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Quantum resonances, i.e., metastable states with a finite lifetime, play an important role in nuclear
physics and other domains. Describing this phenomenon theoretically is generally a challenging task.
In this work, we combine two established techniques to address this challenge. Complex scaling
makes it possible to calculate resonances with bound-state-like methods. Finite-volume simulations
exploit the fact that the infinite-volume properties of quantum systems are encoded in how discrete
energy levels change as one varies the size of the volume. We apply complex scaling to systems
in finite periodic boxes and derive the volume dependence of states in this scenario, demonstrating
with explicit examples how one can use these relations to infer infinite-volume resonance energies

and lifetimes.

I. INTRODUCTION

A collection of results going back to the groundbreak-
ing early work of Liischer [TH3] makes it possible to infer
the properties of quantum systems from simulations in fi-
nite periodic boxes. The essence of the technique is that
real-world properties of a system are encoded in how its
discrete energy levels change as volume size is varied. For
example, bound-state energy levels depend exponentially
on the volume, with a scale that is set by the momentum
corresponding to the energy relative to the nearest two-
cluster breakup [4], and the prefactor in this dependence
is proportional to the asymptotic normalization coeffi-
cient (ANC) corresponding to that channel. Information
about elastic scattering, on the other hand, can be deter-
mined from energy levels with power-law behavior, via
the Liischer quantization condition [3]. Extending the
repertoire of such relations is a field of very active re-
search, with focus in recent years in particular on three-
body systems [5H23]. Lattice Quantum Chromodynamics
(Lattice QCD) is the primary domain where these meth-
ods are currently applied, but they can also be used in
connection with Lattice Effective Field Theory (Lattice
EFT) calculations of atomic nuclei [24H28] and other few-
body approaches [29] [30].

Resonances, i.e.., quasi-bound states that decay with
a finite lifetime, are manifest in the finite-volume spec-
trum as avoided crossings between states, and for two-
body systems it is straightforward to associate this fea-
ture with a steep rise in the scattering phase shift [31-
33]. It has also been shown that this feature carries over
to systems of more than two particles that host few-
body resonances [34]. While this makes finite-volume
calculations an interesting tool to detect the presence of
few-body resonance states (or corroborate their absence),
this method does not provide a straightforward way to
quantitatively determine the “width” (proportional to
the inverse lifetime) of few-body resonances. Moreover,
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since the avoided crossings are expected to appear among
“scattering” levels with power-law volume dependence,
identifying low-energy resonances generally requires cal-
culations in large boxes, which can be numerically very
expensive. Finite-volume eigenvector continuation has
been developed to reduce this cost [35], but it is still very
interesting and relevant to look for alternative methods
that are able to determine resonance properties compre-
hensively (i.e., which also give access to the decay width),
and which are ideally at the same time more efficient in
terms of numerical cost. In this work, we develop such
an alternative by combining the finite-volume approach
with the so-called “complex scaling” method.

Although resonances are inherently a time-dependent
phenomenon (they decay after existing for a finite time),
techniques exist that enable their description within the
framework of time-independent scattering theory. A key
quantity for this theory is the so-called scattering ma-
trix (S matrix), which can be considered as a function
of a compler energy E defined multiple Riemann sheets.
Standard phenomena like scattering and bound states
appear for real F on the first (“physical”) sheet, while
(decaying) resonances are manifest as poles of the S ma-
trix at complex energies F = Er — il'/2 on the second
Riemann sheet, with E'r the resonance position and I’
the WidthE If T" is not large compared to Eg, these
poles appear close to the scattering regime and therefore
lead to the characteristic peaks in the cross section that
resonances are commonly associated with phenomeno-
logically. Within this quasistationary formalism, the
S-matrix resonance poles are associated with complex-
energy eigenstates [36H38].

Accessing these poles (or equivalently the correspond-
ing complex energy eigenstates) is generally nontrivial.
Clearly, a non-Hermitian extension of the formalism is
necessary to accommodate such states because for sys-
tems described by a Hermitian Hamiltonian, all eigen-
states must have real energy eigenvalues. One way of

1 In this brief description we tacitly assume that we are discussing
a two-body system. For more particles and/or multi-channel
problems, the Riemann-sheet structure becomes richer.
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achieving this extension is the so-called “complex scal-
ing method (CSM)” [39] [40], described further below,
which in this work we formulate in a periodic finite vol-
ume (FV). We note that this is closely related to the
approach of Ref. [41], which has shown how resonance
properties can be obtained from transition amplitudes
calculated in finite volume after analytic continuation to
purely imaginary box sizes. By instead applying com-
plex scaling to the Hamiltonian of a system, we are able
to obtain resonance energies directly as complex energy
eigenvalues via diagonalization. Moreover, we study how
these resonance energies depend on the size of the vol-
ume, which is similar to bound states, but inherently
richer because both the real part and the imaginary part
of the energy exhibit volume dependence. We derive in
detail the functional form of this volume dependence for
two-cluster states. Moreover, we describe a concrete nu-
merical implementation for calculating generic complex-
scaled few-body systems in finite volume and use this to
demonstrate with explicit examples how our analytical
relations can be used to determine infinite-volume reso-
nance positions (the real part of the resonance energy)
and the associated widths (given by the imaginary part)
from a range of finite-volume simulations.

Our paper is organized as follows. In the follow-
ing Sec. [[Il we first introduce the CSM in general and
then proceed to discuss the volume dependence arising
from imposing periodic boundary conditions on complex-
scaled resonance states. In Sec. [Tl we describe our nu-
merical implementation use this to study a series of ex-
plicit examples. We close in Sec. [V]with a summary and
and outlook.

II. FORMALISM
A. Complex scaling method

The (uniform) complex-scaling method [39] [40], [42H46]
makes it possible to describe resonances in a way that is
very similar to bound-state calculations. This is achieved
by expressing the wave function not as along the usual
real coordinate axis, but instead along a contour rotated
into the complex plane. For example, if r denotes the
relative distance between particles in a two-body system,
described by a Hamiltonian

with free (kinetic) part Hp and interaction V', then com-
plex scaling is implemented by applying the transforma-
tion

r—rel? = r( (2)

with some angle ¢, the appropriate choice of which in
general depends on the position of the resonance one
wishes to study: if the state of interest has a complex en-
ergy E, then it is necessary to ensure that ¢ > —#. If

one were to solve the Schrodinger equation in differential
form without complex scaling while imposing boundary
conditions that are appropriate for resonance states, the
resulting wave function would have an amplitude that
grows exponentially with r and does therefore not de-
scribe a normalizable state. More specifically, for a two-
body state with energy E corresponding to an S-matrix
pole, the asymptotic behavior of the radial wave function
for large separation r between the two particles is given
by [47, [48]

(r) —— Nﬁf(kr) ~ exp(—kr), (3)

r—00

where k = /2 F is the associated momentum scale (with
1 the reduced mass of the system), and [ denotes the
angular momentum of the state. The function leJr(k:r) isa
Riccati-Hankel function, the dominant behavior of which
for large argument is exponential (times an [-dependent
polynomial that we omitted in Eq. for simplicity).

Clearly, when E lies in the fourth (lower right) quad-
rant of the complex plane, so does the corresponding
momentum k&, and then the imaginary part causes the
Riccati-Hankel function to grow exponentially. What is
accomplished with the transformation is that along
the rotated contour, the same (now analytically contin-
ued) wave function behaves similar to a bound state, i.e.,
its amplitude exponentially tends to zero as r — co.

Complex scaling can be further elucidated by consid-
ering the same system in momentum space. The scal-
ing of the radial coordinate r is equivalent to a rotation
in momentum representation that goes in the opposite
(clockwise) direction with the same angle ¢ [45], i.e., if
we consider the wave function in terms of a momentum
coordinate g conjugate to r, then complex scaling is im-
plemented as

q—qe” ¥ =qC*. (4)

Alternatively, this scaling in momentum space can be
understood as a rotation of the S-matrix branch cut
in the complex-energy plane by an angle 2¢ clockwise,
thereby exposing a section of the second Riemann sheet
where resonances are located [45]. Choosing ¢ sufficiently
large, as mentioned above, then corresponds to “reveal-
ing” enough of the second sheet to uncover the resonance
pole.

In the remainder of this subsection, we address several
technical aspects that are relevant for the concrete finite-
volume implementation of the complex scaling method
that we consider in this work.

Three-dimensional Cartesian coordinates While the
method of complex scaling is easier to explain in a partial-
wave framework [45] [46], the equivalent 3D Cartesian
formulation, which is most appropriate for the cubic box
geometry we study in this paper, needs to be carefully
stated. To that end we note that complex scaling of
each individual component of r = (z,y, z) is equivalent



to complex scaling of the radial coordinate r,
P VETRT R
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but it leaves the angles 6 and ¢ in spherical coordinates
r = (r,0, ¢) unaffected:

0050:2:%, (6a)
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Therefore, we can apply complex scaling directly to
Cartesian coordinates as long as Eq. is used to cal-
culate the corresponding radial distances. For later use,
we define a version of the Euclidean norm that preserves
complex scaling as in Eq. , viz.

Ir|.s = Va2 +y?+22 for r = (z,y,2) ,2,y,2 € C. (7)

Relative coordinates In line with the numerical im-
plementation for few-body systems in a box that we de-
scribe further in Sec. [[T]|below, we consider now a system
of n particles described in terms of simple relative coor-
dinates, which we define as

X — r, —ry
T 1 n
n Zj:l rj

in terms of the single-particle coordinates r;, i = 1,---n.
Note that x,, in this notation is the overall center-of-
mass coordinate that does not appear explicitly in the
description of translationally invariant systems. Complex
scaling can be applied simultaneously to each of these
relative coordinates. That is, for each x; we can simply
apply the transformation

for1 <i<mn,
fori=n

(®)

X; — Xiei¢ = x;(, 9)

and from the previous discussion we know that this is
equivalent to scaling each radial modulus z; = |x;| as
x; — Cx;. If we consider for simplicity a system with only
local pairwise two-body interactions that are spherically
symmetric, then each potential term in the Hamiltonian
is transformed as

V(x:) = V(x;) = V(Czi), (10)

or, for interacting pairs that are not directly described
by one of the x;, as

V(lxi —x5]) = V(CIxi —x5]) , i#5,  (11)

which follows from the fact that we scale each x; with
the same rotation angle. Alternatively, we can state
the prescription that in order to evaluate interactions,
relative distances should be evaluated using the Eu-
clidean “norm” as defined in Eq. , preserving the rota-
tion angle for complex coordinates, i.e., V(|x; — x;|) —

V(|x; — xjl,). Either way, complex scaling for the inter-
action implies that we consider the analytic continuation
of V from real coordinates to complex-scaled ones.

The kinetic-energy operator (free Hamiltonian) can be
expressed in terms of second derivatives with respect to
the Cartesian components of the x;:

1 n—1 1 )
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i=1 j=1c=z,y,z €L;

(12)

c
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This includes some mixed-derivative terms because we
are using simple relative coordinates, but since the
complex-scaling phase is the same for each x;, it is clear
that ultimately we have

Hy — e %9Hy = (¢*)?%H, (13)

under complex scaling. Note that this behavior would be
the same for any other relative coordinate system, such as
Jacobi coordinates, as long as the complex scaling can be
expressed as arising from a scaling of each single-particle
coordinate r;, i = 1, - -n, with a uniform angle ¢.

B. Volume dependence

We now consider a two-body state generated by a
Hamiltonian H = Hg + V with kinetic part Hy and a
short-range interaction V' that becomes negligible when
the particles are separated by more than a distance R.
For a bound-state with energy E., = —k2 /(2p) in in-
finite volume, considered within a cubic geometry with
periodic boundary conditions (periodic box), the bind-
ing energy becomes a function of the edge length L of
the box. The leading form of this volume dependence is
known to be given by

AB(L) = E(L) — Ex

392, exp(—kooL) —V3KCL
== =40 (e ) . (14)

where ., denotes the ANC of the bound state. As dis-
cussed for example in Refs. [T, 49 50], Eq. can be
derived by making an ansatz

Yro(x) = Y tso(x+nl) (15)

nezs

for the wave function of the state at volume L, where
Yoo (Xx) denotes the states wave function in infinite vol-
ume. In order to address some subtle points associated
with complex scaling, in the following we work through
the analog of this approach for a complex-scaled one-
dimensional (1D) system system. Following this, we com-
ment briefly on the extension of the 1D method to the
three-dimensional (3D) system, which we then proceed to
discuss in detail using a more abstract method that has
the advantage of giving access to important subleading
corrections.



1. Leading volume dependence

Let 900 (Cx) be the complex-scaled wave function of a
resonance state in infinite volume, with energy F., and
associated momentum p.,. We can closely follow the
derivation of the volume dependence for bound states
and start from the following ansatz for the state’s wave
function when subject to an L-periodic boundary condi-
tion:

bero(@) = Y vwlCr+Cnl).  (16)

n=—oo

Note that we use a subscript (L here to indicate explicitly
that this is the complex-scaled finite-volume ansatz, and
for convenience we define ¢y o(z) so that its argument
is explicitly real again. Importantly, the shifts in the
wave function are applied along the rotated contour. By
construction, ¥y, o(x) satisfies

wCL,O(l‘ + ’I’LL) = wCL70(x) (17)

for any n € Z, and the same must be true for the exact
wave function at volume L, which we denote as ¢ (z),
also with real argument defined along the rotated axis.

At this point we also assume for convenience that
the interaction V is a simple local potential and note
that general non-local potentials can be considered anal-
ogously to the derivation in Ref. [50]. The complex-scaled
finite-volume Hamiltonian H¢y, is then obtained by mak-
ing the potential periodic, viz.

V(¢r) > Vep(z)= > V(Cz+¢nLl),  (18)

n=—oo

along with scaling the kinetic part as in Eq. . Acting
with HCL on ¢<L7O(.T), we find that

Herero(z) = E(00)der,o(x)
+3° 3 V(G +(nL)puc(Ca+ 2nL)

n n'#n
= E(co)Ycro(x) +n(x). (19)

Since the amplitude of the complex-scaled resonance
wave functions decays exponentially like a bound state,
we have that the function 7 defined above behaves as
n(¢x) ~ O(elP=L). We can choose 3 so that Bty ()
differs from the true finite-volume wave function )¢, only
by an by an orthogonal term, i.e., for

lir) = [Wern) — B lver,o) (20)

it holds that (¢¢r0|¢¢r) = 0. We have switched here to
bra-ket notation for convenience and note that in eval-
uating overlaps and matrix elements, the so-called “c-
product” [44] 51] needs to be used, i.e., the wave func-
tions arising from bra states are not complex-conjugate
when evaluating inner products.
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We now consider the matrix element (¢¢r|Her|Yer,o)
and let the Hamiltonian act to both left and right, which
gives

BE(L) (YcLlvcr.0)
= BE(c0) (Ycrlero) + (Yerln) » (21)
where F(L) is the energy at volume L. Noting that

(Wolthz0) = (¥p0lthe0), we then find the finite-volume
energy shift as

AE(L) = E(L) — En
(Yern)

B (Yer,olter,o)

WZL )

B (Yerolvero)
(22)

<¢CL,0|77>
(Yerolter,o)

It can be shown that (Y;,|n) = O(e2iP=L) and is ex-
ponentially suppressed, using the asymptotic behavior
of the complex-scaled wave function in infinite volume.
We keep in mind here that p, = v2uF., and with
FE lying in the fourth quadrant of the complex energy
plane, so does po.. Multiplication with ¢ = exp(ig)
where ¢ > arg p, then ensures that i(p..L has a nega-
tive real part, and therefore indeed <¢é>|77> does not con-
tribute to the leading term. Furthermore, on the domain
x € [-L/2,L/2], we have that

n(x) = V(¢o)boo (Cr — (L) + O(exP=F) . (23)
Putting this back into Eq. , we get

L2

AB(L) = -2 / 0 oo (C2)V (C2)tboo (G — (L)

L2
+O(e2ir=l)  (24)

This result is exactly analogous to the ordinary bound-
state result in 1D, except that the coordinate x is re-
placed with 2¢ = xe'®. Using integration by parts, we
can write

_ ¢ od
AE(L) = m [1/100(@ ¢L) dx%’(@)
d L/2
- %o(@)@%o((x —CL) +0 (e%icpooL) _
—L/2

(25)

Asymptotically, i.e., for |(z| = |z| outside the range R of
the short-range interaction, the complex-scaled infinite-
volume resonance wave function can be written as

Voo (CJZ) = Yoo eXP(iCPoox) (26)

where 7o, is the resonance analog of the ANC for
bound states. Inserting this and using that our as-
sumption of even parity implies ¥o(Cx — (L) —



Yoo €xp(i{peo (L — x)), we arrive at

2n’y§o

exp(iCpoo L) + O(e3iP=L)

2k72 .
— 1p<x> L(¢— 1)( K0 exp(lpooL)> +O(e%1CpooL) )
1
(27)

AE(L) = —

For a three-dimensional S-wave state, we can follow
exactly the same procedure, with only minor technical
changes to account for the cubic boundary condition and
the occurrence of partial derivatives [49, [50]. The result
that we obtain for the resonance energy shift from this
procedure is

AB(L) =

3720 exp(iCpooL) V2i¢poo L
o . 2
? 0 (e ). o)

We note that Eq. (28]) can be obtained from the bound-
state relation Wlthout complex scaling, Eq. . by ro-
tating the box size as L — (L and replacing the binding
momentum s with —ip.,. We also point out the complex-
scaled form of the volume dependence indeed still ap-
plies to bound states calculated with complex scaling,
i.e., Eq. remains valid for po, = ik with real K > 0
(since bound-state energies remain real under complex
scaling) [40] [43].

2. Subleading corrections

The imaginary part of the exponent in Eq. gives
AE(L) an oscillatory behavior as a function of L. While
the subleading terms arising from (¢j|n) are exponen-
tially suppressed as far as the magnitude of AE(L) is
concerned, these contributions can be significant to si-
multaneously describe the real and imaginary parts of
the energy shift with good accuracy. We therefore derive
in the following the explicit form of the volume depen-
dence including the first subleading corrections. Follow-
ing Ref. [4I], we define a complex scaled finite-volume
Green’s function as

1pr
Ger(Cr, E) L3 > (e SEk (29)

pel'L

with T, = {p: p = 272, n € Z*}. This function satisfies

the finite-volume Helmholtz equation

— Y d(r+nL), (30)

nezs3

[(¢")*A +2uB] (Ger(Cr, B
and it is related to the Liischer’s standard finite-volume
Green’s function G (r, E) [3] by the following relation:

Ger(¢r, E) = (Gp(r,C’E). (31)

The above equality for the Green’s functions relates the
complex scaling of the coordinate to a scaling of the

energy and it thereby allows us to apply the analysis
of Ref. [3] to the complex-scaled system. Our starting
point is the relation between the scattering (S) matrix
and finite-volume energy levels, which for the Af irre-
ducible representation of the cubic group, truncated to
S-wave contributions, reads

) +im3/2q
—im3/2q

Zoo(1; ¢

e2i60 (p) —
Z00(15¢%)

(32)

with Zyo denoting Liischer’s zeta function [3].

While we followed Liischer in writing the infinite-
volume S-matrix in terms of a scattering phase shift dy(p)
in Eq. , we note that localized states in the spec-
trum, i.e., bound states and resonances that are expo-
nentially decaying after complex scaling, the analytically
continued S-matrix has corresponding poles at complex
momenta p. To find the finite volume dependence of
these states, we can expand Eq. around the infinite-
volume limit, following Ref. [52]. We start by writing the
S-matrix in the form

pcot do(p) + ip

e21%0(p) — E
pcot dp(p) — ip

(33)

and consider K¢ (p) = pcot §p(p) as a function of complex
p. The quantization condition then takes the simpler
form

VAT (1), (34)

Ko(p) = T

and the condition for a pole in the S-matrix becomes
Ko(p) = ip.

We now regard p = p(L) as the volume-dependent mo-
mentum corresponding to the resonance pole, related to
the resonance energy F = E(L) via p = /2uFE. In infi-
nite volume, the pole is at p = poo = V2uF . As dis-
cussed above, we can apply complex scaling now directly
to Eq. to derive the desired volume dependence, i.e.,
we consider p — (p (which trivially implies ¢ — (q). Ex-
panding the left side of Eq. around the (complex-
scaled) infinite-volume limit, using Ko ((p) = Ko(¢p(E))
and evaluating the expansion at F = E(L), we get:

Ko(Cp) = Ko<<pw>+Ko<4pw>If“< (L) -

+O((E(L) - BE())?) - (35)

E(o0))

We use the prime here to denote the derivative of Kj
with respect to its (momentum) argument and the factor
in Eq. arises from d((p) /dE|p:p The purpose
of performing the expansion in terms of the energy is
that the finite-volume energy shift F(L) — E = AE(L)
appears explicitly in Eq. . Note also that via the pole
condition in infinite volume We have Ko((Poo) = i(Poo-
The right-hand side of Eq. (34)) contains Liischer’s zeta
function. We can analytically contlnue this Zg0(1;¢?) to



the full complex plane of ¢ [63], and make use of the
following series expansion:

47 » exp(2mi
gzoo(l;CQQQ) = ip+ Y W7 (36)

nezs

where the prime on the sum means that n = 0 is to
be excluded. Note that p = p(L) and ¢ = ¢(L) here.
Combining Eqs. and , and noting that

p(L) = poo = Ap(L) = #AE(L» (37)

or equivalently expanding p(L) = p(E(L)) around L = co
similar to Eq. , we obtain

CH o p . ' exp(27i|n|(q)
o [K{(Cpos) =1 AB(L) = ) L

nezd

+0((AE)?), (38)

and ultimately we have

6poo

BEL) = SR o) — L

X [ exp(ipooL)

3v3
+ O (2Pl - (39)

+ V2exp (i\/i(pooL) + A exp (iC\/gpooL)]

We find that this method generates the first subleading
terms contributing to AE(L), as desired, and we note
that also yet higher-order subleading terms can be de-
rived by using this expansion. The O((AE)?) term in
Eq. then appears together with O (eiQC”mL) terms
from the expansion of the zeta function, and at this point
the number of unknown parameters increases. For more
details, we refer to Ref. [54], where the S matrix is ex-
panded to the context of deriving extrapolations for trun-
cated harmonic oscillator bases. This basis truncation
can be related to an effective spherical hard-wall bound-
ary and can thus be studied with techniques similar to
what we have used here (see also Refs. [55], [56]).

The prefactor in Eq. contains the unknown quan-
tity K{((pso). Overall, we can relate the prefactor to
the residue of the S-matrix at the resonance pole. For
bound states, we would obtain the (squared) asymptotic
normalization constant (ANC) [48], and this relation has
been extended to resonances, where the ANC becomes
proportional to the resonance width [57]. In light of this
correspondence, we can identify

2 —_ 2poo
Yo = K (Cpne) (40)

and write the final form of the volume dependence as

32

AB(D) ="

X [exp(iCpOOL) + V/2exp (iﬂCpooL)

4 s
+vaon(i0VinaL)| +O (=) . @

establishing also the connection with the leading
form .

This derivation can also be generalized to higher an-
gular momenta. In particular, P-wave (angular momen-
tum [ = 1) bound states in infinite volume typically fall
into T} cubic representation. We assume here that this
remains true for resonances because like bound states
these correspond to isolated S-matrix poles. According
to Ref. [3], the following quantization condition holds in
this channel:

Ki(p) = pcotéy(p) = gzoo(l; 7). (42)
Note that this relation is still using Zyg, with higher-
order zeta functions contributing to 7] only once [ > 3
waves are considered. For localized states with angular
momentum [, the residues of the corresponding S-matrix
poles come with a factor (—1)! [48 [57]. We therefore
write the P-wave analog of Eq. as

N
K{((pso) —1’

and using that, we arrive at

Voo = (43)

AE(L) = —?:700 x [exp(i(pooL) + \/iexp(i\/ﬁcpooL)

+ 3%exp (ig\/ﬁme) + O (e12P=E) | (44)

In particular, for p,, = ik and without complex scaling
(p - 0 = (¢ — 1), the leading term in Eq.
recovers the known P-wave result for bound states [49]
50).

III. NUMERICAL IMPLEMENTATION

In order to numerically test the relations derived
in the previous section, we use the finite-volume dis-
crete variable representation (FV-DVR) as described in
Refs. [29] [34, [58]. We refer to those reference for details
about the method and its efficient numerical implementa-
tion and focus here only on the adaption the basic build-
ing blocks to support uniform complex scaling within the
FV-DVR.

The starting point for the FV-DVR is a plane-wave
basis

o) = e (154 ) (45)



where L as before is the size of the periodic volume and
the index j runs from —N/2 to N/2 for even number of
modes N > 2. The z in Eq. denotes the relative
coordinate describing a two-body (n = 2) system in one
dimension (d = 1). As in the derivation of the resonance
volume dependence in the previous section, it is conve-
nient to initially discuss this simple scenario. For a set
of equidistant points z), € [—L/2,L/2) with associated
weights wy, = L/n (defining together a simple trapezoidal
integration rule), DVR states are constructed from the

(bE.L) (x) by means of a unitary transformation [59]

N/2—1

k() = Y Uie,(), (46)

j=—N/2

with Up; = Jwrdi(zr). The index k in Eq. covers
the same range of integers as the j labeling the original
plane-wave modes, and v (x) is a wave function peaked
at xx. In order to apply the method, a generic Hamilto-
nian as in Eq. is expanded within the basis spanned
by the DVR states |1x) = |k). The kinetic-energy oper-
ator for the one-dimensional two body system, expressed
in coordinate space, is, up to a prefactor —1/(2u) simply
a second derivative with respect to z, and more generally
it takes the form as given in Eq. , featuring combi-
nations of partial derivatives w.r.t. the coordinates. For
each such individual derivative, DVR matrix elements
can be written down explicitly in closed form,

7.r(_l)k—l —i ifk=1
ko) = ———— xp[—iZE=0 ; 47
(k1210 L % otherwise (47)
SIHT

and from this one directly obtains an explicit representa-
tion for Hy. For local potentials, the DVR has the con-
venient property that these are represented by diagonal
matrices,

with a very good approximate identity that becomes ex-
act in the limit N — oo.

For arbitrary number of particles n and spatial dimen-
sions d, DVR states can be written as

[s) = [(k11,k1,a), -, (kn—11,kn—1,4)) ,  (49)

and the corresponding wave functions are simply tensor
products of 1D modes:

Ys(z) = (zls) =

i

I “w.(io). (50)
1,n—1

=1,d

We note that the |s) can in addition include discrete
quantum numbers such as spin and isospin but neglect
these here for simplicity. The d-dimensional kinetic-
energy operator for n particles can then be constructed
as,

Hy=K®eK®...0 K (dtimes), (51)

where @& denotes the Kronecker sum [60], and K is the
1D kinetic energy operator given by restricting the sum
over ¢ in Eq. [I2]to just one term. For example, for a two-
body system in d = 3 dimensions this definition amounts
to a sparse DVR matrix with entries

(K11, k12, k13| Hollia, 0,2, 113)
= (k1,1 K |11,1) Oy 0,0y 20k1 501 5
+ (k12| K |11,2) Ok 1001 Ok1 5,015
+ (k1,3] K [11,3) Ok 1,001 Ok 2012 5

(52)

i.e., it can be constructed in terms of the 1D matrix
elements, and this remains true for n > 2. Similarly,
the evaluation of local two-body interactions generalizes
straightforwardly to d > 1 and n > 2. For more than
two particles, there is a pairwise two-body interaction
for each pair, as discussed above Eq. . In the DVR,
for each such pairwise interaction there are appropriate
Kronecker deltas for the spectator particles [34L [61].

As per our previous discussion in Sec. [TA] complex
scaling in simple relative coordinates, and therefore for
the DVR, is applied simultaneously to each coordinate
and component. For the kinetic-energy term in the DVR,
basis we therefore only need to adjust the 1D two-body
matrix elements to implement complex scaling, and ev-
erything else then follows from that. Specifically, a factor
¢* in included in Eq. 7 leading to the previously de-
rived scaling of Hy with a factor (¢*)2. Similarly, for
local two-body interactions we simply apply the scaling
to each relative separation when evaluating the potential
matrix elements, and Eq. (and its generalization to
d dimensions and n particles) implies that this carries
over directly to the DVR.

IV. EXAMPLES

We use the complex-scaled FV-DVR discussed in the
previous section to study several explicit examples. Our
goal is to obtain infinite-volume energies Eo, = p2,/2u
from a set of calculations at finite L. To that end,
we can fit the numerical data to the functional forms
derived in Sec. [[TB] thereby determining the unknown
variables po, and v in Egs. and (or the corre-
sponding P-wave forms). In order to use standard least-
squares minimization that is typically applied to real
functions of real parameters, we separate Re E(L) and
Im E(L) and fit then both of them simultaneously, while
also expanding the complex parameters {poo, oo} into
{Re poo, Im poo, Re Yoo, IM Yoo }-

A. S-wave resonance

From Ref. [34] it is known that the potential,

V() = 2exp [— (T;’ﬂ (53)



generates an S-wave resonance at Fo, = 1.606(1) —
i0.047(2) for a two-body system with m = 2u = 1, using
natural units 7 = ¢ = 1. We use this potential here in an
FV-DVR calculation with a DVR basis size N = 96 and
a complex-scaling angle of ¢ = m/24. For this calcula-
tion, we determine the finite-volume energy spectrum by
selecting states with largest imaginary part. As a repre-
sentative example for what this (partial) spectrum looks
like, we show in Fig. [I] the loci of the 40 energy levels
(counting degeneracies) with largest imaginary part in
an L = 20 box. Since in this case we know the exact
infinite-volume energy E for the resonance of interest,
we can easily select from from the spectrum the value
that is closest it. In practical applications, where the
expected result is not known in advance, one can repeat
the calculation for several rotation angles ¢ and identify
as physical resonances the levels that do not move sig-
nificantly under this angle variation, as predicted by the
Balslev-Combes theorem [43], [44].

—0.05 A . *

Im FE
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3
—0.10 A .
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Figure 1. Complex-F spectrum at L = 20 for the two-body
potential given by Eq. showing 40 eigenvalues with the
largest imaginary parts. The resonance of interest is high-
lighted with a star symbol.

Being able to identify the resonance state of inter-
est, we can repeat the calculation for a range of vol-
umes and perform the fits as described at the begin-
ning of this section. The result is shown in Fig. For
comparison, we fit both the leading-order (LO) form of
the volume dependence, Eq. , as well as the “NLO”
form given in Eq. . From the LO fit we obtain
E. = 1.605676(13) — i0.046603(13), while the NLO fit
gives Fo, = 1.6056798(27) — i10.0465947(27), in good
agreement with the known value for this resonance. The
uncertainties quoted here for our calculation are the stan-
dard errors reported by the fitting routine.

Moreover, instead of varying the volume in order to
extrapolate to L = oo, it is also possible to keep L fixed
and then fit the energy as a function of the complex-
scaling rotation angle ¢, restricted by the condition that
¢ >—arg E/2.

To demonstrate this, we perform another FV-DVR cal-
culation for the same system, with a constant box size
of L = 20, a DVR basis size of N = 80, but varying
the angle ¢ in the range shown in Fig. [3] Curve fit-
ting is performed as described previously, except that
now the independent variable is ¢ instead of L. We ob-

160625 1 =

1.60600 1/
160575
&’ .

1.60550
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Figure 2. Finite-volume spectrum for the S-wave resonance
for the potential given by Eq. (53). The real (imaginary) part
of the energy is shown in the upper (lower) panel. For each,
we show the result of fitting the volume dependence at LO
(dotted line) and NLO (solid line).

tain Ey = 1.605681(13) — i0.046565(13) from the LO
fit and Eo, = 1.605673(6) — i0.046591(6) from the NLO
fit. Noting that just the standard errors we report from
the fitting routine are only part of the actual theoreti-
cal uncertainty, which in particular also arises from un-
known higher-order terms in the analytical form of the
angle/volume dependence, this value is in reasonable
agreement with the result from varying L and with the
reference value.

B. P-wave resonance

To study a P-wave example, we use the potential
V(r)=-10 exp(—rQ) , (54)

which we find to support a resonance at FE,, =
0.25822632 — i0.16432586 from a momentum-space cal-
culation with complex scaling (see Ref. [62] for details)
with the momentum cutoff and the mesh resolution in-
creased until the value converged to the quoted precision.
The volume dependence for this state, calculated with
with a DVR basis size of N = 96 and a complex-scaling
angle of ¢ = /6, is shown Fig. The LO fit for this
resonance yields Fo, = 0.25817(7) — i0.16431(7), while
at NLO we obtain F,, = 0.258257(31) — i0.164315(31).
Both results agree well with the reference value. We see
a marginal improvement in this case at NLO, which is
more noticeable in Fig. [d} clearly the fit residuals are
reduced when using the NLO volume dependence (solid
line in the figure).
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Figure 3. Finite-volume energy, as a function of the complex-
scaling angle ¢, for the S-wave resonance for the potential
given by Eq. . The real (imaginary) part of the energy
is shown in the upper (lower) panel. For each, we show the
result of fitting the volume dependence at LO (dotted line)
and NLO (solid line).

As we did for the S-wave resonance, we repeat the cal-
culation in a fixed box with L = 25, using a DVR ba-
sis size of N = 96, and vary the complex-scaling angle
¢, as shown in Fig. For this particular resonance,
which is very wide (the imaginary part of the energy
has a magnitude that is more than 60% the magni-
tude of the real part), obtaining very accurate results
from fitting the ¢-dependence is challenging. Due to
the large width, which leads to a large arg E, the min-
imum complex scaling angle is of the order 0.4 radians,
leaving only a relatively narrow window to vary ¢ in.
Moreover, towards the smaller end of the permissible
window, complex scaling only induces a rather weakly
decaying behavior of the wave function, and therefore
higher exponential terms O(eig@wL) are not particu-
larly strongly suppressed. The effect of this can be seen
most noticeably in the upper panel of Fig. [5| where we
show the fit result for the real part of the energy. The
curve fitting was otherwise performed as before, to ob-
tain Eo = 0.25782(4) —i0.16447(4) as the LO result and
E = 0.258017(28) — 10.164225(28) as the NLO result.
In this case it is particularly obvious that the standard fit
errors alone underestimate the true uncertainty, but we
point out that nevertheless the NLO result agrees with
the L-based fit to better than 0.5% for the real part and
to better than 0.1% for the imaginary part.

—0.1625 1
rg —0.1650

~ _0.1675 4

—0.1700 4

Figure 4. Finite-volume spectrum for the P-wave resonance
for the potential given by Eq. The real (imaginary) part
of the energy is shown in the upper (lower) panel. For each,
we show the result of fitting the volume dependence at LO
(dotted line) and NLO (solid line).

C. S-wave bound state

As mentioned in Sec. the volume dependence de-
rived in this work is valid not only for resonances, but
also for bound states calculated with complex scaling. In
infinite volume, bound-state energies remain real under
complex scaling, but for L < oo our analytical calcu-
lation predicts that they in general acquire a non-zero
imaginary part. The utility in this formalism for bound
states lies in the fact that extrapolation can be performed
for a constant L while varying ¢, which is what we opt to
do here, noting that fitting the L dependence (without
complex scaling) is known to work well for bound states
(see for example Refs. [4 [49, B0, 63]). In this case, un-
like resonances, the available range of angles is no longer
restricted by the condition that ¢ > —arg E/2.

As a concrete example, we look at the S-wave bound
state with Fo, = —2.5434016 (reference value obtained
from a momentum-space calculation, with uncertainty
smaller than the given number of digits) generated by
the same potential we used to generate a P-wave
resonance. We carry out this calculation using an FV-
DVR calculation with a box size of L = 6 and a DVR
basis size of N = 30. The rotation angle is varied in
a range as shown in Fig. [ and curve fitting is per-
formed as described previously. From the LO fit we ob-
tain Eo = —2.543428(15) + i0.000022(15) and the NLO
yields Eo, = —2.543406(4) —10.000001(4). While already
at LO the real part is in excellent agreement with the
reference value, we see a marginal improvement at NLO.
The imaginary parts are consistent with zero within the
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Figure 5. Finite-volume energy, as a function of the complex-
scaling angle ¢, for the P-wave resonance for the potential
given by Eq. . The real (imaginary) part of the energy
is shown in the upper (lower) panel. For each, we show the
result of fitting the volume dependence at LO (dotted line)
and NLO (solid line).

uncertainties reported by the fitting routine.

Here, we note that the alternative approach of keep-
ing ¢ constant while varying L is just as valid for bound
states. The best choice for such a calculation would be
¢ = 0. However, setting ¢ = 0 in our analytical ex-
pressions would recover the well-established bound-state
Liischer formalism [Tl [50], and therefore, is not studied
in this work.

D. Three-boson resonance

Finally, to show that FV-DVR prescription with com-
plex scaling works just as well beyond the two-body sec-
tor, we calculate the finite-volume three-body spectrum
for a system of bosons where the pairwise interaction
between particles is given by the potential 3] Using
the method of avoided crossings, Ref.[34] estimates for
this scenario a resonance at Re(E) = 4.18(8), with an
unknown width. We study this system with a complex-
scaling angle ¢ = 7/9, employing symmetrization to re-
strict the calculation to bosonic states with positive par-
ity. We find indeed a resonance close to the expected
position, identified in the same manner as discussed for
two-body resonances. The volume dependence of this
state is shown in Fig. |7} where in order to study numer-
ical convergence with the DVR basis size, we compare
results for N = 22 and N = 24. From this comparison
we conclude that the real part of the energy is well con-
verged up to at least L = 16, whereas the imaginary part
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Figure 6. Finite-volume energy, as a function of the complex-
scaling angle ¢, for the S-wave bound state generated by the
potential given by Eq. The real (imaginary) part of the
energy is shown in the upper (lower) panel. For each, we show
the result of fitting the volume dependence at LO (dotted line)
and NLO (solid line).

shows somewhat larger remaining artifacts due to a lack
of (ultraviolet) convergence.

Since we do not know the functional form for the vol-
ume dependence of this three-body state, we cannot use
the fitting technique to directly infer the infinite-volume
energy for this resonances. However, one should ex-
pect that similar to two-body resonances the norm of
the energy to converges exponentially with increasing
L, as pointed out previously in Ref. [4I]. Indeed, not-
ing the inflated vertical axis scale in Fig. we point
out that compared to the overall magnitude, both the
real and the imaginary part of the energy show only
relatively small variations over the range L = 11---16
shown in the figure. As a very rough estimate for
the infinite-volume properties, we merely take the av-
erage of the NV = 24 results over this range to obtain
Eo ~ 4.07641(8) —10.01347(34). The real part we find is
close to the value Re(E) = 4.18(8) reported in Ref. [34],
although the respective uncertainties do not quite over-
lap. Since we see very little variation of Re(E) with L or
N, we presume that Ref. [34] likely underestimated the
uncertainty stemming from the method of avoided level
crossings.

V. SUMMARY AND OUTLOOK

In this work, we have studied complex scaling in fi-
nite periodic boxes as a framework for studying few-body
quantum systems, in particular systems that host reso-
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Figure 7. Finite-volume spectrum for the three-boson reso-
nance generated by the potential in Eq. The real (imagi-
nary) part of the energy is shown in the upper (lower) panel.
Since the volume dependence of this state is unknown, this
figure does not include any fitted curves.

nances. We derived explicitly the volume dependence of
two-body resonances and bound states (i.e., energy lev-
els that correspond to isolated S-matrix poles in infinite
volume), including the first corrections to the leading be-
havior. We furthermore developed a a concrete numerical
implementation of the technique and used this to test the
expressions we derived for the volume dependence with
several explicit examples.

Our approach combines two established approaches.
While few-body resonances have been studied in finite-
volume without complex scaling by looking for avoided
crossings in the finite-volume spectrum [29] [34], that ap-
proach can quickly become numerically expensive, and
it does not readily provide access to resonance widths
in general (we note, however, that the “stabilization
method” [64H66] and generalizations [67H69] can be used
to determine resonance widths indirectly by determining
the density of states at a given box size and fitting it with
a Breit-Wigner shape). Although finite-volume eigenvec-
tor continuation [35] has been shown to significantly re-
duce the numerical cost of such studies, the approach we
presented here has the appeal that via complex scaling
resonances can be found in much smaller boxes, and the

11

analytical expressions we derived then make it possible
to directly infer infinite-volume resonance properties, in-
cluding the decay width. Ref. [4I] employs an analytic
continuation to imaginary box sizes in order to study
resonances in finite-volume, also including widths, but
that method is still indirect in the sense that it extracts
resonance properties from peaks in transition amplitudes
instead of directly identifying complex energy eigenstates
of the finite-volume Hamiltonian, as we do in this work.

While we have rigorously derived the volume depen-
dence here only for two-body systems, we expect our re-
sults to directly generalize to few-body states if the dom-
inant decay (or breakup, in the case of bound states)
mode is into two clusters, following the derivation for
bound states without complex scaling [4]. For systems
where this is not the case, such as the three-boson exam-
ple that we considered in this work, it is still possible to
obtain good approximations to the infinite-volume reso-
nance properties by calculating in relatively large boxes.

Our findings have applications in various areas of
physics, ranging from cold atoms to nuclear physics.
In particular, it would be interesting to study Efimov
trimers (and associated tetramers) [70} [71] in finite vol-
ume with complex scaling, and we also plan to investigate
few-neutron systems using complex scaling in finite vol-
ume. Naturally, our results enable finite-volume studies
of resonances in a a variety atomic nuclei, and developing
an extension to systems of charged particles, as recently
done for bound states [63], will further broaden the range
of systems that our method can be applied to. Finally,
it will be interesting to explore the resonance eigenvec-
tor continuation method developed in Ref. [35] to study
extrapolations from bound states to resonances in finite
volume.
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