
Experiences with implementing Kokkos’ SYCL backend
Daniel Arndt

Damien Lebrun-Grandié
arndtd@ornl.gov

lebrungrandt@ornl.gov
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Christian Trott
crtrott@sandia.gov

Sandia National Laboratories
Albuquerque, New Mexico, USA

ABSTRACT
With the recent diversification of the hardware landscape in the
high-performance computing community, performance-portability
solutions are becoming more and more important. One of the most
popular choices is Kokkos. In this paper, we describe how Kokkos
maps to SYCL 2020, how SYCL had to evolve to enable a full Kokkos
implementation, and where we still rely on extensions provided
by Intel’s oneAPI implementation. Furthermore, we describe how
applications can use Kokkos and its ecosystem to already explore
upcoming C++ features also when using the SYCL backend. Finally,
we are providing some performance benchmarks comparing native
SYCL and Kokkos and also discuss hierarchical parallelism in the
SYCL 2020 interface.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools.

KEYWORDS
Performance portability, programming models, high-performance
computing, heterogeneous computing, exascale

ACM Reference Format:
Daniel Arndt, Damien Lebrun-Grandié, and Christian Trott. 2024. Experi-
ences with implementing Kokkos’ SYCL backend. In International Workshop
on OpenCL and SYCL (IWOCL ’24), April 8–11, 2024, Chicago, IL, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3648115.3648118

1 INTRODUCTION
Over the last decade, writing performance-portable applications

has become one of themost pressing concerns of the high-performance
computing (HPC) community. With the introduction of GPUs into
the hardware mix for supercomputers, developers of scientific and
engineering codes had to contend with the challenge of using mul-
tiple toolchains and vendor programming models to make their

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE). The publisher acknowl-
edges the US government license to provide public access under the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
IWOCL 2024, April 08–11, 2024, Chicago, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/3648115.3648118

software work and perform on every relevant platform. Up until re-
cently, that largely meant supporting CPUs and Nvidia GPUs. Many
projects approached this challenge by maintaining both a CPU im-
plementation and a CUDA implementation - either of the entire
code or just the most compute-intensive pieces. However, for some
teams, having multiple implementations of their software was not
considered maintainable. Thus, the need to develop single-source
performance-portability solutions arose. Two early solutions for
this issue in the HPC community were OpenACC and Kokkos[2, 9],
but adoption was limited and many projects considered the po-
tential benefit of fine-tuned specialized code worth the additional
effort for separate CPU and CUDA code paths.

This attitude changed when the Department of Energy (DOE)
announced in 2019 that the first exascale supercomputers would
introduce much more hardware diversity. Frontier and El Capitan -
to be sited at Oak Ridge and Lawrence Livermore National Labora-
tory respectively - were going to use AMD GPUs, and Aurora - to
be sited at Argonne National Laboratory - would depend on Intel
GPUs for the majority of its performance. This posed an urgent chal-
lenge to the members of DOE’s Exascale Computing Project (ECP)
which was tasked with preparing DOE’s HPC software ecosys-
tem for these new machines. Code teams had to support current
platforms using Nvidia GPUs with CUDA as well as CPU-based
systems while preparing their software for two new architectures
with programming models that either had not existed in the recent
past (AMD’s HIP), had virtually no use within the HPC community
(SYCL for Intel GPUs), or only provided very immature implemen-
tations (OpenMP target offload). For the majority of ECP projects
that could not afford to target all of the different (native/vendor-
preferred) programming modules (CPU, CUDA, HIP, SYCL) directly,
ECP offered four possible solutions: Kokkos, RAJA[1], OpenMP
target offload, and a domain-specific library called AMReX[10].

Today, Kokkos is used by about half of all C++-based ECP projects
[4], while RAJA is mostly used by projects led by Lawrence Liver-
more National Laboratory where it originated. AMReX is a domain-
specific C++ library for applications that need adaptive mesh re-
finement. It is directly implemented on top of the vendor native
programming models but isolates those from the applications using
AMReX. OpenMP target offload was initially thought to be the
primary approach for writing vendor-independent code in ECP but
in the end, only a few projects used it, mostly in connection with
Fortran. Experiences with this program model and the implementa-
tion of the corresponding backend within Kokkos can be found in
[5].

To support their hardware, Intel recommended SYCL as the pri-
mary programming model, and engaged with ECP teams as well
as participants in Argonne’s separate Early Science Program (ESP).

https://orcid.org/0000-0001-8773-4901
https://orcid.org/0000-0003-1952-7219
https://orcid.org/0000-0003-0661-5594
https://doi.org/10.1145/3648115.3648118
https://doi.org/10.1145/3648115.3648118

IWOCL 2024, April 08–11, 2024, Chicago, USA Daniel Arndt, Damien Lebrun-Grandié, and Christian Trott

This recommendation and interactions within ECP prompted the
Kokkos team to develop a SYCL backend using Intel’s oneAPI im-
plementation, leading to today’s hardware mapping of Kokkos’
primary backends:

• Nvidia GPU→ CUDA backend
• AMD GPU→ HIP backend
• Intel GPU→ SYCL backend
• CPUs→ Serial, Threads, or OpenMP backend

In this paper, we describe how Kokkos maps to SYCL 2020, how
SYCL had to evolve to enable a full Kokkos implementation, and
where we still rely on extensions provided by Intel’s oneAPI im-
plementation. Furthermore, we describe how applications can use
Kokkos and its ecosystem [8] to already explore upcoming ISO C++
features also when using the SYCL backend.

The paper is structured as follows. We first describe data abstrac-
tions in Kokkos, their relationship to ISO C++ mdspan, and issues
around using SYCL buffers and its unified shared memory (USM)
abstraction to implement them. Next, we cover parallel constructs
and their execution policies and briefly discuss Kokkos’ implemen-
tation of ISO C++ parallel algorithms. Before concluding with a
summary, we also touch on gaps in the SYCL 2020 standard that
requires Kokkos to rely on Intel-specific extensions for full support
and present some performance benchmarks comparing native SYCL
with Kokkos’ SYCL backend.

Note: this paper only provides the briefest of descriptions of
Kokkos’ functionality, with the intent to just introduce enough
to be able to follow the discussion of specific SYCL concerns. For
more details on Kokkos please refer to [2, 9] as well as the Kokkos
documentation.

2 DATA ABSTRACTION
One of the most challenging aspects of writing code for hetero-
geneous architectures is data management. Developers have to
control and reason about where data resides as well as how to
optimize architecture-dependent data access patterns. In their orig-
inal design, Kokkos and SYCL have different approaches to address
these issues (also see [2, 6, 9]): Kokkos was designed with explicit
user-controlled data management in mind, while SYCL’s primary
design philosophy centered on implicit data management. More
specifically, Kokkos introduces explicit concepts of memory spaces,
as well as memory layouts with strongly typed data structures, and
a requirement for the user to explicitly express data movement.
SYCL, on the other hand, uses an opaque data abstraction called
buffers where dependencies of algorithms are expressed in terms
of the use of those buffers, and the SYCL runtime manages data
movement and layout implicitly.

2.1 Kokkos::View and std::mdspan
The fundamental data class in Kokkos is called View. It is a reference-
counted, multidimensional array that is memory layout- and mem-
ory space-aware. At its simplest, View is used as the basic smart
pointer of Kokkos applications. ISOC++23 introduced std::mdspan
with a design that is based to a large degree on Kokkos::View. Ef-
fectively, std::mdspan is an unmanaged (i.e. non-owning) version

of Kokkos::View. The properties expressed in the template argu-
ments of the two classes can be explicitly mapped to each other.
Consider the signature of std::mdspan and Kokkos::View:
template <class DataType [, class Layout = @see below@]

[, class MemorySpace = @see below@]

[, class MemoryTraits = @see below@]

> class View;

template <class T, class Extents ,

class LayoutPolicy = std:: layout_right ,

class AccessorPolicy = std:: default_accessor <T>

> class mdspan;

Where mdspan takes an element type and the extents of the array
as two separate parameters T and Extents, View accepts a com-
bined parameter via DataType. For example, a two-dimensional
array (with dynamic extents) of double elements, is expressed
with parameters [T = double] and [Extents = extents<int,
dynamic_extent, dynamic_extent>] for mdspan and [DataType
= double**] for View. The Layout template parameter maps di-
rectly with Kokkos’ default argument depending on the architecture
a code is compiled for.

Since ISO C++ does not include a notion of memory spaces
(let alone accessibility properties) in its abstract machine model,
MemorySpacewas notmade a first-class concept for mdspan. Kokkos
uses MemorySpace to encode semantics such as the accessibility of
memory allocations from specific execution resources in a type-safe
manner. Thus, an algorithm implemented in Kokkos can at compile
time decide on a valid execution mechanism (e.g. GPU or CPU)
based on the types of the Views handed to it. It also enables static
checking for data access violations instead of discovering them at
runtime.

The MemoryTraits parameter expresses additional data access
behavior such as atomic accesses, non-aliasing (restrict) access,
and data reuse behavior. With mdspan, both MemorySpace and
MemoryTraits can be expressed with the AccessorPolicy. For
example, one could implement an AccessorPolicy for atomic ac-
cesses in a CUDA kernel, which would give compile-time errors for
mdspan data accesses in host code and calls CUDA atomic intrinsics
in device code.

In contrast to View, mdspan allows for arbitrarymixing of compile-
time and runtime extents, and it has no limitation on the dimension-
ality, whereas View currently only supports up to 8 dimensions.

Currently, a reference implementation for mdspan is maintained
within the Kokkos ecosystem and will soon become a crucial build-
ing block for View which should then only be a small wrapper
around it managing the owning semantics. This implementation
is also tested in SYCL code and is ready to be used with Kokkos or
independently.

Data movement between different memory spaces is managed
explicitly in Kokkos via its deep_copy function. Since the View argu-
ments to deep_copy are strongly typed on their respective memory
spaces, it does not require trailing arguments for the direction of
the copy which could be mismatched. In the CUDA runtime, for
example, cudaMemcpy accepts a cudaMemcpyKind argument speci-
fying the memory spaces between which to copy (note: on systems
with unified virtual address space, one can ask cudaMemcpy to infer
the copy direction from the runtime pointer values, thus avoiding
the mismatch problem).

Experiences with implementing Kokkos’ SYCL backend IWOCL 2024, April 08–11, 2024, Chicago, USA

2.2 SYCL Buffers and the issue of higher level
data structures

As stated above, View and mdspan are intended not just as stand-
alone multi-dimensional arrays, but also as the fundamental build-
ing blocks for higher-level data structures. For example a typical im-
plementation of a compressed sparse row (CSR) matrix2 in Kokkos
would contain three Views for the row offsets, column indices and
matrix values:
template <class MemSpace >

struct CsrMatrix {

View <int64_t*, MemSpace > row_ptr , col_idx;

View <double*, MemSpace > values;

/*...*/

};

With Kokkos (or pure C++ for that matter), such a struct is seam-
lessly usable in parallel code sections. For example, a naive sparse
matrix-vector product would capture the matrix, and then use its
members in the implementation:
CsrMatrix <MemSpace > M(...);

View <MemSpace > x(...);

View <MemSpace > y(...);

parallel_for(M.num_rows(), [=](int i) {

for(int j=M.row_ptr[i]; j<M.row_ptr[i+1]; j++)

y[i] += M.values[j] * x[M.col_idx[j]]

}

However, this scenario poses an issue when attempting to use SYCL
buffers as the fundamental data abstraction. SYCL buffers do not
directly provide a method to access data elements. One first has to
obtain an accessor, through which data accesses are performed.
The lifetime of an accessor is limited to the scope of a single
queue::submit call, and thus they can’t be permanently stored as
members of higher-level data structures that persist across multi-
ple kernel dispatches. In simple programs, one can work around
that limitation by explicitly extracting the members of classes and
not using the class itself inside a parallel region. A possible SYCL
implementation could look something like
CsrMatrix <MemSpace > M(...);

View <MemSpace > x(...);

View <MemSpace > y(...);

sycl::queue q;

q.submit ([&](sycl:: handler &h) {

auto rows = M.get_row_buffer (). get_access(h);

auto cols = M.get_col_buffer (). get_access(h);

auto values = M.get_values_buffer (). get_access(h);

auto x_access = x.get_access(h);

auto y_access = y.get_access(h);

h.parallel_for(sycl::range <1>(N),[=](sycl::item <1> id)

{

for(int j=rows[i]; j<rows[i+1]; j++)

y_access[i] += values[j] * x_access[cols[j]]

});

});

This limits the usability of higher-level structures significantly. For
example, one couldn’t call a function that takes a CsrMatrix as an
argument inside the parallel region. Furthermore, it requires that
all class members are part of the public interface of that class. Last
but not least, this does not allow for some higher-level dispatch

2https://github.com/kokkos/code-examples/tree/main/papers/IWOCL2024/cgsolve/
generate_matrix.hpp

functions where users can pass in an opaque callable object. Specif-
ically, the above parallel_for function can not be implemented
in a way compatible with SYCL buffers as the data handles in
CsrMatrix. Consider the following implementation:
template <class Callable >

void parallel_for(int N, Callable lambda) {

sycl::queue q;

q.submit ([&](sycl:: handler &h) {

// can only create accessors here

h.parallel_for(sycl::range <1>(N),

[=](sycl::item <1> id) {

lambda(id);

});

});

}

An accessor can only be created inside the scope of queue::submit,
but at that point, there is no way to get access to any indirectly con-
tained buffers in the lambda. Besides this fundamental usability
issue of the SYCL buffer construct, compared to View and mdspan
it also only supports up to 3-dimensional arrays.

2.3 Using USM instead of Buffers
To address the usability issues of buffers described above, SYCL
2020 introduced Unified Shared Memory (USM). USM provides C-
style memory management functions operating on raw pointers in
conjunction with arguments indicating memory spaces.

Kokkos memory abstractions are exclusively built on top of USM
(instead of the buffer/accessor model) and the SYCL backend
View implementation just wraps USM pointers/allocations. There
are no modifications necessary to the View class itself. Each SYCL
USM allocation type is mapped to a separate Kokkos memory space
type:
sycl::usm::alloc::host Kokkos::SYCLHostUSMSpace
sycl::usm::alloc::shared Kokkos::SYCLSharedSpace
sycl::usm::alloc::device Kokkos::SYCLDeviceSpace

Furthermore, Kokkos defines a scratch memory space (also see
Section 3.1) that wraps either global (device) address space or shared
address space.

One outstanding issue with View and other data containers is
that they are not trivially-copyable which prevents them from being
usable by default in SYCL device code. Since Kokkos doesn’t have
any control over the functor’s members (that in most cases contain
at least one View), we have to declare every function object passed to
a parallel construct as sycl::is_device_copyable. Unfortunately,
this is not quite sufficient and we also have to make sure that the
functor’s special member functions behave as if they were trivially-
copyable (at least with the oneAPI implementation) since those
might not be device-callable. Note that the SYCL 2020 standard
says3:

It is unspecified whether the implementation actually
calls the copy constructor, move constructor, copy as-
signment operator, or move assignment operator of a
class declared as is_device_copyable_v when doing an
inter-device copy. Since these operations must all be
the same as a bitwise copy, the implementation may

3https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#sec::
device.copyable

https://github.com/kokkos/code-examples/tree/main/papers/IWOCL2024/cgsolve/generate_matrix.hpp
https://github.com/kokkos/code-examples/tree/main/papers/IWOCL2024/cgsolve/generate_matrix.hpp
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html##sec::device.copyable
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html##sec::device.copyable

IWOCL 2024, April 08–11, 2024, Chicago, USA Daniel Arndt, Damien Lebrun-Grandié, and Christian Trott

simply copy the memory where the object resides.
Likewise, it is unspecified whether the implementa-
tion actually calls the destructor for such a class on
the device since the destructor must have no effect on
the device.

This works fine with other backends like CUDA since problematic
member functions are never invoked4. One way to work around
the issue is to define a functor wrapper as follows
template <typename Functor >

class SYCLFunctionWrapper <Functor > {

union TrivialWrapper {

TrivialWrapper (){}

TrivialWrapper(const Functor& f) {

std:: memcpy (&m_f , &f, sizeof(m_f));

}

TrivialWrapper(const TrivialWrapper& other) {

std:: memcpy (&m_f , &other.m_f , sizeof(m_f));

}

TrivialWrapper(TrivialWrapper && other) {

std:: memcpy (&m_f , &other.m_f , sizeof(m_f));

}

TrivialWrapper& operator =(const TrivialWrapper& other) {

std:: memcpy (&m_f , &other.m_f , sizeof(m_f));

return *this;

}

TrivialWrapper& operator =(TrivialWrapper && other) {

std:: memcpy (&m_f , &other.m_f , sizeof(m_f));

return *this;

}

~TrivialWrapper (){}

Functor m_f;

} m_functor;

/*...*/

public:

SYCLFunctionWrapper(const Functor& functor , Storage &)

: m_functor(functor) {}

const Functor& get_functor () const {

return m_functor.m_f;

}

};

template <typename Functor >

struct sycl:: is_device_copyable <SYCLFunctionWrapper <Functor >

: std:: true_type {} ;

Finding a way to circumvent the is_device_copyable check was
probably the biggest initial hurdle we had to overcome when im-
plementing the SYCL backend.

3 PARALLEL CONSTRUCTS AND
ALGORITHMS

Kokkos implements three primary parallel constructs: parallel_for,
parallel_reduce, and parallel_scan. These parallel constructs
take at least two arguments: an execution policy and a callable
object or functor that defines the operation executed. The three
primary execution policies are RangePolicy which expresses a
simple 1-D iteration range, MDRangePolicy which allows for multi-
dimensional iteration, and TeamPolicy for implementing hierar-
chical parallel algorithms.

Based on these three parallel constructs, Kokkos provides algo-
rithms that match the ISO C++ parallel algorithms. In addition to

4See https://github.com/intel/llvm/issues/5320 for further discussion.

interfaces taking iterators, our implementations also have over-
loads accepting Kokkos::View arguments. These overloads have
the advantage that a runtime size matching check is possible be-
tween input and output arguments. Another deviation from the ISO
C++ standard is that our implementations only support par_unseq
semantics, and take Kokkos execution space instances (i.e. the equiv-
alent of SYCL queues) instead of ISO C++ execution policies. An ad-
ditional capability provided by the Kokkos parallel algorithms is the
ability to call them as part of our hierarchical parallelism implemen-
tation, i.e. a user can call these algorithms instead of nested parallel
loops. This is not supported by any other implementation of the
ISO C++ standard algorithms we are aware of, including oneDPL,
Thrust, and a seemingly abandoned SYCL effort by the Khronos-
Group (https://github.com/KhronosGroup/SyclParallelSTL).

3.1 parallel_for
In its simplest form, Kokkos::parallel_for using RangePolicy
directly wraps a sycl::parallel_for. It describes the execution
of a kernel for a 1-D iteration range where each work item is inde-
pendent. A prototypical invocation like

Kokkos :: parallel_for(

Kokkos :: RangePolicy(execution_space , start , end)),

KOKKOS_LAMBDA(int i) {/*...*/});

is mapped to SYCL code as

Functor functor;

q.parallel_for(sycl::range <1>(end - begin),

[=](sycl::id <1> idx) {

int i = idx + begin;

functor(i);

});

When using an MDRangePolicy, the parallel iteration range can
be 2 to 6-dimensional and is internally divided into tiles. Individual
tiles are then mapped to thread groups such as a single thread on
a CPU, blocks in CUDA and HIP, and a workgroup for SYCL. The
iteration over tiles is flattened onto a single dimension of parallelism.
The iteration within each tile is then mapped to the threads in the
thread groups. With SYCL, HIP, and CUDA sharing the concept
of 3-dimensional thread groups, we were able to share the code
for mapping the multi-dimensional tile iteration to threads across
the three backends. An example of a 5-dimensional iteration space
looks like:

struct Functor{

KOKKOS_FUNCTION void operator(

int i, int j, int k, int l, int m) const {/*...*/}

};

Kokkos :: parallel_for(

Kokkos :: MDRangePolicy(execution_space ,

{s0,s1,s2,s3,s4}, {e0,e1,e2,e3,e4}),

Functor {});

Implementation-wise the basic idea here is to pack multiple dimen-
sional ranges into the three dimensions exposed by sycl::nd_range
in the same way as for the CUDA and HIP backend implementation.

https://github.com/intel/llvm/issues/5320
https://github.com/KhronosGroup/SyclParallelSTL

Experiences with implementing Kokkos’ SYCL backend IWOCL 2024, April 08–11, 2024, Chicago, USA

nd_range dimension
dimensions 0 1 2
2 0 1
3 0 1 2
4 0,1 2 3
5 0,1 2,3 4
6 0,1 2,3 4,5

One interesting distinction between the CUDA/HIP backend and
the SYCL backend is that we map indices differently. For optimal
memory access patterns with CUDA and HIP the threadIDx.x (i.e.
the first) index is the one that needs to access consecutive memory
locations, while it is the third dimension with SYCL.

Finally, there is TeamPolicy that describes hierarchical paral-
lelism. In contrast to the SYCL concept for hierarchical parallelism,
which exposes a fork-join-style interface, in Kokkos, threads per-
form redundant execution in the outer loop - that is all threads are
active upon entry into the parallel region. A true fork-join style
implementation is not suitable for many cases of hierarchical paral-
lelism (such as the sparse matrix-vector product later discussed),
because the work inside the nested parallel loops is smaller than
the cost of fork-join5. The redundant execution concept however
does map well to CUDA and HIP. It is also trivially implementable
with any model where hierarchical parallelism is only provided via
fork-join mechanisms, by forking immediately and simply split-
ting the nested parallel iterations across the appropriate threads
(also compare [3] that proposed another approach to hierarchical
parallelism with SYCL). Note that the SYCL 2020 standard itself
discourages using its native interface6.

An example for the TeamPolicy API is:
parallel_for("Label",

TeamPolicy <>(numberOfTeams , teamSize , vectorLength),

KOKKOS_LAMBDA (const member_type & teamMember) {

/* beginning of outer body */

parallel_for(

TeamThreadRange(teamMember , thisTeamsRangeSize),

[=] (const int indexWithinBatch[, ...]) {

/* begin middle body */

parallel_for(ThreadVectorRange(teamMember ,

thisVectorRangeSize),

[=] (const int indexVectorRange) {

/* inner body */

});

/* end middle body */

});

parallel_for(TeamVectorRange(teamMember , someSize),

[=] (const int indexTeamVector) {

/* nested body */

});

/* end of outer body */

});

Kokkos Teams consist conceptually of threads with vector lanes.
In the example above, the number of vector lanes per thread is
controlled by the vectorLength parameter, while the number of
threads per team is controlled by the teamSize parameter. Again,
this concept is implemented using sycl::parallel_for using
5There are compiler approaches to avoid true fork-join by having threads execute
redundantly every instruction needed to build the thread state, and masking out
instructions with side effects. It is not clear whether this optimization is employed by
any SYCL implementation.
6https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#
_hierarchical_data_parallel_kernels

nd_range. We map a team to a sycl::group and the vector lanes
of an individual thread to a subset of a sycl::subgroup. For ex-
ample, if the subgroup size is 32, and vectorLength is 8, each
sycl::subgroup will consist of four Kokkos threads.

The execution policies for nested parallel constructs are mapping
iterations to threads in a team (TeamThreadRange), vector lanes
within a thread (ThreadVectorRange) or both (TeamVectorRange).

Since we divide subgroups into multiple threads, we require a
mechanism to synchronize part of a subgroup. This is implicit on
some hardware (Intel GPUs, and AMDGPUs), but would require the
non-uniform group extension proposed in the oneAPI implemen-
tation, in particular tangle_groups, on Nvidia GPUs7. However,
tangle_groups aren’t implemented in the oneAPI compiler for
Nvidia hardware, yet8. Thus, our implementation of hierarchical
parallelism with SYCL is not fully functional when compiling for
Nvidia architectures.

TeamPolicy is the only Kokkos policy that allows using scratch
memory space in the form of team scratch. In particular, Kokkos
provides two levels of scratch memory for a team: one intended to
map to an L1-like cache and one for larger scratch requirements.
An early design decision in Kokkos, where this distinction is not ex-
pressed through strongly-typed memory spaces, posed some minor
problems when porting to SYCL. For SYCL, we want to map small
scratch allocations to SYCL workgroup local memory, and large
allocations to plain USM allocations. Unfortunately, the oneAPI
compiler has problems figuring out the correct address space when
accessing the scratch memory in kernels, and thus generates in-
structions for either case with runtime checks on the pointer. This
makes the compiler emit confusing warnings and may have a neg-
ative impact on the instruction cache efficiency. We are currently
investigating a change in the Kokkos interface to make different
scratch allocations strongly-typed as well so that Kokkos can take
advantage of the extra address space information SYCL exposes
in comparison to HIP and Cuda. Note that libcudacxx provides
with cuda::annotated_ptr9 a similar concept that Kokkos could
exploit.

3.2 parallel_reduce
The parallel_reduce construct in Kokkos provides a mechanism
for combining contributions from all iterations of a parallelized
loop. As with parallel_for, it can be used with different execution
policies, expressing various iteration and parallelization schemes.
A typical use case looks as follows:

double result;

Kokkos :: parallel_reduce(

Kokkos :: RangePolicy(execution_space , start , end)),

KOKKOS_LAMBDA(int i, double& partial_sum) {

partial_sum += i;

}, result);

7https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_
oneapi_non_uniform_groups.asciidoc
8https://github.com/intel/llvm/blob/ec7fb7c4aebae3ea642a269e8cc4d4ab57f721ef/
sycl/include/sycl/ext/oneapi/experimental/tangle_group.hpp#L152-L159
9https://nvidia.github.io/libcudacxx/extended_api/memory_access_properties/
annotated_ptr.html

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html##_hierarchical_data_parallel_kernels
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html##_hierarchical_data_parallel_kernels
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_non_uniform_groups.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_non_uniform_groups.asciidoc
https://github.com/intel/llvm/blob/ec7fb7c4aebae3ea642a269e8cc4d4ab57f721ef/sycl/include/sycl/ext/oneapi/experimental/tangle_group.hpp##L152-L159
https://github.com/intel/llvm/blob/ec7fb7c4aebae3ea642a269e8cc4d4ab57f721ef/sycl/include/sycl/ext/oneapi/experimental/tangle_group.hpp##L152-L159
https://nvidia.github.io/libcudacxx/extended_api/memory_access_properties/annotated_ptr.html
https://nvidia.github.io/libcudacxx/extended_api/memory_access_properties/annotated_ptr.html

IWOCL 2024, April 08–11, 2024, Chicago, USA Daniel Arndt, Damien Lebrun-Grandié, and Christian Trott

When providing just a result argument, parallel_reducewill per-
form a sum-reduction. However, users can provide so-called reduc-
ers which specify different reduction operations, such as minimum,
maximum, or product:
double minimum;

Kokkos ::View <double*> a(/*...*/);

Kokkos :: parallel_reduce(

Kokkos :: RangePolicy(execution_space , start , end)),

KOKKOS_LAMBDA(int i, double& partial_min) {

if (a[i] < partial_min)

partial_min = a[i];

}, Kokkos ::Min(minimum));

This interface is not too different from the provided by SYCL’s
reduction variables:
double minimum;

double* data = /*...*/;

q.parallel_for(sycl::range <1>(N_),

sycl:: reduction(result_ptr , 0., sycl::minimum <double >()),

[=](sycl::id <1> idx , auto& min) {

int i = idx;

min.combine(data[i]);

});

q.memcpy (&result , result_ptr , sizeof(double));

q.wait ();

}

However, Kokkos does not currently implement parallel_reduce
via the sycl::reduction interface. Partly this is due to histori-
cally incomplete support for the full SYCL reduction interface (in
fact the SYCL 1.2 did not have a reduction interface at all), and
partly due to lack of support for certain capabilities of Kokkos’
parallel_reducewhich exceed the scope of the sycl::reduction
interface. Among the features of Kokkos parallel_reduce are

• simple reductions (sum)
• multiple reductions per parallel construct
• custom reductions with arbitrary value types and reduction
operations

• runtime sized array reductions
• pre- and post-callbacks for reductions (init, final)

SYCL only supports compile-time-sized reductions and none of the
callbacks. The Kokkos implementation uses sycl::parallel_for
with sycl::nd_range and follows the following pseudocode
per_thread:

value& tmp=init(local_tmp);

for (i in local range)

functor(i, tmp)

call join for merging values between threads

in the same workgroup

let one (the last) workgroup merge all results

from all workgroups

call final(result) on one thread

Initially, we tried to use a shuffle-based implementation but quickly
discovered that using local memory gives better performance on
Intel GPUs - an observation also reported in [7].

3.3 parallel_scan
Contrary to the SYCL API, Kokkos implements an interface for
inclusive/exclusive prefix sums called parallel_scan as a first-
class citizen in the Kokkos programming model. The interface is
similar to the one for parallel_reduce but only supports a flat,

one-dimensional policy (RangePolicy) with a single scalar reducer.
A typical usage example looks like
Kokkos :: parallel_scan(

Kokkos :: RangePolicy(execution_space , start , end),

KOKKOS_LAMBDA (const int index , value_type& update ,

const bool is_final) {

const value_type local_value = in_data(i);

// exclusive scan

if (is_final)

out_data_exclusive(i) = update;

update += local_value;

// inclusive scan

if (is_final)

out_data_inclusive(i) = update;

});

The data in in_data is used to simultaneously compute an inclusive
prefix sum (stored in out_data_inclusive) and an exclusive prefix
sum (stored in out_data_exclusive) storing the sum across values
in total. One important distinction of parallel_scan is that it
requires a two-pass algorithm for parallelization. In the first pass,
every work item calculates its contribution, and in the second pass,
the update value passed to the work item contains the exclusive
scan value. The is_final argument indicates whether the second
pass is performed.

Note that within the oneAPI framework, oneDPL implements
[inclusive/exclusive]_[transform]_scan that provide simi-
lar capabilities based on the ISO C++ parallel algorithms. However,
the Kokkos parallel_scan facility is somewhat more powerful.
With the C++ parallel algorithms, the actual scan values are only
available in the data structure referred to by an output iterator, and
can only be consumed during a subsequent kernel launch. In the
Kokkos construct, the scan values are available during execution of
the callable and don’t have to be stored. This allows, for example,
the implementation of communication pack routines as a single
parallel construct, such as copying all particles that left the domain
of an MPI rank to a buffer for transfer to another rank.

The following pseudocode shows the Kokkos’ parallel_scan
implementation using two sycl::parallel_for with calls using
sycl::nd_range:
first kernel:

per_thread:

value& tmp=init(local_tmp);

for (i in local range)

functor(i, tmp , /* is_final */ false)

call join for implementing a prefix sum

in the same workgroup

let the last workgroup compute the prefix sum for the

totals of all workgroups and store the result

store intermediate results on each thread

second kernel:

combine workgroup totals with thread intermediate results

call the functor again for final result (with final=true)

For finding the "last" workgroup, every workgroup increases a
counter in global memory atomically. The one that reaches the
total number of workgroups is identified as the last workgroup.
Note that an optional last argument for parallel_scan allows to
also return the total sum of contributions (i.e. the last iterations
inclusive scan value).

For several of the C++ parallel algorithms Kokkos provides, the
straightforward implementation does require a parallel_scan

Experiences with implementing Kokkos’ SYCL backend IWOCL 2024, April 08–11, 2024, Chicago, USA

primitive strengthening the importance of treating it as a first-class
citizen. These include:

• copy_if
• exclusive_scan
• inclusive_scan
• partition_copy
• remove_if
• remove_copy_if
• transform_exclusive_scan
• transform_inclusive_scan
• unique
• unique_copy

4 SYCL EXTENSIONS NEEDED FOR KOKKOS
Most of Kokkos’ features can be implemented using pure SYCL
2020 but there are also several features that require extensions,
which are provided by the oneAPI implementation10 (namespace
sycl::ext::oneapi suppressed for readability):

• random number generator:
– experimental::this_nd_item

• arbitrary size atomics:
– experimental::this_sub_group,
– experimental::device_global,
– group_ballot,
– sub_group_mask

• user code, debugging:
– experimental::printf

• half type support:
– bfloat16

• workgroup-level reductions:
– group_local_memory_for_overwrite

The most critical of the missing features are related to the im-
plementation of arbitrary size atomics - i.e. atomics for objects of
a size where no native atomic compare exchange operation exists.
Note that the latter are part of the ISO C++ standard atomic_ref,
but are not supported by either the SYCL or NVIDIA libcu++ li-
brary atomic_ref implementation. Places that use this_nd_item
or this_sub_group are exposed to users and the Kokkos implemen-
tation doesn’t provide a way to pass the active thread through the re-
spective interface in a portable way, e.g, Kokkos::atomic_add(T*
const dest, const T val).

One capability that isn’t strictly needed to implement Kokkos
itself, but is frequently requested by users of Kokkos, is the support
for virtual functions. This capability does exist for all other pri-
mary toolchains used by Kokkos, including CUDA and ROCm, but
is missing in SYCL and is not currently available as an extension in
oneAPI 11.

5 PERFORMANCE RESULTS
The following performance benchmarks were obtained on one node
of the Sunspot testbed for Aurora at Argonne National Laboratory
with 6 Intel® Data Center GPU Max 1550 GPUs and 2 Intel® Xeon®
CPU Max 9470C (52 physical cores supporting 2 hardware threads
10https://github.com/intel/llvm
11There are some efforts in https://github.com/intel/llvm/pull/10540 to enable virtual
function support for SYCL in oneAPI.

per core). The GPU is composed of two so-called tiles that can
either be addressed as one device (also called "implicit scaling") or
two devices (also called "explicit scaling"). In the following, we will
refer to the former as "2-tile" and the latter as "1-tile" expressing
how many tiles per device are used.

We are employing a sparse matrix conjugate gradient solver (CG-
solver) as our basic benchmark. It consists of vector add (AXPBY),
dot product (DOT), and sparse matrix-vector multiplication (SPMV)
operations. These exercise the fundamental parallel operations in
Kokkos via simple RangePolicy parallel_for and parallel_reduce
kernels for AXPBY and DOT respectively, and hierarchical paral-
lelism (TeamPolicy) for the implementation of the SPMV. We used
this benchmark previously in our reference Kokkos paper [9], and
the discussion of the OpenMPTarget backend of Kokkos [5]. This
benchmark has the advantage of being fairly simple, while simul-
taneously exposing performance concerns in hardware and basic
software stack capabilities (e.g. compiler optimizations, thread syn-
chronization overhead, etc.). For all the kernels we implement a
raw SYCL variant, in addition to the Kokkos version, to identify
performance costs associated with the abstraction level introduced
by Kokkos.

The following code is an implementation of the CG-solve (A is
the matrix, textttp, r, and Ap are vectors):

for (int64_t k = 1; k <= max_iter && normr > tolerance; ++k) {

if (k == 1) {

axpby(p, one , r, zero , r);

} else {

oldrtrans = rtrans;

rtrans = dot(r, r);

double beta = rtrans / oldrtrans;

axpby(p, one , r, beta , p);

}

normr = std::sqrt(rtrans);

double alpha = 0;

double p_ap_dot = 0;

spmv(Ap, A, p);

p_ap_dot = dot(Ap, p);

if (p_ap_dot < brkdown_tol) {

if (p_ap_dot < 0) {

std::cerr << "numerical␣breakdown !\n";

return num_iters;

} else

brkdown_tol = 0.1 * p_ap_dot;

}

alpha = rtrans / p_ap_dot;

axpby(x, one , x, alpha , p);

axpby(r, one , r, -alpha , Ap);

num_iters = k;

}

Ignoring the initial iteration, AXPBY is called three times per it-
eration, DOT twice, and SPMV once. Since SPMV operates on the
matrix, and thus accesses by far the most memory, it commonly
dominates the overall performance of the CG-solve.

The code for all the experiments performed here, including re-
production instructions can be found at https://github.com/kokkos/
code-examples/tree/main/papers/IWOCL2024.

5.1 AXPBY
The AXPBY algorithm is a simple vector add with scaling factors
and thus exhibits no dependencies between iterations. As such, it is

https://github.com/intel/llvm
https://github.com/intel/llvm/pull/10540
https://github.com/kokkos/code-examples/tree/main/papers/IWOCL2024
https://github.com/kokkos/code-examples/tree/main/papers/IWOCL2024

IWOCL 2024, April 08–11, 2024, Chicago, USA Daniel Arndt, Damien Lebrun-Grandié, and Christian Trott

a good candidate for a RangePolicy parallel benchmark, and in
fact, can be considered a variant of the widely used STREAM bench-
mark. The following implementations in Kokkos and raw SYCL can
also be found at https://github.com/kokkos/code-examples/tree/
main/papers/IWOCL2024/axpy.

// Kokkos

for (int r = 0; r < R; r++) {

Kokkos :: parallel_for("axpby", N, KOKKOS_LAMBDA(int i) {

z(i) = alpha*x(i) + beta*y(i);

});

}

// SYCL

sycl::queue q{sycl:: property ::queue:: in_order ()} ;

for (int r = 0; r < R; r++) {

q.parallel_for(sycl::range <1>(N), [=](sycl::id <1> idx){

int i = idx;

z[i] = alpha*x[i] + beta*y[i];

});

}

Figure 1 shows that the achieved effective bandwidth for both
implementations is identical which isn’t very surprising given the
direct mapping from Kokkos to SYCL code.

In the standalone benchmark, we run the AXPBY kernel on the
same data repeatedly. This exposes a caching effect, where the
measured bandwidth is significantly higher than the steady state.
All in all, however, the observed performance is significantly lower
than one may expect based on the theoretical peak throughput of
the hardware which is 1.6TB/s per tile. Indeed, we see about 95%
and 75% of the peak memory bandwidth for the same benchmark
on NVIDIA and AMD GPUs respectively in [5].

It is worth noting that below 105 elements AXPBY is largely
latency-limited.

103 104 105 106 107 108 109
0

1,000

2,000

3,000

4,000

#elements

Ba
nd

w
id
th

G
B/
s

Kokkos 1-tile
SYCL 1-tile
Kokkos 2-tile
SYCL 2-tile

Figure 1: Achieved effective bandwidth for the AXPBY bench-
mark.

5.2 DOT
The DOT benchmark performs a single reduction with a double
value type and thus is trivially implementable with a RangePolicy
and parallel_reduce:
// Kokkos

for (int r = 0; r < R; r++) {

Kokkos :: parallel_reduce("dot", N,

KOKKOS_LAMBDA(int i, double& sum) {

sum += x(i) * y(i);

},

result);

// SYCL

sycl::queue q{sycl:: property ::queue:: in_order ()} ;

for (int r = 0; r < R; r++) {

q.parallel_for(sycl::range <1>(N_),

sycl:: reduction(result_ptr , 0., sycl::plus <double >()),

[=](sycl::id <1> idx , auto&sum) {

int i = idx;

sum += x[i] * y[i];

});

q.memcpy (&result , result_ptr , sizeof(double));

q.wait ();

}

Figure 2 and 3 show the achieved effective bandwidth for both
implementations as well as the ratio of the time. There are slight
differences in performance, where the Kokkos variant is up to
30% faster for very small arrays, the SYCL variant is up to 20%
faster around 1 million elements, and then the differences mostly
disappear for larger arrays.

Ultimately, the two perform very similarly and the spikes seen
in Figure 3 can be attributed to differences in the workgroup size
selection. Similarly to the AXPBY benchmark, we observe that the
performance of the DOT product is limited by latency in the regime
of fewer than 106 elements - and in fact using two tiles does not
provide any benefit.

103 104 105 106 107 108 109
0

1,000

2,000

3,000

4,000

#elements

Ba
nd

w
id
th

G
B/
s

Kokkos 1-tile
SYCL 1-tile
Kokkos 2-tile
SYCL 2-tile

Figure 2: Achieved effective bandwidth for the DOT bench-
mark.

https://github.com/kokkos/code-examples/tree/main/papers/IWOCL2024/axpy
https://github.com/kokkos/code-examples/tree/main/papers/IWOCL2024/axpy

Experiences with implementing Kokkos’ SYCL backend IWOCL 2024, April 08–11, 2024, Chicago, USA

100 101 102 103 104 105 106 107 108 109

0.8

1

1.2

#elements

ra
tio

tim
e
Ko

kk
os
/S
YC

L

1-tile
2-tile

Figure 3: Ratio between run time for the DOT benchmark
between Kokkos and SYCL implementation. Values smaller
than 1 indicate that the Kokkos version is faster.

5.3 SPMV
The sparse-matrix vector product exhibits two levels of parallelism:
for each row of the matrix one has to perform a (sparse) dot prod-
uct of the matrix elements with the right-hand side vector. In
Kokkos this is implemented using a TeamPolicy with an outer
parallel_for algorithm, and nested parallel_reduce. One opti-
mization the canonical SPMV implementation in Kokkos does is to
introduce a third level of parallelism by grouping multiple rows and
assigning them to a single team, while leveraging the vector level
parallelism to perform the matrix-row product with the right-hand
side vector. This optimization is done for two reasons: i) for many
sparse matrices there are not enough entries per row to actually
exploit the available concurrency per team on a GPU and ii) sparse
matrix rows often can be sorted in a way that subsequent rows
need to be multiplied with elements in the right-hand side vector
that are near to each other. Assigning those rows to the same team
enables implicit cache reuse of elements in the vector:
int rows_per_team = 32; // optimized for GPU

int team_size = 16; // optimized for GPU

int vector_size = 4; // optimized for GPU

int n_teams = (nrows + rows_per_team - 1)/ rows_per_team;

using TeamMember = Kokkos ::TeamPolicy <>:: member_type;

// parallelize over the row blocks

Kokkos :: parallel_for("SPMV",

Kokkos ::TeamPolicy <>(n_teams , team_size , vector_size),

KOKKOS_LAMBDA(const TeamMember &team) {

int64_t first_row=team.league_rank ()* rows_per_team;

int64_t last_row=first_row + rows_per_team < nrows

? first_row + rows_per_team : nrows;

// parallelize over rows owned by the team

Kokkos :: parallel_for(

Kokkos :: TeamThreadRange(team ,first_row ,last_row),

[&](const int64_t row) {

const int64_t row_start = A.row_ptr(row);

const int64_t row_length =

A.row_ptr(row + 1) - row_start;

double y_row;

// perform the dot -product of a matrix row

// with vector

Kokkos :: parallel_reduce(

Kokkos :: ThreadVectorRange(team ,row_length),

[=](const int64_t i, double &sum) {

sum += A.values(i + row_start) *

x(A.col_idx(i + row_start));

}, y_row);

y(row) = y_row;

});

});

Since SYCL does not natively support three-level parallelism, the
raw SYCL implementation only has two levels for hierarchical par-
allelism and we miss out on the parallelizing over the entries in a
row:

int rows_per_team = 32; // optimized for GPU

int team_size = 16; // optimized for GPU

int n_teams = (nrows + rows_per_team - 1)/ rows_per_team;

q.submit ([&] (sycl:: handler& cgh) {

// parallelize over the row blocks

cgh.parallel_for_work_group(sycl::range <1>(n),

sycl::range <1>(team_size), [=](sycl::group <1> g) {

int64_t first_row= g.get_group_id (0)* rows_per_team;

int64_t last_row=first_row + rows_per_team < nrows

? first_row + rows_per_team : nrows;

// parallelize over rows owned by the team

g.parallel_for_work_item(

sycl::range <1>(last_row -first_row),

[&](sycl::h_item <1> item) {

int64_t row = item.get_local_id (0)+ first_row;

int64_t row_start = row_ptr[row];

int64_t row_length = row_ptr[row+1]- row_start;

double y_row = 0.;

for (int64_t i = 0; i < row_length; ++i)

y_row += values[i + row_start] *

xp[col_idx[i + row_start]];

yp[row] = y_row;

});

});

});

Note that the choices for the rows per team, the team size and the
vector size have been optimized for the particular sparse matrix
structure used in this paper. In real math libraries such as Kokkos
Kernels, these parameters are usually set by some type of heuristic
that takes the sparsity pattern of the matrix into account.

Figure 4 shows performance results for a finite element matrix
corresponding to a heat conduction problem with a cubic grid and
a maximum row length of 27. The number of rows in the matrix -
i.e. the number of elements in the grid - determines the number of
elements in the vector operations. We also report on times of SPMV
when using the oneMKL implementation of SPMV to better judge
the effectiveness of the Kokkos implementation in comparison to
hand-tuned code. The comparison demonstrates that it is crucial to
also parallelize over the entries in a row to not miss out on almost
2x of performance for the sparse matrix-vector product - at least in
the not latency-limited regime. We also see that the implementation
here is at least as good as using oneMKL that only really reaches
a similar bandwidth with more than 106 rows. Note that we are
again observing caching between 105 and 106 rows for one tile and
between 2 · 105 and 2 · 106 rows with two tiles.

IWOCL 2024, April 08–11, 2024, Chicago, USA Daniel Arndt, Damien Lebrun-Grandié, and Christian Trott

103 104 105 106 107 108
0

1,000

2,000

3,000

4,000

#rows

Ba
nd

w
id
th

G
B/
s

Kokkos 1-tile
SYCL 1-tile

oneMKL 1-tile
Kokkos 2-tile
SYCL 2-tile

oneMKL 2-tile

Figure 4: Achieved effective bandwidth for the SPMV bench-
mark on the GPU.

5.4 CG-solve
Finally, we report on the full CG-solve performance12 using the
same matrix as in Subsection 5.3. Compared with running the in-
dividual algorithms there are no caching effects expected for the
DOT product and the AXPBY since the caches are getting flushed
in between during the SPMV.

103 104 105 106 107 108
0

1,000

2,000

3,000

#rows

Ba
nd

w
id
th

G
B/
s

Kokkos 1-tile
SYCL 1-tile

oneMKL 1-tile
Kokkos 2-tile
SYCL 2-tile

oneMKL 2-tile

Figure 5: Achieved effective bandwidth for the CG bench-
mark on the GPU.

During the CG-Solve 1/5th of the time is spent on vector opera-
tions, while SPMV takes the remaining 4/5ths, thus the observed
performance follows closely the pure SPMV data. The effective
12The full code can be found at https://github.com/kokkos/code-examples/tree/main/
papers/IWOCL2024/cgsolve

bandwidth is in the previously seen regime of about 2/3rds of the
peak bandwidth. The implicit scaling to two tiles works fairly well
with an observed speed-up of 1.8x. It is also worth noting that the
three-level Kokkos algorithm achieves the same level of perfor-
mance as oneMKL for SPMV for large matrices with 10M rows or
more, and actually outperforms the oneMKL implementation for
problem sizes smaller than that.

5.5 Running on the CPU

103 104 105 106 107 108
0

200

400

600

800

1,000

#rows

Ba
nd

w
id
th

G
B/
s

Kokkos OpenMP
Kokkos SYCL CPU

SYCL CPU
oneMKL CPU

Figure 6: Achieved effective bandwidth for the CGSOLVE
benchmark on the CPU.

Finally, we ran this example with the Kokkos OpenMP backend,
the Kokkos SYCL backend, as well as the native SYCL implementa-
tion leveraging a OpenCL driver for Intel CPUs. It is worth noting
that this is not officially supported by Kokkos, and some minor
modifications to Kokkos were necessary to disable static checks
that Kokkos is getting compiled for a GPU, when SYCL is enabled.
In either case, we adjusted the team size and the number of rows
per team to be tuned for CPUs. We are using a team size of 1 (and
vector length=1) in both cases so that there is effectively no real hi-
erarchical parallelism. We also measured the Kokkos SYCL backend
version where the Kokkos SPMV call is replaced by a oneMKL call.

The results reported in Figure 6 show that the raw SYCL im-
plementation again is somewhat slower than the Kokkos versions.
The Kokkos SYCL backend, however, does perform comparable and
even better than the Kokkos OpenMP backend for larger problem
sizes. In the mid regime, oneMKL and Kokkos OpenMP outperform
the SYCL-based implementations of SPMV. This may be an indica-
tion of parallel dispatch overhead but may require more detailed
investigations for a full understanding.

6 CONCLUSION
Although we only covered basic Kokkos functionalities, we can see
that SYCL and Kokkos are largely compatible and Kokkos can be
implemented on top of SYCL. Only a few Kokkos features require

https://github.com/kokkos/code-examples/tree/main/papers/IWOCL2024/cgsolve
https://github.com/kokkos/code-examples/tree/main/papers/IWOCL2024/cgsolve

Experiences with implementing Kokkos’ SYCL backend IWOCL 2024, April 08–11, 2024, Chicago, USA

oneAPI extensions, interestingly enough printf being the onemost
often asked for by users.

Kokkos provides programming model elements that improve
developer productivity significantly beyond what SYCL 2020 en-
ables. That includes the first-class support for multi-dimensional
arrays via Kokkos::View, three-level hierarchical parallelism, par-
allel algorithms usable in the context of hierarchical parallelism,
and parallel_scan. Of these, Kokkos::View is arguably the most
critical, in particular since it provides a strongly typed object that
allows reasoning about data accessibility at compile time, and can
be used as a member of C++ classes to build higher-level data
structures.

An open question is if Kokkos users could or should leverage the
SYCL backend for architectures other than Intel GPUs. In practice,
it is possible to compile the SYCL backend for NVIDIA GPUs, AMD
GPUs, and even CPUs. However, how well these toolchains are
supported for each of the architectures isn’t clear yet, and it may
also require different implementation choices inside the Kokkos
backend accounting for fundamental architectural differences to get
optimal performance. In particular, support for CPUs via the SYCL
backend brings up a number of complicated questions related to
the compile time choices made for accessibility of memory spaces,
and default memory layouts. For example, the memory footprint
of the benchmark used in this paper is actually twice as large as
it would need to be since there are separate "Host" and "Device"
allocations.

Ultimately, our experience with the oneAPI implementation for
supporting Intel GPUs has been good. However, the toolchain has
not been as stable as the ones used for other Kokkos backends such
as CUDA and HIP. A significant fraction of that instability can be
attributed to the transition of the oneAPI toolchain to SYCL 2020.
Thus, we expect the situation to be much better going forward as
the support for this newer standard is getting finalized.

ACKNOWLEDGMENTS
Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell Interna-
tional, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA-0003525. This writ-
ten work is authored by an employee of NTESS. The employee,
not NTESS, owns the right, title and interest in and to the written
work and is responsible for its contents. Any subjective views or
opinions that might be expressed in the written work do not neces-
sarily represent the views of the U.S. Government. The publisher
acknowledges that the U.S. Government retains a non-exclusive,
paid-up, irrevocable, world-wide license to publish or reproduce
the published form of this written work or allow others to do so,
for U.S. Government purposes. The DOE will provide public ac-
cess to results of federally sponsored research in accordance with
the DOE Public Access Plan. This work was supported by Exas-
cale Computing Project 17-SC-20-SC, a joint project of the U.S.
Department of Energy’s Office of Science and National Nuclear Se-
curity Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technol-
ogy, to support the nation’s exascale computing imperative. This

manuscript has been authored by UT-Battelle, LLC, under Grant
DE-AC05-00OR22725 with the U.S. Department of Energy (DOE).
This work was done on a pre-production supercomputer with early
versions of the Aurora software development kit. This research
used resources of the Argonne Leadership Computing Facility, a
U.S. Department of Energy (DOE) Office of Science user facility at
Argonne National Laboratory and is based on research supported
by the U.S. DOE Office of Science-Advanced Scientific Computing
Research Program, under Contract No. DE-AC02-06CH11357.

REFERENCES
[1] David A Beckingsale, Jason Burmark, Rich Hornung, Holger Jones, William

Killian, Adam J Kunen, Olga Pearce, Peter Robinson, Brian S Ryujin, and
Thomas RW Scogland. 2019. RAJA: Portable performance for large-scale sci-
entific applications. In 2019 ieee/acm international workshop on performance,
portability and productivity in hpc (p3hpc). IEEE, United States, 71–81. https:
//doi.org/10.1109/P3HPC49587.2019.00012

[2] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enablingmanycore performance portability through polymorphicmemory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202–3216. https://
doi.org/10.1016/j.jpdc.2014.07.003 Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[3] TomDeakin, Simon NMcIntosh-Smith, Aksel Alpay, and Vincent Heuveline. 2021.
Benchmarking and Extending SYCL Hierarchical Parallelism. In Workshop on
Hierarchical Parallelism for Exascale Computing. IEEE Computer Society, United
States, 10 pages. https://doi.org/10.1109/HiPar54615.2021.00007

[4] Thomas M Evans, Andrew Siegel, Erik W Draeger, Jack Deslippe, Marianne M
Francois, Timothy C Germann, William E Hart, and Daniel F Martin. 2022. A
survey of software implementations used by application codes in the Exascale
Computing Project. The International Journal of High Performance Comput-
ing Applications 36, 1 (2022), 5–12. https://doi.org/10.1177/10943420211028940
arXiv:https://doi.org/10.1177/10943420211028940

[5] Rahulkumar Gayatri, Stephen L. Olivier, Christian R. Trott, Johannes Doerfert,
Jan Ciesko, and Damien Lebrun-Grandie. 2023. The Kokkos OpenMPTarget
Backend: Implementation and Lessons Learned. InOpenMP: Advanced Task-Based,
Device and Compiler Programming, Simon McIntosh-Smith, Michael Klemm,
Bronis R. de Supinski, Tom Deakin, and Jannis Klinkenberg (Eds.). Springer
Nature Switzerland, Cham, 99–113.

[6] Jeff R. Hammond, Michael Kinsner, and James Brodman. 2019. A Comparative
Analysis of Kokkos and SYCL as Heterogeneous, Parallel Programming Models
for C++ Applications. In Proceedings of the International Workshop on OpenCL
(Boston, MA, USA) (IWOCL’19). Association for Computing Machinery, New
York, NY, USA, Article 15, 2 pages. https://doi.org/10.1145/3318170.3318193

[7] Esteban Miguel Rangel, Simon John Pennycook, Adrian Pope, Nicholas Frontiere,
Zhiqiang Ma, and Varsha Madananth. 2023. A Performance-Portable SYCL Imple-
mentation of CRK-HACC for Exascale. In Proceedings of the SC ’23 Workshops of
The International Conference on High Performance Computing, Network, Storage,
and Analysis (Denver, CO, USA) (SC-W ’23). Association for Computing Machin-
ery, New York, NY, USA, 1114–1125. https://doi.org/10.1145/3624062.3624187

[8] Christian Trott, Luc Berger-Vergiat, David Poliakoff, Sivasankaran Rajamanickam,
Damien Lebrun-Grandie, Jonathan Madsen, Nader Al Awar, Milos Gligoric, Galen
Shipman, and Geoff Womeldorff. 2021. The Kokkos EcoSystem: Comprehensive
Performance Portability for High Performance Computing. Computing in Science
& Engineering 23, 5 (2021), 10–18. https://doi.org/10.1109/MCSE.2021.3098509

[9] Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang,
Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan
Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell,
Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin,
and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Extensions for the
Exascale Era. IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022),
805–817. https://doi.org/10.1109/TPDS.2021.3097283

[10] Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke, Cy
Chan, Marcus Day, Brian Friesen, Kevin Gott, Daniel Graves, et al. 2019. AMReX:
a framework for block-structured adaptive mesh refinement. The Journal of Open
Source Software 4, 37 (2019), 1370.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1109/HiPar54615.2021.00007
https://doi.org/10.1177/10943420211028940
https://arxiv.org/abs/https://doi.org/10.1177/10943420211028940
https://doi.org/10.1145/3318170.3318193
https://doi.org/10.1145/3624062.3624187
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/TPDS.2021.3097283

	Abstract
	1 Introduction
	2 Data abstraction
	2.1 Kokkos::View and std::mdspan
	2.2 SYCL Buffers and the issue of higher level data structures
	2.3 Using USM instead of Buffers

	3 Parallel constructs and algorithms
	3.1 parallel_for
	3.2 parallel_reduce
	3.3 parallel_scan

	4 SYCL extensions needed for Kokkos
	5 Performance results
	5.1 AXPBY
	5.2 DOT
	5.3 SPMV
	5.4 CG-solve
	5.5 Running on the CPU

	6 Conclusion
	Acknowledgments
	References

