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Abstract
Supervised time-series classification garners widespread interest because of its applicability throughout a broad applica-
tion domain including finance, astronomy, biosensors, and many others. In this work, we tackle this problem with hybrid
quantum-classical machine learning, deducing pairwise temporal relationships between time-series instances using a time-
series Hamiltonian kernel (TSHK). A TSHK is constructed with a sum of inner products generated by quantum states evolved
using a parameterized time evolution operator. This sum is then optimally weighted using techniques derived from multiple
kernel learning. Because we treat the kernel weighting step as a differentiable convex optimization problem, our method
can be regarded as an end-to-end learnable hybrid quantum-classical-convex neural network, or QCC-net, whose output is a
data set-generalized kernel function suitable for use in any kernelized machine learning technique such as the support vector
machine (SVM). Using our TSHK as input to a SVM, we classify univariate and multivariate time-series using quantum
circuit simulators and demonstrate the efficient parallel deployment of the algorithm to 127-qubit superconducting quantum
processors using quantum multi-programming.

Keywords Quantum machine learning · Time-series · Kernel methods · Quantum multi-programming · Convex optimization

1 Introduction

Processes and systems which produce observable character-
istics evolving with time are present in topics as disparate
as finance, sensor technologies, medicine, astronomy, and
many others. As a result, new techniques for time-series anal-
ysis have become among the most sought after in machine
learning (ML) where we seek to learn temporal trends and
correlations from time-series data to perform classification
(Fawaz et al. 2019), anomaly detection (Blázquez-García
et al. 2021; Choi et al. 2021), regression (Clark et al. 2020),
forecasting (Deb et al. 2017; Torres et al. 2021), and to
generate synthetic time-series instances (Zhang et al. 2018).
Focusing on classification, classical ML has provided a zoo
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of algorithms where the present state-of-the-art is centered
around deep learning. Popular approaches include recurrent
neural networks like long-short-term-memory (Hochreiter
Schmidhuber 1997) (and its variations (Melis et al. 2019;
Nguyen et al. 2020)), gated recurrent units and, more
recently, transformer networks (Vaswani et al. 2017; Yang
et al. 2021; Zerveas et al. 2021).

While popular for static data (i.e., data without time depen-
dence), kernelized methods like the well-known support
vector machine (SVM) (Cortes Vapnik 1995) see limited use
in time-series analysis. Although time-series kernel meth-
ods have been proposed (Badiane et al. 2018; Bailly 2018;
Fábregues de los Santos 2017; Rüping 2001) and used as
analytical tools for interpreting deep learning models (Tino
2020), none are tailored to encode temporal trends by way
of an explicit and learnable time-dependent inner product
space. Within classical ML, it is not clear how such a space
can be constructed in a non-trivial manner. In this work,
we show that time evolution as generated by a parameter-
ized Hamiltonian operator within quantum mechanics is a
natural approach for achieving such an objective. Indeed,
by combining inner products evolved to different points of
time, we achieve a quantum kernel function adapted for time-
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series data which we call the time-series Hamiltonian kernel
(TSHK). Furthermore, we discuss situations where training
a TSHK is useful and provide theoretical tools to analyze the
time dependence of the learnt inner product spaces.

The construction of the TSHK is tied to a field known
as multiple kernel learning (MKL). In MKL, multiple ker-
nel functions are combined using various tactics (Gönen
Alpaydın 2011a; Aiolli Donini 2015) to give rise to a com-
bined kernel that is by some measure superior. The TSHK
is a combined kernel built using a weighted linear combi-
nation of quantum kernel functions each defined at different
instances of time t . These weights are chosen to maximize the
separation between labeled data classes as was proposed in
the well-known EasyMKL (Aiolli Donini 2015) algorithm.
Furthermore, as was originally suggested in Ghukasyan et al.
(2023), the variational parameters of quantum kernels and the
kernel weights can be obtained simultaneously by training an
end-to-end learnable Quantum-Classical-Convex neural net-
work (QCC-net). The network producing the TSHK can then
be regarded as a temporally aware variation of the original
QCC-net.

Currently in the noisy intermediate-scale quantum (NISQ)
era (Bharti et al. 2022), various sources of noise prevent the
implementation of deep quantum circuits on real hardware. In
light of this, we must ensure that our quantum circuits imple-
menting the TSHK are sufficiently shallow. Conventionally,
however, the required time evolution operators are imple-
mented using a potentially high-depth Lie-Suzuki-Trotter
expansion (Wiebe et al. 2010). Fortunately, built upon the
eigendecomposition approach originally used in the vari-
ational fast forwarding algorithm (Cîrstoiu et al. 2020),
a family of time evolution operators can be implemented
with low depth variational circuits. The space of accessible
time evolution operators can be controlled by modifying the
depth and structure of the circuit Ansätz implementing the
eigendecomposition. Several works (Radha 2021; Horowitz
et al. 2022; Baker et al. 2022; Gibbs et al. 2022; Caro
et al. 2022) have now appeared leveraging this approach to
learn constraint-enforcing mixing operators in the Quantum
Approximate Optimization Algorithm (Radha 2021), gener-
ate synthetic time-series instances (Horowitz et al. 2022), and
detect anomalous behavior in time-series data (Baker et al.
2022). The generalization bounds of this approach have also
been studied (Gibbs et al. 2022; Caro et al. 2022).

Although the eigendecomposition approach does allow for
a shallow circuit implementation of the TSHK, the number of
computations required to compute the kernel matrices scales
with the square of the size of the training data set and linearly
with the length of the time series. Fortunately, the compu-
tations of kernel matrix elements are independent of one
another allowing them to be computed in parallel. Indeed, a
new approach to efficiently utilize contemporary NISQ com-
puters is by overlapping multiple quantum circuits (Das et al.

2019). This method, called Quantum Multi-Programming
(QMP), utilizes NISQ devices by executing multiple quan-
tum circuits concurrently. In this work, we use QMP to
compute the TSHK in parallel. Compared to serial execution,
we achieve a notable speed-up (at least 35 times) with QMP
without loss of accuracy using two 127-qubit IBM quan-
tum computers. In light of this large speed-up, this work
demonstrates the practical utility of parallelism in hybrid
quantum-classical ML workflows.

The rest of this work is organized as follows: in Section 2,
we describe how we achieve a time-dependent inner product
space and show how a weighted sum of inner products can
be used to construct the TSHK (Section 2.1). Also within
this section, we show how the TSHK can be trained using
a QCC-net (Section 2.2) and show how the resulting TSHK
can be plugged in to a SVM to perform time-series clas-
sifications (Section 2.3). In Section 3, we describe in detail
what is meant by time-dependence in the trained kernel func-
tion and show how one can efficiently probe this property.
In Section 4, we demonstrate SVM classification using the
TSHK for a synthetic multivariate time-series (Section 4.1)
and for a real univariate time-series: the well-known gun-
point data set (Ratanamahatana Keogh 2005) (Section 4.2).
Our experiments using QMP on 127 qubit superconducting
transmon chips are contained within Section 5. The QMP
approach is described in detail in Section 5.1, and pertinent
QMP design considerations are explained in Section 5.2. The
results of our QMP experiments are shown and discussed in
Section 5.3. Finally, in Section 6, we conclude and remark on
future directions in hybrid quantum-classical ML exploiting
parallelism.

2 Algorithm description

2.1 Time-dependent inner product space

We begin with a formal definition of the type of data we
are working with: time-series. A time-series x is a sequence
of p ∈ Z

+ observations from a process/system arranged in
chronological order

x := (xt : t ∈ T ), T := (tl : 1 ≤ l ≤ p) (1)

where xt = [1xt ,
2xt , . . .

d xt ] ∈ R
d , d ∈ Z

+, l ∈ Z
+

and time t ∈ R
+. In what follows, we devise a technique

for obtaining a trainable kernel function adapted for time-
series data of the form defined above by (i) formulating a
time-dependent quantum inner product space and (ii) using
methods from the classical MKL literature (Aiolli Donini
2015; Gönen Alpaydın 2011b) to find an optimally weighted
sum of inner products from different points in time.
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The first step towards achieving our goal is to inject time
dependence into a quantum state. We achieve this through
operating on the n-qubit state of zeroes |0〉⊗n using a param-
eterized unitary time evolution operator e−i H(β,γ )t ′ where
t ′ ∈ R

+ followed by a parameterized unitary matrix U (xt ,α)

used to embed xt within the quantum state

|xt , t ′, θ〉 := U (xt ,α)e−i H(β,γ )t ′ |0〉⊗n (2)

for real-valued set of free parameter vectors θ = {α,β, γ }
where the embedding unitary matrix U (xt ,α) is permit-
ted to be any quantum feature map (Schuld Killoran 2019;
Havlíček et al. 2019) implemented using a layered parameter-
ized quantum circuit. It should be stressed that U (xt ,α) is a
static map. That is, despite the subscript t bared by the argu-
ment xt , the resulting unitary matrix is time-independent.
Explicitly, should we have xt1 = xt2 , t1 �= t2 the uni-
tary matrices U (xt1 ,α) and U (xt2 ,α) are indistinguishable.
Time-dependence only comes as a result of the time evolution
operator e−i H(β,γ )t ′ which we write as an eigendecomposi-
tion

Vt ′(β, γ ) := W †(β)D(γ , t ′)W (β) = e−i H(β,γ )t ′ (3)

for parameterized unitary matrix of eigenvectors W (β)

and parameterized time-encoded diagonal unitary matrix
D(γ , t ′). The above equality with e−i H(β,γ )t ′ holds follow-
ing Stone’s theorem for strongly continuous one-parameter
unitary groups (Stone 1932). The strength of this approach
lies in implementing each unitary matrix in the eigendecom-
position as a layered parameterized quantum circuit allowing
one to control the search space of unitary time evolution
operators. Should a small number of layers prove suffi-
cient to optimize the forthcoming loss function (Eq. 8), our
algorithm becomes suitable for present generation NISQ
computers. For notational short-hand, it is convenient to write
a combined unitary matrix as a product of the static and time-
dependent parts

�(xt , t ′, θ) := U (xt ,α)Vt ′(β, γ ). (4)

We can now begin to formally derive a time-dependent inner
product. To do so, we first must regard the density matrix
ρt ′(xt , θ) = |xt , t ′, θ〉〈xt , t ′, θ | as the unambiguous fea-
ture vector embedding the classical data point xt (regarding
|xt , t ′, θ〉 as the feature vector is ambiguous as the space C

2n

is only physically defined up to a global phase (Havlíček et al.
2019)). We now define a kernel by setting t ′ → t and taking
the Frobenius inner product 〈ρt (x′

t , θ), ρt (xt , θ)〉. Equiva-

lently,

κt (xt , x′
t , θ) := Tr[ρt (x′

t , θ)ρt (xt , θ)]
= |〈x′

t , t, θ |xt , t, θ〉|2 (5)

where x′
t is an element of another time-series instance x′

defined analogously to Eq. 1. Equation 5 can be estimated
practically by preparing the state�†(x′

t ,t,θ)�(xt , t, θ)|0〉⊗n

and taking the expectation value of the projector on the state
of zeros P0 = |0〉⊗n〈0|⊗n . This requires repeated prepara-
tion and measurement of �†(xt ,t,θ)�(xt , t, θ)|0〉⊗n in the
computational basis to estimate the probability of measuring
the n-bit string of zeros 00 . . . 0.

Equation 5 fulfils the symmetry requirement of a valid ker-
nel function. That is, we have κt (xt , x′

t , θ) = κt (x′
t , xt , θ)

for any choice of the two arguments xt , x′
t ∈ R or the time

argument t . Indeed, the achievement of this symmetry moti-
vates the order in which unitary operations are applied in
Eq. 2. If we were to switch the order in which we apply
of U (xt ,α) and e−i H(β,γ )t ′ to |0〉⊗n , we yield the state
|xt , t ′, θ〉G := e−i H(β,γ )t ′U (xt ,α)|0〉⊗n . Computing the
inner product of this state at t ′ = t with another state at t ′ = t ′
and multiplying the result by its own complex conjugate,
we yield the quantity G := |G〈xt ,α|e−i H(t−t ′)|x ′

t ,α〉G |2
where we have taken |xt ,α〉G := U (xt ,α)|0〉⊗n . We see
immediately that for t �= t ′, this expression is not a valid
kernel as the symmetry requirement detailed above is vio-
lated. It is only at t = t ′ that symmetry is recovered but at
the expense of losing time dependence entirely as the time
evolution operator becomes the identity. It is worth pointing
out that while a time-dependent kernel function is not achiev-
able in this way, the result is otherwise important. That is,
interestingly, G is equivalent to the product of the Green’s
function propagator (hence the subscript G in the above)
from quantum field theory (Bjorken Drell 1965) with its
complex conjugate Gθ (xt , t; x′

t , t ′)G�
θ (xt , t; x′

t , t ′). Using
parameterized Green’s function propagators could prove an
interesting avenue for non-kernelized time-series analysis in
QML but is beyond the scope of this work.

Returning now to the kernel function defined in Eq. 5, we
compute it ∀t ∈ T and combine the p-terms in a weighted
sum to achieve a combined kernel function measuring the
similarity between a pair of time-series instances (x, x′)

κ(x, x′, θ , η) :=
∑

t∈T

ηt · κt (xt , x′
t , θ) (6)

for kernel coefficient vector η := [ηt |t ∈ T ] ∈ R
p subject

to the constraint
∑

t∈T ηt = 1. We call Eq. (6) the TSHK.
The motivation for such a form of kernel function is to allow
the measured similarity between a pair of time-series (x, x′)
to be influenced by differently weighted contributions at dis-
tinct points in time. Should the resulting kernel be used in a
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classification algorithm like SVM, this allows for “smoking
gun” values of t to discriminate between different classes
of time-series. In the next section, we present a strategy for
optimally setting the kernel parameters θ and η where the
exact sense of optimality is to be defined.

Before we advance to the next section, however, now is
a good time to discuss what structures of time series data
may be learnt well by the kernel function of Eq. 6 and for
which we may expect performance to be no better than time
independent kernels. It is clear from the form of Eq. 6 and
the time-dependent kernels which construct it (Eq. 5) that

great emphasis is placed on the notion of a “shared time
axis,” a significant inductive bias of our approach. That is, we
expect a learnable TSHK when each instance of the training
time series data begins at a common initial condition in time.
Examples of such data include the temperature in different
locations for each day of the year (where we may classify
the southern hemisphere versus the northern hemisphere) or
traffic (the number of detected vehicles) on roadways given
at some frequency on different days (where we may classify
weekday versus weekend traffic). In the absence of such a
shared time axis, we may not expect a learnable TSHK. For

Fig. 1 Optimizing the combined quantum kernel for a simplified sinu-
soid versus cosinusoid classification problem with only one training
example from class yi = 1 [− sin(t)] and class yi = −1 [− cos(t)]. (i)
Given some initial θ = θ init, calculate the kernels of Eq. 5 at each time tl
and calculate the equally weighted Gram matrix Ke(θ) = ∑

t∈T Kt (θ).
Unitary operator diagrams are color-coded in the figure and because
there is only one unique element (excluding the diagonal which is unity
by definition) only one unitary diagram is shown for each kernel com-
putation. (ii) Solve the convex optimization problem with respect to
the Lagrangian dual variables φ using a cone program. (iii) Calcu-
late the quantum gradients ∂Lφmin (θ)/∂θ by differentiating through the
cone program. The surface plot shows a convex optimization landscape

spanned by φ1 and φ2. (iv) Use the calculated ∂Lφmin (θ)/∂θ to step for-
ward a derivative-requiring optimization routine (i.e., gradient descent,
Adam etc.). If the termination criteria (a fixed number of loss iterations,
convergence tolerance for Lφmin etc.) are met with this new step, advance
to (v) else, go back to (i) and enter new loop iteration. Note the negative
sign of Lφmin (θ) in part (iv) of the figure. This is because in practice
we maximize the function by minimizing its negative value. (v) Extract
the optimal kernel weights η� using Eq. 11 to yield the combined kernel
function (the TSHK) from Eq. 6. This kernel function can now be used
to calculate kernel matrices K (θ�, η�) for use in any kernelized learning
task including SVM
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example, if we are given “windowed data” (sub-sequences
taken from a larger time series), the initial condition is not
guaranteed to be shared among data instances. One example
of this is the classification of different genres of music given
small audio clips from a longer song. It should be noted
that even in this case, it could be possible to increase the
learnability of the TSHK by preprocessing time series using
a time-axis alignment protocol like Dynamic Time Warping
(Sakoe Chiba 1978). The success of such an approach would
have to be assessed on a case-by-case basis.

2.2 Training the kernel function

We now present a strategy for training the kernel function
of Eq. 6 in a supervised learning setting. Throughout this
section, Fig. 1 should be used as a companion and will be
referenced throughout. To begin, we assume to have access
to training set X containing NX ∈ Z

+ time-series instances
x(i) such that

X := {x(i) : i ∈ Z
+
≤NX

} (7)

where each time-series instance x(i) has a corresponding
binary class label yi ∈ {1,−1}. Using this labeled data, we
define a suitable loss function to be optimized.

For optimizing the kernel coefficients η, it was pro-
posed for the EasyMKL algorithm (Aiolli Donini 2015)
that the objective function from the Kernel Optimization
of the Margin Distribution (KOMD) (Aiolli et al. 2008)
approach should be used. The KOMD objective represents
the separation between positive (yi = 1) and negative
(yi = −1) training examples where the kernel weights are
represented implicitly with the Lagrangian dual variables
φ := [φ1, φ2, . . . φNX ] ∈ R

NX . That is, η is derivable using
φ as is shown later in Eq. 11 (see Aiolli Donini (2015) for
explicit steps in transforming the optimization problem in η

to that of φ and vice versa). Recalling that our kernel func-
tion is also parameterized by the unitary operator parameters
θ , the separation between classes as defined in Aiolli Donini
(2015) is modified to be written as a function of both param-
eter sets θ and φ:

L(θ ,φ) := (1 − λ)φT Ŷ Ke(θ)Ŷφ + λ||φ||22 (8)

where Ke(θ) = ∑
t∈T Kt (θ) is an equally weighted sum

of Gram matrices with elements K i j
t (θ) = κt (x(i)

t , x( j)
t , θ)

from Eq. 5, Ŷ = diag(y1, y2, . . . , yNx ) and λ ∈ [0, 1] is a
real-valued penalty scaling factor hyperparameter intended
to favor low variance solutions for φ with increasing λ. As
shown in Fig. 1(i), Ke(θ) is initially computed with some
θ init (chosen randomly or otherwise) which is used to prime

the first step of the max-min optimization problem

L� := maxθ [minφL(θ ,φ)] (9)

where L� is the optimal loss and the optimal arguments are θ�

and φ�, respectively. Because the internal minimization with
respect to φ is a convex objective, as shown in Fig. 1(ii), for
any given fixed θ = θfixed, we can efficiently and accurately
find minφ[L(θ,φ)] using a convex solver such as a cone pro-
gram (O’Donoghue et al. 2016a). Because we can reasonably
assume that the global minimum of a convex problem will
be found, we can re-frame the problem as

L� = maxθ [Lφmin
(θ)] (10)

where Lφmin
(θ) := minφ[L(θ,φ)] and the subscript φmin

indicates that we are working at the φ which minimizes
L(θ ,φ) with respect to φ for any given θ .

The maximization with respect to θ can be performed
using any general purpose optimization algorithm. Impor-
tantly, the gradient ∂Lφmin(θ)/∂θ is obtainable analytically
through an automatic differentiation engine (Bergholm et al.
2018) because (i) partial gradients of the kernel function
with respect to the quantum circuit parameters θ are known
using techniques including the parameter shift rule and its
variants (Mitarai et al. 2018; Schuld et al. 2019; Bergholm
et al. 2018) and (ii) the partial gradients of the minimum of
the convex optimization problem with respect to the quan-
tum circuit parameters are known because the cone program
is differentiable (Agrawal et al. 2019a, b) [Fig. 1(iii)]. This
allows one to update the quantum parameters θ [Fig. 1(iv)]
using one of a whole host of gradient-requiring optimizers
available from the wider ML literature (Bottou et al. 2018).
Indeed, our method can be interpreted as a hybrid neural net-
work with quantum layers and classical convex optimization
layers (Agrawal et al. 2019a): a Quantum-Classical-Convex
network (QCC-net).

After meeting the termination criteria of the optimization
(which could be a fixed number of iterations or tolerance
on changes in the value of Eq. 8 when the parameters are
updated, for example), we arrive at an approximation of θ�

and φ� where the latter is given as argminφ[L(θ�,φ)]. We use
both optimal parameter vectors to extract the optimal kernel
weights η∗

t

η∗
t = φ�T Ŷ Kt (θ

�)Ŷφ�

∑
t∈T φ�T Ŷ Kt (θ

�)Ŷφ�
. (11)

Now, in Eq. 6, we set θ → θ� and η → η� to obtain our goal:
a trained TSHK [Fig. 1(v)].

It should also be noted that during the training cycle, it is
often appropriate to work with mini-batches of the training
data. This both reduces the computational effort required in
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training and is known to improve generalization performance
(Keskar et al. 2017) in classical ML algorithms. Formally, a
mini-batched iteration of the training cycle involves sam-
pling, at random, a training mini-batch Xbatch ⊂ X with
cardinality |Xbatch| = Nbatch. During this cycle, Gram matri-
ces Kt (θ) and Ke(θ) and the diagonal label matrix Ŷ have
the reduced dimension R

Nbatch × R
Nbatch and the Lagrangian

parameter vector φ reduces its dimension to R
Nbatch . It should

be clear now that the wall-time for a single mini-batch iter-
ation using a fixed number of shots to evaluate the quantum
kernel elements and a fixed number of iterations to solve
the convex problem scales quadratically with R

Nbatch . When
these batches are sampled, we must ensure that each mini-
batch contains at least one time-series instance with label
yi = 1 and another with yi = −1. Without this, we cannot
define a separation between classes, and therefore the loss
function of Eq. 8 is undefined.

Before moving on, we must consider the trainability of
the TSHK. Among the key ingredients of the TSHK are of
course quantum kernels. It is known that for static quan-
tum kernels, quantum circuit gradients vanish exponentially
with the number of qubits when classical data is embedded
using Ansätze without sufficient inductive biases (Kübler
et al. 2021). This is one of the manifestations of the bar-
ren plateaus phenomenon (McClean et al. 2018). Within our
QCC-net framework, because quantum circuit gradients are
obtained by differentiating through convex optimization lay-
ers, it is unclear to what extent QCC-nets suffer from barren
plateaus. Indeed, not all quantum neural network architec-
tures are found with this problem (Pesah et al. 2021). An
interesting topic of future study would be a theoretical anal-
ysis of gradient scaling in QCC-nets and how to use convex
optimization layers to impart different inductive biases.

2.3 Using the trained kernel function: classification

Now equipped with an optimal kernel function, we can use
it in any kernelized ML technique like kernelized SVM or
kernel ridge regression. In this work, we focus on classifi-
cation using the kernelized soft margin variation of SVM
which from now on-wards we refer to as “SVM.” While a
full presentation of the formalism describing SVM is beyond
the scope of this work (and is discussed elsewhere (Cortes
Vapnik 1995)), we now provide a high level explanation.
In binary classification, SVM separates data points belong-
ing to two different classes by learning a decision boundary,
also known as a hyperplane, from labeled training data. It
allows for some misclassifications by introducing a soft mar-
gin, where the appetite for misclassification is controlled by
a single hyperparameter C ∈ R. A kernel function is used
to map the data into a higher-dimensional space where the
hyperplane can separate the classes more easily.

For our purposes, SVM can be regarded as a deci-
sion function for an unseen data point x given four items:
κ(x, x′), X , y, and C where each, in order, is a valid ker-
nel function, a set of training data, the vector of binary class
labels for that training data, and the misclassification appetite
hyperparameter. That is, we have

D(x|κ(x, x′), X , y, C) := D�(x) ∈ R. (12)

Binary class predictions can now be made using

ypred(x) = sgn[D�(x)] ∈ {−1, 1}. (13)

The most natural way to use this framework to perform time-
series classifications is simply to set κ(x, x′) to a trained
kernel function of the form of Eq. 6 at the optimal parameters
θ� and η�. Another way of doing so is to break the problem
down into p-many time-dependent SVMs. We then have

Dt (xt |κt (xt , x′
t , θ

�), Xt , y, C) := D�
t (xt ) ∈ R (14)

where Xt = {x1
t , x2

t , . . . xNX
t }. This function is then used to

make a prediction at each t with yt
pred(xt ) = sgn[D�

t (xt )].
The final class prediction for the entire time-series x is then
given by a weighted majority vote from each t

yvote
pred(x) = sgn

[
∑

t∈T

ηt · yt
pred(xt )

]
∈ {−1, 1}. (15)

While it is not guaranteed that ypred(x) will provide more
accurate predictions than yvote

pred(x) in general, we note that
because our training procedure defined in Section 2.2 refines
a combined kernel [used to define ypred(x)], it is intuitive to
expect this. Indeed, we find that ypred(x) is most effective for
the data sets treated in Sects. 4.1, 4.2, and 5.3, so we choose to
make predictions using Eq. 13. However, analyzing D�

t (xt )

and yt
pred(xt ) can provide valuable insights into the time-

dependent nature of a given TSHK function which are used
in this work.

3 Probing time dependence

After having achieved a reasonable approximation of θ�

using a classical optimization routine, a relevant quantity
to probe is the time dependence of the inner product space.
This is an important question to ask because while usage
of the TSHK allows for a time dependent inner product
space, it does not mean that strong time dependence was
achieved when minimizing the cost function of Eq. 8 which
will be strictly dependent on the data set and the choice of
parameters/circuit Ansätze used to construct the QCC-net.
As an extreme case, there can exist some β and γ such that
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e−i H(β,γ )t ≈ I ∀t thus the resulting TSHK is approximately
time-independent. Naively, one may initially think to exam-
ine the value of κt (xt , x′

t , θ
�) as a function of t where xt and

x′
t are drawn from a testing data set (or iterate over an entire

testing set to calculate an entire kernel matrix). While there
is nothing wrong with this approach, we must note that in
the ideal case from training, time dependence in this sense
will disappear. That is, at each point in time t ∈ T , the ker-
nel function was trained to embed classical data with label
yi = 1 in a separate region of Hilbert space to those with
label yi = −1. In the ideal case, these two regions do not
overlap at all, and hence κt (xt , x′

t , θ
�) = 0 ∀t when xt and

x′
t belong to different classes. Before the kernel function is

trained, finite values of κt (xt , x′
t , θ) are of course permitted

under the same conditions for the input. The above discussion
is best explained alongside Fig. 2. Intended for illustrative
purposes only, Fig. 2 compresses high-dimensional vectors
|v〉 ∈ C

2n
into two dimensional regions on the surface of a

sphere. Differently colored regions represent the space of fea-
ture vectors |xt , t, θ〉 accessible in different domains defined
by the classical data xt (see the figure caption for more infor-
mation). Looking at Fig. 2a, we can see that at any t , the
time-dependent Hilbert space regions Hyi =1

t do not over-
lap with Hyi =−1

t when the kernel function is ideally trained
(regions marked “T”). For an untrained kernel (or at least not
ideally trained kernel; regions marked “U”), overlap between
these regions are permitted.

To provide a more intuitive notion of time dependence,
we must ask another question: “given a general classical data
vector χ = [1χ, 2χ, . . . dχ ] ∈ R

d , does the quantum state
embedding of χ given by Eq. 2 when we set xt → χ change
as t → t + δt?”.

The quantity of interest to probe this time dependence is
the overlap of the t and t + δt quantum embedding spaces
integrated over all χ . That is

fθ (δt) :=
∫ dχhi

dχlo

. . .

∫ 1χhi

1χlo

|〈χ , t, θ |χ , t +δt, θ〉|2d1χ . . . ddχ

(16)

where the limits mχlo and mχhi are the minimum and max-
imum values permitted for classical data embedded into the
chosen quantum feature space, respectively. Many quantum
feature maps are periodic such that mχ ∈ [mχlo,

mχhi) where
mχlo = 0 and mχhi = 2π . Should either limit be unbound,
limits should be set to enclose the zone of interest (i.e., some
region enclosing all training and testing examples) to the
data set. After simplifying the integrand using Eq. 2 (namely,
U †(χ ,α)U (χ ,α) = I and canceling t in the exponent of the

Fig. 2 Time-evolving Hilbert space illustrations. Spheres are divided
into Q-many petals each indexed by q ∈ Z

�=0. In each petal, the grey
area represents the vector space spanning C

2n
such that each point on

a petal represents a vector |v〉 ∈ C
2n

. A full rotation of the sphere
corresponds to the period T of time evolution operator e−i H(β,γ )t . We
note that a period T formally exists when the spectrum of H is free of
irrational eigenvalues. The q = 0 case is omitted to retain visual clarity
in b where colored regions would now (by definition of Eqs. 16 and 17)
maximally overlap. a Hilbert space regions accessible by embedded
classical data belonging to class 1 or -1 where the kernel function has
been Trained (T) or is untrained (or at least not ideally trained; U) at
different times t = tq . b Hilbert space regions accessible by the entire
classical data input space χ ∈ R

d at time t and time t + q
t where 
t
is a fixed time step
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time evolution operator), we find

fβ,γ (δt) := 〈aδt ,β, γ |P0|aδt ,β, γ 〉
d∏

j=1

( jχhi − jχlo) (17)

where |aδt ,β, γ 〉 := e−i H(β,γ )δt |0〉⊗n and P0 = |0〉⊗n〈0|⊗n .
Noting also that the result of the product over the index j
in Eq. 17 is a real constant scaling factor k, it is useful to
set k = 1 choosing to work with the quantity Fβ,γ (δt) =
〈aδt ,β, γ |P0|aδt ,β, γ 〉 ∈ [0, 1]. Examining Fβ,γ (δt), it is
clear that we need only to consider the time evolution opera-
tor acting on the zero state with no consideration of classical
data points. Indeed, much like Eq. 5, Fβ,γ (δt) can be effi-
ciently computed by estimating the probability of measuring
the bit-string of all zeros in the computational basis when a
quantum computer is prepared in the state |aδt ,β, γ 〉.

The meaning of Eq. 16 (or, equivalently, Eq. 17) is demon-
strated visually in Fig. 2b. The sphere is constructed in the
same manner as Fig. 2a, but colored regions now represent
the Hilbert space region accessible by the embedding of χ at
time t (Ht ; red regions) and at time t + q
t (Ht+
t ; yellow
regions) where q ∈ Z

+ and 
t ∈ R>0 are fixed constants.
The squared modulus of overlapping regions of red and yel-
low in Fig. 2b can be interpreted as either Eq. 16 or Eq. 17.

4 Demonstrations with quantum circuit
simulators

4.1 Building intuition: a synthetic example

As a first example of our time-series classification algo-
rithm, we deal with a didactic case to build intuition. Our
goal is to create a synthetic time-series classification prob-
lem where (i) data is not linearly separable (thus kernelized
SVM is required) and (ii) the shape and position of the
decision boundary must evolve with time in order to suc-
cessfully classify data at different values of t . Accordingly,
we generate a training set Xsyn with |Xsyn| = 100 two-
dimensional (d = 2) time-series instances. We construct
the beginning and endpoints of each time series using the
well-known moons and circles data sets, respectively. Inter-
mediate points in the series are generated using a 10-step
(i.e., p = 10) linear interpolation between the start and end
points. The result is a gradual transition from moons to cir-
cles which we call the moons2circles data set. Testing
data from moons2circles is shown as markers overlaid
on the panels of Fig. 3a.

We use two different varieties of n = 3 qubit quantum
circuit structures to implement the quantum components of
the QCC-net. We denote first variety Ry-SEL-g and the sec-
ond QAOA-g-SEL-g. We implement g = 1 and 3 varieties

where g denotes the number of repeated layers of the lay-
ered Ansätze. Ry means a fixed embedding circuit (i.e., α

is dropped) of U (xt ) = Ry(
1xt ) ⊗ Ry(

2xt ) ⊗ I is used
and QAOA means an embedding circuit inspired by the
Quantum Alternating Operator Ansätz (Lloyd et al. 2020;
Farhi et al. 2014; Hadfield et al. 2019) is used to imple-
ment U (xt ,α). SEL means a Strongly Entangling Layers
Ansätz (Schuld et al. 2020) is used to implement W (β).
For all circuits, D(γ , t) is implemented using a circuit rep-
resenting a truncated n-local Walsh-operator expansion as
described in Welch et al. (2014). The kernel function of Eq. 6
is then trained using the process described in Section 2.2
for 250 mini-batch iterations with Nbatch = 4 using the
Adam optimizer (Kingma Ba 2017) with an initial learning
rate of 0.05. For solving the convex problem (i.e., finding
the Lagrangian dual variables φ), we use the splitting conic
solver (O’Donoghue et al. 2016b; O’Donoghue 2021) which
interfaces cvxpyayers (Agrawal et al. 2019a) for gradi-
ent computations (Agrawal et al. 2019b) which are passed to
the automatic differentiation in Pennylane (Bergholm et al.
2018). The training is repeated 50 times where each run is
seeded with initial parameters θ init drawn uniformly at ran-
dom from the range [−π, π ].

The results of training are shown in Fig. 3b–e. On aver-
age, we can see that QAOA-3-SEL-3 produces the largest
loss values both initially (i.e., at the first mini-batch iteration)
and after training for the 250 mini-batch iterations. While it
is intuitive that the loss after training should be largest for
QAOA-3-SEL-3 simply because it has the largest number of
quantum circuit parameters θ , this does not explain the large
initial loss. Indeed, at the first mini-batch iteration, we mea-
sure the separation of binary classes for optimally combined
random kernels. This means that combined random kernels
become better separators as the depth and number of parame-
ters increases for the moons2circles data set. This effect
is so pronounced that untrained QAOA-3-SEL-3 models,
on average, have larger losses than trained Ry-SEL-1 and
Ry-SEL-3 models. Examining the density heat maps (grey
shaded areas on Fig. 3b–e), we can see that training is highly
stochastic, much of which is owed to the small mini-batch
size. We do see this stochasticity reduce for the QAOA-g-
SEL-g models where it is more obvious that an envelope of
high density forms around the mean curve showed in dark
red.

Using the best (as determined by the largest value of
the loss evaluated using the entire testing data set) trained
TSHK with the QAOA-3-SEL-3 Ansätz, we train a SVM
with C = 100 at each of the 10 time steps and compute
yt

vote(xt ) on a fine 100 × 100 grid at each t . These results are
shown on the upper panel of Fig. 3a as heat-maps at each point
in time. Regions colored in dark red/dark blue show areas
where yt

vote = 1/ yt
vote = −1 The result is clear: the decision

function is time-evolving and adapts to separate data belong-
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Fig. 3 Quantum circuit simulator experiments with the
moons2circles data set. a The evolution of the time-dependent
class prediction yt

vote as moons (far left panel) gradually become
circles (far right panel). Regions predicting yi = 1 are shown in
dark red and regions predicting yi = −1 are shown in dark blue.
The Testing data set is overlaid and are colored by their truth values
as given in the legend. The figure is generated using the best model
obtained for the QAOA-3-SEL-3 runs described in the main text. The
upper panel displays results with time dependence (wtd) in the inner
product space, while the lower panel displays results without time
dependence in the inner product space (w/otd) (b–e). The normalized

loss Lφmin (θ)/N 2
batch as a function of mini-batch iterations for the

Ry-SEL-1, Ry-SEL-3, QAOA-1-SEL-1, and QAOA-3-SEL-3 quantum
circuits, respectively. The mean value of 50 independent runs is shown
in red and the probability density over these runs is shaded in grey.
Recall that according to Eq. 10 we are solving a maximization problem,
so we expect the loss in increase with the number of mini-batch
iterations. f–i For the same quantum circuits and order defined in b–e,
the time-resolved embedding overlap Fβ�,γ � (δt) is plotted using the
best model obtained using each circuit. Green markers are inserted at
Fβ�,γ � (tl ) to show overlaps of embedding spaces where classical data
was seen in training

ing to the two different classes at every time step. Although
this is a simple example, we note that the best TSHK for
any circuit structure variation achieves 100% classification
accuracy when passed to a SVM. This is despite the data at
intermediate time steps not being perfectly separated (data
of different classes overlap). Upon inspection of the kernel
weights, we see that the beginning and end-points are most
heavily weighted which is intuitive since these points see
no overlap between classes. This observation exposes the
power of our algorithm: time-series can be classified based
on “smoking-gun” time points as these points are able to be
heavily weighted by the convex optimizer.

The effects of including a time-dependent inner product
space become even clearer should we observe the perfor-
mance on the moons2circles data set in its absence.
This is shown in the lower panel of Fig. 3a as achieved by

fixing t = 1 (an arbitrary choice) in the time evolution oper-
ator. Other settings are identical to those which produce the
results of the upper panel of Fig. 3a. While there remains
some change in the position of the decision boundary as we
advance in time, it is certainly much less malleable than in
the case with the time dependent inner product. Now unable
to use a different kernel function at each t , training finds a
single kernel function which strikes a balance between being
able to classify moons-like and circles-like data, which, when
inserted into a SVM, results in decision boundaries with a
striped character. Moreover, classification accuracy with this
model slips down to 78%. From these investigations, we con-
clude that using the TSHK is most effective for data sets
where (i) the correct notion of similarity between pairs of
data points changes with time and (ii) there exists a shared
time axis in the data as was described in Section 2.1.
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In Fig. 3f and g, we probe the time dependence of the best
trained models using the approach presented in Section 3.
With the exception of Ry-SEL-3 (Fig. 3g), Fβ�,γ � (δt) is
observed to be highly oscillatory. Importantly, apart from
QAOA-1-SEL-1 (Fig. 3h), Fβ�,γ � (δt) is a broadly decreasing
function intuitively suggesting that the quantum embedding
space when data is more moons-like becomes different as
the data becomes more circles-like. Indeed, even for QAOA-
SEL-1, the last point (shown with green markers) of all
models shows that Fβ�,γ � (δt) commensurate with the time
difference between exactly moons (the left-most panel of
Fig. 3a) and exactly circles (the right-most panel of Fig. 3a)
is very small which means that the quantum embedding space
used for classifying moons is strongly different than that used
for classifying circles.

4.2 Univariate time-series: the gun-point data set

In this section, we demonstrate the performance of our algo-
rithm for classification on a real and popular benchmark: the
gun-point data set (Ratanamahatana Keogh 2005). Although
this data set has been described in detail elsewhere, we
summarize briefly here. Two participants, with their hands
beginning at their sides, are asked to either (i) point their right
finger towards a target or (ii) point a small firearm (a hand
gun) at a target and bring their hand back down to the starting
position. During this process, the forward motion on their
hand is tracked with a sensor at regular intervals and each
finger-point or gun-point instance is recorded as a univariate
(d = 1) time-series instance. Labeled gun-point instances
belong to class 1 (yi = 1), and finger-point instances belong
to class 2 (yi = −1). The training set Xtr has size |Xtr | = 50,
and the testing set Xte has size |Xte| = 150. Each instance
has 150 time stamps (p = 150).

Using the QAOA-3-SEL-3 circuit structure described in
Section 4.1, we train four models with n = 2, 4, 6, and 8
qubits. Each model is selected from 20 training attempts each
using 500 mini-batch iterations with Nbatch = 4 with θ init

drawn uniformly at random from [−π, π ]. Each model is
selected based on the largest value of the loss function eval-
uated on the testing data set. Before the SVMs are trained,
given θ� each optimal model is passed through the convex
optimization step a final time using the entire training data
set (i.e., Nbatch = NX ) to refine the kernel weights η. We
now train C = 100 SVM decision functions D�(x) which
we use to classify each time-series instance in X test. With
these predictions, we calculate the F1 score, the balanced
accuracy score (AB), and the receiver operating characteris-
tic area under the curve score (ROC AUC; abbreviated further
to RA for the rest of this work).

Figure 4 shows the results of these experiments. In Fig. 4a,
the time-series instances which were identified as the most
class 1 and the most class 2 as determined by having the high-

est and lowest values of D�(x) are shown. Directly below on
the same time axes, in Fig. 4b, we have the time-resolved
kernel weights ηt for the n = 2 and n = 8 models. It is clear
that different points in time are weighted very differently to
others. In particular, peaks near the regions where the fin-
ger/gun is being lifted and peaks near where the finger/gun is
being put back down again are seen. This is in stark contrast
to the beginning, end, and middle points of the series where
finger/gun is approximately stationary. This points to the key
discriminating factors between the two cases being a reaction
time difference and/or other characteristic differences during
the time stamps where the finger/gun is in motion. It should
also be noted that there is a remarkable symmetry in the pro-
file of ηt about the mid-point of time (where the finger/gun is
stationary); finger/gun instances can be discriminated equally
well from motion on the way up to pointing at the target as
they can on the way down. All of the models produce a sim-
ilar profile for ηt , which, for n = 2 and n = 8, are shown in
Fig. 4a. It can be seen that increases in the qubit size for the
model lead only to small changes in the weighting of differ-
ent time stamps in the classification. Looking now at Fig. 4c,
we see that the balanced accuracy score is already at 97.2%
for the n = 2 model, and raises a small amount to 98.0%
by the time we reach n = 8. Similar small gains are seen
for F1 scores and the ROC AUC score. Remarkably, these
scores mean that our hybrid quantum-classical algorithm is
competitive with purely classical algorithms for this data set.
Specifically, when compared against 9 state-of-the-art deep
learning approaches (Fawaz et al. 2019), our algorithm is
beaten in terms of accuracy scores by only two of them:
fully convolutional neural networks (FCN; AB = 1.000)
and residual neural networks (ResNet; AB = 0.991) which,
in comparison, require far greater computational resources.

To quantify which components of our approach are most
significant in our experiments and what training hyperpa-
rameters yield the best results, we conduct a further study
focusing on the n = 2 qubit case. A summary of the results
is shown in Fig. 5, and an expanded version of Fig. 5 is avail-
able in the Supplementary Information. In general, we find
that training with small batch sizes and small λ is the most
effective (Fig. 5a). This effect is enhanced when paired with
the full TSHK formalism (red bars) which, for these hyper-
parameters, yields the largest AB and F1 scores as well as the
largest training kernel alignment Atrain (see caption of Fig. 5
for a definition) of all approaches taken in this study. This
peak performance must, however, be viewed in the context
of the other bars in Fig. 5a. Examining the case where the
time dependent inner product is forbidden (grey bars), the
full approach offers only a 1% improvement in AB and F1.
Indeed, examining the general level of scores for all other
bars on both Fig. 5a and b, we can see that any of the taken
approaches can score in the mid-90% range. It must therefore
be concluded that most of the performance we achieve on this
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Fig. 4 Insights and performance metrics for trained TSHKs passed to
SVMs on the gun-point data set. a Testing data set time-series instances
reported to be the most class 1 (gun-point; orange dotted and dashed
line) and most class 2 (finger point; blue dotted and dashed line) as

determined by the value of D�(x). b The kernels weights ηt at each
time for the n = 2 (gold line) and n = 8 (blue line). c F1, AB , and
RA scores (left axis) and the normalized optimal loss L�/N 2

batch (right
axis) for the n = 2, 4, 6, and 8 models

data set is gained from the classical portions of the algorithm
(mostly the SVM itself) correctly classifying many instances
using any of the combined kernels we supply it. Only a few
extra points are gained by using the full TSHK formalism.
Given how closely performant the top classical deep learning
approaches are for this data set (Fawaz et al. 2019), it is, how-
ever, not unreasonable to suggest that these gains are indeed
significant. Furthermore, we view the results presented in
Fig. 4 to be sensitive to the choice of circuit Ansätz. It is
unclear what choice should be made when presented with
classical data and is a topic of current research to figure out
how to encode inductive biases into classical data encoding
Ansätze (Bowles et al. 2023).

Lastly, we remark that while scores only increase modestly
as the number of qubits increases (Fig. 4c), the loss does
gradually get larger. Recalling that this loss represents the
separation between positive and negative classes, this means
that, within the parameters of our study, higher qubit models
are able to find a time-dependent quantum embedding space
where classical data is better separated than smaller qubit

models. This larger separation is known to give rise to higher
generalization performance for SVM (Hastie et al. 2009).

5 Parallel execution on quantum hardware

5.1 Quantummulti-programming

To more efficiently use NISQ hardware, it is possible to
run multiple quantum circuits concurrently. Known as Quan-
tum Multi-Programming (QMP), this technique allows NISQ
devices to execute several quantum circuits concurrently,
even if they differ in structure or complexity. In this section,
we show that computation of TSHKs can be significantly
sped up using QMP.

The primary motivation for QMP is driven by the fact that
the number of qubits present in NISQ devices is often signifi-
cantly higher than their Quantum Volume (QV). Specifically,
when compared to trapped ion devices, superconducting
quantum computers have restricted qubit connectivity and
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Fig. 5 Discerning the impact of different mechanisms defining the
TSHK as applied to SVM classification of the gun-point data set.
Different approaches include the full TSHK method (red bars), the oth-
erwise full method with time dependence in the inner product space
forbidden (a single static quantum kernel is used at each t ; grey bars),
the otherwise full method but with randomly chosen quantum circuit
parameters θ (dark blue bars) and an approach using random θ , equal
kernel weights (ηt = 1/p∀t) and a time-dependent inner product
space. Atrain/test = 1 − 1/p2 ∑p

i

∑p
j |Ktrain/test,i j − Ktruth,i j | is

the kernel alignment of the training/testing data sets, Ktrain/test,i j are
the elements of combined kernels for the training/testing datasets and
Ktruth,i j = yi y j are the elements of the truth matrix. a Nbatch = 4
and λ = 0.1. b Nbatch = 50 (the entire training data set) and λ = 0.8.
An expanded version of this figure is available in the Supplementary
Information

lower QV. Taking this further, following IBM’s quantum
volume VQ , we have log2 VQ = argmaxm {min [m, d(m)]}
where d(m) is the depth of a model circuit with m-qubits
(Cross et al. 2019). One depth of the model circuit is com-
posed of a random permutation of the qubits involved in the
test, followed by random two-qubit gates. For instance, the
QV of the ibm_washington device (used in this work)
is 64, with 127 qubits available. This means the model cir-
cuit with 6-qubits runs reliably at six depths of the model
circuit on average on ibm_washington. Other supercon-
ducting quantum computers share similar properties such as
limited connectivity between qubits and many more qubits
than log2 VQ . Therefore, it is crucial to use the capacity of
modern superconducting quantum devices more efficiently,
and QMP has been proposed as a method to achieve this
goal. Therefore, QMP fills the gap between the relatively
many qubits and the relatively low QV of NISQ devices by
executing multiple quantum circuits concurrently, enhancing
the throughput and utilization of NISQ devices.

However, implementing QMP on NISQ devices has sev-
eral issues to address because QMP accompanies unfavorable
impacts on the whole system such as measurement timing
of the concurrent circuits (Das et al. 2019) and crosstalk
between different circuits (Ohkura et al. 2022). Efficiently
mapping qubits between logical and physical states, as well
as task scheduling (Liu Dou 2021; Niu Todri-Sanial 2021,
2022), have been studied alongside the aforementioned
issues. Despite preliminary investigations into QMP, its
integration with quantum algorithms, and especially QML,
remains underdeveloped. Nonetheless, there has been recent
noteworthy progress in applying QMP to Grover’s search
algorithm (Park et al. 2023), resulting in improved success
probabilities compared to previous attempts.

5.2 QMP implementation considerations

Before proceeding to calculate TSHKs with QMP, we discuss
the typical issues arising out of QMP. Starting with crosstalk,
this effect is studied in detail by P. Murali et al. (2020). They
suggested several rules to mitigate crosstalk between qubits.
The relation between the number of physical buffers and the
error rate was studied by Ohkura et al. (2022). They intro-
duced a physical buffer, which is the number of idle qubits
between quantum circuits. They tested a different number of
controlled-X (CX) gates with a different number of physical
buffers. Ohkura et al. (2022) concluded that only 1 physical
buffer is sufficient until 30 CX gates. Therefore, we use one
physical buffer for our implementations.

One important issue of QMP is measurement timing.
When quantum circuits having different circuit depths run
concurrently, the measurement timing influences the shortest
circuit. This effect was studied in Das et al. (2019); Ohkura
(2021). In these studies, they suggested delaying shorter cir-
cuits to align the measurement timing. In our case, because
the circuits implementing elements of the TSHK each have
the same depth, we do not need to make any alterations to
measurement timings.

Another crucial issue is efficient physical qubit mapping.
Systematic qubit mapping algorithms have been developed
(Das et al. 2019; Liu Dou 2021; Niu Todri-Sanial 2022,
2021). Even though these qubit mapping algorithms are
also important for quantum circuits executed in serial (i.e.,
without QMP), efficient qubit mapping becomes more chal-
lenging and crucial in QMP because practical QMP circuits
use more qubits than serial circuits. In our particular circum-
stance where each quantum thread is composed of two logical
qubits, the mapping problem is solved by hand by mapping
each thread to two physical qubits with two-qubit gate con-
nectivity subject to the constraint that at least one buffer qubit
separates individual threads. The QMP layout can be seen in
Fig. 6 for ibm_washington and ibm_sherbrooke.

123



For
 A

ppro
va

l

Quantum Machine Intelligence  _#####################_ Page 13 of 17 _####_

Fig. 6 The mapping between logical and physical qubits for the QMP
circuits used in our experiments on aibm_washington (Eagle r1
processor) and b ibm_sherbrooke (Eagle r3 processor). Both
machines have 127 physical qubits and have a similar (but not iden-
tical) qubit connectivity graph. ibm_washington has a QV of 64

while ibm_sherbrooke has a QV of 32. On ibm_washington,
the native gates are CX, ID, RZ, SX, and X and ibm_sherbrooke
uses the same single qubit gates but ECR gates are used for 2-qubit
interactions. Idle qubits are shown as blue circles and active qubits are
black circles containing integers indexing the logical qubits

Finally, we mention partial measurement in QMP. After
the whole measurement of a QMP circuit, we need to extract
the measurements from each parallelized circuit. This is
called partial measurement and is implemented by post-
processing after the whole measurement since the partial
measurement probability is the sum of all other uninvolved
qubits measurement probability. This is detailed in Park et al.
(2023) and in the Supplementary Information. Since the
example code in Appendix A in Park et al. (2023) iterates
over the 2n where n is the number of the measured qubits,
the computing time increases exponentially as more qubits
are measured. Hence, we re-implement the partial measure-
ment code, which extracts the partial measurement out of
the whole measurement, to depend on the number of shots
regardless of the number of the measured qubits. Our new
implementation is given in the Supplementary Information.

5.3 QMP experiments with the gun-point data set

We conduct QMP experiments using the gun-point data set
described in Section 4.2 where the time dimension is dec-
imated by 3× (p is reduced from 150 to 50) to reduce
the total QPU run time to a reasonable level. An optimal
simulated (ideal) model for the decimated data set is first
obtained using the same method described in Section 4.2.
Using the θ� derived from the simulated model, we generate

the quantum circuits used to calculate the matrix elements
of the kernel matrices required to train an SVM. These cir-
cuits are deployed on two 127-qubit superconducting QPUs:
ibm_washington (64 QV) and ibm_sherbrooke (32
QV). The experiments utilize the maximum number of active
qubits which can be used in a single QMP run. For both
devices, including the buffer qubit constraint, this number is
70. Figure 6 shows the qubit layout on ibm_washington
(Fig. 6a) and ibm_sherbrooke (Fig. 6b). In addition to
mapping considerations already discussed in Section 5.2, we
manually choose the qubits with low error ratios (read assign-
ment error, etc.). Considering each circuit has two qubits, we
can run 35 circuits in parallel with a single QMP run. The
Trial Reduction Factor (TRF) (Das et al. 2019) describes the
ratio of the number of trials (shots) that executes individu-
ally (baseline) to the number of trials (shots) of the QMP
circuit. This factor represents the efficiency of the QMP in
terms of trials (shots). In our case, the TRF is 35. The QMP
used 8192 shot numbers to measure 35 circuits, whereas non-
QMP implementations need 8192 × 35 shots to measure 35
circuits.

Recalling the total size of the training and testing data
sets in the decimated gun-point data set, a naive serial QPU
implementation (without QMP) requires 436, 250 individual
calls to a quantum device to calculate all of the relevant ker-
nel matrices to train and test an SVM. By applying QMP, the
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total number of calls to the QPU is significantly reduced by a
factor of 35 to 12, 465 because the QMP circuit parallelizes
35 quantum circuits. As a preliminary step, we first verified
that our QMP implementation produced consistent outputs
with serial execution by comparing the output of both using a
quantum circuit simulator. The outputs for serial and parallel
are in perfect agreement. The details of these tests, and oth-
ers, are given in the Supplementary Information. Importantly,
in practice, QMP reduces the queuing time of the circuit.
Because of the much-reduced number of calls to the QPU,
there are far fewer circuits in the queuing system of an indi-
vidual device. The advantage of this is two-fold as (i) the wait
time is reduced for the user and other users and (ii) sched-
ulers often use a “fair-share” allowance on the number of jobs
submitted by a given user. The fewer number of circuits sent
means that job priority levels administered by the scheduler
remain high. Finally, we note that because of our choice to
use two separate 127 qubit machines, circuits were sent to
both in parallel, thus two queues were being occupied at all
times which itself leads to a practical speedup.

The results of our QMP experiments are shown in
Fig. 7. Figure 7a compares F1, AB , and RA scores for the
simulated results (red bars) and the QMP runs executed
on ibm_washington and ibm_sherbrooke (QPU
×2; grey bars). Compared with the simulator results from
Section 4.2, we see that MKL SVM on decimated gun-point
data set gives rise to lower scores for all three metrics. This
is intuitive as the algorithm is being shown fewer data points
(100 fewer time points) in training. When run on 2× QPU,
scores fall ≈ 10–20% across the board as a result of all of
the various types of hardware noise. We should note that
besides the use of buffer qubits and selection of low-error
qubits on the machines, no other optimizations/error mitiga-
tion techniques were used so the results presented in Fig. 7
can be considered a baseline. In reality, more highly opti-
mized transpiler passes could be used alongside a whole host
of dedicated error mitigation techniques including (but not
limited to) Pauli twirling, dynamical decoupling, and various
flavors of read-out mitigation. Figure 7b shows the error in
the kernel weights η as a function of time (i.e., ηt is shown).
Errors exceeding 25% occur at low and high t , while errors
are very small at intermediate t . Interestingly (although not
shown), areas where the weights themselves are larger (at
intermediate t) have the smallest errors which means despite
a significant amount of noise entering our kernel matrix com-
putations, the kernel weight values are quite robust. Figure 7c
and d show the SVM decision function D�(x) (discussed in
Section 2.3) evaluated using all 150 of the testing time-series
instances using where the TSHK was either computed with
an ideal quantum circuit simulator (Fig. 7c) or calculated on
real devices using QMP (Fig. 7d). Recall that sgn[D�(x)] dis-
tinguishes the predicted binary class label such that points
above the black dotted line at D�(x) = 0 are predicted as

Fig. 7 Simulator versus device results on the sub-sampled gun-point
data set. a The F1, AB (balanced accuracy), and RA (ROC AUC) scores
for the simulator (red) and device (grey; QPU×2) results. b The percent-
age error in the kernel weights from the device results vs the simulator
given as ηerror = 100 · (ηdevice − ηideal )/ηideal plotted as a function
of time index l. c, d The SVM decision function D�(x) for each of the
150 testing time-series using the simulated kernel matrices (c) or the
device kernel matrices (d). Points are colored by their truth label. Blue
points above the black dotted line are correctly classified, while those
below it are incorrectly classified. The reverse is true for gold points

class 1, while those below it are predicted as class -1. Because
each point is colored by its truth label yi , it is possible to see
from Fig. 7c and 7d which points are correctly and incorrectly
classified. Looking first at the simulator results (Fig. 7c), it
can be seen that many points sit very close to D�(x) = 0
meaning their classification is a close call. This finding is
important as it provides some insight into why performance
metrics decrease for the QPU results. That is, we can see from
Fig. 7d that those close call points which were sitting close
to D�(x) = 0 for the simulated results have been smeared
across the decision boundary by a non-trivial propagation of
error incurred by (i) training the SVM with a noisy (and only
approximately positive semi-definite) Gram matrix and (ii)
making predictions using already noisy trained SVM model
using a similarly noisy kernel function. We observe also that
those points which were sitting further from the decision
boundary in the simulator results now even further from it.
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Following the approach taken in Hubregtsen et al. (2022),
errors incurred by the processes described in points (i) and
(ii) above can be mitigated against. Using the Tikhonov reg-
ularization scheme (Hubregtsen et al. 2022), Gram matrices
K can regularized (be made positive semi-definite) with a
simple correction:

K reg =
{

K − εmin I if εmin < 0

K otherwise
(18)

for regularized gram matrix K reg, smallest eigenvalue in the
spectrum of K , εmin and identity matrix I . We apply the cor-
rection of Eq. 18 to each of the noisy time-dependent Gram
matrices Kt and use the regularized output to find the opti-
mal kernel weights η�

t given in Eq. 11. Finally, we build a
regularized combined kernel using Eq. 6. We now use the
regularized combined kernel as input to a SVM to classify
the gun-point data set. We find that all considered metrics
are improved: AB = 0.81, F1 = 0.82, and R A = 0.90. This
shows the success of even simple regularization techniques
and supports the need for future works assessing the best
possible way to use kernel methods on noisy QPUs.

6 Conclusions and perspectives

In this work, we proposed and demonstrated a hybrid
quantum-classical supervised ML algorithm for time-series
classification. The algorithm works by utilizing time-depen-
dent inner product spaces as generated by a common time-
evolution operator and combining the inner products using
classical MKL techniques. Together, the components of the
algorithm create a temporally aware QCC-net able to tailor
kernel functions for arbitrary time-series data. When these
tailored kernel functions were used with kernelized SVM,
we found classification performance to be comparable with
purely classical methods for the well-known gun-point data
set, although a great deal of the performance stemmed from
the classical portions of the algorithm. Through conducting
experiments on the syntheticmoons2circles data set, we
verified that the TSHK is most effective in situations where
the correct notion of similarity between pairs of data points
evolves with time and there exists a shared time axis in the
data as was described in Section 2.1.

Furthermore, we developed a method to study the resulting
time-dependence present within a trained time-series kernel
function. We must stress that algorithms trained to explicitly
learn time-dependent inner product spaces are novel even
within the classical ML literature, and indeed, we do not
know of an existing classical approach that can precisely
emulate the method proposed in this work.

We also found that the total run time of our method can
be greatly reduced by utilizing the state-of-the-art method,
QMP. That is, because the computation of quantum ker-
nel matrix elements is an embarrassingly parallel problem,
many matrix elements can be computed in parallel by dis-
tributing multiple quantum threads across large QPUs. We
demonstrated this parallelism using two 127-qubit supercon-
ducting quantum processors to perform SVM classification
on a decimated version of the gun-point data set. With this
method, we were able to reduce the total number of required
QPU calls by 35×, which, assuming constant job queuing
times for both 127-qubit QPUs, leads to a 70× speed-up com-
pared to serial execution on a single QPU. We have therefore
demonstrated, for the first time, that QMP is a valuable tool
for significantly speeding up QML algorithms on present and
near future NISQ machines. With recent advancements in
low-latency CPU-QPU interactions by Qiskit Runtime
and others, in the near future, we expect to see the emer-
gence of real-time training of error-mitigated QML where
the quantum components of the algorithm are accelerated by
QMP and the classical parts are accelerated using conven-
tional parallel processing paradigms like MPI and OpenMP.
This work, therefore, makes strides along the path toward the
much-anticipated intersection of quantum computation and
classical high performance computing.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s42484-024-00149-
0.
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