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In this study, the variational quantum eigensolver (VQE) on a quantum simulator is used in calculating ground state
electronic structure properties of the LiH,, n = 1 - 3, complexes including their singly charged ions. Results calculated
using classical electronic structure algorithms are also included. We investigate the use of the unitary coupled cluster
with singles and doubles (UCCSD) ansatz using VQE within Qiskit, and compare results to full configuration interac-
tion (FCI) calculations. Computed ground state energies, electron affinities, ionization potentials and dipole moments
are considered. We report the first of its kind simulated quantum computing results of selected LiH,, species, and use the
Parity orbital to qubit mapping scheme. We find that VQE / UCCSD results are comparable to classical coupled cluster
with singles and doubles (CCSD) for all considered systems with respect to FCI. A VQE calculation cost evaluation
is included in which we evaluate performance using both Jordan-Wigner and Parity orbital to qubit mapping schemes.
We also discuss some of the current limitations of utilizing VQE for the study of chemical systems.

I. INTRODUCTION:

Accurate wave function based electronic structure calcu-
lations demonstrate a steep scaling with respect to the num-
ber of electrons and the size of the basis set used. For ex-
ample, coupled cluster with singles, doubles and perturbative
triples (CCSD(T)) calculations scale as n’, where n corre-
sponds to the number of electrons'. While some algorithms
may demonstrate better scaling, this is at the cost of intro-
ducing approximations?. For this reason there is considerable
interest in the idea proposed by Feynman in 19813 to use com-
puters built upon the principles of quantum mechanics to sim-
ulate quantum systems.

The field of Quantum Information Science (QIS)*> ascribes
its existence to studies® !, showing that some quantum al-
gorithms scale significantly better than their classical coun-
terparts. These results spurred on the development of quan-
tum computers which have been theoretically shown to scale
advantageously with respect to system size compared to the
computational cost associated in using classical electronic
structure programs' =14,

While the development of devices capable of representing
qubits has been a great engineering and scientific achieve-
ment, a long term quantum computing (QC) realization has
faced challenges in manufacturing and implementing full
scale quantum computers with a substantial number of qubits
required to represent large, complex quantum systems. Never-
theless, companies have made progress in this area and further
advancements in short-term quantum computing capabilities
should be expected for years to come. For example, IBM an-
nounced a 433 qubit device in November of 2022, with plans
to develop a 1,000+ qubit quantum computer in 2023 and a
device with 4,000+ qubits by 2025'>16

The effects of noise due to thermal environments and other
difficult to control phenomena has led researchers to label cur-

rent quantum computers as noisy intermediate-scale quantum
(NISQ) systems, and many algorithms have been developed
for use on these systems!”-'®. Though these achievements are
promising with respect to the future of QIS within the NISQ
era, applications of quantum computing in solving electronic
structure problems for even the smallest of molecules using
a flexible basis sets require resources beyond those currently
available. As an alternative, the availability of quantum simu-
lators has made running NISQ era quantum computing algo-
rithms available to the general public. An example is IBM’s
Qiskit module which has been interfaced with Python coding
language!20.

In our previous study?!, by using quantum algorithms we
have described the reaction and vibrational energetics of the
CO2-NH3 interaction. In this study we further explore the
computational capabilities of the hybrid quantum - classi-
cal algorithm known as the Variational Quantum Eigensolver
(VQE)?? when applied to LiH,, complexes using an IBM quan-
tum simulator, as well as results calculated using available
classical electronic structure algorithms, and compare these to
results obtained using full configuration interaction (FCI). Un-
like other quantum algorithms meant for large scale quantum
computers, for example Quantum Phase Estimation (QPE)?3,
VQE can be utilized on a quantum simulator running on a
computer workstation.

First introduced by Peruzzo et al. in 201322, VQE itera-
tively optimizes various parameterized quantum circuits that
encode a desired wavefunction ansatz, and the quality of VQE
calculations is directly related to the ansatz that is adopted. By
parameterizing a wavefunction ansatz W(6), where 6 is a set
of real valued parameters {6;}, taken as a vector, the energy
expectation value takes on the familiar form:

E(6) = (¥(6)|H|¥(6)) (1)



where we have taken the wavefunction to be normalized and
note that the expectation value is always larger than or equal
to the lowest energy eigenvalue E of the Hamiltonian, H, due
to the variational principle. This allows one to optimize 6 us-
ing a classical computer in order to find an approximation to
Ey. With the wavefunction stored on a quantum device, the
energy expectation value (Eq. 1) is evaluated, allowing one to
optimize the variational parameters of the wavefunction in or-
der to determine a minimum E(é). It is through this approach
and the belief that even minimal quantum resources could be
useful when working in tandem with classical algorithms that
has led to considerable interest in the use of VQE - like algo-
rithms to simulate quantum systems'®-24+-27,

In this study we apply VQE to LiH, complexes including
their singly charged cation and anion species. The choice of
lithium hydride stems from the following: first, LiH is a sim-
ple molecule that requires at most 12 qubits when utilizing
the minimal STO basis set?® to represent its molecular or-
bitals (MOs) on a quantum simulator without any additional
qubit reduction techniques such as application of the Parity
mapper29’30. The MOs result from the 1s, 2s, 2px, 2py and
2p, atomic orbitals of lithium and the 1s atomic orbital from
hydrogen, leading to a total of 6 MOs. When considering
both up and down spin these give 12 qubits. A qualitative MO
diagram for LiH is included (Figure 1). Secondly, lithium hy-
dride has been used as a test molecule in many VQE bench-
marking studies found in literature’!=3*, though one will find
no studies using VQE to investigate larger LiH,, n = 2, 3,
species as well as charged systems.

We therefore propose a quantum computational simulation
study of LiH, complexes as a means to investigate the capa-
bilities of VQE through IBM’s Qiskit library. Finally, since
our main purpose at the National Energy Technology Labora-
tory (NETL) is to investigate problems that are energy related,
it is relevant to note that lithium hydride, in its solid form, is
involved in lithium-ion batteries, hydrogen storage, and even
nuclear energy>3-42,
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FIG. 1. MO diagram for LiH

1. METHODOLOGY AND COMPUTATIONAL DETAILS
A. VQE Calculations

The basic structure of the code used for our electronic struc-
ture calculations is adapted from Qiskit’s electronic structure
tutorial within their open-source second quantization frame-
work Qiskit Nature®3. Qiskit Nature supports the solving of
quantum mechanical problems using quantum computing al-
gorithms such as VQE. One can interface various classical
electronic structure codes that find hartree fock (HF) solu-
tions to the molecular many body Hamiltonian, and PySCF*
is used for this purpose. The Gaussian type orbital STO-3G
and STO-6G basis sets are used for the calculations?®.

Aspects of the VQE calculations that need to be specified
by the user include choice of ansatz, mapper and optimizer.
In addition to having already available wavefunction ansatzes,
VQE allows the user to construct their own ansatz through the
creation of a quantum circuit of their choosing, and many cir-
cuits have been developed by researchers for use in particular
problem applications*>#7. The ansatz used in our calcula-
tions uses a HF solution reference determinant when passed
through a pre-defined unitary coupled cluster with singles and
doubles (UCCSD) ansatz*®. The resulting wavefunction now
includes excitations to all orders beyond the single HF deter-
minant, similar to coupled cluster (CC) singles plus doubles
theory*, and is used as <‘P(é)| within the VQE algorithm in
minimizing the expectation given in Equation (1) with respect
to the parameters represented by the vector 6.

The wavefunction is parameterized using the ansatz:

B (6)) = T O-T"0) |y @)

where |®y) is the HF reference Slater determinant. The sin-

gle and double components of the excitation operator T(G) in
second quantized formalism can be written as:

6) =Y 6fala; 3)
isa

Z Gab Taha]a, 4)
1] a,b

with i and j indicating occupied orbitals, a and b indicating
vacant orbitals, aj-' and a; corresponding to Fermionic cre-
ation and annihilation operators, respectfully. Summations
are taken over all occupied and virtual orbitals. The collec-
tive vector of expansion coefficients 6 within the excitation
operator is {{6/}, {6“ b}} The correlation energy is defined
as the correction to the HF energy, and the ground state energy
(Egs) is defined by:

—

Egs = Enr + Ejccsp (0 min) )
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FIG. 2. (a) Single and (b) double excitation circuits corresponding
to equations 4 and 5, respectfully. The arbitrary state |.) corresponds
to |1) in the case it is occupied and |0) if it is vacant. In (a), CNOT
gates applied to qubits (i — 1) through (a+ 1) are repeated given an
arbitrary number of qubits. Likewise, in (b) CNOT gates between oc-
cupied orbital qubits (i, ..., j) and virtual orbital qubits (a,...,b) are
repeated given use of an arbitrary number of occupied and virtual or-
bitals/qubits. Final qubit states are measured and circuit parameters
are optimized classically. These are re-fed through the VQE algo-
rithm until convergence in expectation value is reached.

Circuits for implementing the UCCSD trial wavefunction
on the quantum simulator corresponding to the single (Equa-
tion 3) and double excitation operators (Equation 4) are shown
in Figure 2*¢*8. Encoding the problem into the state of the
quantum computer requires mapping the Fermionic operators
onto spin operators, where each spin orbital is mapped onto
a qubit, and the qubits follow spin statistics. The Jordan-
Wigner transformation is represented in Qiskit through the
Jordan-Wigner Mapper. Initially developed for application to
one-dimensional lattice models, the transformation recovers
the true Fermionic anti-commutation relations observed for
Fermionic creation and annihilation operators. One can show
this transformation using unit-less Pauli spin matrices defined

by Equations 6 - 8:
(01
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Using these Pauli matrices, one can define spin % Pauli lad-
der operators acting on a site j of a linear chain of spin parti-
cles as:

(c¥+io)) .
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From the definitions above, the anticommutator
{G;r,cf} = 1. From this, we now have the correct

same site Fermionic relation in that { f;L, fi} =1, but on

different sites we have the commutator | f;, fx] =0, implying
that spins on different sites commute. This is contrary to the
nature of Fermions which anticommute when considering
different sites. It is therefore necessary to define a new set of
operators lj- and [

j—1
[ =exp (+mk);] K51 (12)
j—1
lj:exp(fiﬂZf,jfk)fj (13)
k=1
Uli=ff (14)

These new operators differ from the previous definitions of
f; and f; by a phase of exp (j:iﬂ:):i;} f; fx), below written
where the sum is taken as a product:

j—1 j—1 j—1
[Texp (Eims fi) = [0 -2£ fi) =[](-0F)  (15)
k=1 k=1 k=1

The transformed spin operators now have the appropriate
Fermionic anticommutation relations that are valid within the
spin statistics theorem, as well as their inverse transforma-
tions. Therefore the Jordan-Wigner mapping is complete.
An additional mapper used is the Parity Mapper?®>3?. This
mapping scheme uses a similar approach in converting the
Fermionic operators to qubit spin operators but differs from
Jordan-Wigner in that symmetry is introduced and exploited
to reduce the size of the problem by two qubits. For example,
neutral LiH calculated using the Jordan-Wigner Mapper re-
quires 12 qubits when correlating all electrons, but use of the
Parity mapper simplifies the calculation to only 10 qubits. The
FreezeCoreTransformer command is included in calculations
of all molecules to freeze core orbitals, further reducing the



complexity of the problem. The Parity orbital to qubit map-
ping scheme is used in all VQE calculations carried out in this
study.

Once a parameterized variational circuit and adequate map-
per are chosen, the parameters are optimized to minimize the
expectation value of the target Hamiltonian. While multiple
optimizers are available for use within Qiskit®!, VQE litera-
ture has suggested that when noise is not present, the Sequen-
tial Least Squares Quadratic Programming (SLSQP)? opti-
mizer is best. The number of shots which represents the num-
ber of repetitions for sampling of each circuit used in VQE
calculations is chosen to be the default of 1024, while the
number of iterations performed within each calculation is set
to 1000.

B. Gaussian and Molpro Calculations

Molecular geometries were obtained at the coupled cluster
with singles plus doubles (CCSD) level using Gaussian16°>
with a frozen core approximation. These geometries were
used in the VQE calculations. Molpro>*3 is used to obtain
corresponding frozen core FCI calculations. HF and CCSD
results present in Figures 3 - 7 are computed using Gaussian
at bond distance increments of 0.1A . The same bond length
increments are used in the VQE calculations. For dipole cal-
culations of charged species, the origin is defined to be the
center of nuclear charges.

I1l.  RESULTS AND DISCUSSION

The reader is reminded that for systems in which only two
electrons are correlated, calculated FCI properties are equiva-
lent to CCSD. Therefore, for neutral LiH and for LiH2+ , FCI
values are omitted from respective figures and tables, and re-
spective CCSD and UCCSD VQE results are used to com-
pute relative ionization potentials and electron affinities. One
will also notice that LiH™ is absent within our study. This
is because LiH™" is a one electron problem in the frozen core
approximation and there is no electron correlation. It would
therefore be meaningless to study LiH' using a UCCSD
ansatz as one would expect VQE calculations to be equal to
HF. For this reason, we use LiH+ HF results to calculate ion-
ization potentials for LiH, as seen in Appendix A.

A. Applications to LiH Complexes
1. LiH

Figures 3 and 4 compare for LiH the energy and dipole
curves produced through VQE using the UCCSD ansatz and
the corresponding HF and CCSD results. From these figures it
is seen that the VQE results correspond closely to those from
CCSD. Electronic ground state properties for LiH reported in
Table 1 agree with previously published data using the same
basis sets at the CCSD level of theory®. Additionally, results

displayed in Figures 3 and 4 agree with previously published
VQE results on neutral LiH3!. A shift in energy of approxi-
mately 0.1 Hartrees is observed when going from the STO-3G
to STO-6G basis set, with a corresponding shift in the dipole
moment of approximately 0.06 Debye.
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FIG. 3. Potential energy curve for lithium hydride obtained using
various theoretical methods.
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FIG. 4. Dipole moment curve for lithium hydride obtained using
various theoretical methods.

2. LiH™

LiH~ with three correlated electrons in the frozen core ap-
proximation allows us to compare CCSD and VQE results
with those of FCI. Calculated properties through VQE are
similar to those calculated using CCSD. It should be noted



TABLE 1. LiH complex energies and dipoles.
dipole moment use CCSD optimized geometry.

VQE energy and

LiH STO-3G CCSD Opt. VQE FCI
Energy (H) -7.8825 -7.8825 n/a
Dipole (D) 4.63 4.63 n/a

LiH STO-6G CCSD Opt. VQE FCI
Energy (H) -7.9726 -7.9726 n/a
Dipole (D) 4.69 4.69 n/a

that the use of minimal basis sets for LiH~ results in an
unbound electron, whereas with a sufficiently flexible basis
set the excess electron would be bound®’. In order to uti-
lize larger, more diffuse basis sets, a significant increase in
the ability for the classical computer to simulate qubits or
algorithms which limit overall computational resources are
required. CSSD and VQE STO-3G calculations provide an
ionization potential of 0.2604 Hartrees, with STO-6G giv-
ing 0.2611 Hartrees as compared with 0.2822 Hartrees using
CCSD/aug-cc-pVTZ>%>. Figures 6 and 7 compare CCSD,
VQE and FCI dipole profiles for both STO-3G and STO-6G
basis sets, respectfully. Both CCSD and VQE energies for
LiH™ differ from FCI by less than 1 kcal/mol at both basis
sets as can be seen from Table 2. Ionization potentials and
electron affinities for LiH are presented in Table 3.
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FIG. 5. Potential energy curve for lithium hydride anion obtained
using various theoretical methods.

B. Applications to LiH, Complexes

When discussing results for the LiH, molecule, two geome-
tries are considered. These are linear (D..; point group) and
bent (C,, point group). For the linear LiH, molecule, both
the cation and anion are reported in addition to the neutral.
However, for bent LiH, the optimization of the geometry of
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FIG. 6. Dipole moment curve for lithium hydride anion obtained
using various theoretical methods at the STO-3G basis.

1.1
1.0
g
w 0.9
(=]
=3
[a]
0.8
FCI STO-6G
—e— HF STO-6G
o7l & -—- CCSD 5T0-6G
X VQE STO-6G
10 1.2 14 16 18 2.0
Bond Length (4)

FIG. 7. Dipole moment curve for lithium hydride anion obtained
using various theoretical methods at the STO-6G basis.

TABLE II. LiH~ complex energies and dipoles. VQE energy and
dipole moment use CCSD optimized geometry.

LiH~ STO-3G CCSD Opt. VQE FCI
Energy (H) 77.8057 77.8057 -7.8061
Dipole (D) 113 1.13 1.12

LiH~ STO-6G CCSD Opt. VQE FCI
Energy (H) -7.8952 7.8952 7.8957
Dipole (D) 111 1.11 1.09

the anion reverts to the linear structure, and for bent LiH, re-
sults are reported for only the neutral and the cation. Tabulated
properties corresponding to linear and bent LiH, structures are



TABLE III. Ionization potential and electron affinity for LiH in units
of Hartrees.

STO-3G CCSD Opt. VQE FCI
Tonization Potential 0.2604 0.2604 0.2604
Electron Affinity -0.0769 -0.0769 -0.0764

STO-6G CCSD Opt. VQE FCI
Tonization Potential 0.2611 0.2611 0.2611
Electron Affinity -0.0773 -0.0773 -0.0769

reported in Appendix B and C, respectively.

1. Linear LiH, Complexes

Linear neutral LiH, CCSD and VQE energies are similar
in that they differ from FCI by approximately 4.5 and 4.6
kcal/mol, respectfully at the STO-3G basis. CCSD and VQE
energies for linear neutral LiH, differ from FCI by approxi-
mately 4.1 kcal/mol at the STO-6G basis. Linear LiH,” CCSD
and VQE energies are similar using STO-3G, and differ by
less than 1 kcal/mol at the STO-6G basis. Similarly, linear
LiH, CCSD and VQE energies differ from FCI by less than 1
kcal/mol at both basis sets. Differences in methods used can
be seen from the ionization potentials and electron affinities
shown in Table 8.

2. Bent LiH, Complexes

As can be seen in Appendix C, neutral bent LiH, CCSD and
VQE energies differ from FCI by less than 1 kcal/mol at both
minimal basis sets. For bent LiH2+ at the STO-3G basis, VQE
dipole is 0.06 Debye lower than the CCSD result. Ionization
potentials for bent LiH, using CCSD and VQE differ from
FCI by less than 1 kcal/mol at both basis sets.

C. Applications to LiH; Complexes

Using both minimal basis sets, CCSD optimizations of
LiH; complexes produce geometries that are of Cj, point
group symmetry, with the exception of the anion which is
of C; point group symmetry. Calculated results for these
LiH3 complexes are reported within Appendix D. Energies
and dipoles for neutral LiH3 and LiH;’ complexes at both min-
imal basis sets using CCSD and VQE are consistent with those
produced through FCI. As a result, ionization potentials for
CCSD, VQE and FCI are similar at both minimal basis sets.
FCI electron affinities, however, are slightly higher than that
produced through both CCSD and VQE due to the additional
electron correlation present within LiH; , though this differ-
ence is less than 1 kcal/mol.

IV. VQE CALCULATION COST EVALUATION

The Parity mapper is known to be cost effective as it al-
lows for a two qubit reduction compared to that of the Jordan-
Wigner orbital to qubit mapping scheme. Figure 8 allows
one to visualize differences in computational time using the
STO-6G basis and either the Jordan-Wigner or Parity mapper,
along with a frozen core approximation for increasingly large
LiH, systems. It can be seen when comparing Jordan-Wigner
(blue) and Parity (green) mapping schemes without freezing
core electrons for LiH3 that a significant reduction in compu-
tational time is achieved when using the Parity mapper. The
reduction in computational time with respect to mapper used
becomes more extreme as the system increases in size. A sim-
ilar argument can be made for both mappers when freezing
core electrons, though the relative reduction in computational
cost is not as extreme when correlating all electrons.

One explanation for this increase in computational time as
the system size increases is the increased number of gates and
large number of measurements per optimization step when us-
ing the UCCSD ansatz. One can deduce from this and Figure
8 that when running VQE there is poor scaling of the ansatz
with respect to system size!®°. Given the gate model of quan-
tum computing in which gates can act on only a few qubits at
a time, the UCCSD operator needs to be simplified into a time
ordered sequence of one and two particle operators using a
Trotter expansion of the matrix exponential seen in Equation
(2)°'. Without use of this approximation, the UCCSD ansatz
leads to an overall computational cost that is unfeasible given
current NISQ hardware, not to mention the classical resources
required within the hybrid VQE algorithm.
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FIG. 8. VQE simulator calculation cost evaluation with respect to
choice in orbital to qubit mapper and frozen core assumption.



V. CONCLUSION

As advancements in the development of a long-term quan-
tum computer continues, current near-term NISQ devices, in-
cluding quantum simulators, are available for use and fur-
ther developments regarding these near-term devices are ex-
pected in the years to come*!>1°. However, without use of
resource reduction algorithms, these near-term quantum de-
vices are limited in the number of qubits they may represent,
in turn limiting the complexity of systems that may be investi-
gated using a quantum simulator. Current limitations in clas-
sical computational hardware only allow for the simulation of
small quantum systems, and these are entirely dependent on
the number of qubits that can be represented classically. As
a result, current qubit limitations in quantum simulators re-
strict the size of the molecular system that may be studied.
Additionally, use of more flexible basis sets to achieve higher
accuracy results is also dependent on the number of available
qubits in the quantum simulator.

We have investigated the quantum simulating capabilities
of IBM Qiskit’s VQE algorithm when used with available
computational resources of various LiH, complexes, includ-
ing their singly charged ions. Generally, it is found that the
electronic structure properties produced from CCSD and cor-
responding VQE calculations utilizing the UCCSD ansatz are
similar when compared to FCI calculations. Without use of
flexible bases, one is limited in accuracy when using VQE for
more correlated systems. Additionally, we compare VQE cal-
culation cost through the use of both Jordan-Wigner and Parity
mapping schemes for the studied LiH, species and provide an
explanation as to the source of this poor scaling relationship
as it pertains to the demand that increasingly larger systems
have on the number of terms and operations required within
the UCCSD ansatz.

To further advance the computational capabilities of NISQ
devices and quantum simulators, algorithmic developments to
allow for larger basis sets to be considered without a drastic in-
crease in qubit number are needed. Techniques utilizing VQE
and the UCCSD ansatz have been investigated and developed
in which aspects of limited qubit connectivity, short coherence
times and sizable gate error rates have been targeted to re-
duce the quantum resource requirements for electronic struc-
ture calculations. For example, Gagliardi et. al'* has shown
that through a combination of localized multireference wave-
functions with QPE and variational UCCSD, ground state en-
ergies can be calculated for molecules in which certain atoms
use complex basis such as def2-svp and def2-tzvp. This is
currently a very active area of research within the field of QC
and QIS.

Further techniques that reduce computational resources in-
clude the adaptive derivative-assembled pseudo-trotter ansatz
VQE method (ADAPT-VQE)®*%2 for ground and excited
states, in which the algorithm is allowed to select its own
compact quasi optimal ansatz through a selection process of
systematically growing the ansatz by adding fermionic opera-
tors one at a time such that the maximal amount of correlation
energy is recovered at each step iteration. Additional methods
include correlation informed permutation of qubits (PERM-
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VQE)%?, qubit clustering (ClusterVQE)®*, and the use of a
density matrix embedded theory (DMET)®. Using these tech-
niques, we will be continuing our investigation of LiH,, com-
plexes by considering various Li,H, complexes, as these par-
ticular species cannot be currently modeled using an unmod-
ified VQE code given current qubit limitations. This will fur-
ther aid in understanding of how VQE can be used to study
and simulate energy relevant materials using near-term quan-
tum devices*%.

SUPPLEMENTARY MATERIAL

See the supplementary material for optimized CCSD ge-
ometries of all LiH, (n=1-3) species considered.
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Appendix A: LiH" Hartree Fock Energies and Dipoles

TABLE IV. Energy and dipole moment use HF optimized geometry.

TABLE VIILI. Ionization potential and electron affinity for linear LiH,
in units of Hartrees.

STO-3G CCSD Opt. VQE FCI
Ionization Potential 0.2440 0.2439 0.2512
Electron Affinity 0.0544 0.0545 0.0476

STO-6G CCSD Opt. VQE FCI
Tonization Potential 0.2454 0.2453 0.2519
Electron Affinity 0.0554 0.0554 0.0492

LiHt STO-3G HF Opt.
Energy (H) -7.6222
Dipole (D) 1.71

LiHt STO-6G HF Opt.
Energy (H) -7.7115
Dipole (D) 1.73

Appendix B: Linear LiH, Complex Energies, lonization
Potentials and Electron Affinities

TABLE V. VQE energy uses CCSD optimized geometry.

Appendix C: Bent LiH, Complex Energies, Dipoles and
lonization Potentials

TABLE IX. VQE energy and dipole moment use CCSD optimized
geometry.

LiH, STO-3G CCSD Opt. VQE FCI
Energy (H) -8.3760 83759 83763
Dipole (D) 3.11 3.11 3.10

LiH, STO-6G CCSD Opt. VQE FCI
Energy (H) -8.4699 -8.4608 84702
Dipole (D) 3.17 3.17 3.16

LiH, STO-3G CCSD Opt. VQE FCI
Energy (H) -8.3533 -8.3532 -8.3605

LiH, STO-6G CCSD Opt. VQE FCI
Energy (H) -8.4474 -8.4474 -8.4540

TABLE X. VQE energy and dipole moment use CCSD optimized
geometry.

LiH; STO-3G CCSD Opt. VQE FCI

Energy (H) -8.2805 -8.2805 n/a

Dipole (D) 3.70 3.64 n/a

TABLE VI. VQE ses D optimized try.

QE energy uses CCSD optimized geometry. TiH 2+ STO-6G CCSD Opt. VOE FCl

LiH, STO-3G CCSD Opt. VQE FCI Energy (H) 83742 83742 n/a

Energy (H) -8.1093 -8.1093 n/a Dipole (D) 3.74 3.74 n/a
LiH2+ STO-6G CCSD Opt. VQE FCI
Energy (H) -8.2020 -8.2021 n/a

TABLE XI. Ionization potential for bent LiH, in units of Hartrees.

STO-3G CCSD Opt. VQE FCI
TABLE VII. VQE energy uses CCSD optimized geometry. Tonization Potential 0.0955 0.0954 0.0958
LiH, STO-3G CCSD Opt. VQE FCI STO-6G CCSD Opt. VQE FCI
Energy (H) 8.4077 8.4077 ~8.4081 Ionization Potential 0.0957 0.0956 0.0960
LiH, STO-6G CCSD Opt. VQE FCI
Energy (H) -8.5028 -8.5028 -8.5032




Appendix D: LiH; Complex Energies, Dipoles, lonization
Potentials and Electron Affinities

TABLE XII. VQE energy and dipole moment use CCSD optimized
geometry.

LiH; STO-3G CCSD Opt. VQE FCI
Energy (H) 9.0242 9.0242 9.0242
Dipole (D) 4.94 4.94 4.94

LiH; STO-6G CCSD Opt. VQE FCI
Energy (H) 9.1223 9.1223 9.1224
Dipole (D) 4.97 4.97 4.97

TABLE XIII. VQE energy and dipole moment use CCSD optimized
geometry.

LiH3+ STO-3G CCSD Opt. VQE FCI
Energy (H) -8.7675 -8.7675 -8.7675
Dipole (D) 2.07 2.07 2.07

LiH3+ STO-6G CCSD Opt. VQE FCI
Energy (H) -8.8646 -8.8646 -8.8646
Dipole (D) 2.08 2.08 2.08

TABLE XIV. VQE energy and dipole moment use CCSD optimized
geometry.

LiH; STO-3G CCSD Opt. VQE FCI
Energy (H) -8.9436 -8.9436 -8.9440
Dipole (D) 8.35 8.35 8.36

LiH; STO-6G CCSD Opt. VQE FCI
Energy (H) -9.0418 -9.0418 -9.0422
Dipole (D) 8.42 8.42 8.42

TABLE XV. Ionization potential and electron affinity for LiH3 in
units of Hartrees.

STO-3G CCSD Opt. VQE FCI
Ionization Potential 0.2567 0.2567 0.2567
Electron Affinity -0.0806 -0.0806 -0.0802

STO-6G CCSD Opt. VQE FCI
Tonization Potential 0.2577 0.2577 0.2578
Electron Affinity -0.0806 -0.0806 -0.0801
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I CCSD Optimized Geometries for LtH species

1.1 I«H
(STO-3G)

Li: (-0.0181804602, 0.0, 0.0 )
H: (1.5291804602, 0.0, 0.0 )

(STO-6G)

Li: (-0.0155210221, 0.0, 0.0 )
H: ( 1.5265210221, 0.0, 0.0 )

IIT LiH™*
(STO-3G (HF))

Li: (-0.2299643487, 0.0, 0.0 )
H: (1.7409643487, 0.0 ,0.0)

(STO-6G (HF))

Li: (-0.2294820094, 0.0, 0.0 )
H: (1.7404820094, 0.0, 0.0 )



IIIT LiH-
(STO-3G)

Li: (0.0, 0.0,0.0)
H: (0.0, 0.0, 1.5725122996 )

(STO-6G)

Li: (0.0, 0.0, 0.0 )
H: (0.0, 0.0, 1.5725122996 )

II CCSD Optimized Geometries for LiH; species

II.I Linear LiH, species
II.I.1  LiH,

(STO-3G)

Li: (0.0, 0.0, 0.0 )

H: (-1.6293765778, 0.0, 0.0 )
H: (1.6293765778, 0.0, 0.0 )

(STO-6G)
Li: (0.0, 0.0,0.0)

H: (-1.6270122456, 0.0, 0.0 )
H: (1.6270122456, 0.0, 0.0 )

I.1.2  LiHS
(STO-3G)
Li: (0.0, 0.0,0.0)

H: (-1.9573612681, 0.0, 0.0 )
H: (1.9573612681, 0.0, 0.0)

(STO-6G)
Li: (0.0, 0.0, 0.0 )

H: (-1.9567977051, 0.0, 0.0 )
H: (1.9567977051, 0.0, 0.0 )



1113 LiH;
(STO-3G)
Li: (0.0, 0.0,0.0)

H: (-1.5657047531, 0.0, 0.0 )
H: ( 1.5657047531, 0.0, 0.0 )

(STO-6G)

Li: (0.0, 0.0,0.0)
H: (-1.5630266789, 0.0, 0.0 )
H: ( 1.5630266789, 0.0, 0.0 )

II.IT Bent LiH, species
II.I1.1  LiH,

(STO-3G)

Li: (0.0, 0.437825141, 0.0 )

H: (-1.007046968, -0.8119125705, 0.0 )
H: ( 1.007046968, -0.8119125705, 0.0 )

(STO-6G)

Li: (0.0, 0.4412360228, 0.0 )
H: (-0.9914512018, -0.8136180114, 0.0 )
H: (0.9914512018, -0.8136180114, 0.0 )

ILIL2 LiHf
(STO-3G)
Li: (0.0, 0.0, 0.8420498482 )

H: (0.0, 0.3816787774, -1.2962249241 )
H: (0.0, -0.3816787774, -1.2962249241 )

(STO-6G)
Li: (0.0, 0.0, 0.843094854 )

H: (0.0, 0.3796867668, -1.296747427 )
H: (0.0, -0.3796867668, -1.296747427 )



IIT CCSD Optimized Geometries for LiH; species

III.I LiH,

(STO-3G)
Li: (0.0, 0.5742701053, 0.0 )

H: (0.3761690813, -1.5964314188, 0.0 )
H: (-0.3761690813, -1.5964314188, 0.0 )
H: (0.0, 2.1185927323, 0.0 )
(STO-6G)

Li: (0.0, 0.5745285121, 0.0 )
0.3745515758, -1.5943364696, 0.0 )
~0.3745515758, -1.5943364696, 0.0 )
0.0, 2.1141444271, 0.0 )

H
H
H

A~ N N~

II1.IT  LiH

(STO-3G)
Li: (0.0, 0.4458857224, 0.0 )
H: (0.3817589841, -1.6774498429, 0.0 )
H: (-0.3817589841, -1.6774498429, 0.0 )
H: (0.0, 2.4090139635, 0.0 )

(STO-6G)
Li: (0.0, 0.4465585922, 0.0 )
0.3797140817, -1.6774541354, 0.0 )

(
(
(-0.3797140817, -1.6774541354, 0.0 )
( 0.0, 2.4083496785, 0.0 )

H
H
H

IIL.IIT  LiHs

(STO-3G)
Li: ( 0.2465964441, 1.905175701, 0.0 )

(-0.3380784609, -2.6637884691, 0.0 )
(-0.0022944938, 0.3511846717, 0.0 )
(-0.4256234895, -3.3942719036, 0.0 )

H
H
H



(STO-6G)

Li: (0.2521885944, 1.9319746217, 0.0 )
H: (-0.3411785343, -2.6925658902, 0.0 )
H: (-0.0022022611, 0.3800456265, 0.0 )
H: (-0.428207799, -3.421154358, 0.0 )
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