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Abstract: Propylene production through propane dehydrogenation (PDH) is endothermic, and
high temperatures required to achieve acceptable propane conversions lead to low selectivity and
severe carbon-induced deactivation of conventional catalysts. We developed a catalyst/membrane
system that removes the hydrogen by-product and can thus achieve propane conversions that
exceed equilibrium limitations. In this codesigned system, a SiO2/Al>Oz hollow-fiber hydrogen
membrane was packed with a selective Pt;Sn1/SiO, PDH catalyst on the tube side with hydrogen
diffusing from the tube to the shell side. We demonstrate that the catalyst/membrane system can
achieve propane conversions >140 % of the nominal equilibrium conversion with a propylene
selectivity >98% without deactivation of the membrane. We also show that by introducing oxygen
on the shell side of the membrane/catalyst system, we can couple the endothermic PDH reaction
on the tube side with the exothermic hydrogen oxidation on the shell side. This coupling results in
higher rates of hydrogen transport leading to further enhancements in the propane conversion as
well as desired thermoneutral system operation.

One-Sentence Summary: We report a catalyst/membrane system that can overcome
thermodynamic limitations imposed on propane dehydrogenation with enhanced stability and
selectivity and potential for thermoneutral operation.
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Main Text:

Propylene, used in the production of polypropylene, propylene oxide, and acrylonitrile (1), has
been produced from petroleum through large-scale centralized steam and fluid catalytic cracking
(2). However, the recent surge in shale gas has caused a shift in feedstock from naphtha to shale-
based ethane. Steam cracking of ethane results in little to no propylene production, leading to the
so-called propylene supply gap where the demand for propylene is projected to be higher than the

supply (3).

One way to alleviate this problem is to develop technologies that can convert propane, another
shale gas component, directly into propylene in a distributed fashion that is commensurate with
the shale gas supply chain (4, 5). A technology that meets these objectives is catalytic propane
dehydrogenation (PDH), where propane is directly converted to propylene and hydrogen (H2).
PDH is an endothermic reaction requiring elevated reaction temperatures to achieve acceptable
propane conversions (Fig. S1). Under these high temperature conditions, the rates of undesired
side reactions, such as propane cracking and the formation of solid carbon on the catalyst surface,
are more thermodynamically favored (Fig. S2), leading to low selectivity and rapid catalyst
deactivation, requiring frequent and costly catalyst regeneration (6-9). For example, the
commercial Catofin chromium-based catalytic process alternates between dehydrogenation,
regeneration, and purge steps within 15- to 30-min cycles (10). Various catalyst active site design
strategies to increase activity and stability have recently been shown, and we refer to several review
papers in this area for a more detailed summary (1-2, 11).

Beyond the active site, coupling catalysis with separation functionality (for example, a
permselective membrane) is a promising strategy for achieving outcomes that may not be
achievable in traditional fixed- or fluidized-bed reactors. (12-14). In the case of PDH, a strategy that
specifically addresses the problem of low equilibrium conversion is to couple a PDH catalyst to a
H>-permeable membrane to form a catalyst/membrane chemical conversion system (15, 16). In this
design, H> molecules, formed during PDH, are removed from the reaction zone with a separation
membrane that shifts the reaction equilibrium toward the product side and enhances propane
conversion. This approach also reduces downstream separation requirements (separating propane
and propylene is challenging) and costs. The membrane/catalyst system can also be operated at
higher propane feed pressures, which is generally avoided because higher pressure leads to lower
equilibrium conversions, so less catalyst and smaller reactor volumes can be used. Finally, lower
operating temperatures may be possible, which would limit undesired high temperature cracking
and catalyst poisoning side reactions (17).

Despite these advantages, there are numerous obstacles to implementing this catalyst/membrane
strategy. One obstacle is the limited availability of selective H> transporting membranes that can
operate under these conditions. Previous studies have attempted to employ metal-based
(palladium) (16, 18-20), zeolite (20-22), and oxide-based membranes (16, 18, 23, 24) with very
limited success due to high cost, chemical reactivity that results in low product selectivity and
susceptibility to deactivation by carbon deposition (coking) under PDH conditions (15, 18). In
addition, commercial PDH catalysts are not viable for these systems because they are designed to
operate with extra H, added to the reactant stream. For example, platinum (Pt)-based PDH
catalysts (used in the Oleflex process) require additional Hz to alleviate some of the problems with
catalyst stability (25, 26). This addition of H> is unsuitable for catalyst/membrane systems which
require a catalyst that can operate in a H> depleted regime (27).
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We recently reported the development of a selective PDH catalyst that operates at the
thermodynamic conversion limit with the propylene selectivity of >99% without any addition of
H> (28). The catalyst consisted of small (~ 2 nm diameter) Pt:Sn: nanoparticles (NPs) supported
on silica (SiO2) (28). In this work, we demonstrate the design of a multifunctional
catalyst/membrane system that can operate at conversions that exceed the nominal thermodynamic
limits of PDH at a given temperature. The catalyst/membrane system consists of the Pt;Sn1/SiO>
PDH catalyst co-designed with a catalyst-compatible SiO.-based H> permeable hollow fiber
membrane. We show that the membrane selectively removes H» produced during the PDH reaction
on the catalyst, at meaningful removal rates, and shifts the PDH equilibrium towards a higher
propane conversion and propylene yields.

We also discuss how the development of these membrane/catalysts systems allows us to expand
the operational PDH temperature range to lower temperatures and incorporate exothermic
oxidation of removed H,, while retaining high conversion and reaction rates. This lower
temperature operation improved the stability of the materials under the harsher, reducing
catalyst/membrane system reaction conditions. Incorporating H> oxidation allows us to couple the
endothermic PDH reaction on the tube side with the exothermic hydrogen oxidation on the shell
side. This coupling results in higher rates of hydrogen transport leading to further enhancements
in the propane conversion as well as desired thermoneutral system operation. Finally, we shed light
on several issues related to the development of efficient catalyst/membrane systems,
demonstrating the need for the co-design and co-optimization of the catalytic and transport
functionalities.

Catalyst/membrane design

An effective catalyst/membrane system relies on codesigning catalytic and separation
functionalities to achieve optimal performance. A practical system should have high volumetric
PDH reaction rates and high H> removal rates, so the membrane needs to have a high surface area
for transporting Hz without compromising catalyst surface area. This goal can be accomplished by
using hollow fiber membranes with small diameters packed with a PDH catalyst inside the hollow
fiber membrane. These hollow fiber geometries allow for high membrane surface areas per volume
of reactor (>1000 m%m?®) which can decrease overall reactor volumes to achieve desired
conversions (21, 29).

The catalyst/membrane hollow fiber system (Fig. 1A) consists of an asymmetric and porous Al2O3
tubular hollow fiber with a thin SiO2 separation layer on the inner side of the tube. The SiO> layer
selectively separates H> from propane and propylene. The PDH catalyst was packed inside the
fiber on the SiO2> membrane side. The Al.O3 tube consisted of two Al2O3 layers (dimensions shown
in Fig. S3): an outer layer of ~860 um with a 200 nm average pore size distribution, and an inner
~10 pm layer with a 20 nm average pore size distribution. The SEM image of the inner surface in
the Al>Oz tube shows a clear porous surface (Fig. 1B), whereas the SEM image of the outer surface
shows large particles with a large pore size distribution (Fig. 1C). We deposited SiO- on the inner
side of the Al>O3 tube through chemical vapor deposition (CVD) of tetraethyl orthosilicate (TEOS)
at 600 T (Fig. S4-6). A thin (~ 500 nm) SiO> separation layer formed on the inner side of the
Al>03 tube (Fig. 1D).
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We established that the deposited SiO2 covered the entire inner surface of the porous Al2Os tube.
The SEM image of the inner surface of the SiO2/Al,0s membrane (Fig. 1E) shows a smooth layer
with a very small pore size distribution and no pinholes or cracks. The complete covering of the
Al>03 inner side with the SiO> separation layer was also confirmed using x-ray photoelectron
spectroscopy. The XPS spectra associated with the characteristic Si 2p (Fig. 1F) and Al 2p peaks
(Fig. 1G) for the SiO2-coated and uncoated Al2Os tubes, respectively, showed that no Al peaks
were detected for the SiO2-coated sample (also see Fig. S7 and S8). The x-ray diffraction (XRD)
pattern of the SiO2/Al,0z membrane in Fig. S9 only showed the spectra for the Al>O3 substrate
because the topmost SiO; layer was amorphous.

The PDH catalyst was composed of SiO.-supported PtiSn: NPs described previously (28).
Approximately 250 mg of the Pt:Sn1/SiO> PDH catalyst was packed inside the hollow fiber
membrane on the tube side (where propane is fed), along the entire length of the tube. On the other
side of the tube (shell side), an inert Ar sweep gas was used to carry the separated H,. The
SiO2/Al,03 membrane allows for some diffusion (backflow) of Ar to the inner tube side, so we
needed to account for this backflow-induced dilution of the reactive mixture in the calculations of
the equilibrium propane conversion.
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Fig. 1. Catalyst/membrane system and SiO2/Al203 hollow fiber membrane characterization.
(A) Coupled catalyst/membrane system schematic. (B) Inner surface SEM image of the uncoated
Al203 hollow fiber membrane (before SiO2 deposition). (C) Outer surface, (D) cross-section and
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(E) inner surface SEM images of the SiO2/Al.O3 hollow fiber membrane showing the porous
alumina substrate, layered SiO2/Al,Oz structure, and the topmost smooth SiO> layer, respectively.
(F) Si 2p photoemission spectra of SiO2/Al>03 hollow-fiber membrane. (G) Al 2p photoemission
spectra of the uncoated Al2O3 hollow fiber membrane.

Membrane performance

Data in Fig. 2 show the performance of the SiO2 based membrane in separating H2/C3Hg mixtures.
Data in Fig. 2A show Hz permeability and H2/C3Hs separation factors measured at a total flow rate
of 10 cm*/min of an equimolar mixture of Ha/CsHs at a sweep:feed ratio of 6. The sweep rate is
the rate at which the inert sweep gas is moved on the shell side, removing gases that permeate
through the membrane. At 580 <C where PDH is often operated, the SiO2/Al>O3 hollow fiber
membrane exhibited a Hz permeability of ~2-10” mol/m?s Pa and a H2/C3Hs separation factor of
19.

The data in Fig. 2B show the membrane performance was stable during the study (~20 hours). To
put these separation factors in context, we compare them in Fig. 2C (and Fig. 2A) to the Knudsen
separation limit, which represents the maximum separation that can be achieved by using the
Knudsen effect. Our results show the SiO2/Al,O3 hollow fiber membranes exceeded these limits
substantially. We attribute these high separation factors to two effects. First, the higher sweep-
induced flow rate change created a driving force that drove H through the membrane that was
greater than the driving force to diffuse propane, so the partial pressure of Hz (PH2) was lowered
on the shell side. Second, molecular sieving occurred because the pores in the silica membrane
were small enough to effectively exclude Cz molecules and selectively diffuse only H>. We refer
to Fig. S10 for details on deposition procedures for the membranes, and Eq. S1-S3 for definitions
of membrane performance metrics. For the hollow fiber dimensions used herein, 60 minutes was
chosen as the optimal deposition period for selective separation. Shorter deposition times were
insufficient to fully coat silica on the fibers, while longer deposition times would introduce mass
transfer limitations.
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Fig. 2. SiO2/Al20s hollow fiber membrane characterization. (A) H> permeability and the
H2/C3Hg separation factor as a function of temperature and (B) time for an equimolar mixture of
H and C3Hs (5 cm®min each) and an Ar sweep on the shell side (60 cm®min) and (C) sweep:
feed ratios (Ar sweep varied between 10 to 100 cm3/min on the shell side) at T = 580<C. (Note
that error bars are standard deviation of multiple gas chromatography runs on the same membrane.)

Catalytic performance
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Data in Fig. 3A show the performance of the catalyst/membrane system in PDH at 580 <C,
measured at pure propane feed (slightly diluted by Ar backflow discussed above), sweep:feed
ratios between 4 to 10 and a constant weight hourly space velocity (WHSV) of 1.3 h™t. WHSV is
defined as the mass of propane entering the reactor per unit time divided by the mass of the catalyst
in the reactor. The different sweep:feed ratios were obtained by varying the Ar sweep gas flow
rate on the shell side between 12 to 50 cm®/min. We also show that the nominal thermodynamic
limit on propane conversion under these reaction conditions (dashed black line) ranges between
50 to 52%, depending on the amount of Ar diluent present at the different sweep:feed ratios. The
data show that at these conditions, the catalyst/membrane system reached propane conversions of
~ 10% higher (above 60 %) than the equilibrium conversion with >95% propylene selectivity.

Another parameter that can be tuned to improve the H> removal rate is the WHSV, because at
higher gas residence times (as the WHSV is lowered), a membrane can remove higher fractions of
H> produced during the reaction. Data in Fig. 3B show the performance of the catalyst/membrane
system for PDH at 580 <C, pure propane feed (diluted by small amounts of Ar backflow), a constant
sweep:feed ratio of 10, and with WHSVs changing from 0.86 to 2.16 h1. The different WHSVs
were obtained by varying the propane flow rate on the tube side between 2 and 5 cm®min for a
constant catalyst loading of 250 mg. The data show that as WHSV decreased, propane conversion
was substantially increased without sacrificing product selectivity.

Co-optimization studies

These multifunctional catalyst/membrane systems require co-optimization of multiple
functionalities. In this case, the catalytic and the H> separation functions need to be codesigned,
which requires concurrent tuning of multiple system parameters and creates a large design phase
space that is difficult to explore. In these situations, it is useful to perform a dimensionless analysis
to identify the minimal number of dimensionless variables that can guide the catalyst/membrane
design. For catalyst/membrane systems, two dimensionless numbers, the Damkohler (Da) and
Peclet (Pe) numbers, are sufficient to capture the design space (31-34). The Da number is described
by the ratio of the reaction rate and the convective transport rate of the reactant through the reactor.
It is closely related to the conversion that can be achieved in a system, with a larger Da number
leading to larger conversion. The Pe number is the ratio of convective transport rate to the
membrane permeation rate. A combination of high Da and low Pe numbers are desired for
optimized performance, marked by a high reaction rate and a high H2 permeation rate.

Data in Fig. 3C show the measured propylene yield in the catalyst/membrane system as a function
Da and Pe dimensionless numbers (calculated using Eqgs. S7 and S8). Those data were obtained at
580<C, with a pure propane stream (diluted by small amounts of Ar backflow). The Da and Pe
numbers were varied by changing the WHSVs between 0.86 and 2.16 h! and sweep:feed ratios
between 4 to 10. By changing the sweep:feed ratio, we changed the H> partial pressure difference
across the membrane, which affected the Pe number, whereas changing WHSYV impacted both the
Da and Pe numbers.

The data in Fig. 3C show that an improved performance is seen at higher Da and lower Pe (29, 31)
and that at 580<C the highest propylene yield of 65% was achieved, which is 10% above the
equilibrium limit (assuming 100% selectivity to propylene) of 55%. Therefore, we concluded that
for the hollow fiber catalyst/membrane tubular geometries analyzed herein, at 580<C, the
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enhancement factors in propylene yield, of ~ 10% above equilibrium conversion, are realistic.
These enhancements could be further improved by making the diameter of the hollow fiber
membranes smaller or designing better performing membranes — we note that there are reports of
SiO2-based membranes achieving 2 to 3 times higher H> permeability and separation factors of
500 or higher, which would further lower the Pe number. (35)

To assess the practical utility of this multicomponent catalyst/membrane chemical conversion
system, it is critical to compare it in a systematic way to its alternatives. A performance metric that
is often used to quantify the performance of a catalyst is the forward rate of propane conversion
per gram of the catalyst. We analyzed the inherent kinetic PDH reaction rates, using an integral
reactor analysis (28), for many reported catalysts (18-20, 22, 24, 28, 36-63) and compared them to the
rates measured on the Pt;Sn1/SiO> catalyst used in the membrane system herein. The data in Fig.
3D and Table S1 show that the PDH rates in our system (pink stars) are comparable to the best
performing Pt-based PDH catalysts (blue triangles), and substantially higher than the rates on non-
Pt based materials (green and yellow symbols).

Another critical figure of merit in PDH is the selectivity to propylene as a function of propane
conversion. Data in Fig. 3E and Table S2 show the initial selectivity/conversion performance
resulted for different reported PDH systems. The data show that the catalyst/membrane system
analyzed herein outperformed other systems with respect to selectivity/conversion performance
metrics. For example, at 580 C, the catalyst/membrane system reached ~123% propane conversion
(relative to nominal equilibrium conversion) with > 95% propylene selectivity. The performance
could be even further improved relative to the thermodynamic equilibrium limit to > 140%
conversion with >98% propylene selectivity by lowering the temperature to 500 <C. As shown in
Fig. 3E, this performance exceeds other PBR catalysts and catalyst/membrane systems previously
tested for propane dehydrogenation, which in general suffer from poor selectivity or conversion
(20, 22-24).
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Fig. 3. Catalyst/Membrane hollow fiber system performance in propane dehydrogenation.
(A) Propane conversion, propylene selectivity and propylene yield as a function of sweep:feed
ratios (WHSV = 1.3 hours™) compared to reaction equilibrium limit (dashed line) calculated for
the same experimental conditions. (B) Propane conversion, propylene selectivity and propylene
yield as a function of WHSV (sweep:feed = 10) compared to reaction equilibrium limit (dashed
line) calculated for the same experimental conditions. (Note that error bars are standard deviation
after replication of three catalyst loadings.) (C) Propylene yield as a function of dimensionless Da
and Pe. (D) Initial reaction rate for various membrane/catalyst systems and PBR catalysts reported
in the literature. Numbers correspond to row numbers in Table S1. Two data points from this work
are for the catalyst/membrane system at 580 “and 500<C (points 40 and 41, respectively). (E)
Conversion—selectivity plots for different PDH catalysts. Numbers in the figure correspond to row
numbers in Table S2.

Stability studies

Another crucial performance metric that has prevented serious commercial considerations for
catalyst/membrane systems is their poor stability under carbon-rich, reducing PDH reaction
conditions, which lead to formation of solid carbon deposits. These harsh conditions are further
exacerbated by the removal of Ho. Previous studies of catalyst/membrane systems addressed these
difficulties in several ways, such as substantially diluting the propane feed, reporting the initial
time data points only, and often co-feeding Hz, which defeats the purpose of using the
catalyst/membrane systems to shift equilibrium conversion (17-20, 23, 24).

Data in Fig. 4A show propane conversion, propylene selectivity and yield as a function of time
obtained with our Pt1Sni/SiO- catalyst/membrane system at 580<C, in a pure propane stream, a
WHSYV of 1.3 htand a sweep:feed ratio of 10. The catalyst/membrane system deactivated slowly
over a time of ~22 hours. In Table S1, we compared the rate of deactivation of the
catalyst/membrane system discussed herein to the measured rates of deactivation of other systems
[analyzed using first-order deactivation kinetics (2)]. The data in Table S1 show that the stability
of the Pt:Sn1/SiO> catalyst/membrane system, although not completely stable, exceeded the other
catalyst/membrane systems, even those that resorted to feed dilution and co-feeding H2 (1720, 23,
24).

The decline in the performance of the catalyst/membrane system 580<C (Fig. 4A) was likely
related to a gradual deactivation of the catalyst as solid carbon formed on its surface, which is a
general feature of PDH processes. This hypothesis was supported by data in Fig. 4B which show
that the performance of the membrane was stable over time under the reaction conditions, that is,
the measured Hz removal rate and the H2/CsHg separation factor as a function of time were
relatively constant. The slight decrease in the H, removal rate in Fig. 4B over time was the result
of decreasing propane conversion that produced less Ho.
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Fig. 4. Stability and low temperature performance of catalyst/membrane hollow fiber
system. (A) Propane conversion, propylene selectivity and propylene yield as a function of time
for the catalyst/membrane hollow fiber system compared to the equilibrium limit calculated for
the same conditions (dashed line). (B) H2 removal rate and the H2/C3Hg separation factor as a
function of time for the catalyst/membrane hollow fiber system. For (A) & (B), reaction
temperature = 580<C, Pcsns = 1 atm, WHSV = 1.3 hours™ and sweep: feed = 10. (C) Propane
conversion, propylene selectivity and yield as a function of time for the catalyst/membrane hollow
fiber system compared to the equilibrium limit calculated for the same conditions (dashed line).
The missing data from ~ 58 to 80 hrs were the result of a GC gas tank running out over a weekend.
Reaction temperature = 500<C, Pcsns = 1 atm, WHSV = 0.43 hours™ and sweep: feed ratio = 10.
(D) Propane conversion and propylene selectivity as a function of time for the catalyst/membrane
hollow fiber system at different WHSVs. Reaction temperature = 500C, Pcang = 1 atm, and sweep
flow rate = 100 cm®min.

Carbon-induced deactivation in dehydrogenation catalysis can be limited by operating at lower
temperature (64-67). An added benefit of lower temperature operation is reduced energy input (68—
71), but the main drawback is a decline in propane equilibrium conversion. We hypothesized that
catalyst/membrane systems are ideal for lower temperature operations, since higher propane
conversions can be achieved at a given temperature given that the catalyst/membrane systems can
bypass equilibrium limits, as shown above and as simulated in Fig. S11.
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Data in Fig. 4C show propane conversion, propylene selectivity, and yield as a function of time at
500 T, in a pure propane stream, a WHSV of 0.43 h't and a sweep: feed ratio of 10 for the
catalyst/membrane system (open blue and red squares). The data show that contrary to
performance at 580 <C, the system exhibited remarkable stability at these lower temperatures with
>99% propylene selectivity. We compared the operation of the catalyst/membrane system to the
thermodynamic equilibrium limit at 500 <C. The data showed that the catalyst/membrane system
operated above the equilibrium limit by ~9 % higher conversion (~141 % relative to equilibrium
conversion) without noticeable deactivation for >90 hours on stream. This membrane/catalyst
system achieved the same conversion at 500<C that would require 530<C, assuming the
equilibrium conversion. The measured conversion levels at these conditions are comparable to
commercial PDH processes, which are achieved at higher temperatures, and that suffer from rapid
deactivation, even when operating with additional H> in the reactant stream (1).

More rigorous testing of catalyst stability requires that the system is antagonized under higher
propane flow rate conditions, i.e., at the conditions where the catalyst is processing higher volumes
of propane per unit time (away from equilibrium conversion). The data in Fig. 4D show that the
catalyst/membrane system exhibited stable performance even as the flow rates increased.
Expectedly, these increased flow rates led to lower conversions. In simple terms, our
measurements show that at 500 <C, the catalyst/membrane system is relatively stable with low
deactivation rates at near 100 % selectivity to propylene.

To further demonstrate the flexibility offered by this catalyst/membrane reacting systems designs,
we explored coupling the propane dehydrogenation reaction on the tube side with the H2 oxidation
on the shell side by introducing diluted O> in the sweeping gas (Fig. 5A). The introduction of Oa,
which at these temperatures reacts with Ho to form water provides a twofold opportunity. One
advantage is that it creates a larger driving force for the H> transport from the tube to the shell side
because H> is consumed in the reaction with O». In addition, the exothermic H» oxidation provides
heat for the endothermic PDH, i.e., the coupling of the two reactions could allow for a
thermoneutral operation. Data in Figure 5B show the performance of the catalyst/membrane
system measured at 500 <C for a pure propane feed on the tube side, sweep:feed ratio of 12 with
0-10% molar O, concentration in the sweep gas and a constant WHSV of 0.86 h™l. We note that
the total sweep gas flow rate was maintained at 24 cm®/min for experiments performed with
different amounts of Os.

The data show that in the pure N2 sweep (no Oz added), the catalyst/membrane system reached a
propane conversion of ~28% (marked by the dashed blue line), which is 6% above the equilibrium
conversion, with > 99% propylene selectivity. After O, was introduced in the N2 sweep on the
shell side, higher propane conversions were obtained, reaching ~ 34% for 10% O>. Under these
conditions propylene selectivity was very high: about 96.5% based on the carbon balance. We
hypothesize these greater propane conversions were the result of increasing H> removal from the
tube to the shell side because of the consumption of Hz by O in the oxidation reaction (see Figure
S15 for hydrogen removal rates). To support this hypothesis, we measured the molar ratio of H20
to CO; formed in the reacting systems and found that it was between 3.5 and 4.2, which means
that O is mainly reacting with H> (i.e., on the shell side) since oxidation of propane or propylene
would lead to ratios of 1.33 or 1 respectively. These data are shown in Figure S15. We note that
the addition of steam during PDH may help alleviate coke formation, although this was not the
intent of this study. (2,72)
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Using measured water formation rates, material balances and reaction rates, along with tabulated
heats of reactions for all endothermic and exothermic reactions taking place in the
catalyst/membrane system, we performed an energy balance analysis to establish the conditions
required for the thermoneutral operation (calculation details are included in the supplement). Data
in Fig. 5C show the energy required to sustain PDH and energy released from H, oxidation
reactions as a function of the amount of O in the sweep. When no O; was present (0% O2), PDH
required considerable energy to be sustained at these temperatures (the orange vertical bar). As O2
is introduced, as PDH conversion increased, the energy required to support the reactions was also
increased. The data in the table show that for this specific system and under these conditions (i.e,
the measured rates of reactions and selectivity) when the concentration of O in the sweep reached
10 %, the energy released by H oxidation (green bars) became sufficient to drive the endothermic
PDH reaction. An important advantage of the hollow fiber design is that moving energy (heat)
through these systems should be facile and controllable given the small dimensions of the tubes.
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Fig. 5. Catalyst/membrane hollow fiber system performance and heat calculations for
propane dehydrogenation and coupled hydrogen combustion. (A) Coupled catalyst/membrane
system for PDH and H> oxidation schematic. (B) Propane conversion, propylene selectivity and
propylene yield as a function of % O introduced in the inert sweep compared to reaction
equilibrium limit (dashed black line) and the case with no O> (dashed blue line). (C) Heat
requirement for propane dehydrogenation and heat release from combustion of H> and propane
oxidation as a function of % O introduced in the inert sweep. Reaction temperature = 500 T,
Pcsns = 1 atm, WHSV = 0.86 hours™ and sweep:feed ratio = 12.
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In conclusion, we demonstrate an approach towards codesigning a catalytic and separation
functionality for PDH that allows us to move beyond equilibrium conversion limits. We also show
that the catalyst/membrane systems permit us to expand temperature range for viable operation,
allowing us to decrease system deactivation due to carbon coking, and to incorporate exothermic
H> oxidation. Rigorous technoeconomic costs and benefit analysis of a membrane/catalyst system
will be crucial to understand its practical utility. On one hand, adding a membrane to a PDH
catalyst will increase the reactor unit complexity. On the other hand, potential technoeconomic
benefits of the membrane/catalyst PDH systems include: (i) the ability to operate at higher
pressures (and therefore lower Pt catalyst loadings and smaller reactor volumes) compared to
commercial PDH processes, which are operated only at 1-3 atm due to equilibrium limitations; (ii)
the ability to seamlessly integrate exothermic hydrogen oxidation on the permeate side, which
would increase the H> permeation driving force and reduce the need for interstage heating; (iii)
similar heat transfer benefits can also be achieved if steam is used as the sweeping fluid; and (iv)
the decreased downstream separations cost associated with the demanding propane/propylene and
Ca/H> separations. These factors, along with the enhancement in stability and viable temperature
operating range demonstrated here, offer substantial opportunities for improving yields and energy
efficiencies in PDH processes.
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