Ring-opening in the actinide cyclopropyl complexes [Cp3U(2,2-
diphenylcyclopropyD)]” (n =0, 1)

Osvaldo Ordoiiez, Greggory T. Kent, Megan A. Schuerlein, Guang Wu, Trevor W. Hayton*

Department of Chemistry and Biochemistry, University of California Santa Barbara,

Santa Barbara, C4 93106

*To whom correspondence should be addressed. Email: hayton@chem.ucsb.edu



mailto:hayton@chem.ucsb.edu

Abstract

The reaction of [Cp3UCI] with in situ generated 1-lithium-2,2-dipenylcyclopropane results in
the formation of [Cp3U(2,2-diphenylcyclopropyl)] (1), in good yield. Reduction of 1 with KCs,
in the presence of 2.2.2-cryptand, results in formation of a rare U(III) alkyl complex, [K(2.2.2-
cryptand)][Cp3U(2,2-diphenylcyclopropyl)] (2). Thermolysis or photolysis of 1 for 10 d in
toluene results in isomerization to the U(IV) n!-allyl complex, [CpsU(n'-3,3-diphenylallyl)]
(3). Moreover, photolysis of 2 in THF for 9 h at room temperature results in isomerization to
the U(IIT) n'-allyl complex, [K(2,2,2-cryptand)][CpsU(n'-3,3-diphenylallyl)] (4). Both 3 and
4 were fully characterized. In addition, selective labelling of the C, positions of 1 and 2 with
deuterium revealed that cyclopropyl ring-opening occurs via distal C-C bond cleavage via a

hypothesized n’-allyl intermediate.



Introduction

The synthetic methods used by transition metal chemists to make carbene complexes
do not often translate to the actinides.!™ For example, addition of
diphenyldiazomethane to [Cp*>2U"Y(NAr)] (Ar = 2,4,6-'BusCeH>) results in formation
of the U(VI) hydrazido complex, [Cp*>UV{(NAr)(N.CPh»)], and not in N elimination
and carbene formation, as intended.’ Similarly, reaction of [((*B"ArO)stacn)U™] with
diphenyldiazomethane results in formation of [((*B"ArO)stacn)U"Y(1n?-NNCPhy)],
which features an unusual open-shell mono-anionic hydrazido ligand.® Several other
examples of similar diazoalkane reactivity with the actinides are also known.®!? o-H
elimination, another common way to make transition metal carbenes,'* has also never
been seen in the actinides. Instead, other modes of reactivity are observed. For example,
thermolysis of [Cp*>Th(CH2'Bu)z] result in formation of [Cp*:Th(cyclo-
CH>CMe>CH>)] and neopentane via y-H activation of a neopentyl ligand.!> At this point,
the only reliable synthetic route to an An=C bond is ligation of a deprotonated Wittig
reagent or bis(iminophosphorane) to an actinide ion, which results in formation of
heteroatom-stabilized actinide carbene complexes,* ®2! such as [Cp*2U(X)(CHPPhs3)]
(X= Cl, Br, 1,7 [U{C(SiMe3)(PPhy)}(BIPM™S)(CD)]- (BIPM™S =
C(PPh2NSiMes)2),?? and [An(CHPPh3)(NR2)3] (An = Th, U; R = SiMe3).?*

In an effort to find new routes to An=C and An=C bonds, we have turned our
attention to less common carbene and carbyne sources. For example, we recently
reported the isolation of the first An allenylidenes, [{(NR2)3} An(CCCPhz)]” (An = U,
Th; R = SiMes), which were accessed by deprotonation of the An-allenyl complexes

[{(NR2)3}An(CH=C=CPh»)],>> which themselves were made via reaction of
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[AnCI(NR2)3] with 1-lithium-3,3-diphenylcyclopropene. Notably,
[{(NR2)3:} An(CCCPh2)] were the first reported An carbenes that contain no heteroatom
stabilization. In addition, we reported the thermal ring-opening of [Cp3zTh(3,3-
diphenylcyclopropenyl) to give [Cps;Th(3-phenyl-1H-inden-1-y1)].2®  Calculations
suggest that this reaction proceeds via a triplet metallocarbene. However, this proposed
intermediate could not be observed. Similarly, the U(III)
bis(diisopropylamino)cyclopropenylidene adduct, [(NR2);U(BAC)] (R = SiMes)
rearranges upon heating to give the ring-opened U(IV) product,
[(NR2)2U{N(R)(SiMe2CH=C(N'Pr2)C(N'Pr2)=CH)} ], which we hypothesized was also
formed via an unobserved carbene intermediate.?’” Finally, reduction of the U(III)
isocyanide, [U(NR2)3(CN-2,6-Me>CsH3)2], resulted in isocyanide coupling, and not
aminocarbyne formation, as originally hoped.?® %°

Building on this work, we have continued to search for non-traditional routes to
actinide carbenes. One possible route to a metal carbene is the ring-opening of a
cyclopropyl ligand via a proximal C-C bond (Scheme 1).3% 3! In particular, Jones and
co-workers reported that photolysis of [CpFe(CO)2(1-ethoxycyclopropyl)] generates a
transient metallocyclocarbene A, which was identified by an Fe=C resonance at 335.0
ppm in its 3C NMR spectrum.’® This species subsequently isomerized to an n?>-allyl
complex on standing. Also of note, [Cp*2Y(u-cyclo-C3Hs)Li(THF)],
[TpM2NbCl(cyclo-C3Hs)(m?-MeC=CMe)], and [M°LSc(cyclo-C3Hs),] (ML =
ArNC(Me)CHC(Me)NATr, Ar = 2,6-ProC¢H3) exhibit a-C—C agostic interactions in the
solid-state, which can be viewed as a prelude to proximal C-C activation.*?* However,

ring-opening via a distal C-C bond has also be observed. This mechanism of
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cyclopropyl ring-opening directly provides an n?-allyl complex and is likely operative
in [Cp*W(NO)(cyclo-C3Hs)R] (R = CHSiMes;, CHyPh, CH:'Bu)*> 3¢ and
[TpMe2Nb(cyclo-C3Hs)(CeFs)(m*-MeC=CMe)].3” The mechanism of cyclopropyl ring
opening in [Cp*>2Sm(cyclo-1-Me-2-Ph-C3H3)] has also been calculated using DFT. In
this particular case, distal C-C activation was calculated to occur with an activation
barrier of 27-35 kcal/mol, depending on the conformer.*® Intriguingly, coordination of
the phenyl substituent to the Sm center was found to lower the barrier of activation.

Scheme 1. Generation of an iron carbene via cyclopropyl ring-opening.>°
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Herein, we report the synthesis, isolation, and ring-opening reactivity of [CpsU(2,2-
diphenylcyclopropyl)] and its isostructural U(III) analogue, which represent the first
structurally-characterized f element cyclopropyl complexes. Additionally, we
investigate the mechanism of ring-opening by selectively labelling the cyclopropyl
ligand with deuterium. This cyclopropyl ligand was chosen, in part, because we thought
the phenyl groups at the 2-position would bias the ring in favor of proximal activation,
either via steric or electronic effects.

Results and discussion



Reaction of [CpsUCI] with in situ generated 1-lithium-2,2-diphenylcyclopropane*® in Et,O
results in formation of [Cp3U(2,2-diphenylcyclopropyl)] (1), which can be isolated as brown
plates in 63% yield after removal of the volatiles, extraction into toluene, filtration, and
crystallization (Scheme 2). The "H NMR spectrum of 1 in benzene-dj features a diagnostic Hy
resonance at —170.26 ppm and diastereotopic Hp resonances at —17.07 and —23.12 ppm. These
three resonances are present in a 1:1:1 ratio, consistent with the proposed formulation. In
addition, complex 1 exhibits a single Cp environment at —3.41 ppm (Figure S3). The UV-vis
spectrum of 1 features a broad transition centered at 475 nm (e = 835 cm™'-M™"), which we have
tentatively assigned to a LMCT transition (Figure S23). This spectrum also features many
sharp, weak absorptions between 500 to 750 nm, which are assignable to Laporte forbidden 5f
— 5f transitions.'?> 4% #! Complex 1 represents a rare example of an actinide cyclopropyl
complex. To our knowledge, only one other example is known, namely, [Cp*>Th(cyclo-

C3Hs).], but it was not structurally characterized.*?

Scheme 2. Synthesis of complex 1
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Complex 1 crystallizes in the orthorhombic space group Cmca. It exhibits substantial
positional disorder of both the Cp and 2,2-diphenylcyclopropyl ligands. Due to the extreme

positional disorder, H atoms were not assigned to either the Cp and 2,2-diphenylcyclopropyl
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ligands. Nonetheless, the connectivity of 1 was confirmed (Figure S1). In an attempt to grow
crystals of complex 1 in a different crystal system, it was crystalized from Et,O, THF,
dichloromethane, chlorobenzene, and dimethoxyethane. In all instances, however, these

crystallizations result in nicely-diffracting needles that still featured the same Cmca unit cell.

Scheme 3. Synthesis of complexes 2, 3, and 4.
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Reaction of 1 with 1 equiv of KCs in THF, in the presence of 2.2.2-cryptand, results in

formation of a dark red solution, from which [K(2.2.2-cryptand)][Cp3U(2,2-
diphenylcyclopropyl)] (2) can be isolated in 88% yield after work-up (Scheme 3). The 'H NMR

spectrum of 2 in THF-dsg features a diagnostic H, resonance at —88.03 ppm and diastereotopic



Hp resonances at —1.32 and —5.46 ppm. These resonances are present in a 1:1:1 ratio. In
addition, complex 2 exhibits a single Cp environment at —15.05 ppm (Figure S6). Its UV-vis
spectrum of 2 features broad transitions centered at 385 nm (¢ = 880 cm™-M™!) and 478 (¢ =
765 cm™'-M™), which we have tentatively assigned to 6d — 5f transitions. In addition, we
observe several weak, broad absorptions between 530 to 800 nm, which are consistent with

Laporte forbidden 5f — 5f transitions (Figure S24).

Figure 1. Solid state molecular structure of 2-0.5THF, shown with thermal ellipsoids set at
50% probability. The [K(2.2.2-cryptand)]" cation, THF solvate, and hydrogen atoms (except
those of Co and Cg) are omitted for clarity. Selected bond lengths [A] and angles [deg]: U-C1
=2.526(4), C1-C2 = 1.533(5), C1-C3 = 1.525(5), C2—C3 = 1.506(5), U-C1-C2 = 126.7(3),

U-C1-C3 = 142.8(3).



Complex 2 crystallizes in the triclinic space group Pl as the THF solvate, 2-0.5THF (Figure
1). Unlike 1, complex 2 crystallizes without disorder, permitting an accurate assessment of its
metrical parameters. The U-C distance in 2 is 2.526(4) A, which is similar to those of other 6-
bonded uranium(III) hydrocarbyl complexes.***** For example, the U-C bond distances in
[Li(2.1.1-cryptand)][Cp3U(n-C4Ho)], [Tp*U(CH2Ph)>(THF)], [Tp*2UMe], and
[Cp*TpU(CH,SiMes)(THF)] are 2.557(9), 2.604(9) and 2.615(7), 2.54(3), and 2.557(12) A,
respectively.*> #4748 Moreover, the Co—Cp (1.533(5) A), Co—Cq (1.525(5) A), and Cp—Cq
(1.506(5) A) distances in 2 are consistent with the presence of C-C single bonds. Additionally,
the sum of interatomic angles around Co (329°) is consistent with sp* hybridization at this
atom. To our knowledge, complexes 1 and 2 represent the first structurally characterized

cyclopropyl complexes of the actinides, although many actinide metallacycles are known.*’

Given the reactivity reported for [CpFe(CO)(1-ethoxycyclopropyl)],*® we hypothesized that
thermolysis of 1 could induce isomerization to afford a ring-opened uranium carbene complex.
To this end, a red-brown toluene solution of 1, in an NMR tube equipped with a J-Young valve,
was thermolyzed for 10 d at 110 °C. The reaction mixture gradually changed from red-brown
to dark yellow. Work-up of the resulting dark yellow solution resulted isolation of the U(IV)
allyl complex, [CpsU(n'-3,3-diphenylallyl)] (3), as dark yellow blocks in 35% yield (Scheme
3). The '"H NMR spectrum of 3 in toluene-ds features a diagnostic H, resonance at —212.5 ppm
and an Hp resonance at —31.76 ppm. These resonances are present in a 2:1 ratio, consistent
with the proposed formulation. In addition, complex 3 exhibits a single Cp environment at —
2.87 ppm (Figure S9). Complex 3 can also be accessed by photolysis of 1. In particular,

photolysis of a red-brown toluene solution of 1, using a water-jacketed, medium-pressure Hg



lamp, for 10 d at room temperature also results in formation of a dark yellow solution. Work-
up of this solution results in the isolation of 3 in 38% yield (Scheme 3). Note that the 'H NMR
spectra of the crude reaction mixtures, for either the photolysis or thermolysis reactions, are
quite clean, suggesting that the modest yields are due to challenges with crystallization. To
our knowledge, these reactions represent the first examples of cyclopropyl ring-opening in

complexes of the actinides.

Complex 2 can also undergo cyclopropyl ring opening. In particular, photolysis of a dark red
THF solution of 2 using a water-jacketed, medium-pressure Hg lamp, in an NMR tube
equipped with a J-Young valve, for 9 h at room temperature resulted in a color change to dark
yellow-orange. Work-up of the reaction mixture resulted the isolation of the ring-opened
product, [K(2.2.2-cryptand)][CpsU(n'-3,3-diphenylallyl)] (4), as dark yellow plates in 53%
yield (Scheme 3). The '"H NMR spectrum of 4 in THF-djs features a diagnostic H, resonance at
—118.19 ppm and a Hp resonance at —20.13 ppm, which are present in a 2:1 ratio, respectively.
In addition, complex 4 exhibits a single Cp environment at —14.98 ppm (Figure S16). Complex
4 can also be access by reduction of 3. In particular, reaction of 3 with 1 equiv of KCg in THF,
in the presence of 2.2.2-cryptand, affords 4 in 40% yield after work-up (Scheme 3).
Interestingly, attempts to effect the thermal ring-opening of complex 2 were unsuccessful.
Complex 2 is insoluble in toluene, which precluded thermolysis in that solvent, while

thermolysis of a THF solution of 2 at 65 °C resulted in no reaction over the course of 48 h.

Complexes 3 and 4 both crystallize in the triclinic space group P1 (Figures 2 and S2). Complex
3 crystallizes as the toluene solvate, 3-C7Hg, whereas 4 crystallizes as the THF solvate, 4- THF.

The U-C distance in 3 is 2.532(4) A, which is consistent with those found in other U(IV) 1'-
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allyl complexes. For example, the relevant U-C distances in [Cp*>U(n’-CH>C(R)CH2)(n'-
CH>C(R)=CH,)] (R =H, Me) are 2.526(3) A and 2.538(1) A, respectively.’* Not surprisingly,
the U-C distance in 4 (2.59(1) A) is longer than that observed for 3, consistent with the larger
ionic radius of U(III).>! The Co—Cp distances in 3 and 4 are 1.463(6) A and 1.42(1) A,
respectively, which are consistent with C-C single bonds, whereas the Cg—Cy distances in 3
(1.364(6) A) and 4 (1.39(1) A) are consistent with double bond character. The sum of angles
around Cy are also consistent with sp? hybridization (3: X(C-C,-C) = 360°; 4: X(C-C,-C) =

360°). Overall, these data confirm the presence of a n'-allyl ligand in 3 and 4.
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Figure 2. Solid state molecular structure of 3, shown with thermal ellipsoids set at 50%
probability. The toluene solvate and hydrogen atoms (except those of Co and Cp) are omitted

for clarity. Selected bond lengths [A] and angles [deg]: 3: U-C1=2.532(4), C1-C2 = 1.463(6),
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C2-C3 = 1.364(6), U-C1-C2 = 119.5(3), C1-C2-C3 = 129.7(4). 4: U-C1 = 2.59(1), C1-C2

= 1.42(1), C2-C3 = 1.39(1), U-C1-C2 = 121.1(8), C1-C2-C3 = 133(1).

To probe if the cyclopropyl ring-opening is occuring via proximal or distal C-C activation, we
selectively labelled the C, position of 1 with deuterium. Access to 1-d1 was achieved by
reaction of [Cp3;UCI] with in situ generated 1-lithium-1-deuterio-2,2-diphenylcyclopropane in
Et,0.>2 Complex 1-di can be isolated as brown plates in 65% yield after work up. Its 'H NMR
spectrum is nearly identical to that of 1, except that the H, resonance is absent (Figure S4). As
expected, the 2H NMR spectrum of 1-d, features a single resonance at —171.54 ppm, assignable
to the D, environment (Figure S5). Subsequent reaction of 1-d; with 1 equiv of KCg in THF,
in the presence of 2.2.2-cryptand, results in formation of a dark red solution, from which 2-d;
can be isolated in 67% yield. Its ?H NMR spectrum features a single resonance at —87.43 ppm
assignable to the Dy environment (Figure S8). Importantly, no other resonances are present in
the 2H NMR spectra of 1-d; and 2-d\, indicative of selective labelling at the C, position without

any deuterium scrambling.

Thermolysis of a red-brown toluene solution of 1-d1, in an NMR tube equipped with a J-Young
valve, at 110 °C for 11 d resulted in formation of a deep yellow solution. Work-up of this
solution provided the U(IV) allyl complex, [CpsU(n'-2-deutero-3,3-diphenylallyl)] (3-d1), as
dark yellow blocks in 42% yield (Scheme 4). Its ZH NMR spectrum in toluene-/s features one
resonance at —31.82 ppm assignable to the Dpg environment (Figure S12). No other resonances
are present in this spectrum. In addition, the 'H NMR spectrum of 3-di in toluene-ds features
a diagnostic Hy resonance at —212.5 ppm (Figure S11). No resonance is observed for the Hp

environment in this spectrum. Overall, the °’H and '"H NMR spectra are consistent with a distal
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ring-opening pathway to afford an n’-allyl intermediate (B), which then isomerizes to give the
n!-allyl product, 3-di. Photolysis of a red-brown toluene solution of 1-di using a water-
jacketed, medium-pressure Hg lamp for 8 d at room temperature, also results in formation of
3-di. The 'H and ?H NMR spectra of this material are also consistent with isomerization via

selective distal C-C bond cleavage (Figure S13 and S14).

Scheme 4. Synthesis of complex 3-d.
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We also examined the cyclopropyl ring-opening of complex 2. In particular, photolysis of a
dark red THF solution of 2-d; using a water-jacketed, medium-pressure Hg lamp, in an NMR
tube equipped with a J-Young valve, for 24 h at room temperature resulted in a color change
to dark yellow-orange. The ’H NMR spectrum of this mixture in THF-As featured a single
resonance at —19.36 ppm, which assignable to the Dp environment of 4-d; (Figure S18). The

'H NMR spectrum of a comparably generated reaction mixture in THF-ds features a diagnostic
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Hq resonance at —118.30 ppm, but no resonance assignable to the Hg environment (Figure S17).
As was observed for 3-d1, the spectral data for 4-d are consistent with selective distal C-C
bond cleavage. Interestingly, Chen and co-workers also utilized selective deuterium labelling
to investigate cyclopropyl reactivity. In their case, they discovered that cyclopropane
elimination from [LM¢Sc(cyclo-C3Hs),] occurs via direct hydrogen abstraction from an

isopropyl methine carbon.*?

Conclusion

In summary, we isolated [Cp3U(2,2-diphenylcyclopropyl)] via salt metathesis of [CpsUCI]
with in situ generated 1-lithium-2,2-diphenylcyclopropane. Thermolysis or photolysis of this
complex results in ring-opening of the cyclopropyl ring, which results in formation of an n!-
allyl complex, [CpsU(n'-3,3-diphenylallyl)]. Similar results are observed upon photolysis of
its U(III) analogue, [K(2.2.2-cryptand)][Cp3U(2,2-diphenylcyclopropyl)]. Deuterium labelling
studies demonstrate that ring-opening occurs exclusively via distal C-C bond cleavage, via an
unobserved n?’-allyl intermediate, despite the apparent steric unfavorability of the diphenyl-
substituted 1’-3,3-diphenylallyl ligand. Notably, we observed no evidence for proximal
activation, regardless of uranium oxidation state or mechanism of activation (i.e., thermolysis
or photolysis), demonstrating that the phenyl substituents cannot override the preference for
distal activation.  This reactivity contrasts with that observed for [CpFe(CO)(1-
ethoxycyclopropyl)],*® which can exhibit proximal C-C cleavage, and highlights the potential
importance of the a-carbon substituent in directing the mode of activation (Scheme 1). Moving

forward, we plan to further examine the reactivity of actinide cyclopropyl complexes,
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especially cyclopropyl complexes with heteroatom substituents on the a-carbon, in pursuit of

non-traditional routes to access actinide carbon multiple bonds.
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Photolysis or thermolysis of the U(IV) cyclopropyl complex, [Cp3U(2,2-
diphenylcyclopropyl)], results in formation of the U(IV) n'-allyl complex, [CpsU(n'-3,3-

diphenylallyl)], via a hypothesized n?* allyl intermediate.
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