_Reg_Addr = '1') then Reg_Addr_reg_o <= Reg_Addr; end if; 
  if (LD_Data_Temp_H = '1') then Data_Temp_H_reg_o <= Data_Temp_H; end if; 
  if (LD_Data_Temp_L = '1') then Data_Temp_L_reg_o <= Data_Temp_L; end if; 
  if (LD_Reg_Cnt = '1') then Reg_Cnt_reg_o <= Reg_Cnt; end if; 
  if (LD_Base_Addr = '1') then Base_Addr_reg_o <= Base_Addr; end if; 
  if (LD_CRC16_Temp = '1') then CRC16_Temp_reg_o <= CRC16_Temp; end if; 
  if (LD_A_Poly = '1') then A_Poly_reg_o <= A_Poly; end if; 
    
  if (LD_Is_Read = '1') then Is_Read_reg_o <= Is_Read; end if; 
  if (LD_Carry_Over = '1') then Carry_Over_reg_o <= Carry_Over; end if; 
  if (LD_CRC_Pass = '1') then CRC_Pass_reg_o <= CRC_Pass; end if; 
   
   
 end if; 
 end process; 
 ----End Registers 
  
 ----Process Memory Data_Reg: process 
 Ram_Proc: process 
 begin 
  wait until clk'event and clk = '1'; 
   
  if (RAM_wea = '1') then 
   RAM(conv_integer(RAM_address)) <= RAM_Data_In; 
  end if; 
  RAM_Data_Out <= RAM(conv_integer(RAM_address)); 
 end process Ram_Proc; 
 ----End Ram 
   
 ----Next State Logic for Serial Interface Read 
 NSL_RS232_R: process(CS_RS232_R,rs232_rcv_s,rx_done,STD_FIFO_R_Full,temp_rcv) 
 begin 
  
    
  ----Default States to remove latches 
  busy <='0'; 
  rx <= '0'; 
  NS_RS232_R <= S0; 
  LD_busy <= '0'; 
  LD_rx <= '0'; 
   
  --Signals for FIFO 
  STD_FIFO_R_WriteEn <='0'; 
  STD_FIFO_R_DataIn<= (others => '0'); 
   
  case CS_RS232_R is 
   when S0 =>       -- Waits until 
data is detected on rs232_rcv_s. 
    if (rs232_rcv_s = '1') then 
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     NS_RS232_R <= S0; 
    else 
     NS_RS232_R <= S1; 
    end if; 
     busy <='0';     -- the busy 
signal stops the baud generator 
     rx <= '0';     -- signals to 
stop reading data 
     LD_rx <= '1'; 
     LD_busy <= '1'; 
   when S1=>       -- Starts the 
baud rate generator and reading 
     NS_RS232_R<=S2; 
     busy <='1';     -- the busy 
signal starts the baud generator 
     rx <= '1';     -- signals to 
start reading data 
     LD_rx <= '1'; 
     LD_busy <= '1'; 
      
   when S2 =>       -- Waits until all 
data is read 
     if (rx_done ='0') then 
      NS_RS232_R<= S2; 
     else 
      NS_RS232_R<=S3; 
     end if; 
      
   when S3 => 
     if (STD_FIFO_R_Full = '0') then 
      STD_FIFO_R_DataIn <= temp_rcv; 
      STD_FIFO_R_WriteEn <='1'; 
     end if; 
     NS_RS232_R<=S0; 
   when others =>  
    NS_RS232_R<=S0; 
     
  end case; 
 end process; 
 ----End Next State Logic for Serial Interface Read 
 ----Next State Logic for Serial Interface Write 
 NSL_RS232_W: process(CS_RS232_W,tx_done,STD_FIFO_W_Empty,STD_FIFO_W_DataOut) 
 begin 
  
  ----Default States to remove latches 
  tx<='0'; 
  NS_RS232_W <= S0; 
  temp2 <= (others => '0'); 
  LD_tx <= '0'; 
  LD_temp2<='0'; 
  Busy2 <='0'; 
  LD_Busy2<='0'; 
   
  --Signals for FIFO 
  STD_FIFO_W_ReadEn <= '0'; 
  case CS_RS232_W is 
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   when S0=> 
    if(STD_FIFO_W_Empty = '1') then 
     NS_RS232_W<=S0; 
    else 
     NS_RS232_W<=S1; 
     STD_FIFO_W_ReadEn <= '1'; 
    end if; 
    busy2 <='0';     -- the busy signal stops 
the baud generator 
    tx <= '0';      -- signals to 
stop sending data 
    LD_tx <= '1'; 
    LD_busy2 <= '1'; 
   
   when S1=> 
    temp2<=STD_FIFO_W_DataOut; 
    LD_temp2<='1'; 
    NS_RS232_W<=S2; 
     
   when S2=> 
    busy2 <='1';     -- the busy signal starts 
the baud generator 
    tx<='1';       -- signals to 
start sending data 
    LD_tx<='1'; 
    LD_busy2 <= '1'; 
    NS_RS232_W<=S3; 
     
   when S3=> 
    if(tx_done='0') then 
     NS_RS232_W <=S3; 
    else 
     NS_RS232_W <=S0; 
    end if; 
   when others =>  
    NS_RS232_W <=S0; 
  end case; 
 end process; 
 ----End Next State Logic for Serial Interface Write 
 ----Next State Logic for FIFO to Bus 
 NSL_FIFO_Bus: process(CS_FIFO_Bus, 
STD_FIFO_R_Empty,Temp_Cmd_reg_o,Bus_Int1_Busy,STD_FIFO_R_DataOut,Temp_Addr_High_reg_
o,Temp_Addr_Low_reg_o,Temp_Data_High_reg_o,Temp_Data_Low_reg_o,Temp_Data_reg_o,Bus_Int1
_DataOut,temp_data_reg_o,Num_More_reg_o,Chk_Sum_reg_o,Rcv_Cnt_Out,RAM_Data_Out,Reg_Cnt
_reg_o,Reg_Addr_H_reg_o,Reg_Addr_L_reg_o,Base_Addr_reg_o, Reg_Num_H_reg_o, 
Reg_Num_L_reg_o ) 
 begin 
  ----Default States to remove latches 
  NS_FIFO_Bus <=S0; 
  Temp_Cmd <= (others => '0'); 
  LD_Temp_Cmd <='0'; 
  Temp_Addr_High <= (others => '0'); 
  LD_Temp_Addr_High <='0'; 
  Temp_Addr_Low <= (others => '0'); 
  LD_Temp_Addr_Low <='0'; 
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  Bus_Int1_AddrIn <= (others => '0'); 
  Bus_Int1_RE <='0'; 
  Bus_Int1_DataIn <= (others => '0'); 
  Bus_Int1_WE <='0'; 
  Temp_Data <= (others => '0'); 
  LD_Temp_Data <='0'; 
  Temp_Data_High <= (others => '0'); 
  LD_Temp_Data_High <='0'; 
  Temp_Data_Low<= (others => '0'); 
  LD_Temp_Data_Low <='0'; 
   
  --Signals for FIFO 
  STD_FIFO_R_ReadEn <='0'; 
  STD_FIFO_W_DataIn <= (others => '0'); 
  STD_FIFO_W_WriteEn <='0'; 
   
  --Signals for Counters 
  Rcv_Cnt_rst<='1'; 
  Rcv_Cnt_INC<='0'; 
  Buf_Cnt_rst<='1'; 
  Buf_Cnt_INC<='0'; 
  Reg_Cnt_rst<='1'; 
  Reg_Cnt_INC<='0'; 
  CRC_Cnt_rst<='1'; 
  CRC_Cnt_INC<='0'; 
  XOR_Cnt_rst<='1'; 
  XOR_Cnt_INC<='0'; 
  XOR2_Cnt_rst<='1'; 
  XOR2_Cnt_INC<='0'; 
  RAM_Cnt_rst<='1'; 
  RAM_Cnt_INC<='0'; 
   
   
  --Signals for memory 
  RAM_address <= (others => '0'); 
  RAM_Data_In <= (others => '0'); 
  RAM_wea <= '0'; 
   
  Num_More <= (others => '0'); 
  LD_Num_More <='0'; 
  Chk_Sum <= (others => '0'); 
  LD_Chk_Sum <='0'; 
   
   
  Reg_Num_H <= (others => '0'); 
  LD_Reg_Num_H <='0'; 
  Reg_Num_L <= (others => '0'); 
  LD_Reg_Num_L <='0'; 
   
  Reg_Addr_H <= (others => '0'); 
  LD_Reg_Addr_H <='0'; 
  Reg_Addr_L <= (others => '0'); 
  LD_Reg_Addr_L <='0'; 
  Reg_Addr <= (others => '0'); 
  LD_Reg_Addr <='0'; 
  Data_Temp_H <= (others => '0'); 
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  LD_Data_Temp_H <='0'; 
  Data_Temp_L <= (others => '0'); 
  LD_Data_Temp_L <='0'; 
  Reg_Cnt <= (others => '0'); 
  LD_Reg_Cnt <='0'; 
  Base_Addr <= (others => '0'); 
  LD_Base_Addr <='0'; 
  CRC16_Temp <= (others => '0'); 
  LD_CRC16_Temp <= '0'; 
  A_Poly <= (others => '0'); 
  LD_A_Poly <= '0'; 
   
   
   
  Is_Read <= (others => '0'); 
  Carry_Over <= (others => '0'); 
  CRC_Pass <= (others => '0'); 
   
  LD_Is_Read <= '0'; 
  LD_Carry_Over <= '0'; 
  LD_CRC_Pass <= '0'; 
   
    
  case CS_FIFO_Bus is 
   
   when S0=>      
    if(STD_FIFO_R_Empty = '1') then  --Check to see if 
commands are in queue 
     NS_FIFO_Bus<=S0; 
    else 
     NS_FIFO_Bus<=S1; 
     STD_FIFO_R_ReadEn <= '1';  --Assert Read Signal for 
FIFO 
    end if; 
    Rcv_Cnt_rst<='0'; 
    Buf_Cnt_rst<='0'; 
    Reg_Cnt_rst<='0'; 
    RAM_Cnt_rst<='0'; 
     
   when S1=>        --Read 
Command from FIFO 
    Temp_Cmd<=STD_FIFO_R_DataOut;   -- Storing 
Device Address 
    LD_Temp_Cmd<='1'; 
    RAM_Data_In <= STD_FIFO_R_DataOut;   -- 
Device Address, Ram Address 0X0000 
    RAM_address <= X"00"; 
    RAM_wea <='1'; 
     
    NS_FIFO_Bus<=S2; 
     
    
   when S2=>        -- 
Empty case state to allow registers to stabalize 
    NS_FIFO_Bus <= S3; 
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   when S3=> 
    if(STD_FIFO_R_Empty = '1') then  --Check to see if 
commands are in queue 
     NS_FIFO_Bus<=S3; 
    else 
     NS_FIFO_Bus<=S4; 
     STD_FIFO_R_ReadEn <= '1';  --Assert Read Signal for 
FIFO 
    end if; 
    
    
    
   when S4=>        --Read 
Command from FIFO 
    RAM_Data_In <= STD_FIFO_R_DataOut;   -- 
Functional Code, Ram Address 0X0001 
    RAM_address <= X"01"; 
    RAM_wea <='1'; 
    Temp_Cmd <= STD_FIFO_R_DataOut;  
    LD_Temp_Cmd <= '1'; 
     
    NS_FIFO_Bus<=S40; 
     
     
   when S40=>  
    if(STD_FIFO_R_Empty = '1') then  --Check to see if 
commands are in queue 
     NS_FIFO_Bus<=S40; 
    else 
     NS_FIFO_Bus<=S41; 
     STD_FIFO_R_ReadEn <= '1';   --Assert Read 
Signal for FIFO 
    end if; 
   
     
   when S41=>        --Load 
Starting Address High 
    Reg_Addr_H <= STD_FIFO_R_DataOut; 
    LD_Reg_Addr_H <='1'; 
    Temp_Cmd <= STD_FIFO_R_DataOut; 
    LD_Temp_Cmd <= '1'; 
    RAM_Data_In <= STD_FIFO_R_DataOut;   -- 
Starting Address High, Ram Address 0X0002 
    RAM_address <= X"02"; 
    RAM_wea <='1'; 
    NS_FIFO_Bus <= S42; 
     
     
   when S42=>  
    if(STD_FIFO_R_Empty = '1') then  --Check to see if 
commands are in queue 
     NS_FIFO_Bus<=S42; 
    else 
     NS_FIFO_Bus<=S43; 
     STD_FIFO_R_ReadEn <= '1';   --Assert Read 
Signal for FIFO 
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    end if; 
  
     
   when S43=>        --Load 
Starting Address Low 
    Reg_Addr_L <= STD_FIFO_R_DataOut; 
    LD_Reg_Addr_L <='1'; 
    Temp_Cmd <= STD_FIFO_R_DataOut; 
    LD_Temp_Cmd <= '1'; 
    RAM_Data_In <= STD_FIFO_R_DataOut;   -- 
Starting Address Low, Ram Address 0X0003 
    RAM_address <= X"03"; 
    RAM_wea <='1'; 
     
    NS_FIFO_Bus <= S44; 
     
   when S44=>  
    if(STD_FIFO_R_Empty = '1') then  --Check to see if 
commands are in queue 
     NS_FIFO_Bus<=S44; 
    else 
     NS_FIFO_Bus<=S45; 
     STD_FIFO_R_ReadEn <= '1';   --Assert Read 
Signal for FIFO 
    end if; 
     
   when S45=> 
    Base_Addr(15 downto 8) <= Reg_Addr_H_reg_o; 
    Base_Addr(7 downto 0) <= Reg_Addr_L_reg_o; 
    LD_Base_Addr <= '1'; 
    NS_FIFO_Bus <= S46; 
     
     
   -- Here add and store the Num of Reg Hi and Lo This is used in the write 
response       
   when S46=>        --Load 
Number of Registers High 
    Reg_Num_H <= STD_FIFO_R_DataOut; 
    LD_Reg_Num_H <='1'; 
    Temp_Cmd <= STD_FIFO_R_DataOut; 
    LD_Temp_Cmd <= '1'; 
    RAM_Data_In <= STD_FIFO_R_DataOut;   -- 
Number of Registers High, Ram Address 0X0004 
    RAM_address <= X"04"; 
    RAM_wea <='1'; 
    NS_FIFO_Bus <= S47; 
     
     
   when S47=>  
    if(STD_FIFO_R_Empty = '1') then  --Check to see if 
commands are in queue 
     NS_FIFO_Bus<=S47; 
    else 
     NS_FIFO_Bus<=S48; 
     STD_FIFO_R_ReadEn <= '1';   --Assert Read 
Signal for FIFO 
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    end if; 
  
     
   when S48=>        --Load 
Number of Registers Low 
    Reg_Num_L <= STD_FIFO_R_DataOut; 
     
    Reg_Cnt <= Reg_Num_L + Reg_Num_L; -- Register Count = 
Number of Bytes more = 2 * Register Number Low  
     
    LD_Reg_Num_L <='1'; 
    LD_Reg_Cnt<='1'; 
     
    Temp_Cmd <= STD_FIFO_R_DataOut; 
    LD_Temp_Cmd <= '1'; 
     
    RAM_Data_In <= STD_FIFO_R_DataOut;   -- 
Number of Registers Low, Ram Address 0X0005 
    RAM_address <= X"05"; 
    RAM_wea <='1'; 
     
    NS_FIFO_Bus <= S49; 
    
   
     
   when S49=>  
    if(STD_FIFO_R_Empty = '1') then  --Check to see if 
commands are in queue 
     NS_FIFO_Bus<=S49; 
    else 
     NS_FIFO_Bus<=S50; 
     STD_FIFO_R_ReadEn <= '1';   --Assert Read 
Signal for FIFO 
    end if; 
     
     
    
   when S50=> 
    RAM_address <= X"01";    -- Set 
RAM_address to function code for routing 
    NS_FIFO_Bus<=S51; 
    
    
   -- If this is a write request, store the value of "Number of Bytes further" into 
Num_More 
    
   when S51=> 
    if(RAM_Data_Out = X"03") then  --Check Cmd (Read) - Original 
UART is 0x0F for Read 
     Is_Read <= X"01"; 
     LD_Is_Read <= '1'; 
     NS_FIFO_Bus <= S60; 
    elsif(RAM_Data_Out = X"10") then --Check Cmd (Write) - Original 
UART is 0x0A for Write 
     Is_Read <= X"00"; 
     LD_Is_Read <= '1'; 
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     NS_FIFO_Bus <= S52; 
    else        --Check 
Cmd (Invalid Data) 
     NS_FIFO_Bus <= S0; 
    end if; 
    
    
   when S52=> 
    RAM_address <= X"06";   -- Set RAM_address to 
06 
  
    NS_FIFO_Bus <= S53; 
    
   when S53=> 
    Num_More<=STD_FIFO_R_DataOut;   -- Num_More = 
Num Bytes MORE 
    Reg_Cnt<=Num_More;      -- 
Setting Reg Cnt to Pkt Len for testing 
    LD_Num_More<='1'; 
    LD_Reg_Cnt<='1'; 
    Temp_Cmd <= STD_FIFO_R_DataOut; 
    LD_Temp_Cmd <= '1';  
    RAM_Data_In <= STD_FIFO_R_DataOut;   -- Num 
More Bytes (Num_More), Ram Address 0X0006   NOTE, Num More Byes 0X06 is for WRITE ONLY 
    RAM_address <= X"06"; 
    RAM_wea <='1';  
     
    NS_FIFO_Bus<=S54; 
     
   when S54=> 
    RAM_address <= X"01";    -- Set Ram 
Address to 0X01 for Function Code for state routing 
     
    NS_FIFO_Bus<=S5; 
     
     
     
   when S60=> 
    Chk_Sum <= X"0000"; 
    LD_Chk_Sum <= '1'; 
    NS_FIFO_Bus <= S61; 
     
   when S61=> 
    NS_FIFO_Bus <= S62; 
     
   when S62=> 
    Chk_Sum <= STD_FIFO_R_DataOut & Chk_Sum_reg_o(15 downto 8);
 --High Byte of CRC added to Low Byte of Chk_Sum_reg_o 
    Temp_Cmd <= STD_FIFO_R_DataOut;      
    LD_Temp_Cmd <= '1'; 
    LD_Chk_Sum <= '1'; 
    NS_FIFO_Bus <= S63; 
     
   when S63=>  
    if(STD_FIFO_R_Empty = '1') then  --Check to see if 
commands are in queue 
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     NS_FIFO_Bus<=S63; 
    else 
     NS_FIFO_Bus<=S64; 
     STD_FIFO_R_ReadEn <= '1';   --Assert Read 
Signal for FIFO 
    end if; 
     
   when S64=> 
    Chk_Sum <= STD_FIFO_R_DataOut & Chk_Sum_reg_o(15 downto 8); 
 --Low Byte of CRC added to High Byte of Chk_Sum_reg_o 
    LD_Chk_Sum <= '1'; 
    Temp_Cmd <= STD_FIFO_R_DataOut;      
    LD_Temp_Cmd <= '1'; 
    NS_FIFO_Bus <= S300; 
     
     
     
   ---------------------------  
     
     
    
   when S5=> 
    RAM_address <= X"01"; 
    if((Num_More_reg_o < X"FF") and (Num_More_reg_o > X"03")) then 
 --Check Packet Length (Packet Length < 255 bytes) [0xFE is Max; 0x04 is Min] 
     NS_FIFO_Bus <= S6; 
     -- Code that skips from S5 to S300 for read requests 
     if(RAM_Data_Out = X"03") then 
      NS_FIFO_Bus <= S300; 
     end if; 
    else        --Check 
Cmd (Invalid Data) 
     NS_FIFO_Bus <= S0; 
    end if; 
    Chk_Sum <= X"0000"; 
    LD_Chk_Sum <='1'; 
    Rcv_Cnt_rst<='0';     --Active Low 
     
    RAM_address <= X"01"; 
     
     
   -- S6-S9: Process to collect incoming data 
   when S6=> 
    if(Rcv_Cnt_Out < (Num_More_reg_o+2)) then  --Read data to 
memory 
     NS_FIFO_Bus <= S7; 
    else    
     NS_FIFO_Bus <= S300; 
    end if; 
    
   when S7=>  
    if(STD_FIFO_R_Empty = '1') then  --Check to see if 
commands are in queue 
     NS_FIFO_Bus<=S7; 
    else 
     NS_FIFO_Bus<=S8; 
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     STD_FIFO_R_ReadEn <= '1';   --Assert Read 
Signal for FIFO 
    end if; 
   
   when S8=>        
 --Read Data from FIFO to memory and calc checksum 
    if(Rcv_Cnt_Out > (Num_More_reg_o - 1)) then -- If we are past the data, 
load in check sum 
     Chk_Sum <= STD_FIFO_R_DataOut & Chk_Sum_reg_o(15 
downto 8); 
     LD_Chk_Sum <= '1'; 
    end if; 
    RAM_Data_In <= STD_FIFO_R_DataOut;    
    -- Here the RAM address offset will be + 7, RAM_address 0X00 to 0X06 
consist packet information (not data) 
    RAM_address <= Rcv_Cnt_Out + 7;    -- 
Changed from 1 to 7, storing all pack information in RAM 
    RAM_wea <='1'; 
    Temp_Cmd <= STD_FIFO_R_DataOut;      
    LD_Temp_Cmd <= '1'; 
    Rcv_Cnt_INC<='1'; 
    NS_FIFO_Bus <= S6; 
    
 ---------- Adjusting Chk_sum. Forcing a pass of S9 
  
  
   --------------------------------------------------------------------------- 
   -- CRC16 Forming for Commands. This is used to check the calculated CRC16 
(CRC16_Temp_reg_o) vs the.... 
   -- given CRC16 value (Chk_Sum_reg_o) 
   --------------------------------------------------------------------------- 
    
   when S300=>       -- Reset 
CRC16_Temp_reg_o and Set A_Poly_reg_o 
    --Statements for Testing 
    --STD_FIFO_W_DataIn<= X"AA"; 
    --STD_FIFO_W_WriteEn <='1'; 
     
     
    CRC16_Temp <= X"FFFF";    -- Load 
CRC16_Temp_reg_o with all 1's 
    LD_CRC16_Temp <= '1'; 
    A_Poly <= X"A001";     -- Load A_Poly 
    LD_A_Poly <= '1'; 
    CRC_Cnt_rst <= '0';     -- Active Low 
    XOR_Cnt_rst <= '0'; 
    XOR2_Cnt_rst <= '0'; 
    CRC_Pass <= X"00"; 
    LD_CRC_Pass <= '1'; 
    Ram_address <= X"00";    -- Reset RAM Address 
to 0. First data point at address 1, next state increments to 1 
    NS_FIFO_Bus <= S301; 
     
   when S301=>       -- Check if there 
is more data to process 
    Ram_address <= XOR_Cnt_Out; 
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    NS_FIFO_Bus <= S335; 
     
   when S335 => 
    Ram_address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S302; 
      
   when S302=>       -- XOR 
CRC16_Temp with Data Register (16 bit XOR 8 bit), XOR's one data register with CRC16_Temp 
    --Statements for Testing 
    --STD_FIFO_W_DataIn<= X"BB"; 
    --STD_FIFO_W_WriteEn <='1'; 
      
      
    CRC16_Temp <=  CRC16_Temp_reg_o XOR (X"00" & RAM_Data_Out); 
-- LEFT OF HERE 
    LD_CRC16_Temp <= '1'; 
    NS_FIFO_Bus <= S331; 
     
   when S331=> 
    if(CRC16_Temp_reg_o(0) = '1') then 
     Carry_Over <= X"01"; 
     LD_Carry_Over <= '1'; 
    end if; 
    NS_FIFO_Bus <= S303; 
     
     
   when S303=>       -- Shift 
CRC16_Temp_reg_o to the right 
    CRC16_Temp <= '0' & CRC16_Temp_reg_o(15 downto 1); 
    LD_CRC16_Temp <= '1'; 
    NS_FIFO_Bus <= S304; 
       
   when S304 =>      -- Check for Carry Over 
in CRC16_Temp_reg_o 
    --Statements for Testing 
    --STD_FIFO_W_DataIn<= X"C0"; 
    --STD_FIFO_W_WriteEn <='1'; 
     
    if(Carry_Over_reg_o = X"01") then 
     NS_FIFO_Bus <= S305; 
    else 
     NS_FIFO_Bus <= S306; 
    end if; 
     
   when S305 =>       -- Carry Over was 
positive, CRC16 XOR POLY 
     CRC16_Temp <= CRC16_Temp_reg_o xor A_Poly_reg_o; 
     LD_CRC16_Temp <= '1'; 
     Carry_Over <= X"00"; 
     LD_Carry_Over <= '1'; 
     NS_FIFO_Bus <= S306; 
     
   when S306 =>      -- Increment CRC_Cnt 
    CRC_Cnt_INC <= '1'; 
    NS_FIFO_Bus <= S320; 
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   when S320 => 
    NS_FIFO_Bus <= S307; 
     
   when S307 =>      -- Check if CRC_Cnt > 
7 
    if(CRC_Cnt_Out > 7) then 
     NS_FIFO_Bus <= S308; 
    else 
     NS_FIFO_Bus <= S331; 
    end if; 
    Ram_address <= XOR_Cnt_Out; 
    
   when S308 => 
    if(Is_Read_reg_o = X"01") then  -- Read 
     NS_FIFO_Bus <= S309; 
    elsif(Is_Read_reg_o = X"00") then -- Write 
     NS_FIFO_Bus <= S333;  
    else 
     NS_FIFO_Bus <= S0;  -- Somethign went wrong, reset 
    end if; 
    CRC_Cnt_rst <= '0'; 
    Ram_address <= XOR_Cnt_Out; 
     
     
     
     
   when S309 => 
    if(XOR_Cnt_Out = X"05") then 
     NS_FIFO_Bus <= D6; -- End of write message 
    else 
     XOR_Cnt_INC <= '1'; 
     NS_FIFO_Bus <= S310; 
    end if; 
    
   when S310 =>  
    Ram_Address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S330; 
     
   when S330 => 
    Ram_Address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S302; 
    
   -- write 
   when S333 => 
    Ram_Address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S400; 
     
   when S400 => 
    --Statements for Testing 
    --STD_FIFO_W_DataIn<= XOR_Cnt_Out; 
    --STD_FIFO_W_WriteEn <='1'; 
    
    
    Ram_Address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S401; 
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   when S401 => 
    --Statements for Testing 
    --STD_FIFO_W_DataIn<= Ram_Address; 
    --STD_FIFO_W_WriteEn <='1'; 
    
    --Ram_Address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S311; 
    
     
   when S311 => 
    --Statements for Testing 
    --STD_FIFO_W_DataIn<= XOR_Cnt_Out; 
    --STD_FIFO_W_WriteEn <='1'; 
    
    
    if(XOR_Cnt_Out < (Reg_Num_L_reg_o + Reg_Num_L_reg_o + 6)) then 
    --Statements for Testing 
     --STD_FIFO_W_DataIn<= RAM_Address; 
     --STD_FIFO_W_WriteEn <='1'; 
      
     XOR_Cnt_INC <= '1'; 
     NS_FIFO_Bus <= S336; 
    else 
     NS_FIFO_Bus <= D6; 
     --NS_FIFO_Bus <= S9; 
    end if; 
    
    
   when S336 => 
    --Statements for Testing 
    --STD_FIFO_W_DataIn<= X"DD"; 
    --STD_FIFO_W_WriteEn <='1'; 
     
    NS_FIFO_Bus <= S301; 
    
   -- Sequence for 3.5 Char Delay before response message sent 
   when D6 => 
    XOR2_Cnt_rst<='0'; 
    NS_FIFO_Bus <= D7; 
     
   when D7 => 
    if(XOR2_Cnt_Out < 52500) then  -- 52500 = 3.675 Char @ 9600 
Baud, minimum of 3.5 Char 
     XOR2_Cnt_INC <= '1'; 
     NS_FIFO_Bus<= D8; 
    else 
     NS_FIFO_Bus <= S312; 
     XOR2_Cnt_rst<='0'; 
    end if; 
     
   When D8 => 
    NS_FIFO_Bus <= D7; 
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   when S312 =>      -- Check if Received 
CRC is correct 
    --Statements for Testing 
    --STD_FIFO_W_DataIn<= X"CC"; 
    --STD_FIFO_W_WriteEn <='1'; 
     
    if(CRC16_Temp_reg_o = Chk_Sum_reg_o) then  
     CRC_Pass <= X"01";     --
CRC16 Correct 
     LD_CRC_Pass <= '1'; 
     NS_FIFO_Bus <= S10; 
    else 
     CRC_Pass <= X"00";     --
CRC16 WRONG 
     LD_CRC_Pass <= '1'; 
     NS_FIFO_Bus <= E1; 
    end if; 
    Rcv_Cnt_rst<='0'; 
    RAM_address <= X"01"; 
     
    
   -----------------------------------------------------------------------------------------------------  
    
   --Error response starts on S313 
   -- Write Response after saving data 
    
   when E1 =>       -- Set Ram 
Address to 0X00, Device ID 
    RAM_address <= X"00"; 
    NS_FIFO_Bus<=E2; 
    
   when E2=>        --Send 
First byte of Packet(Device ID) 
    STD_FIFO_W_DataIn<= RAM_Data_Out; 
    STD_FIFO_W_WriteEn <='1'; 
    NS_FIFO_Bus<=E3; 
    
   when E3=> 
    RAM_address <= X"01"; 
    NS_FIFO_Bus<= E4; 
    
   when E4=> 
    RAM_Data_In <= RAM_Data_Out + 128; -- OP ID, error changes 
high-order bit to 1 
    RAM_address <= X"01"; 
    RAM_wea <='1'; 
    NS_FIFO_Bus<=E5; 
     
   when E5=>        -- 
Timing delay 
    RAM_address <= X"01"; 
    NS_FIFO_Bus<=E6; 
    
    
   when E6=>        --Send 
Second byte of Packet (OP_ID), error changes high-order bit to 1 
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    STD_FIFO_W_DataIn <= RAM_Data_Out; --Send OP_ID, error 
changes high-order bit to 1 
    STD_FIFO_W_WriteEn <='1'; 
    NS_FIFO_Bus<=E7; 
     
   when E7=>        --Send 
Fourth byte of Packet - Error Code 
    STD_FIFO_W_DataIn <= X"01"; --Send Error Code, Currently defaulting 
to 01 = "FUNCTION CODE ACCEPTED CAN NOT BE PROCESSED" 
    STD_FIFO_W_WriteEn <='1'; 
    NS_FIFO_Bus<=E8; 
     
   -- Calculate CRC16 for Error Response (Starts at state E8) 
   when E8=>       -- Reset 
CRC16_Temp_reg_o and Set A_Poly_reg_o 
    CRC16_Temp <= X"FFFF";    -- Load 
CRC16_Temp_reg_o with all 1's 
    LD_CRC16_Temp <= '1'; 
    A_Poly <= X"A001";     -- Load A_Poly 
    LD_A_Poly <= '1'; 
    CRC_Cnt_rst <= '0';     -- Active Low 
    XOR_Cnt_rst <= '0'; 
    XOR2_Cnt_rst <= '0'; 
    Ram_address <= X"00";    -- Reset RAM Address 
to 0. First data point at address 1, next state increments to 1 
    NS_FIFO_Bus <= E9; 
     
   when E9=>       -- Check if there 
is more data to process 
    Ram_address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= E10; 
     
   when E10 => 
    Ram_address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= E11; 
      
   when E11=>       -- XOR 
CRC16_Temp with Data Register (16 bit XOR 8 bit), XOR's one data register with CRC16_Temp 
     CRC16_Temp <=  CRC16_Temp_reg_o XOR (X"00" & 
RAM_Data_Out); 
     LD_CRC16_Temp <= '1'; 
     NS_FIFO_Bus <= E12; 
     
   when E12=> 
    if(CRC16_Temp_reg_o(0) = '1') then 
     Carry_Over <= X"01"; 
     LD_Carry_Over <= '1'; 
    end if; 
    NS_FIFO_Bus <= E13; 
     
     
   when E13=>       -- Shift 
CRC16_Temp_reg_o to the right 
    CRC16_Temp <= '0' & CRC16_Temp_reg_o(15 downto 1); 
    LD_CRC16_Temp <= '1'; 
    NS_FIFO_Bus <= E14; 
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   when E14 =>       -- Check for 
Carry Over in CRC16_Temp_reg_o 
    if(Carry_Over_reg_o = X"01") then 
     NS_FIFO_Bus <= E15; 
    else 
     NS_FIFO_Bus <= E16; 
    end if; 
     
   when E15 =>       -- Carry Over was 
positive, CRC16 XOR POLY 
     CRC16_Temp <= CRC16_Temp_reg_o xor A_Poly_reg_o; 
     LD_CRC16_Temp <= '1'; 
     Carry_Over <= X"00"; 
     LD_Carry_Over <= '1'; 
     NS_FIFO_Bus <= E16; 
     
   when E16 =>      -- Increment CRC_Cnt 
    CRC_Cnt_INC <= '1'; 
    NS_FIFO_Bus <= E17; 
     
   when E17 => 
    NS_FIFO_Bus <= E18; 
     
   when E18 =>      -- Check if CRC_Cnt > 
7 
    if(CRC_Cnt_Out > 7) then 
     NS_FIFO_Bus <= E19; 
    else 
     NS_FIFO_Bus <= E12; 
    end if; 
    Ram_address <= XOR_Cnt_Out; 
     
    
   when E19 => 
    CRC_Cnt_rst <= '0'; 
    Ram_address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= E20; 
     
     
   when E20 => 
    if(XOR_Cnt_Out < 2) then 
     XOR_Cnt_INC <= '1'; 
     NS_FIFO_Bus <= E21; 
    else 
     NS_FIFO_Bus <= E22; 
    end if; 
    
    
   when E21 => 
    NS_FIFO_Bus <= E9; 
    
  
    
   when E22=>        -- Send 
Least Significant byte of calculated Check Sum (CRC16) 
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    STD_FIFO_W_DataIn<= CRC16_Temp_reg_o(7 downto 0); 
    STD_FIFO_W_WriteEn <='1'; 
    XOR_Cnt_rst <= '0'; 
    NS_FIFO_Bus <= E23; 
     
   when E23=>        -- Send 
Most Significant byte of calculated Check Sum (CRC16) 
    STD_FIFO_W_DataIn<= CRC16_Temp_reg_o(15 downto 8); 
    STD_FIFO_W_WriteEn <='1'; 
    XOR_Cnt_rst <= '0'; 
    NS_FIFO_Bus <= S0; 
   -----------------------------------------------------------------------------------------------------  
     
     
   ---------------------------------- 
   -- Temporary Pass Through - Start 
   ---------------------------------- 
    
   when S10=> 
    RAM_address <= X"01";     -- 
Location of functional code 
    NS_FIFO_Bus <= S11; 
     
   when S11=> 
    RAM_address <= X"01";     -- 
Location of functional code 
    NS_FIFO_Bus <= S16; 
    
     
     
     
   ---------------------------------- 
   -- Temporary Pass Through - Start 
   ---------------------------------- 
    
    
    
    
   -- Set Ram_address <= X"01" before this 
   when S16=> 
    --Statements for Testing 
    --STD_FIFO_W_DataIn<= X"DD"; 
    --STD_FIFO_W_WriteEn <='1'; 
     
     
    --RAM_address <= X"01"; 
    if(RAM_Data_Out = X"03") then  --Check Cmd (Read) - Original 
UART is 0x0F for Read 
     NS_FIFO_Bus <= S17; 
    elsif(RAM_Data_Out = X"10") then --Check Cmd (Write) - Original 
UART is 0x0A for Write 
     NS_FIFO_Bus <= S25; 
    else        --Check 
Cmd (Invalid Data) 
     NS_FIFO_Bus <= S0; 
    end if; 
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    RAM_address <= X"00"; 
     
    Rcv_Cnt_rst<='0'; 
    
   -- Start Read Command Sequence 
    
    
   when S17=>        --Send 
First byte of Packet(Start Deliminator) 
    STD_FIFO_W_DataIn<= RAM_Data_Out; 
    STD_FIFO_W_WriteEn <='1'; 
     
    NS_FIFO_Bus<=S18; 
    
    
   when S18=>        --Send 
Second byte of Packet (OP_ID) 
    STD_FIFO_W_DataIn <= X"03";   --Send OP_ID (Write)
 Original UART 0X0A, Modbus responds with the same Function Code 
    STD_FIFO_W_WriteEn <='1'; 
     
    RAM_Data_In <= (Reg_Num_L_reg_o + Reg_Num_L_reg_o);  
 -- Storing Num More Packets in Local RAM 
    RAM_address <= X"06"; -- Always Local RAM address for Num 
More Packets 
     
    NS_FIFO_Bus<=S19; 
     
   when S19=>        --Send 
Num More Bytes      
    STD_FIFO_W_DataIn <= (Reg_Num_L_reg_o + Reg_Num_L_reg_o);
 --Packet length is the number of data registers  
     
    RAM_Data_In <= (Reg_Num_L_reg_o + Reg_Num_L_reg_o);  
 -- Storing Num More Packets in Local RAM 
    RAM_address <= X"06"; -- Always Local RAM address for Num 
More Packets 
    RAM_wea <='1'; 
    Ram_Cnt_rst <= '0'; 
     
     
    STD_FIFO_W_WriteEn <='1'; 
     
        
    NS_FIFO_Bus<=S20; 
    
    
    
   when S20=> 
    --if(Rcv_Cnt_Out < Reg_Num_L_reg_o + Reg_Num_L_reg_o) then
 --If less than Register Count (Packet Length Register Used Here) -- Bug, changed from < 
Num_More_reg_o TO < Reg_Num_L_reg_o + Reg_Num_L_reg_o ON 11/1/2021 
    if(Rcv_Cnt_Out < Reg_Num_L_reg_o) then 
     Bus_Int1_AddrIn <= Base_Addr_reg_o + Rcv_Cnt_Out ; --Send 
Address to Bus Interface for Read  
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     Bus_Int1_RE <='1';     
 --Read Flag to Bus Interface 
     NS_FIFO_Bus<=S21; 
    else 
     Is_Read <= X"01";     
 -- Sets value to 0, is NOT read 
     LD_Is_Read <= '1'; 
     NS_FIFO_Bus<=S100; 
    end if; 
      
   when S21=>         
 --Wait until data is ready 
    if(Bus_Int1_Busy = '1') then 
     NS_FIFO_Bus<=S21; 
    else 
     NS_FIFO_Bus<=D5; 
    end if; 
     
   when D5=> 
    Temp_Data <= Bus_Int1_DataOut; 
    LD_Temp_Data <= '1'; 
    NS_FIFO_Bus<=S22; 
    
   when S22=>        
 -- Send Data High 
    STD_FIFO_W_DataIn <= Temp_Data_reg_o(15 downto 8); 
    STD_FIFO_W_WriteEn <='1'; 
     
    RAM_Data_In <= Temp_Data_reg_o(15 downto 8); 
    RAM_address <= Rcv_Cnt_Out + Ram_Cnt_Out + 7; -- +7 
    NS_FIFO_Bus <= D1; 
     
   when D1=> 
    RAM_Data_In <= Temp_Data_reg_o(15 downto 8); 
    RAM_address <= Rcv_Cnt_Out + Ram_Cnt_Out + 7; -- +7 
    RAM_wea <='1'; 
    NS_FIFO_Bus <= D2; 
     
   when D2=> 
    Ram_Cnt_INC <='1'; 
    NS_FIFO_Bus <= S23; 
     
   when S23=>        
 -- Send Data Low 
    STD_FIFO_W_DataIn<= Temp_Data_reg_o(7 downto 0); 
    STD_FIFO_W_WriteEn <='1'; 
     
    RAM_Data_In <= Temp_Data_reg_o(7 downto 0); 
    RAM_address <= Rcv_Cnt_Out + Ram_Cnt_Out + 7; -- +8 
     
    
    NS_FIFO_Bus <= D3; 
     
   when D3=> 
    RAM_Data_In <= Temp_Data_reg_o(7 downto 0); 
    RAM_address <= Rcv_Cnt_Out + Ram_Cnt_Out + 7; -- +8 
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    RAM_wea <='1'; 
     
    NS_FIFO_Bus <= D4; 
     
   when D4=> 
    Rcv_Cnt_Inc <='1'; 
     
    NS_FIFO_Bus <= S20; 
    
   ----------------------------------------------------------------------------------------  
    
   -- Start Write Command Sequence 
   when S25=> 
    -- Using (2 * rcv_cnt_out < Num_More_reg_0) as Num_More is 14 bytes, 
but we use 7 registers to hold this: high and low bytes 
    --if(Rcv_Cnt_Out < Num_More_reg_o - 1) then --If less than Register 
Count - CHANGED to Num_More_reg_o from Reg_Cnt_reg_o 
    if(Rcv_Cnt_Out < Reg_Num_L_reg_o) then  
     NS_FIFO_Bus <= S26; 
    else 
     NS_FIFO_Bus <= S402;    
 --Done writing, now send Write Response (Confirmation) 
    end if; 
    RAM_address <= Rcv_Cnt_Out + Rcv_Cnt_Out + 7;  -- +1 to 
+7 
     
   when S26=> 
    RAM_address <= Rcv_Cnt_Out + Rcv_Cnt_Out + 7; 
    Temp_Data_High <= RAM_Data_Out; 
    --LD_Temp_Data_High <='1'; 
    NS_FIFO_Bus <= S27; 
     
   when S27=> 
    RAM_address <= Rcv_Cnt_Out + Rcv_Cnt_Out + 7; 
    Temp_Data_High <= RAM_Data_Out; 
    LD_Temp_Data_High <='1'; 
    NS_FIFO_Bus <= S28; 
    
   when S28=> 
    RAM_address <= Rcv_Cnt_Out + Rcv_Cnt_Out + 8;  -- +2 to 
+8 
    NS_FIFO_Bus <= S29; 
    
   when S29=> 
    RAM_address <= Rcv_Cnt_Out + Rcv_Cnt_Out + 8; 
    Temp_Data_Low <= RAM_Data_Out; 
    --LD_Temp_Data_Low <='1'; 
    NS_FIFO_Bus <= S30; 
     
   when S30=> 
    RAM_address <= Rcv_Cnt_Out + Rcv_Cnt_Out + 8; 
    Temp_Data_Low <= RAM_Data_Out; 
    LD_Temp_Data_Low <='1'; 
    NS_FIFO_Bus <= S31; 
     
   when S31=> 
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    NS_FIFO_Bus <= S32; 
     
   when S32=> 
    Bus_Int1_AddrIn <= Base_Addr_reg_o + Rcv_Cnt_Out;   --Send 
Address to Bus Interface for Write 
    Bus_Int1_DataIn(15 downto 8)<=Temp_Data_High_reg_o; --Send 
Data to Bus Interface for Write  
    Bus_Int1_DataIn(7 downto 0)<=Temp_Data_Low_reg_o;  --Send 
Data to Bus Interface for Write  
    Bus_Int1_WE <='1';       
     --Write Flag to Bus Interface 
    NS_FIFO_Bus <= S33; 
     
   when S33=>         
 --Wait until data is ready 
    if(Bus_Int1_Busy = '1') then 
     NS_FIFO_Bus<=S33; 
    else 
     Rcv_Cnt_Inc <='1'; 
     NS_FIFO_Bus<=S25; 
    end if;  
     
     
       
   ----------------------------------------------------------- 
   -- Write Response after saving data 
    
   when S402 =>       -- Set Ram 
Address to 0X00, Device ID 
    RAM_address <= X"00"; 
    NS_Fifo_Bus<=S34; 
    
   -- This needs to be changed to slave ID 
   when S34=>        --Send 
First byte of Packet(Start Deliminator) 
    STD_FIFO_W_DataIn<= RAM_Data_Out; 
    STD_FIFO_W_WriteEn <='1'; 
    NS_FIFO_Bus<=S35; 
    
    
   when S35=>        --Send 
Second byte of Packet (OP_ID) 
    STD_FIFO_W_DataIn <= X"10";   --Send OP_ID (Write)
 Original UART 0X0A, Modbus responds with the same Function Code 
    STD_FIFO_W_WriteEn <='1'; 
    NS_FIFO_Bus<=S36; 
     
   when S36=>        --Send 
Fourth byte of Packet (Starting Address High) 
    STD_FIFO_W_DataIn <= Reg_Addr_H_reg_o; --Send Start Address 
High 
    STD_FIFO_W_WriteEn <='1'; 
    NS_FIFO_Bus<=S37; 
    
   when S37=>        --Send 
Fifth byte of Packet (Starting Address Low) 
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    STD_FIFO_W_DataIn <= Reg_Addr_L_reg_o; --Send Start Address 
Low 
    STD_FIFO_W_WriteEn <='1'; 
    NS_FIFO_Bus<=S38; 
     
   when S38=>        --Send 
Sixth byte of Packet (Number of Registers High) 
    STD_FIFO_W_DataIn <= Reg_Num_H_reg_o; --Send Number of 
Registers High 
    STD_FIFO_W_WriteEn <='1'; 
    NS_FIFO_Bus<=S39;     
     
     
   when S39=>        --Send 
Fifth byte of Packet (Number of Registers Low) 
    STD_FIFO_W_DataIn <= Reg_Num_L_reg_o; --Send Number of 
Registers Low 
    STD_FIFO_W_WriteEn <='1'; 
    Is_Read <= X"00";      -- Sets value to 
0, is NOT read 
    LD_Is_Read <= '1'; 
    XOR_Cnt_rst <= '0'; 
    NS_FIFO_Bus <= S100; 
    
    
   ----------------------------------------------------------------------------------------  
    
    
    
   -- End Write Command Sequence 
    
    
    
    
    
    
   --------------------------------------------------------------------------- 
   -- CRC16 Forming for Responses. Both write and read response will go here 
   --------------------------------------------------------------------------- 
    
   when S100=>       -- Reset 
CRC16_Temp_reg_o and Set A_Poly_reg_o 
    CRC16_Temp <= X"FFFF";    -- Load 
CRC16_Temp_reg_o with all 1's 
    LD_CRC16_Temp <= '1'; 
    A_Poly <= X"A001";     -- Load A_Poly 
    LD_A_Poly <= '1'; 
    CRC_Cnt_rst <= '0';     -- Active Low 
    XOR_Cnt_rst <= '0'; 
    XOR2_Cnt_rst <= '0'; 
    Ram_address <= X"00";    -- Reset RAM Address 
to 0. First data point at address 1, next state increments to 1 
    NS_FIFO_Bus <= S101; 
     
   when S101=>       -- Check if there 
is more data to process 
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    Ram_address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S135; 
     
   when S135 => 
    Ram_address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S102; 
      
   when S102=>       -- XOR 
CRC16_Temp with Data Register (16 bit XOR 8 bit), XOR's one data register with CRC16_Temp 
     CRC16_Temp <=  CRC16_Temp_reg_o XOR (X"00" & 
RAM_Data_Out); -- LEFT OF HERE 
     LD_CRC16_Temp <= '1'; 
     NS_FIFO_Bus <= S131; 
     
   when S131=> 
    if(CRC16_Temp_reg_o(0) = '1') then 
     Carry_Over <= X"01"; 
     LD_Carry_Over <= '1'; 
    end if; 
    NS_FIFO_Bus <= S103; 
     
     
   when S103=>       -- Shift 
CRC16_Temp_reg_o to the right 
    CRC16_Temp <= '0' & CRC16_Temp_reg_o(15 downto 1); 
    LD_CRC16_Temp <= '1'; 
    NS_FIFO_Bus <= S104; 
       
   when S104 =>      -- Check for Carry Over 
in CRC16_Temp_reg_o 
    if(Carry_Over_reg_o = X"01") then 
     NS_FIFO_Bus <= S105; 
    else 
     NS_FIFO_Bus <= S106; 
    end if; 
     
   when S105 =>       -- Carry Over was 
positive, CRC16 XOR POLY 
     CRC16_Temp <= CRC16_Temp_reg_o xor A_Poly_reg_o; 
     LD_CRC16_Temp <= '1'; 
     
     Carry_Over <= X"00"; 
     LD_Carry_Over <= '1'; 
     NS_FIFO_Bus <= S106; 
     
   when S106 =>      -- Increment CRC_Cnt 
    CRC_Cnt_INC <= '1'; 
    NS_FIFO_Bus <= S120; 
     
   when S120 => 
    NS_FIFO_Bus <= S107; 
     
   when S107 =>      -- Check if CRC_Cnt > 
7 
    if(CRC_Cnt_Out > 7) then 
     NS_FIFO_Bus <= S108; 
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    else 
     NS_FIFO_Bus <= S131; 
    end if; 
    Ram_address <= XOR_Cnt_Out; 
     
    
   when S108 => 
    if(Is_Read_reg_o = X"00") then  -- Write 
     NS_FIFO_Bus <= S109; 
    elsif(Is_Read_reg_o = X"01") then 
     NS_FIFO_Bus <= S133; -- Read 
    else 
     NS_FIFO_Bus <= S0;  -- Somethign went wrong 
    end if; 
    CRC_Cnt_rst <= '0'; 
    Ram_address <= XOR_Cnt_Out; 
     
     
   when S109 => 
    if(XOR_Cnt_Out = X"05") then 
     NS_FIFO_Bus <= S112; -- End of write message 
    else 
     XOR_Cnt_INC <= '1'; 
     NS_FIFO_Bus <= S110; 
    end if; 
    
   when S110 =>  
    Ram_Address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S130; 
     
   when S130 => 
    Ram_Address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S102; 
     
   when S133 => 
    Ram_Address <= XOR_Cnt_Out; 
    NS_FIFO_Bus <= S111; 
    
     
   when S111 => 
    if(XOR_Cnt_Out = X"01") then 
      NS_FIFO_Bus <= S140; 
    elsif(XOR_Cnt_Out < (Reg_Num_L_reg_o + Reg_Num_L_reg_o + 6)) 
then 
     XOR_Cnt_INC <= '1'; 
     NS_FIFO_Bus <= S136; 
    else 
     NS_FIFO_Bus <= S112; 
    end if; 
    
    
   when S136 => 
    NS_FIFO_Bus <= S101; 
    
   when S140 => 
    XOR_Cnt_INC <= '1'; 
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    NS_FIFO_Bus <= S141; 
     
   when S141 => 
    XOR_Cnt_INC <= '1'; 
    NS_FIFO_Bus <= S142; 
     
   when S142 => 
    XOR_Cnt_INC <= '1'; 
    NS_FIFO_Bus <= S143; 
     
   when S143 => 
    XOR_Cnt_INC <= '1'; 
    NS_FIFO_Bus <= S144; 
     
   when S144 => 
    XOR_Cnt_INC <= '1'; 
    NS_FIFO_Bus <= S145; 
     
   when S145 =>      -- Timing 
    NS_FIFO_Bus <= S101; 
     
     
    
   ------------------------------------------------------------- 
    
    
   ------------------------------------------------------------- 
    
   when S112=>        -- Send 
Least Significant byte of calculated Check Sum (CRC16) 
    STD_FIFO_W_DataIn<= CRC16_Temp_reg_o(7 downto 0); 
    STD_FIFO_W_WriteEn <='1'; 
    XOR_Cnt_rst <= '0'; 
    NS_FIFO_Bus <= S113; 
     
   when S113=>        -- Send 
Most Significant byte of calculated Check Sum (CRC16) 
    STD_FIFO_W_DataIn<= CRC16_Temp_reg_o(15 downto 8); 
    STD_FIFO_W_WriteEn <='1'; 
    XOR_Cnt_rst <= '0'; 
    NS_FIFO_Bus <= D9; 
     
     
     
   -- Sequence for 3.5 Char Delay before response message sent 
   when D9 => 
    XOR2_Cnt_rst<='0'; 
    NS_FIFO_Bus <= D10; 
     
   when D10 => 
    if(XOR2_Cnt_Out < 52500) then  -- 52500 = 3.675 Char @ 9600 
Baud, minimum of 3.5 Char 
     XOR2_Cnt_INC <= '1'; 
     NS_FIFO_Bus<= D11; 
    else 
     NS_FIFO_Bus <= S0; 
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     XOR2_Cnt_rst<='0'; 
    end if; 
     
   When D11 => 
    NS_FIFO_Bus <= D10; 
    
   
     
     
    
   ----------------------------------------------------------------------------- 
   -- End of CRC16 for Responses 
    
    
   when others =>  
    NS_FIFO_Bus <=S0; 
  end case; 
 end process; 
 ----End Next State Logic for FIFO to Bus  
 ----UART Clock Divider 
 UART_Clk: process 
 begin 
  wait until clk'event and clk = '1'; 
  --Synchronize async signal 
  rs232_rcv_t<=rs232_rcv;    --Synchro1 rs232_rcv 
  rs232_rcv_s<=rs232_rcv_t;   --Synchro2 rs232_rcv 
   
  if(rst = '0' or (busy_reg_o = '0' and busy2_reg_o = '0')) then 
   uartclk <='0'; 
   i <= CONV_STD_LOGIC_VECTOR(CN,16); 
  elsif( i = CM ) then 
    uartclk <= '1'; 
    i <= X"0000"; 
  else 
    i <= i+1; 
    uartclk<='0'; 
   end if; 
 end process; 
 ---- End UART Clock Divider 
 ----UART_Read 
 UART_Read: process 
 begin 
  wait until clk'event and clk = '1'; 
  if rst ='0' or rx_reg_o='0' then 
   temp_rcv<= x"00"; 
   j<=x"0000"; 
   rx_done<='0'; 
  elsif rx_reg_o='1' then 
   if uartclk='1' then 
    if j<X"09" then 
     temp_rcv(7)<=rs232_rcv_s;    
     temp_rcv(6 downto 0)<=temp_rcv(7 downto 1); 
     j<=j+1; 
     rx_done <='0'; 
    else 
     j <= X"0000"; 
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     rx_done <='1'; 
    end if; 
   else 
    rx_done<='0'; 
   end if; 
  end if; 
 end process; 
 ----End UART_Read 
 -----UART_Xmit 
 UART_Xmit: process 
 begin 
  wait until clk'event and clk = '1'; 
  if (rst = '0' or tx_reg_o='0') then 
   rs232_xmt<='1'; 
   tx_done <='0'; 
   u<=0; 
    
   --structure the 10-bit frame to be sent 
   txbuff(9)<='1'; --stopbit 2 
   txbuff(8 downto 1) <= temp2_reg_o; 
   txbuff(0)<='0'; --startbit 2 
  else 
   if uartclk = '1' then 
    if(u<10) then 
     rs232_xmt<= txbuff(0); 
     txbuff(8 downto 0) <= txbuff(9 downto 1); 
     tx_done<='0'; 
     u<=u+1; 
    else 
     u<=0; 
     tx_done<='1'; 
    end if; 
   end if; 
  end if; 
 end process; 
 -----End UART_Xmit 
  
     
 ----State Sync 
 sync_States: process 
 begin 
  wait until clk'event and clk = '1'; 
  if rst = '0' then 
   CS_RS232_R <= S0; 
   CS_RS232_W <= S0; 
   CS_FIFO_Bus <= S0; 
  else 
   CS_RS232_R <= NS_RS232_R; 
   CS_RS232_W <= NS_RS232_W; 
   CS_FIFO_Bus <= NS_FIFO_Bus; 
  end if; 
 end process; 
 ----End State Sync 
  
  
end Behavioral; 
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A-2 Digital Twin Top File With Modbus RTU Instantiation: FPGA VHDL Code 

---------------------------------------------------------------------------------- 
-- Company:  University of Arkansas (NCREPT) 
-- Engineer: Estefano Soria and Paulo Custodio 
--  
-- Create Date:   26/10/2021 
-- Project Name:   Digital_Twin 
-- Module Name:   Top 
-- Design Name:   Digital_Twin_Top 
-- Target Devices:   LCMXO2-7000HC-4FG484C (UCB v1.4a) 
-- Tool versions:   Lattice Diamond_x64 Build 3.11 
-- Description: 
-- This project has the purpose to create a Digital Twin (DT) able to emulate an Active-Neutral Point 
Clamped (ANPC) inverter using the inactive/standby DSP outputs  
-- to check if the new DSP firmware has all the requirements designed with the Design-For-Trust (DFTr) 
technique. 
-- The ANPC inverter has 6 transistors per phase, being two Fast Frequency Transistors(Q2 and Q3) and 
four Slow Frequency Transistors (Q1,Q4,Q5,Q6). 
-- 
--         
-- The strategy used to control the ANPC inverter is considering the PWM 01, which controls the transistor 
1 (Q1) the same as Q6, since they must be on and off at the same time. 
-- The same concept was applied to transistors Q4 and Q5, because they also have the same behavior. 
-- Slow transistors must have a switching frequency equivalent to the fundamental frequency 60Hz, while 
the Fast transistors (Q2 and Q3) must have a switching frequency of 42kHz. 
--  
-- PinOut: 
-- ------Inputs------ 
-- ----DSP 1 (DIMM-B)---- 
-- --Phase A-- 
-- F20 -> Q1|Q6 
-- M16 -> Q2 
-- C22 -> Q3 
-- K20 -> Q4|Q5 
-- --Phase B-- 
-- G18 -> Q1|Q6 
-- M19 -> Q2 
-- C21 -> Q3 
-- K18 -> Q4|Q5 
-- --Phase C-- 
-- K22 -> Q1|Q6 
-- L22 -> Q2 
-- B22 -> Q3 
-- J17 -> Q4|Q5 
-- ---- END DSP 1 (DIMM-B)---- 
-- ----DSP 2 (DIMM-C)---- 
-- --Phase A-- 
-- AB6 -> Q1|Q6 
-- Y7  -> Q2 
-- T8  -> Q3 
-- U10 -> Q4|Q5 
-- --Phase B-- 
-- Y4  -> Q1|Q6 
-- V8  -> Q2 
-- U8  -> Q3 
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-- W11 -> Q4|Q5 
-- --Phase C-- 
-- T10  -> Q1|Q6 
-- W9   -> Q2 
-- AA8  -> Q3 
-- V11  -> Q4|Q5 
-- ---- END DSP 2 (DIMM-C)---- 
-- ----Others---- 
-- C2  -> Flash SPI Slave Output 
-- Y1  -> SCI RX 
-- V13 -> SCI RX DSP 
-- R3  -> SCI RX WEBSERVER 
-- G13 -> Push Button (SW1) -> Erase Flash Memory manually 
-- ---- End Others---- 
-- ------End Inputs------ 
-- ------Outputs------ 
-- --Phase A-- 
-- A21 -> Q1 
-- C19 -> Q2 
-- A20 -> Q3 
-- D18 -> Q4 
-- B19 -> Q5 
-- C18 -> Q6 
-- --Phase B-- 
-- F17 -> Q1 
-- A18 -> Q2 
-- D17 -> Q3 
-- E17 -> Q4 
-- A17 -> Q5 
-- C18 -> Q6 
-- --Phase C-- 
-- F16 -> Q1 
-- E16 -> Q2 
-- D16 -> Q3 
-- B15 -> Q4 
-- C16 -> Q5 
-- E15 -> Q6 
-- --LEDs-- 
-- R17 -> LED A 
-- U17 -> LED B 
-- T18 -> LED C 
-- R16 -> LED D 
-- T17 -> LED E 
-- Y21 -> LED F 
-- Y20 -> LED G 
-- U18 -> LED H 
-- --Flash Memory-- 
-- C3  -> Chip-Select (CSSPIN) 
-- E4  -> Hold 
-- D3  -> SPI Clock (MCLK) 
-- F5  -> Slave Input SPI (SISPI) 
-- F6  -> Write enable (WPn) 
-- --DSPs-- 
-- G22 -> DIMM_B_GPIO30 
-- H16 -> DIMM_B_SCI_RX 
-- Y3  -> DIMM_C_GPIO30 
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-- AB2 -> DIMM_C_SCI_RX 
-- AA22-> IDC_B_GPIO_00 (DSP1 Reset) 
-- Y14 -> IDC_C_GPIO_00 (DSP2 Reset) 
-- -- Others -- 
-- AA1 -> SCI_TX 
-- V12 -> SCI_TX_DSP 
-- R2 -> SCI_TX_Webserver 
-- 
-- Revision: 
-- v2.15.22 - Top file without the deadtime component (deadtime should be called by the firmware 
validation only) 
-- v3.24.22 - Added the emulation control and debug signals. Adapted to ANPC inverter 
-- v5.23.22 - Polishment and comments to make it easier to comprehend the code for future work. 
-- Additional Comments:  
--  
-- 
---------------------------------------------------------------------------------- 
  
Library IEEE; 
use IEEE.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use ieee.numeric_std.all; 
library machxo2; 
use machxo2.all; 
library work; 
use work.Digital_Twin_Common.all; 
entity Digital_Twin_and_Hot_Patching is 
    Port  
 ( 
  ------------------- Communication pins between CPLD and UI ------------------- 
  SCI_RX : in std_logic; --UART RX pin for Serial Comm with UI: UI(TX) -> CPLD (RX) -> 
Y1 
  SCI_TX : out std_logic; --UART TX pin for Serial Comm with UI: UI(RX) -> CPLD (TX) -> 
AA1 
  SCI_RX_DSP : in std_logic; --UART RX pin for Serial Comm with UI: UI(TX) -> CPLD 
(RX) 
  SCI_TX_DSP : out std_logic; --UART TX pin for Serial Comm with UI: UI(RX) -> CPLD 
(TX) 
  SCI_RX_Webserver : in std_logic;    --UART RX pin for Serial Comm with UI: UI(TX) -> 
CPLD (RX) -> R2 
        SCI_TX_Webserver : out std_logic;    --UART TX pin for Serial Comm with UI: UI(RX) -> CPLD (TX) 
-> R3 
     
  IDC_B_GPIO_00 : out STD_LOGIC; -- Reset Pin of the DSP DIMM-B -> AA22 
  IDC_C_GPIO_00 : out STD_LOGIC; -- Reset Pin of the DSP DIMM-C -> Y14 
     
  DIMM_B_SCI_RX : out STD_LOGIC; -- This pin is used to send the firmware to the DSP 
and the bootloader. -> H16 
  DIMM_C_SCI_RX : out STD_LOGIC; -- This pin is used to send the firmware to the DSP 
and the bootloader. -> AB2 
  DIMM_B_SCI_TX : in STD_LOGIC;  -- This pin is used to send the firmware to the DSP 
and the bootloader. -> N/A 
  DIMM_C_SCI_TX : in STD_LOGIC;  -- This pin is used to send the firmware to the DSP 
and the bootloader. -> N/A 
   
  DIMM_B_GPIO30 : out STD_LOGIC; -- G22 
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  DIMM_C_GPIO30 : out STD_LOGIC; -- Y3 
      
  Btna : in STD_LOGIC; 
  -------------------------------------- INPUTS -------------------------------------- 
  -- SW : in STD_LOGIC; 
  ------------------- DIMM_B ------------------- 
  -- Phase A 
  DSP1_01_A : in  STD_LOGIC; -- Q1 -> F20 -> DIMM-B_GPIO-12 
  DSP1_02_A:  in  STD_LOGIC; -- Q2 -> M16 -> DIMM-B_GPIO-01 
  DSP1_03_A : in  STD_LOGIC; -- Q3 -> C22 -> DIMM-B_GPIO-02 
  DSP1_04_A : in  STD_LOGIC; -- Q4 -> K20 -> DIMM-B_GPIO-25 
  -- Phase B 
  DSP1_01_B : IN  STD_LOGIC; -- Q1 -> G18 -> DIMM-B_GPIO-26 
  DSP1_02_B : IN  STD_LOGIC; -- Q2 -> M19 -> DIMM-B_GPIO-03 
  DSP1_03_B : IN  STD_LOGIC; -- Q3 -> C21 -> DIMM-B_GPIO-04 
  DSP1_04_B : IN  STD_LOGIC; -- Q4 -> K18 -> DIMM-B_GPIO-27 
  -- Phase C 
  DSP1_01_C : IN  STD_LOGIC; -- Q1 -> K22 -> DIMM-B_GPIO-14 
  DSP1_02_C : IN  STD_LOGIC; -- Q2 -> L22 -> DIMM-B_GPIO-05 
  DSP1_03_C : IN  STD_LOGIC; -- Q3 -> D19 -> DIMM-B_GPIO-06 (DIMM-B_GPIO-00 -> 
B22) 
  DSP1_04_C : IN  STD_LOGIC; -- Q4 -> J17 -> DIMM-B_GPIO-19 
    
  ------------------- DIMM_C ------------------- 
  -- Phase A 
  DSP2_01_A : in  STD_LOGIC; -- Q1 -> AB6 -> DIMM-C_GPIO-12 
  DSP2_02_A:  in  STD_LOGIC; -- Q2 -> Y7 ->  DIMM-C_GPIO-01 
  DSP2_03_A : in  STD_LOGIC; -- Q3 -> T8 ->  DIMM-C_GPIO-02 
  DSP2_04_A : in  STD_LOGIC; -- Q4 -> U10 -> DIMM-C_GPIO-25 
  -- Phase B 
  DSP2_01_B : IN  STD_LOGIC; -- Q1 -> Y4 ->  DIMM-C_GPIO-26 
  DSP2_02_B : IN  STD_LOGIC; -- Q2 -> V8 ->  DIMM-C_GPIO-03  
  DSP2_03_B : IN  STD_LOGIC; -- Q3 -> U8 ->  DIMM-C_GPIO-04 
  DSP2_04_B : IN  STD_LOGIC; -- Q4 -> W11 -> DIMM-C_GPIO-27 
  -- Phase C 
  DSP2_01_C : IN  STD_LOGIC; -- Q1 -> T10 -> DIMM-C_GPIO-14 
  DSP2_02_C : IN  STD_LOGIC; -- Q2 -> W9 ->  DIMM-C_GPIO-05 
  DSP2_03_C : IN  STD_LOGIC; -- Q3 -> AB7 -> DIMM-C_GPIO-06 (DIMM-C_GPIO-00 -> 
AA8) 
  DSP2_04_C : IN  STD_LOGIC; -- Q4 -> V11 -> DIMM-C_GPIO-19 
   
  ---------------------------------------- OUTPUTS -------------------------------------- 
  ------------------- Leds ------------------- 
  LED_A : out STD_LOGIC; -- R17 -> DSP01 is active (D1 from UCB) 
  LED_B : out STD_LOGIC; -- U17 -> DSP02 is active (D2 from UCB) 
  --LEDs not being used 
  LED_C : out STD_LOGIC; -- T18 
  LED_D : out STD_LOGIC; -- R16 
  LED_E : out STD_LOGIC; -- T17 
  LED_F : out STD_LOGIC; -- Y21 
  LED_G : out STD_LOGIC; -- Y20 
  LED_H : out STD_LOGIC; -- U18 
   
  -- Outputs to control the inverter 
  -- Phase A 
  SW01_A : out std_logic; -- Q1 -> A21 -> IDC-A_GPIO-00 -> Pin 1 
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  SW02_A : out std_logic; -- Q2 -> C19 -> IDC-A_GPIO-01 -> Pin 2 
  SW03_A : out std_logic; -- Q3 -> A20 -> IDC-A_GPIO-02 -> Pin 3 
  SW04_A : out std_logic; -- Q4 -> D18 -> IDC-A_GPIO-03 -> Pin 4 
  SW05_A : out std_logic; -- Q5 -> B19 -> IDC-A_GPIO-04 -> Pin 5 
  SW06_A : out std_logic; -- Q6 -> C18 -> IDC-A_GPIO-05 -> Pin 6 
  -- Phase B 
  SW01_B : out std_logic; -- Q1 -> F17 -> IDC-A_GPIO-06 -> Pin 7 
  SW02_B : out std_logic; -- Q2 -> A18 -> IDC-A_GPIO-07 -> Pin 8 
  SW03_B : out std_logic; -- Q3 -> D17 -> IDC-A_GPIO-08 -> Pin 9 
  SW04_B : out std_logic; -- Q4 -> E17 -> IDC-A_GPIO-09 -> Pin 10 
  SW05_B : out std_logic; -- Q5 -> A17 -> IDC-A_GPIO-10 -> Pin 11 
  SW06_B : out std_logic; -- Q6 -> C17 -> IDC-A_GPIO-11 -> Pin 12 
  -- Phase C 
  SW01_C : out std_logic; -- Q1 -> F16 -> IDC-A_GPIO-12 -> Pin 13 
  SW02_C : out std_logic; -- Q2 -> E16 -> IDC-A_GPIO-13 -> Pin 14 
  SW03_C : out std_logic; -- Q3 -> D16 -> IDC-A_GPIO-14 -> Pin 15 
  SW04_C : out std_logic; -- Q4 -> B15 -> IDC-A_GPIO-15 -> Pin 16 
  SW05_C : out std_logic; -- Q5 -> C16 -> IDC-A_GPIO-16 -> Pin 17 
  SW06_C : out std_logic;  -- Q6 -> E15 -> IDC-A_GPIO-17 -> Pin 18 
  -- Debug outputs 
  fw_validation_debug_1 : out std_logic; -- Y15  -> IDC-C_GPIO-07 -> Pin 8 (Channel 0 - 
Flash_CSSPIN) 
  fw_validation_debug_2 : out std_logic; -- AB16 -> IDC-C_GPIO-08 -> Pin 9 (Channel 1 - 
Flash_SPISO) 
  fw_validation_debug_3 : out std_logic; -- AA16 -> IDC-C_GPIO-09 -> Pin 10 (Channel 2 - 
Flash_WPn) 
  fw_validation_debug_4 : out std_logic; -- T13  -> IDC-C_GPIO-10 -> Pin 11 (Channel 3 - 
Flash_SISPI) 
  fw_validation_debug_5 : out std_logic; -- U13  -> IDC-C_GPIO-11 -> Pin 12 (Channel 4 - 
Flash_HOLDn) 
  fw_validation_debug_6 : out std_logic; -- Y16  -> IDC-C_GPIO-12 -> Pin 13 (Channel 5 - 
Flash_MCLK) 
  debug_emu_Q1_Q6_A : out std_logic; -- AB15 -> IDC-C_GPIO-01 -> Pin 2 
  debug_emu_Q4_Q5_A : out std_logic; -- Y12  -> IDC-C_GPIO-04 -> Pin 5 
  debug_emu_Q1_Q6_B : out std_logic; -- W12  -> IDC-C_GPIO-02 -> Pin 3 
  debug_emu_Q4_Q5_B : out std_logic; -- V13  -> IDC-C_GPIO-05 -> Pin 6 
  debug_emu_Q1_Q6_C : out std_logic; -- V12  -> IDC-C_GPIO-03 -> Pin 4 
  debug_emu_Q4_Q5_C : out std_logic; -- AA15 -> IDC-C_GPIO-06 -> Pin 7 
  debug_emu : out std_logic; 
   
  Flash_CSSPIN:  inout  std_logic; -- C3 -> CS  -> IDC-D_GPIO-00 -> 
Pin 1 (Channel 0) 
  Flash_SPISO:  in  std_logic;  -- C2 -> SPO -> IDC-D_GPIO-01 -> Pin 2 
(Channel 1) 
  Flash_WPn:   inout  std_logic; -- F6 -> WP  -> IDC-D_GPIO-02 -> 
Pin 3 (Channel 2 - Always high) 
  Flash_SISPI:  inout  std_logic; -- F5 -> SPI -> IDC-D_GPIO-03 -> Pin 4 (Channel 3) 
  Flash_HOLDn:  inout  std_logic; -- E4 -> Hold -> IDC-D_GPIO-04 -> Pin 5 (Channel 4 
- Always high) 
  Flash_MCLK:  inout  std_logic -- D3 -> clk -> IDC-D_GPIO-05 -> Pin 6 (Channel 5) 
   
 ); 
END Digital_Twin_and_Hot_Patching; 
ARCHITECTURE Behavioral OF Digital_Twin_and_Hot_Patching is  
 -- Oscillator 
 SIGNAL  OSC_Stdby : std_logic := '0'; 
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 SIGNAL  OSC_Out : std_logic := '0'; 
 SIGNAL  OSC_SEDSTDBY : std_logic := '0'; 
 -- PLL 
 --SIGNAL  OSC_Out : std_logic := '0'; 
 SIGNAL  clk : std_logic := '0'; 
 SIGNAL  Pll_Lock : std_logic := '0'; 
 -- Bus Master 
 SIGNAL Xrqst   : std_logic := '0'; 
 SIGNAL XDat    : std_logic := '0'; 
 SIGNAL YDat    : std_logic := '0'; 
 SIGNAL Data    : std_logic_vector (15 downto 0) := (others => '0'); 
 SIGNAL Addr    : std_logic_vector (15 downto 0) := (others => '0'); 
 SIGNAL BusRqst   : std_logic_vector (9 downto 0) := (others => '0'); 
 SIGNAL BusCtrl   : std_logic_vector (9 downto 0) := (others => '0'); 
 SIGNAL DSP_RAM_addr  : std_logic_vector (15 downto 0) := (others => '0'); 
 -- Bootloader 
 SIGNAL  Bootload_EN : std_logic := '1'; 
 SIGNAL  FW_Type  : std_logic := '0'; 
 SIGNAL  DSP_rcv  : std_logic := '0'; 
 SIGNAL  DSP_xmt  : std_logic := '0'; 
 SIGNAL  DSP_Rst  : std_logic := '0'; 
  
 -- Other 
 SIGNAL  rs232_rcv   : std_logic := '0'; 
 SIGNAL  rs232_xmt   : std_logic := '0'; 
 SIGNAL  Error    : std_logic := '0'; 
 SIGNAL  Boot_Wrkn   : std_logic := '0'; 
 SIGNAL  Boot_Done   : std_logic := '0'; 
 SIGNAL  HP_EN    : std_logic := '0'; 
 SIGNAL  HP_Done   : std_logic := '0'; 
 SIGNAL  Emu_EN    : std_logic := '0'; 
 SIGNAL  Reset_Cnt_rst  : std_logic := '0'; 
 SIGNAL  Reset_Cnt_INC  : std_logic := '0'; 
 SIGNAL  System_rst   : std_logic := '0'; 
 SIGNAL  Nothing   : std_logic := '0'; 
 SIGNAL  DSP1_Act   : std_logic := '0'; 
 SIGNAL  DSP1_Act_HP_Out : std_logic := '0'; 
 SIGNAL  DSP_Sync_HP  : std_logic := '0';  
 SIGNAL  Reset_Cnt_out  : std_logic_vector (7 downto 0) := (others => '0'); 
  
 SIGNAL DT_EN : std_logic := '0'; 
 SIGNAL DT_Rst : std_logic := '0'; 
 SIGNAL Bad_FW_Bus : std_logic_vector (15 downto 0) := (others => '0'); 
 ------------------- DSPs ------------------- 
 --Phase A Inputs 
 SIGNAL Emu_SW01_A  : std_logic := '0'; 
 SIGNAL Emu_SW02_A  : std_logic := '0'; 
 SIGNAL Emu_SW03_A  : std_logic := '0'; 
 SIGNAL Emu_SW04_A  : std_logic := '0'; 
 SIGNAL Emu_SW05_A  : std_logic := '0'; 
 SIGNAL Emu_SW06_A  : std_logic := '0'; 
 --Phase B Inputs 
 SIGNAL Emu_SW01_B  : std_logic := '0'; 
 SIGNAL Emu_SW02_B  : std_logic := '0'; 
 SIGNAL Emu_SW03_B  : std_logic := '0'; 
 SIGNAL Emu_SW04_B  : std_logic := '0'; 



 

140 
 

 SIGNAL Emu_SW05_B  : std_logic := '0'; 
 SIGNAL Emu_SW06_B  : std_logic := '0'; 
 --Phase C Inputs 
 SIGNAL Emu_SW01_C  : std_logic := '0'; 
 SIGNAL Emu_SW02_C  : std_logic := '0'; 
 SIGNAL Emu_SW03_C  : std_logic := '0'; 
 SIGNAL Emu_SW04_C  : std_logic := '0'; 
 SIGNAL Emu_SW05_C  : std_logic := '0'; 
 SIGNAL Emu_SW06_C  : std_logic := '0'; 
 SIGNAL fw_validation_signal_debug_1 :   std_logic; 
 SIGNAL fw_validation_signal_debug_2 :   std_logic; 
 SIGNAL fw_validation_signal_debug_3 :   std_logic; 
 SIGNAL fw_validation_signal_debug_4 :   std_logic; 
 SIGNAL fw_validation_signal_debug_5 :     std_logic; 
 SIGNAL fw_validation_signal_debug_6 :     std_logic; 
   
  
 ------------------------------------------ Module Declaration ------------------------------------------ 
 ------------------- Internal Oscillator ------------------- 
 COMPONENT OSCH 
  GENERIC  
  ( 
   NOM_FREQ: string := "8.31" 
  ); 
  PORT  
  (  
   STDBY :IN std_logic; 
   OSC :OUT std_logic; 
   SEDSTDBY :OUT std_logic 
  ); 
 END COMPONENT;  
  
 ------------------- PLL ------------------- 
    COMPONENT PLL_Clk 
  PORT 
  ( 
   ClkI: in  std_logic;  
   ClkOP: out std_logic; 
   Lock: out std_logic 
  ); 
    END COMPONENT; 
  
 ------------------- Bus_Master ------------------- 
    COMPONENT Digital_Twin_Bus_Master 
     PORT 
  ( 
          clk : IN  std_logic; 
          rst : IN  std_logic; 
          Data : INOUT  std_logic_vector(15 downto 0); 
          Addr : IN  std_logic_vector(15 downto 0); 
          Xrqst : IN  std_logic; 
          XDat : OUT  std_logic; 
          YDat : IN  std_logic; 
          BusRqst : IN  std_logic_vector(9 downto 0); 
         BusCtrl : OUT  std_logic_vector(9 downto 0); 
   Flash_CSSPIN: out  std_logic;  
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   Flash_MCLK: out  std_logic;  
   Flash_SISPI: out  std_logic;  
   Flash_SPISO: in  std_logic;  
   Flash_WPn: out  std_logic;  
   Flash_HOLDn: out  std_logic; 
   Reset_Flash_Button: in std_logic  
  ); 
    END COMPONENT; 
  
 ------------------- RS232_Usr_Int ------------------- 
  COMPONENT RS232_Usr_Int 
   Generic  
  ( 
   Baud   : integer;  -- Baud Rate 
   clk_in   : integer  -- Input Clk 
  ); 
      
  PORT 
  ( 
         clk : IN  std_logic; 
          rst : IN  std_logic; 
         rs232_rcv : IN  std_logic; 
         rs232_xmt : OUT  std_logic; 
         Data : INOUT  std_logic_vector(15 downto 0); 
         Addr : OUT  std_logic_vector(15 downto 0); 
         Xrqst : OUT  std_logic; 
         XDat : IN  std_logic; 
         YDat : OUT  std_logic; 
         BusRqst : OUT  std_logic; 
         BusCtrl : IN  std_logic 
        ); 
    END COMPONENT; 
 ------------------- Test1_DT_Boot_Ctrl ------------------- 
 component Digital_Twin_Bootloader_Control 
 Port (  
   --IN 
   clk   : in  STD_LOGIC; 
   rst   : in  STD_LOGIC; 
    
   Data   : INOUT  std_logic_vector(15 downto 0); 
   Addr   : OUT  std_logic_vector(15 downto 0); 
   Xrqst   : OUT  std_logic; 
   XDat   : IN  std_logic; 
   YDat   : OUT  std_logic; 
   BusRqst  : OUT  std_logic; 
   BusCtrl  : IN  std_logic; 
    
   Error  :in STD_LOGIC; 
   Boot_Wrkn :in STD_LOGIC; 
   Boot_Done :in STD_LOGIC; 
   HP_EN  :in STD_LOGIC; 
    
   --OUT 
   Bootload_EN :out STD_LOGIC; 
   FW_Type  :out STD_LOGIC; 
   DT_EN  :out STD_LOGIC; 
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   DT_Rst  :out STD_LOGIC 
      
      
     );    
 END component; 
 ------------------- DT_Bootloader_Test Component -------------------  
 component Digital_Twin_Bootloader 
 generic( 
    Baud : integer;    --9,600 bps 
    clk_in : integer);   --25MHz  
    Port (   
  clk : IN  std_logic; 
  rst : IN  std_logic; 
  Bootload_EN : IN STD_LOGIC; 
  FW_Type : IN STD_LOGIC; 
  Bootload_Wrkn : OUT STD_LOGIC; 
  Bootload_Done : OUT STD_LOGIC; 
   
  DSP_rcv : OUT std_logic; 
  DSP_xmt : IN  std_logic; 
  DSP_Rst : OUT  STD_LOGIC; 
  Data : INOUT  std_logic_vector(15 downto 0); 
  Addr : OUT  std_logic_vector(15 downto 0); 
  Xrqst : OUT  std_logic; 
  XDat : IN  std_logic; 
  YDat : OUT  std_logic; 
  BusRqst : OUT  std_logic; 
  BusCtrl : IN  std_logic       
    
 ); 
 END component;  
 ------------------- Std_Counter Component ------------------- 
 component Std_Counter is 
 generic  
 ( 
  Width : integer  -- width of counter 
 ); 
 port(INC,rst,clk: in std_logic; 
   Count: out STD_LOGIC_VECTOR(Width-1 downto 0)); 
 END component; 
 ------------------- DSP_Hot_Patch Component ------------------- 
 component Digital_Twin_Hot_Patch_Control 
    Port ( 
  clk : in std_logic; 
  rst : in std_logic; 
  EN : in std_logic; 
  DSP1_Act_Out : out std_logic; 
  DSP_Sync : out std_logic; 
  Done : out std_logic 
  ); 
 END component; 
 ------------------- Digital_Twin_Emulation_Control ------------------- 
 COMPONENT Digital_Twin_Emulation_Control 
  PORT  
  ( 
   clk   : in STD_LOGIC; 
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   rst   : in STD_LOGIC; 
   Emu_EN   : in std_logic; 
   Data   : INOUT  std_logic_vector(15 downto 0); 
   Addr   : OUT  std_logic_vector(15 downto 0); 
   Xrqst   : OUT  std_logic; 
   XDat   : IN  std_logic; 
   YDat   : OUT  std_logic; 
   BusRqst  : OUT  std_logic; 
   BusCtrl  : IN  std_logic; 
   --Phase A Inputs 
   Emu_SW01_A  : in std_logic; 
   Emu_SW02_A  : in std_logic; 
   Emu_SW03_A  : in std_logic; 
   Emu_SW04_A  : in std_logic; 
   Emu_SW05_A  : in std_logic; 
   Emu_SW06_A  : in std_logic; 
    
   --Phase B Inputs 
   Emu_SW01_B  : in std_logic; 
   Emu_SW02_B  : in std_logic; 
   Emu_SW03_B  : in std_logic; 
   Emu_SW04_B  : in std_logic; 
   Emu_SW05_B  : in std_logic; 
   Emu_SW06_B  : in std_logic; 
  
   --Phase C Inputs 
   Emu_SW01_C  : in std_logic; 
   Emu_SW02_C  : in std_logic; 
   Emu_SW03_C  : in std_logic; 
   Emu_SW04_C  : in std_logic; 
   Emu_SW05_C  : in std_logic; 
   Emu_SW06_C  : in std_logic; 
   Error   : in STD_LOGIC; 
   HP_EN   : in STD_LOGIC  
  ); 
 END component; 
  
  ------------------- Test1_DT_Firmware_Validation ------------------- 
 COMPONENT Digital_Twin_Firmware_Validation 
  PORT  
  ( 
   clk : in STD_LOGIC; 
   rst : in STD_LOGIC; 
    
   Data : INOUT std_logic_vector(15 downto 0); 
   Addr  : OUT std_logic_vector(15 downto 0); 
   Xrqst : OUT std_logic; 
   XDat : IN std_logic; 
   YDat : OUT std_logic; 
   BusRqst : OUT std_logic; 
   BusCtrl : IN std_logic; 
     
   --Phase A Inputs 
   Emu_SW01_A  : in std_logic; 
   Emu_SW02_A  : in std_logic; 
   Emu_SW03_A  : in std_logic; 
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   Emu_SW04_A  : in std_logic; 
   Emu_SW05_A  : in std_logic; 
   Emu_SW06_A  : in std_logic; 
    
   --Phase B Inputs 
   Emu_SW01_B  : in std_logic; 
   Emu_SW02_B  : in std_logic; 
   Emu_SW03_B  : in std_logic; 
   Emu_SW04_B  : in std_logic; 
   Emu_SW05_B  : in std_logic; 
   Emu_SW06_B  : in std_logic; 
  
   --Phase C Inputs 
   Emu_SW01_C  : in std_logic; 
   Emu_SW02_C  : in std_logic; 
   Emu_SW03_C  : in std_logic; 
   Emu_SW04_C  : in std_logic; 
   Emu_SW05_C  : in std_logic; 
   Emu_SW06_C  : in std_logic; 
       
   HP_Done  : in std_logic; -- Signal coming from DSP_Hot-Patch 
module saying that hot-patch is completed 
   Boot_Done : in std_logic; -- Signal to inform that the boot loading is done 
   Boot_Wrkn : in std_logic; -- Signal to inform that the boot loading is working 
   Emu_EN  : out std_logic; -- Start the emulation 
   HP_EN   : out std_logic; -- Signal sent to DSP_Hot-Patch module 
to enable HP PROCESS 
   Bad_FW_Bus : in std_logic_vector (15 downto 0);  -- Not being used 
   Error  : out std_logic; -- Signal error to stop all other PROCESSes 
   DSP1_Act : in std_logic 
  );  
 END COMPONENT; 
BEGIN --------------------------------------------------------- BEGIN --------------------------------------------------------- 
 ------------------- Instantiate Internal Oscillator ------------------- 
 Int_OSC: OSCH PORT MAP ( 
  STDBY => OSC_Stdby, 
  OSC => OSC_Out, 
  SEDSTDBY => OSC_SEDSTDBY 
 ); 
    
    
 ------------------- Instantiate PLL ------------------- 
 PLL_1: PLL_Clk PORT MAP ( 
  ClkI => OSC_Out, 
  ClkOP => clk, 
  Lock =>Pll_Lock 
 ); 
 ------------------- Instantiate Bus_Master ------------------- 
 BM: Digital_Twin_Bus_Master PORT MAP ( 
  clk    => clk, 
  rst    => System_rst, 
  Data   => Data, 
  Addr   => Addr, 
  Xrqst   => Xrqst, 
  XDat    => XDat, 
  YDat    => YDat, 
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  BusRqst   => BusRqst, 
  BusCtrl   => BusCtrl, 
  Flash_CSSPIN => Flash_CSSPIN, 
  Flash_MCLK  => Flash_MCLK, 
  Flash_SISPI  => Flash_SISPI, 
  Flash_SPISO  => Flash_SPISO, 
  Flash_WPn  => Flash_WPn, 
  Flash_HOLDn  => Flash_HOLDn, 
  Reset_Flash_Button => Btna 
    ); 
   
 ------------------- Instantiate RS232_Usr_Int ------------------- 
 RS232_Usr: RS232_Usr_Int  
 Generic Map 
  ( 
  Baud  => 9600, -- Baud Rate 
  Clk_In => Clk_Freq -- Input Clk 
  ) 
 PORT MAP ( 
         clk => clk, 
         rst => System_rst, 
         rs232_rcv => SCI_RX, 
         rs232_xmt => SCI_TX, 
   --rs232_xmt => Temp_Debug, 
         Data => Data, 
         Addr => Addr, 
         Xrqst => Xrqst, 
         XDat => XDat, 
         YDat => YDat, 
         BusRqst => BusRqst(1), -- Was 3 
         BusCtrl => BusCtrl(1) -- Was 3 
    );     
  
  --DSP 
 RS232_Usr_DSP: RS232_Usr_Int 
 Generic Map 
  ( 
  Baud  => 9600, -- Baud Rate 
  Clk_In => Clk_Freq -- Input Clk 
  ) 
 PORT MAP ( 
         clk => clk, 
         rst => System_rst, 
         rs232_rcv => SCI_RX_DSP, 
         rs232_xmt => SCI_TX_DSP, 
   --rs232_xmt => Temp_Debug, 
         Data => Data, 
         Addr => Addr, 
         Xrqst => Xrqst, 
         XDat => XDat, 
         YDat => YDat, 
         BusRqst => BusRqst(2), -- Was 3 
         BusCtrl => BusCtrl(2) -- Was 3 
    ); 
  --Webserver 
 RS232_Usr_Webserver: RS232_Usr_Int 
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 Generic Map 
  ( 
  Baud     => 9600,    -- Baud Rate 
  Clk_In => Clk_Freq    --    Input Clk 
  ) 
 PORT MAP ( 
   clk => clk, 
   rst => System_rst, 
   rs232_rcv => SCI_RX_Webserver, 
   rs232_xmt => SCI_TX_Webserver, 
   --rs232_xmt => Temp_Debug, 
   Data => Data, 
   Addr => Addr, 
   Xrqst => Xrqst, 
   XDat => XDat, 
   YDat => YDat, 
   BusRqst => BusRqst(5), -- Was 3 
   BusCtrl => BusCtrl(5) -- Was 3 
 ); 
 ------------------- Instantiate Boot_Ctrl ------------------- 
 Boot_Ctrl: Digital_Twin_Bootloader_Control 
 PORT MAP (   
  clk   => clk, 
  rst   => System_rst, 
  Data   => Data,  
  Addr   => Addr,  
  Xrqst   => Xrqst,  
  XDat   => XDat,  
  YDat   => YDat,  
  BusRqst  => BusRqst(0), 
  BusCtrl  => BusCtrl(0), 
  Error  => Error,  
  Boot_Wrkn => Boot_Wrkn,  
  Boot_Done => Boot_Done,  
  HP_EN  => HP_EN,  
  Bootload_EN => Bootload_EN,  
  FW_Type  => FW_Type, 
  DT_EN  => DT_EN, 
  DT_Rst  => DT_Rst 
 ); 
 ------------------- Instantiate Bootloader ------------------- 
 Bootload: Digital_Twin_Bootloader 
 generic map 
 ( 
  Baud      => 9600,  --9,600 bps 
  clk_in      => Clk_Freq --25MHz  
 ) 
 port map ( 
  clk     => clk, 
  rst     => System_rst, 
  Bootload_EN   => Bootload_EN, 
  FW_Type    => FW_Type, 
  Bootload_Wrkn   => Boot_Wrkn, 
  Bootload_Done   => Boot_Done, 
  DSP_rcv    =>  DSP_rcv,      
 --FW_BIT_OUT, ---- THIS FW_BIT_OUT SIGNAL IS ONLY USED FOR THIS TEST, 
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USUALLY THIS CONNECTS TO THE SERIAL PORT OF THE DSP THROUGH DIMM B OR DIMM C 
DEPENDING ON THE DSP, AND IT IS NOW CONNECTED THROUGH THE HP PROCESS BELOW ---- 
  DSP_xmt    =>  DSP_xmt,     
 --xmt,  ---- THIS xmt SIGNAL IS ONLY FOR THIS TEST, AND NEEDS TO BE 
INITIALIZED TO 1 ---- 
  DSP_Rst    =>  DSP_Rst,      
 --DSP_Rst,  ---- ONLY FOR THIS TEST, USUALLY CONNECTS TO THE 
EXTERNAL GPIO PIN THAT IS SOLDERED TO THE DSP TO BE ABLE TO RESET IT, AND IT IS NOW 
CONNECTED THROUGH THE HP PROCESS BELOW ----  
  Data     => Data,  
  Addr     => Addr,  
  Xrqst     => Xrqst,  
  XDat     => XDat,  
  YDat     => YDat,  
  BusRqst    => BusRqst(4), 
  BusCtrl    => BusCtrl(4) 
 ); 
 ------------------- Instantiate Reset_Cnt_8 ------------------- 
 Reset_Cnt: Std_Counter 
 generic map 
 ( 
  Width => 8 
 ) 
 port map (  
  clk => OSC_Out, 
  rst=> Reset_Cnt_rst, 
  INC=> Reset_Cnt_INC, 
  Count=> Reset_Cnt_out 
 ); 
 ------------------- Instantiate HP ------------------- 
 HP_Set: Digital_Twin_Hot_Patch_Control  
 PORT MAP ( 
  clk => clk, 
  rst => System_rst, 
  EN => HP_EN, 
  DSP1_Act_Out => DSP1_Act_HP_Out,  
  DSP_Sync => DSP_Sync_HP, 
  Done => HP_Done 
 ); 
   
 ------------------- Instantiate Emu_Ctrl ------------------- 
 Emu_Ctrl: Digital_Twin_Emulation_Control 
 PORT MAP ( 
  clk   => clk,   
  rst   => System_rst,   
           
  Emu_EN   => Emu_EN,   
           
  Data   => Data,   
  Addr   => Addr,   
  Xrqst   => Xrqst,   
  XDat   => XDat,   
  YDat   => YDat,   
  BusRqst  => BusRqst(3),  
  BusCtrl  => BusCtrl(3),          
  -- Phase A 
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  Emu_SW01_A => Emu_SW01_A, 
  Emu_SW02_A => Emu_SW02_A, 
  Emu_SW03_A => Emu_SW03_A, 
  Emu_SW04_A => Emu_SW04_A, 
  Emu_SW05_A => Emu_SW05_A, 
  Emu_SW06_A => Emu_SW06_A, 
  -- Phase B 
  Emu_SW01_B => Emu_SW01_B, 
  Emu_SW02_B => Emu_SW02_B, 
  Emu_SW03_B => Emu_SW03_B, 
  Emu_SW04_B => Emu_SW04_B, 
  Emu_SW05_B => Emu_SW05_B, 
  Emu_SW06_B => Emu_SW06_B, 
  -- Phase C 
  Emu_SW01_C => Emu_SW01_C, 
  Emu_SW02_C => Emu_SW02_C, 
  Emu_SW03_C => Emu_SW03_C, 
  Emu_SW04_C => Emu_SW04_C, 
  Emu_SW05_C => Emu_SW05_C, 
  Emu_SW06_C => Emu_SW06_C, 
  Error   => Error,   
  HP_EN   => HP_EN 
 ); 
 ------------------- Instantiate Firmware Validation_EN ------------------- 
 FW_Valid: Digital_Twin_Firmware_Validation 
 PORT MAP 
 (   
  clk   => clk,    
  rst   => System_rst,     
  Data   => Data,    
  Addr   => Addr,    
  Xrqst   => Xrqst,    
  XDat   => XDat,    
  YDat   => YDat,    
  BusRqst  => BusRqst(6),   
  BusCtrl  => BusCtrl(6),   
  -- Phase A 
  Emu_SW01_A => Emu_SW01_A, 
  Emu_SW02_A => Emu_SW02_A, 
  Emu_SW03_A => Emu_SW03_A, 
  Emu_SW04_A => Emu_SW04_A, 
  Emu_SW05_A => Emu_SW05_A, 
  Emu_SW06_A => Emu_SW06_A, 
  -- Phase B 
  Emu_SW01_B => Emu_SW01_B, 
  Emu_SW02_B => Emu_SW02_B, 
  Emu_SW03_B => Emu_SW03_B, 
  Emu_SW04_B => Emu_SW04_B, 
  Emu_SW05_B => Emu_SW05_B, 
  Emu_SW06_B => Emu_SW06_B, 
  -- Phase C 
  Emu_SW01_C => Emu_SW01_C, 
  Emu_SW02_C => Emu_SW02_C, 
  Emu_SW03_C => Emu_SW03_C, 
  Emu_SW04_C => Emu_SW04_C, 
  Emu_SW05_C => Emu_SW05_C, 
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  Emu_SW06_C => Emu_SW06_C, 
  HP_Done  => HP_Done,   
  Boot_Done => Boot_Done,  
        Boot_Wrkn => Boot_Wrkn,  
        Emu_EN  => Emu_EN,   
        HP_EN   => HP_EN, 
  Bad_FW_Bus => Bad_FW_Bus, 
        Error  => Error, 
  DSP1_Act => DSP1_Act 
 );  
  
 -------------------  Oscillator ------------------- 
 OSC_Stdby <= '0'; 
 ------------------- Tie unused ports to '0'-------------------  
 BusRqst(9 downto 7) <= (others => '0'); 
 Bad_FW_Bus(15 downto 2) <= (others => '0'); -- Obsolete 
 ------------------- Reset Block1 ------------------- 
 Reset_Blk1: PROCESS 
 BEGIN 
   wait until OSC_Out'event and OSC_Out = '1'; 
    IF (PLL_Lock ='0') THEN 
     Reset_Cnt_rst <= '0'; 
    else 
     Reset_Cnt_rst <= '1'; 
    END IF; 
 END PROCESS; 
 ------------------- Reset Block ------------------- 
 Reset_Blk: PROCESS 
 BEGIN 
   wait until OSC_Out'event and OSC_Out = '1'; 
    IF (Reset_Cnt_out < X"7F") THEN --7F = 127 
     System_rst <= '0'; 
     Reset_Cnt_INC <='1'; 
    else 
     System_rst <= '1'; 
     Reset_Cnt_INC <='0'; 
    END IF; 
 END PROCESS; 
    
 ------------------- Setting DSP1 assignment and debug signals ------------------- 
 DSP1_Act_Set: PROCESS 
 BEGIN 
  wait until clk'event and clk = '1'; 
   IF (System_rst = '0') THEN 
    DSP1_Act <= '1'; 
   else 
    DSP1_Act <= DSP1_Act_HP_Out; 
   END IF; 
   fw_validation_debug_1 <= Flash_CSSPIN; 
   fw_validation_debug_2 <= Flash_SPISO; 
   fw_validation_debug_3 <= DSP_rcv; 
   fw_validation_debug_4 <= Flash_SISPI; 
   fw_validation_debug_5 <= Flash_HOLDn; 
   fw_validation_debug_6 <= Flash_MCLK; 
   debug_emu_Q1_Q6_A <= Emu_SW01_A; 
   debug_emu_Q4_Q5_A <= Emu_SW04_A; 
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   debug_emu_Q1_Q6_B <= Emu_SW01_B; 
   debug_emu_Q4_Q5_B <= Emu_SW04_B; 
   debug_emu_Q1_Q6_C <= Emu_SW01_C; 
   debug_emu_Q4_Q5_C <= Emu_SW04_C; 
 END PROCESS; 
    
 ------------------- Main Routing PROCESS (Combinatorial) ------------------- 
  
 PROCESS (SCI_RX, DSP_Rst, DSP_rcv, DSP1_Act) 
  BEGIN 
   IF (DSP1_Act = '1') THEN 
    ------------------- DSP 1 Active ------------------- 
    -- Phase A 
    SW01_A <= DSP1_01_A; 
    SW02_A <= DSP1_02_A; 
    SW03_A <= DSP1_03_A; 
    SW04_A <= DSP1_04_A; 
    SW05_A <= DSP1_04_A; -- Same as PWM 04 
    SW06_A <= DSP1_01_A; -- Same as PWM 01 
    -- Phase B 
    SW01_B <= DSP1_01_B; 
    SW02_B <= DSP1_02_B; 
    SW03_B <= DSP1_03_B; 
    SW04_B <= DSP1_04_B; 
    SW05_B <= DSP1_04_B; -- Same as PWM 04 
    SW06_B <= DSP1_01_B; -- Same as PWM 01 
    -- Phase C 
    SW01_C <= DSP1_01_C; 
    SW02_C <= DSP1_02_C; 
    SW03_C <= DSP1_03_C; 
    SW04_C <= DSP1_04_C; 
    SW05_C <= DSP1_04_C; -- Same as PWM 04 
    SW06_C <= DSP1_01_C; -- Same as PWM 01 
      
    ------------------- DSP 2 Emulation ------------------- 
    -- Phase A 
    Emu_SW01_A <= DSP2_01_A; 
    Emu_SW02_A <= DSP2_02_A; 
    Emu_SW03_A <= DSP2_03_A; 
    Emu_SW04_A <= DSP2_04_A; 
    Emu_SW05_A <= DSP2_04_A; -- Same as PWM 04 
    Emu_SW06_A <= DSP2_01_A; -- Same as PWM 01 
    -- Phase B 
    Emu_SW01_B <= DSP2_01_B; 
    Emu_SW02_B <= DSP2_02_B; 
    Emu_SW03_B <= DSP2_03_B; 
    Emu_SW04_B <= DSP2_04_B; 
    Emu_SW05_B <= DSP2_04_B; -- Same as PWM 04 
    Emu_SW06_B <= DSP2_01_B; -- Same as PWM 01 
    -- Phase C 
    Emu_SW01_C <= DSP2_01_C; 
    Emu_SW02_C <= DSP2_02_C; 
    Emu_SW03_C <= DSP2_03_C; 
    Emu_SW04_C <= DSP2_04_C; 
    Emu_SW05_C <= DSP2_04_C; -- Same as PWM 04 
    Emu_SW06_C <= DSP2_01_C; -- Same as PWM 01 
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    --------------------------------------------------------- 
    DIMM_C_GPIO30 <= DSP_Sync_HP; 
    DIMM_B_GPIO30 <= DSP_Sync_HP; 
    LED_A <= '0'; 
    LED_B <= '1'; 
     
    LED_C <= '1'; 
    LED_D <= '1'; 
    LED_E <= '1'; 
    LED_F <= '1'; 
    LED_G <= '1'; 
    LED_H <= '1'; 
    
    IDC_B_GPIO_00 <= '1';   ---- Reset is active low, and 
1(NO Reset) is routed to pin 00 of IDC B (DSP1 is Active) 
    IDC_C_GPIO_00 <= DSP_Rst;  ---- DSP_Rst signal(Bootloader) 
routed to pin 00 of IDC C (DSP2 is Stand-By) 
     
    DIMM_B_SCI_RX <= '1';   ---- Stop bit is high, and 
is sent to the serial receiver of DIMM B (DSP1 is Active) 
    DIMM_C_SCI_RX <= DSP_rcv;       ---- DSP_rsv signal(Bootloader) is 
routed to the serial receiver of DIMM C (DSP2 is Stand-By) 
     
    Nothing <= DIMM_B_SCI_TX; 
    DSP_xmt <= DIMM_C_SCI_TX; 
   ELSE 
    ------------------- DSP 2 Active ------------------- 
    -- Phase A 
    SW01_A <= DSP2_01_A; 
    SW02_A <= DSP2_02_A; 
    SW03_A <= DSP2_03_A; 
    SW04_A <= DSP2_04_A; 
    SW05_A <= DSP2_04_A; 
    SW06_A <= DSP2_01_A; 
    -- Phase B 
    SW01_B <= DSP2_01_B; 
    SW02_B <= DSP2_02_B; 
    SW03_B <= DSP2_03_B; 
    SW04_B <= DSP2_04_B; 
    SW05_B <= DSP2_04_B; 
    SW06_B <= DSP2_01_B; 
    -- Phase C 
    SW01_C <= DSP2_01_C; 
    SW02_C <= DSP2_02_C; 
    SW03_C <= DSP2_03_C; 
    SW04_C <= DSP2_04_C; 
    SW05_C <= DSP2_04_C; 
    SW06_C <= DSP2_01_C; 
    ------------------- DSP 1 Emulation ------------------- 
    -- Phase A 
    Emu_SW01_A <= DSP1_01_A; 
    Emu_SW02_A <= DSP1_02_A; 
    Emu_SW03_A <= DSP1_03_A; 
    Emu_SW04_A <= DSP1_04_A; 
    Emu_SW05_A <= DSP1_04_A; 
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    Emu_SW06_A <= DSP1_01_A; 
    -- Phase B 
    Emu_SW01_B <= DSP1_01_B; 
    Emu_SW02_B <= DSP1_02_B; 
    Emu_SW03_B <= DSP1_03_B; 
    Emu_SW04_B <= DSP1_04_B; 
    Emu_SW05_B <= DSP1_04_B; 
    Emu_SW06_B <= DSP1_01_B; 
    -- Phase C 
    Emu_SW01_C <= DSP1_01_C; 
    Emu_SW02_C <= DSP1_02_C; 
    Emu_SW03_C <= DSP1_03_C; 
    Emu_SW04_C <= DSP1_04_C; 
    Emu_SW05_C <= DSP1_04_C; 
    Emu_SW06_C <= DSP1_01_C; 
     
    --------------------------------------------------------- 
    DIMM_C_GPIO30 <= DSP_Sync_HP; 
    DIMM_B_GPIO30 <= DSP_Sync_HP; 
     
    LED_A <= '1'; 
    LED_B <= '0'; 
    LED_C <= '1'; 
    LED_D <= '1'; 
    LED_E <= '1'; 
    LED_F <= '1'; 
    LED_G <= '1'; 
    LED_H <= '1'; 
     
    IDC_B_GPIO_00 <= DSP_Rst;  ---- DSP_Rst signal(Bootloader) 
routed to pin 00 of IDC B (DSP1 is Stand-By) 
    IDC_C_GPIO_00 <= '1';        ---- Reset is active low, and 1(NO 
Reset) is routed to pin 00 of IDC C (DSP2 is Active) 
     
    DIMM_B_SCI_RX <= DSP_rcv;  ---- DSP_rsv signal(Bootloader) 
is routed to the serial receiver of DIMM B (DSP1 is Stand-By) 
    DIMM_C_SCI_RX <= '1';        ---- Stop bit is high, and is sent to the 
serial receiver of DIMM C (DSP2 is Active) 
     
    DSP_xmt <= DIMM_B_SCI_TX; 
    Nothing <= DIMM_C_SCI_TX; 
   END IF; 
 END PROCESS; 
END Behavioral; 
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A-3 Python Resiliency Testing Code 

# Company:  University of Arkansas 
# Engineer: Brady McBride 
# Project:  SETO embedded Modbus RTU testing 
# Version:  2.0 
# 
# 
# 26Feb2022 
# Description:  This program is used to test the minimum timing in between Modbus RTU calls within the 
#               Modbus RTU VHDL implementation along with the accuracy of dynamically changing data 
through 
#               read and write commands 
 
 
# imports 
import minimalmodbus 
import serial 
import time 
 
# instr creation - This is COM10, or /dev/ttyS9 
# https://stackoverflow.com/questions/67303888/minimalmodbus-i-can-read-data-but-i-cannot-write-it-rtu 
# https://stackoverflow.com/questions/38444497/trouble-locating-my-serial-ports-using-bash-on-windows-
10 
instr = minimalmodbus.Instrument('COM6', 1)  # port name, slave address (in decimal) 
 
# instr config 
instr.serial.baudrate = 9600 
instr.serial.timeout = 4  # seconds 
instr.mode = minimalmodbus.MODE_RTU 
instr.serial.parity = serial.PARITY_NONE  # not using 
instr.serial.bytesize = 8 
instr.serial.stopbits = 1 
# instr.clear_buffers_before_each_transaction = True 
# 
instr.byteorder = minimalmodbus.BYTEORDER_LITTLE 
# 
instr.debug = True 
 
RegList = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 
29, 
           30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 
56, 
           57, 58, 59, 60, 61, 62, 63, 64] 
 
Reglist2 = [] 
 
count1 = 0 
 
readLap = 0 
writeLap = 0 
gapLap = 0 
gapLap2 = 0 
gapTime2 = 0 
gapTime = 0 
errorTime = 0 
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errorCount = 0 
passCount = 0 
laps = 10000 
 
start = time.time_ns() 
while (count1 < laps): 
 
    # Writing Test 
    try: 
        print("WRITE") 
        gapLap = gapLap + time.time_ns() - gapTime 
        writeTime = time.time_ns() 
        instr.write_registers(0X100, RegList) 
        writeLap = writeLap + time.time_ns() - writeTime 
        errorTime = time.time_ns() - writeTime 
        gapTime2 = time.time_ns() 
        if errorTime > 3000000000:  # 3 seconds 
            errorCount = errorCount + 1 
            errorTime = 0 
    except Exception as e: 
        print("Error writing Coil: ", e) 
 
 
    # Reading Test 
    try: 
        if gapTime2 > 0: 
            gapLap2 = gapLap2 + time.time_ns() - gapTime2 
        print("READ:") 
        readTime = time.time_ns() 
 
        RegList2 = instr.read_registers(0X100, 64) 
        print("RegList2 = ", RegList2) 
        if RegList2 != RegList: 
            errorCount = errorCount + 1 
        else: 
            passCount = passCount + 1 
 
 
        readLap = readLap + time.time_ns() - readTime 
        errorTime = time.time_ns() - readTime 
        gapTime = time.time_ns() 
        print("Error Time = ", errorTime) 
        if errorTime > 3000000000:  # 3 seconds 
            errorCount = errorCount + 1 
            errorTime = 0 
    except Exception as e: 
        print("Error reading register: ", e) 
 
    # Changing register values 
    RegList = [x + 1 for x in RegList]  # Increments every value in the list by 1 
 
    count1 = count1 + 1 
    print("Count1 = ", count1) 
    print("Error Count = ", errorCount) 
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end = time.time_ns() 
total = end - start 
avg = total / count1 
print("Average Time Between Send to Send is ", avg, "ns") 
print("    OR    ") 
print(avg / 2000, "us   OR   ", avg / 2000000, "ms") 
 
print("\n\nResults from ", laps, " read and ", laps, " write commands:") 
print("-------------------------------------------------\n") 
print("Total Errors Received:  ", errorCount) 
print("Total Passes Received:   ", passCount, "\n") 
 
print("Average Lap Time = ", avg / 2000000, "ms") 
print("Average Read Lap Time = ", readLap / (count1 * 1000000)) 
print("Average Write Lap Time = ", writeLap / (count1 * 1000000)) 
# print("Gap Time 1 = ", gapLap/(count1*1000000)) 
# print("Gap Time 2 = ", gapLap2/(count1*1000000)) 
 
# time.sleep(1) 
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A-4 CRC Verification with C Code 

#Code to verify CRC calculation algorithm and output in a non-VHDL environment 
#include <iostream> 
 
using namespace std; 
 
int main() 
{ 
    int ram_Size = 6; 
    int n = 0; 
    int k = 0; 
    int CRC16 = 0xFFFF; 
    int ram[ram_Size] = {0x01, 0x03, 0x01, 0x00, 0x00, 0x04}; 
    int poly = 0xa001; 
    bool carry = false; 
 
 
    while(k < ram_Size){ 
        cout << "k = " << k << endl; 
        cout << "ram[" << k << "] = "; 
        cout << hex << ram[k] << endl; 
 
        CRC16 = CRC16 ^ ram[k]; 
        cout << hex << CRC16 << endl; 
 
        n = 0; 
 
        while(n < 8){ 
            cout << "n = " << n << endl; 
            if(CRC16 % 2 == 1) 
                carry = true; 
            (CRC16 = CRC16 >> 1); 
            cout << hex << CRC16 << endl; 
            if(carry){ 
                CRC16 = CRC16 ^ poly; 
                cout << "POLY" << endl; 
                cout << hex << CRC16 << endl; 
            } 
            carry = false; 
            n++; 
        } 
        k++; 
 
        if(CRC16 == 0x0FDA){ 
            cout << "CRC Is Correct" << endl; 
    } 
    } 
 
    cout << hex << CRC16 << endl; 
    //0x4763 
 
 
 
    return 0; 
} 


