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This project was funded by the United States Department of Energy, National Energy 

Technology Laboratory, in part, through a site support contract. Neither the United States 

Government nor any agency thereof, nor any of their employees, nor the support 

contractor, nor any of their employees, makes any warranty, express or implied, or assumes 

any legal liability or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 

process, or service by trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the United 

States Government or any agency thereof. The views and opinions of authors expressed 

herein do not necessarily state or reflect those of the United States Government or any 
agency thereof.
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Subsurface Hydrogen Storage
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Monitoring H2 concentration to ensure the integrity and safety of underground H2 storages.



Optical Fiber Hydrogen Sensors
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➢ Advantages:

• Immune to electro-magnetic 

interference

• Resistant to high temperatures and 

pressures

• Chemically inert

• Small and light weight

• Suitable for remote and in-situ sensing

➢ Disadvantages:

• Susceptible to physical damage

• Interference with humidity

• Unproven under microbial 

environments



Optical Fiber Hydrogen Sensors
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(Shen et al. Review of the Status and Prospects of Fiber Optic Hydrogen Sensing 

Technology, Chemosensors 2023, 11, 473)
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Evanescent Field-Based Optical Fiber H2 Sensor 
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SEM Images of the Pd/SiO2 and Filter Layers
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~ 930 nm

~ 830 nm



Dry gas without the filter layer

Wet gas without the filter 

layer

Wet gas with the filter layer
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Subsurface Sensor Development Reactor (SSDR)

10

• Automation with LabVIEW

• High-temperature high-pressure: 

450 oC, 4,500 psi 

• Multi-phase: aqueous, gas

• Gas: H2, CO2, CH4, N2, Air

Experimental conditions: 

~ 80 oC, 1,000 psi, 99% RH

H2 sensor installed inside 
the vessel



Calibration of the H2 Sensor at 80 oC, 1,000 PSI, 99% RH
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➢ Calibrated up to 10% H2 which is the 
maximum H2 concentration the SSDR allows.
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1) Abiotic SoCalGas samples and 100% CH4 for 1, 3, and 7 days 

2) Biotic SoCalGas samples and 100% CH4 for 1, 3, and 7 days

3) Abiotic SoCalGas samples and 20% H2/80% CH4 for 1, 3, and 7 days 

4) Biotic SoCalGas samples and 20% H2/80% CH4 for 1, 3, and 7 days

SSDR Tests 
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(at 530 nm)

➢ The biotic sample has a higher effect on 

hydrogen sensing than the abiotic 

sample. 

➢ The CH4 alone did not affect H2 

sensing with the biotic sample for 1 

day.

(at 530 nm)

Abiotic vs. Biotic, 20% H2+80% CH4 vs.100% CH4, 1 Day
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➢ H2 concentration has decreased by ~2% with the biotic sample for 1 day.

H2 Concentration vs. Time for the 1 Day Tests

14



➢ The biotic sample has shown much higher impact on H2 sensing for 3 days. 

(at 530 nm)

Abiotic vs. Biotic Samples in 20% H2 + 80% CH4 (3 Days) 
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➢ H2 concentration has decreased for 3 days by about 2% and 4% 

with the abiotic and biotic sample, respectively.

H2 Concentration vs. Time for the 3 Day Tests
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➢ The biotic sample has shown much 

higher impact on H2 sensing for 7 

days. 

(at 530 nm) (at 530 nm)

➢ The biotic sample with H2 gas has shown 

much higher impact on H2 sensing for 7 

days. 

Abiotic vs. Biotic, 20% H2+80% CH4 vs.100% CH4, 7 Days
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➢ H2 concentration has decreased for 7 days by about 5% and 7% 

with the abiotic and biotic sample, respectively.

H2 Concentration vs. Time for the 7 Day Tests

18



(at 530 nm)

1, 3, 7 Days with a Biotic Sample in 20% H2+80% CH4
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(at 530 nm)

1, 3, 7 Days with an Abiotic Sample in 20% H2+80% CH4
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Real-Time H2 Sensing in Subsurface Storage Conditions
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Potential Abiotic/Biotic Activities in Subsurface Storage
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Summary
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➢ The optical fiber sensor developed at NETL was able to detect H2 concentration at 

high temperatures and pressures with biological samples. 

➢ The biotic sample has more significant impact on H2 sensing than the abiotic sample. 

➢ The H2 sensing responses indicate that H2 is consumed with both abiotic and biotic 
samples under the subsurface storage environment.

➢ Further analysis on the quantification of hydrogen consumption detected by the H2 

sensor will be performed with more accurate calibration and gas chromatography. 

➢ The developed H2 sensor has demonstrated the potential of monitoring H2 in the 

subsurface storage reservoirs.
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