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AN ADAPTIVE SAMPLING AUGMENTED LAGRANGIAN1

METHOD FOR STOCHASTIC OPTIMIZATION WITH2

DETERMINISTIC CONSTRAINTS ∗3

RAGHU BOLLAPRAGADA† , CEM KARAMANLI† , BRENDAN KEITH‡ ,4

BOYAN LAZAROV§ , SOCRATIS PETRIDES¶, AND JINGYI WANG¶5

Dedicated with respect and admiration to Leszek Demkowicz on the occasion of his 70th6

birthday anniversary.7

Abstract. The primary goal of this paper is to provide an efficient solution algorithm based on8
the augmented Lagrangian framework for optimization problems with a stochastic objective func-9
tion and deterministic constraints. Our main contribution is combining the augmented Lagrangian10
framework with adaptive sampling, resulting in an efficient optimization methodology validated with11
practical examples. To achieve the presented efficiency, we consider inexact solutions for the augmen-12
ted Lagrangian subproblems, and through an adaptive sampling mechanism, we control the variance13
in the gradient estimates. Furthermore, we analyze the theoretical performance of the proposed14
scheme by showing equivalence to a gradient descent algorithm on a Moreau envelope function, and15
we prove sublinear convergence for convex objectives and linear convergence for strongly convex ob-16
jectives with affine equality constraints. The worst-case sample complexity of the resulting algorithm,17
for an arbitrary choice of penalty parameter in the augmented Lagrangian function, is O(ϵ−3−δ),18
where ϵ > 0 is the expected error of the solution and δ > 0 is a user-defined parameter. If the penalty19
parameter is chosen to be O(ϵ−1), we demonstrate that the result can be improved to O(ϵ−2), which20
is competitive with the other methods employed in the literature. Moreover, if the objective function21
is strongly convex with affine equality constraints, we obtain O(ϵ−1 log(1/ϵ)) complexity. Finally,22
we empirically verify the performance of our adaptive sampling augmented Lagrangian framework23
in machine learning optimization and engineering design problems, including topology optimization24
of a heat sink with environmental uncertainty.25

1. Introduction. We consider constrained stochastic optimization problems of26

the form27

(1.1) min
x∈X

f(x) subject to c(x) = 0 ,28

where the objective function f : Rn → R is the expected value f(x) = Eζ [F (x, ζ)] of29

smooth random functions F (·, ζ) : Rn → R, the constraint set X ⊂ Rn is compact and30

convex, and the constraint function c : Rn → Rm,31

(1.2) c(x)
def
= Ax− b ,32

is an affine map with A ∈ Rm×n and b ∈ Rm. Our primary motivation is to develop33

feasible strategies for solving optimal design problems with manufacturing and oper-34

ational uncertainties [3, 27, 41, 73] (cf. Subsections 6.2 and 6.3) by efficiently solving35
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optimization problems of the form (1.1). Due to the inherently high computational36

cost, current design problems are often limited to low-dimensional sources of uncer-37

tainty or involve smoothly-varying random fields, which can be parameterized by a38

truncated series expansion with a small number of discrete random variables [46]. The39

above limitations restrict the practical applicability of some optimization approaches40

and lead to simplified heuristic procedures requiring subsequent manual intervention41

and suboptimal design performance [53]. Therefore, designing an efficient and robust42

optimization framework to address these challenges is crucial. Moreover, constrained43

stochastic optimization problems like (1.1) also commonly arise in other applications44

such as machine learning and finance; see, e.g., [4, 28,75,78] and references therein.45

One of the well-known techniques to solve constrained optimization problems is46

the augmented Lagrangian method [13, 29, 30, 39, 70]. This method transforms the47

original constrained optimization problem (1.1) into a sequence of subproblems where48

the constraint violation is penalized in the objective. The main advantage of this49

transformation is that it enables using efficient algorithms for solving the subprob-50

lems. On the other hand, the major drawback is that multiple subproblems must be51

solved sequentially. To mitigate the cost of solving the subproblems, inexact solution52

mechanisms are widely used [43,50,54,56,72,77,86]. Although these mechanisms are53

well-understood for deterministic problems, the literature on their usage in stochastic54

settings is limited [55,65]. Indeed, from our perspective, the main challenge in extend-55

ing the augmented Lagrangian framework to stochastic approximation techniques lies56

in defining inexactness criteria for the stochastic methods used to solve the subprob-57

lems. In this work, we propose stochastic inexactness termination conditions that58

address this gap and guarantee convergence in expectation.59

Adaptive sampling is a powerful technique that is used in stochastic optimization60

to control the accuracy of gradient estimates in a computationally efficient manner.61

The idea comes from the following observation, which is made mathematically precise62

later in the text: There is little need for an accurate gradient estimate in a stochastic63

solver when the iterates are far from the optimal solution. However, stochastic al-64

gorithms require increasingly accurate gradient estimates as the iterates get closer65

to the solution. To maintain accuracy, adaptive sampling methods dynamically in-66

crease the batch/sample size in response to an a posteriori estimate of the variance67

of the sampled gradients. Theoretical results from the adaptive sampling literature68

are promising. Indeed, in [23], the authors show that this methodology matches the69

best achievable complexity bound for unconstrained stochastic programs. Adaptive70

sampling is also known to be efficient in practice [18]. Recently, adaptive sampling71

methods have been used to develop efficient proximal/projected gradient algorithms72

for constrained optimization problems [7, 83]. Nevertheless, projecting gradients at73

every iteration can be challenging or inefficient, depending on the structure of the74

constraint set. Therefore, we go beyond the work in [7, 83] and consider augmented75

Lagrangian techniques. In turn, we address a more general class of algorithms and76

provide greater flexibility for treating the constraint set.77

1.1. Contributions. In this paper, we propose an adaptive sampling augmen-78

ted Lagrangian (ASAL) method by combining the augmented Lagrangian framework79

with adaptive sampling techniques to solve constrained stochastic optimization prob-80

lems. We use adaptive sampling to control the accuracy of the gradient estimates81

when solving the subproblems obtained by penalizing the linear equality constraints.82

Moreover, we employ inexact solution mechanisms by imposing stochastic inexact-83

ness conditions to terminate the inner (i.e., subproblem) iterations. In this way,84

2

This manuscript is for review purposes only.



we maximize the overall computational efficiency of our approach without sacrificing85

accuracy. Another important aspect of the methodology is that it relies on prox-86

imal/projected gradients to achieve feasibility with respect to the constraint x ∈ X .87

Since the method relies only on gradient information, we establish sublinear conver-88

gence in the outer iterations for convex objective functions. Furthermore, given a89

user-defined algorithm parameter δ > 0 and an arbitrary penalty parameter α > 0,90

we find the total expected number of gradient evaluations to achieve an ϵ-accurate91

solution to be O(ϵ−3−δ). Moreover, if the penalty parameter is chosen to be suffi-92

ciently large, i.e., O(ϵ−1), then our result improves to O(ϵ−2). Finally, the worst-case93

complexity becomes O(ϵ−1 log(1/ϵ)) for strongly convex objective functions and when94

X = Rn. Table 1.1 compares our setting and theoretical results with the relevant lit-95

erature. To evaluate the efficacy of our framework, we compare its performance to96

baseline algorithms in a collection of model problems from machine learning (Subsec-97

tion 6.1) and engineering (Subsections 6.2 and 6.3).98

Table 1.1
Summary of the theoretical convergence rate and sample complexity results in the relevant

literature under different problem settings. In all the works mentioned here, the constraints are
deterministic. Here, K denotes the (outer) iteration number, and ϵ denotes the required accuracy.
Convergence rates are deterministic for deterministic problems and are in expectation for stochastic
problems. Finally, sample complexity for stochastic solvers denotes the total number of expected
stochastic gradient evaluations required to get ϵ−accurate solutions.

paper objective set (X ) constraints rate (outer iter) sample complexity

[50]
convex

convex compact linear O(1/K) -
deterministic

[86]
convex

convex closed convex O(1/K) -
deterministic

[84]
strongly convex

Rn linear linear O(ϵ−1)
stochastic

[85]
convex

convex convex O(1/
√
K) O(ϵ−2)

stochastic nonsmooth

[85]
strongly convex

convex convex O(log(K)/K) O(ϵ−1 log(1/ϵ))
stochastic nonsmooth

Theorem 4.5 convex
convex compact linear O(1/K) O(ϵ−3−δ)

(arbitrary penalty parameter) stochastic

Corollary 4.6 convex
convex compact linear O(1/K) O(ϵ−2)

(O(ϵ−1) penalty parameter) stochastic

Theorem 4.12
strongly convex

Rn linear linear O(ϵ−1 log(1/ϵ))
stochastic

1.2. Literature Review. The augmented Lagrangian method, also known as99

the method of multipliers, was first proposed by Hestenes [39] and Powell [70]. In [13],100

its performance is analyzed and compared to other common approaches, such as pen-101

alty and Lagrangian methods; see also [11, 33, 71, 72]. Although there have been ex-102

tensive research efforts to enhance the performance of the basic augmented Lagrangian103

method to solve deterministic optimization problems (see, e.g., [14,29,30,50,54,56,86]),104

the current literature on stochastic optimization problems is limited [42,55,85]. In [42],105

the authors apply a stochastic augmented Lagrangian method to the domain ad-106

aptation problem. In [85], Xu developed stochastic primal-dual methods using the107

augmented Lagrangian function for solving nonsmooth optimization problems with108

a large number of constraints. In the aforestated approach, a projected stochastic109

gradient method is employed for the primal updates, while a randomized coordinate110

method is used for the dual updates.111

For structured optimization problems with linear constraints, the alternating dir-112
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ection method of multipliers (ADMM) framework is often preferred [21]. There has113

been significant work on stochastic versions of the ADMM method [65,81,84, 88, 89].114

In [65], the authors consider stochastic ADMM and show a O(log(K)/K) convergence115

rate for strongly convex and O(1/
√
K) for general convex objective functions. In [84],116

the authors design an inexact solution mechanism for the subproblems in stochastic117

ADMM when X = Rn. There, the authors employ the stochastic gradient method to118

solve the subproblems and show a linear convergence rate for strongly convex func-119

tions. Although our approach also involves inexact solutions, we consider adaptive120

sampling techniques to solve the subproblems and analyze both general convex and121

strongly convex functions. Moreover, our formulation allows us to consider implicit122

constraint sets (i.e., X ⊂ Rn) and utilizes only projected (or proximal) stochastic123

gradients. Other works achieve improved convergence rates by introducing stochastic124

variance reduction techniques (see, e.g., [59, 81,88,89]).125

There are many articles on stochastic optimization methods with dynamic sample126

sizes [7,16–19,23,25,34–36,47,67,74,83]. Most of these works focus on unconstrained127

problems. Of note is the work by Friedlander and Schmidt [35], which shows linear128

convergence for finite-sum problems when the sample size increases at a geometric129

rate. Our work relates to the approach taken in Byrd et al. [23], which shows linear130

convergence of the expected risk minimization problem and calculates the worst-case131

complexity bounds for the number of gradient evaluations required to get ϵ-accurate132

solutions. Byrd et al. [23] also study the theoretical and practical aspects of the133

so-called norm test, which controls the sample sizes. Finally, in [7, 83], the authors134

consider adaptive sampling mechanisms for constrained stochastic programs. In both135

works, the constraints are represented by an abstract convex set, and the authors136

propose generalizations of the norm test that utilize projected (reduced) gradients.137

Another common methodology to approach (1.1) is using sample average ap-138

proximation (SAA) techniques [48, 49, 68, 76, 78] which replace the expected value in139

the objective function with a fixed sample average or other empirical approximation.140

When it comes to alternative techniques to solve constrained stochastic programs, the141

sequential quadratic programming (SQP) framework [9, 10, 31, 32, 61, 62] is also often142

utilized.143

1.3. Notation. We denote the set of natural numbers by N def
= {0, 1, 2, . . . }, and144

the set of positive natural numbers as N+
def
= {1, 2, . . . }. Throughout this work, ∥ · ∥145

denotes the ℓ2 vector norm or matrix norm and ⟨·, ·⟩ denotes the ℓ2-inner product.146

Finally, a matrix A ∈ Rm×n is indicated to be positive definite by writing A ≻ 0147

and positive semi-definite by writing A ⪰ 0. AT ∈ Rn×m denotes the transpose of a148

matrix A.149

1.4. Organization. This paper is organized as follows. In Section 2, we in-150

troduce the preliminary material and assumptions used throughout the paper. The151

algorithmic framework and its components are given in Section 3. In Section 4, we152

analyze the convergence and complexity properties of our approach. Practical imple-153

mentation of the algorithmic components is discussed in Section 5. We demonstrate154

the numerical performance of our methodology in Section 6. Finally, in Section 7, we155

provide concluding remarks and discuss avenues for future research.156

2. Preliminaries and Assumptions. We provide preliminaries regarding the157

deterministic augmented Lagrangian method and its interpretation as a gradient des-158

cent method applied to the Moreau envelope of the dual function. We also state159

preliminary assumptions and recall results from the literature that are relied on later160
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in the paper.161

2.1. Deterministic Augmented Lagrangian Method. The Lagrangian162

function for the problem (1.1) is163

(2.1) ℓ(x, λ) = f(x)− ⟨λ, c(x)⟩,164

where λ ∈ Rm is the Lagrangian (dual) parameter associated to the constraint function165

c(x). Using (2.1), we can define the saddle-point problem,166

(2.2) min
x∈X

sup
λ∈Rm

ℓ(x, λ),167

and note that168

sup
λ∈Rm

ℓ(x, λ) =

{
f(x) for c(x) = 0,

∞ for c(x) ̸= 0.
169

170

Hence, if there exists x ∈ X ∩ {x ∈ Rn | c(x) = 0}, then (2.2) is equivalent to (1.1) in171

the sense that172

min
x∈X

sup
λ∈Rm

ℓ(x, λ) = min
{x∈X|c(x)=0}

f(x)173

174

and175

argmin
x∈X

sup
λ∈Rm

ℓ(x, λ) = argmin
{x∈X|c(x)=0}

f(x).176

177

A primal-dual iterate pair (x̂, λ̂) is said to be a stationary point of (2.2) if178

(2.3) (x̂, λ̂) ∈
{
(x, λ)

∣∣∣∣∣projX (x− η∇ℓx(x, λ))− x

η
= 0 and c(x) = 0

}
,179

where η > 0 and180

(2.4) projX (y) = argmin
x∈X

∥x− y∥2,181

is the projection of y ∈ Rn onto the set X (see [29,50]). We also refer to the conditions182

in (2.3) as the183

feasibility error : ∥c(x)∥ ,(2.5a)184185

and the186

stationarity error :

∥∥∥∥projX (x− η∇ℓx(x, λ))− x

η

∥∥∥∥ .(2.5b)187
188

The augmented Lagrangian method is a class of iterative methods that produce189

stationary points satisfying (2.3) by solving a sequence of subproblems where the190

objective function is the sum of the Lagrangian function ℓ(x, λ) and a quadratic191

penalty term that penalizes violation of the equality constraint c(x) = 0. Specifically,192

5
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at any given iteration k ∈ N, the basic primal and dual update rules are given as193

follows:194

x∗
k ∈ argmin

x∈X
L(x, λk;αk),(2.6a)195

λk+1 = λk − αkc(x
∗
k),(2.6b)196197

where αk > 0 is the penalty parameter and198

(2.7) L(x, λ;α) = f(x)− ⟨λ, c(x)⟩+ α

2
∥c(x)∥2,199

is the augmented Lagrangian function. Without restrictions on the objective function200

f(x), the subproblem in (2.6a) may be unbounded. In this paper, we invoke assump-201

tions that ensure this is not the case (cf. Assumption 2.2 or Assumption 2.3) as well202

as some other basic assumptions of additional utility.203

2.2. Assumptions. We make the following assumptions about the objective204

function, the constraint function, and the existence of the solution.205

Assumption 2.1. The objective function f : Rn → R is a convex continuously206

differentiable function on X . That is, ∇2f(x) ⪰ 0, for all x ∈ X . In addition, the207

gradient of the objective function ∇f : Rn → Rn is Lipschitz continuous on X with208

Lipschitz constant L <∞. That is,209

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ ∀x, y ∈ X .210211

Assumption 2.1 implies that the augmented Lagrangian function is also a convex212

function with respect to x on X . That is, for any α > 0,213

∇2
xxL(x, λ;α) = ∇2f(x) + αATA ⪰ 0 ∀x ∈ X , λ ∈ Rm.214215

Note that the affine constraint function c : Rn → Rm is Lipschitz continuous on216

X with Lipschitz constant ∥A∥. That is, for all x, y ∈ X ,217

(2.8) ∥c(x)− c(y)∥ = ∥A(x− y)∥ ≤ ∥A∥∥x− y∥.218

Moreover, as a consequence of Assumption 2.1 and (2.8), we can show that the gradient219

of the augmented Lagrangian function is Lipschitz continuous with respect to x on X220

with Lipschitz constant L+ α∥A∥2. That is, due to (2.7),221

∇xL(x, λ;α)−∇yL(y, λ;α) = ∇f(x)−∇f(y) + α⟨A,Ax−Ay⟩ ,222

and so223

(2.9) ∥∇xL(x, λ;α)−∇yL(y, λ;α)∥ ≤
(
L+ α∥A∥2

)
∥x− y∥ ,224

for all x, y ∈ X .225

Assumption 2.2. The set X ⊂ Rn is nonempty, convex, and compact. Also,226

there exists an optimal primal-dual pair (x∗, λ∗) that satisfies the optimality conditions227

(2.3).228

The compactness of set X implies that there exists a positive D <∞ such that229

(2.10) ∥x− y∥ ≤ D ∀x, y ∈ X .230

6
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Also, the existence of an optimal solution x∗ implies that the problem in (2.6a) is231

bounded below. That is, for any x ∈ X , λ ∈ Rm, and α ≥ 0,232

L(x, λ;α) ≥ f(x)− ⟨λ, c(x)⟩ = f(x)− ⟨λ, c(x)− c(x∗)⟩233

≥ f(x)− ∥λ∥∥c(x)− c(x∗)∥234

≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩ − ∥λ∥∥c(x)− c(x∗)∥235

≥ f(x∗)− ∥∇f(x∗)∥D − ∥λ∥∥A∥D ,236237

where the first inequality is due to ∥c(x)∥2 ≥ 0, the equality is due to c(x∗) = 0, the238

third inequality is due to convexity of function f (Assumption 2.1) and (2.10), and239

the last inequality is due to (2.8) and (2.10). Therefore, (2.6a) is well-defined.240

We also develop results for the special case where the augmented Lagrangian241

function is strongly convex with respect to x ∈ X .242

Assumption 2.3. The augmented Lagrangian is µ-strongly convex with respect to243

x ∈ X . That is,244

∇2
xxL(x, λ) ⪰ µI ∀x ∈ X , λ ∈ Rm,245246

where I ∈ Rn×n is an identity matrix.247

Note that if the objective function f(x) is µ-strongly convex or A has full column248

rank, then Assumption 2.3 is trivially satisfied. Moreover, if Assumption 2.3 holds,249

then (2.6a) is well-defined for any λk ∈ Rm.250

We also make a standard assumption about the stochastic gradient of f(x) =251

Eζ [F (x, ζ)].252

Assumption 2.4. The variance in the stochastic gradient of f(x) is bounded.253

That is, there exist constants ω1, ω2 ≥ 0 such that254

Eζ [∥∇F (x, ζ)−∇f(x)∥2] ≤ ω1∥∇f(x)∥2 + ω2, ∀x ∈ X .255256

Using Assumptions 2.1, 2.2 and 2.4, it follows that257

Eζ [∥∇F (x, ζ)−∇f(x)∥2] ≤ 2ω1∥∇f(x)−∇f(x∗)∥2 + 2ω1∥∇f(x∗)∥2 + ω2258

≤ 2ω1L
2D2 + 2ω1∥∇f(x∗)∥2 + ω2

def
= ω ,259260

where the first inequality is due to the fact that ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2 for any a, b ∈261

Rn. In turn, we note that combining the assumptions above implies the existence of262

ω ≥ 0 such that263

Eζ [∥∇F (x, ζ)−∇f(x)∥2] ≤ ω, ∀x ∈ X .(2.11)264265

2.3. Gradient Descent and the Moreau envelope. The convergence prop-266

erties of the augmented Lagrangian method are often analyzed by showing its equival-267

ence to a method (e.g., proximal point method) applied to dual problem (cf. [82]). We268

follow a similar approach in our analysis and show the equivalence of the augmented269

Lagrangian method and gradient descent method applied to the Moreau envelope [60]270

of the (negative) dual function. The negative of the dual function of (1.1) is denoted271

(2.12) q(λ) = −min
x∈X

ℓ(x, λ) ,272

7
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and is known to be a convex, proper and continuous function from Rm to R [20]. For273

any given α > 0, the Moreau envelope of q(λ) is defined as follows [60]:274

qα(u)
def
= min

λ

[
q(λ) +

1

2α
∥λ− u∥2

]
.(2.13)275

276

In the following lemma, we summarize the important properties of Moreau envelopes.277

Lemma 2.1. The function qα(u) given in (2.13) is called the Moreau envelope of278

q(λ) and satisfies the following properties.279

(i) [66, Equation 3.2] The gradient of the Moreau envelope is280

∇qα(u) =
1

α
(u− proxαq(u)),(2.14)281

282

where283

proxαq(u) = argmin
λ

[
q(λ) +

1

2α
∥λ− u∥2

]
.284

285

(ii) [6, Corollary 18.19] The gradients ∇qα(u) are Lipschitz continuous with286

Lipschitz constant Lα = α−1. That is,287

∥∇qα(u)−∇qα(v)∥ ≤ α−1∥u− v∥, ∀u, v ∈ Rm.(2.15)288289

(iii) [66, Page 136] The Moreau envelope retains the optimal value and the set of290

minimizers. That is,291

min
λ

q(λ) = min
λ

qα(λ) and argmin
λ

q(λ) = argmin
u

qα(u),(2.16)292
293

where the unique common minimizer λ∗ ∈ Rm satisfies the fixed point equation294

λ∗ = proxαq(λ
∗).295

(iv) [69, Lemma 2.23] q(λ) is strongly convex with parameter µq > 0 if and only296

if qα(u) is strongly convex with parameter µα =
µq

µqα+1 > 0.297

Due to Assumption 2.2 and weak duality [20], we have that q(λ) is bounded below.298

That is, the optimal value q∗ is finite. Indeed,299

(2.17) q∗ = min
λ

qα(λ) = min
λ

q(λ) = −max
λ

[−q(λ)] ≥ − min
x∈X ,c(x)=0

f(x) = −f(x∗) .300

Owing to this fact and the properties of qα(λ) in Lemma 2.1, the dual variable λ→ λ∗301

will converge by iteratively minimizing qα(λ) as in the gradient descent method. More302

explicitly, we may form a convergent sequence of dual variables as follows:303

λk+1 = λk − α∇qα(λk)(2.18)304

= argmin
λ

[
q(λ) +

1

2α
∥λ− λk∥2

]
305

= argmin
λ

[
−min

x∈X
[ℓ(x, λ)] +

1

2α
∥λ− λk∥2

]
306

= argmax
λ

[
min
x∈X

[ℓ(x, λ)− 1

2α
∥λ− λk∥2]

]
,307

308
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where the second equality is due to (2.14) and third equality is due to (2.12). The309

function ℓ(x, λ)− 1
2α∥λ−λk∥2 is convex with respect to x on X and strongly concave310

with respect to λ. By Sion’s Minimax Theorem [80], we can interchange the min and311

max operations (cf. [82, Section 10.5.2]) and obtain an equivalent characterization.312

That is,313

max
λ

[
min
x∈X

[ℓ(x, λ)− 1

2α
∥λ− λk∥2]

]
= min

x∈X

[
max
λ

[ℓ(x, λ)− 1

2α
∥λ− λk∥2]

](2.19)

314

= min
x∈X

[
max
λ

[f(x)− ⟨λ, c(x)⟩ − 1

2α
∥λ− λk∥2]

]
.(2.20)315

316

Note that the optimal solution to the max problem (strongly concave in λ) in the317

second equality is λ = λk − αc(x). Substituting this expression into (2.20), we find318

max
λ

[
min
x∈X

[ℓ(x, λ)− 1

2α
∥λ− λk∥2]

]
= min

x∈X
L(x, λk;α).319

320

Hence, the dual update λk+1 is given as follows:321

x∗
k ∈ argmin

x∈X
L(x, λk;α)(2.21a)322

λk+1 = λk − αc(x∗
k).(2.21b)323324

We now observe that the primal updates in (2.6a) and (2.21a) are both min-325

imizers of the augmented Lagrangian function within the set X . This optimization326

problem can have multiple optimal solutions when the augmented Lagrangian func-327

tion L(x, λk;α) is only a general convex function (not strongly convex). Hence, the328

updates (2.6a) and (2.21a) may not be the same. However, the dual updates are329

equivalent due to the following inequality [50, Equation 2.16]: For any x ∈ X and330

x∗
k ∈ argminx∈X L(x, λk;α),331

(2.22) ∥c(x∗
k)− c(x)∥2 ≤ 2

α
(L(x, λk;α)− L(x∗

k, λk;α)) .332

Therefore, all solutions of minx∈X L(x, λk;α) have the same constraint function value333

c(x) and the augmented Lagrangian method is equivalent to the gradient descent334

method applied to the Moreau envelope (2.13). Finally, we conclude this section on335

preliminary material by noting that336

∇qα(λk) = c(x∗
k) ,(2.23)337338

due to (2.18) and (2.21b).339

3. Algorithmic Framework. This section begins with a description of a gen-340

eric inexact augmented Lagrangian framework for solving (1.1). We then provide a341

complete description of our algorithm, which employs the adaptive sampling proximal342

gradient method [7,83] to minimize the augmented Lagrangian function (2.7) defined343

at each iteration.344

Each primal variable update (2.6a) in the augmented Lagrangian method involves345

solving a computationally expensive optimization problem, namely,346

(3.1) min
x∈X

L(x, λk;α),347
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where α > 0 is the penalty parameter and λk is the dual variable at iteration k ∈ N.348

Owing to the stochastic nature of sampling the objective function f(x) = Eζ [F (x, ζ)],349

the exact solutions to these subproblems cannot be obtained efficiently. Therefore, we350

work with the inexact augmented Lagrangian framework outlined in Algorithm 3.1.351

At each iteration of this meta-algorithm, the subproblem (3.1) is solved (inexactly)352

by a given subproblem solver S until certain as yet unspecified inexactness conditions353

hold (cf. Subsection 3.2). Of course, the dual variable update incurs errors attributed354

to the inexact primal solves. However, if appropriate inexactness conditions are used355

to terminate the subproblem solver, then Algorithm 3.1 will still converge at the same356

rate as the exact algorithm (2.6), albeit in expectation.357

Algorithm 3.1 Inexact Augmented Lagrangian Framework

Require: x−1 ∈ Rn, λ0 ∈ Rm, α > 0, inexactness conditions, solver S.
1: for k = 0, 1, ... do
2: Set starting point xk,0 ← xk−1

3: Find an approximate minimizer xk of (3.1) using solver S, starting with xk,0

such that some inexactness conditions are satisfied
4: Update λk+1 ← λk − αc(xk)
5: end for

Remark 3.1. We make the following remarks about Algorithm 3.1.358

• Solver and inexactness conditions: For the sake of generality, we leave359

the description of the solver and inexactness conditions arbitrary and specify360

them in Subsection 3.1 and Subsection 3.2 respectively. We assume that361

the solver S can compute an approximate minimizer xk that satisfies the362

inexactness conditions. The sequences of primal and dual iterates obtained363

in the algorithm are random due to the stochastic nature of the objective364

function f(x). Therefore, this assumption is reasonable when the inexactness365

conditions are also stochastic.366

• Penalty parameter (α > 0): The algorithm employs a constant penalty367

parameter α > 0. In Section 4, we show that the algorithm converges for any368

choice of this parameter and does not depend on problem characteristics or369

other algorithmic parameters.370

• Starting points (xk,0): At each iteration, the algorithm uses the previous371

primal iterate as starting point in the solver S to solve (3.1). This is meant to372

reduce the computational effort to solve (3.1). Since the successive augmented373

Lagrangian functions differ only in the dual variable λk, the approximate374

minimizer of the previous subproblem is an intuitive estimate of the solution375

to the current problem. In Section 4, we quantify the efficiency of this starting376

point rule in terms of total computational work.377

We now describe the unspecified components of this algorithm: the solver S and the378

tolerance conditions.379

3.1. Adaptive Sampling Proximal Gradient Method. Projected or prox-380

imal stochastic gradient methods are a popular class of methods for solving (3.1) when381

the projection or proximal operators are easy to compute [66]. The iterate update of382

a projected stochastic gradient method is given as follows:383

(3.2) xk,t+1 = xk,t + ηRSk,t
(xk,t, λk;α, η) ,384
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where η > 0 is the step size parameter, k ∈ N denotes the outer augmented Lagrangian385

iteration counter, t ∈ N denotes the inner projected stochastic gradient iteration386

counter, Sk,t is a set consisting of i.i.d. samples of ζ,387

RSk,t
(xk,t, λk;α, η)

def
=

projX (xk,t − η∇xLSk,t
(xk,t, λk;α))− xk,t

η
,(3.3)388

∇xLSk,t
(xk,t, λk;α)

def
=

1

|Sk,t|
∑

ζi∈Sk,t

∇xL(xk,t, λk, ζi;α),(3.4)389

390

and391

∇xL(xk,t, λk, ζi;α) = ∇xF (xk,t, ζi)− ⟨λk,∇c(xk,t)⟩+ α⟨c(xk,t),∇c(xk,t)⟩.392

In what follows, it is helpful to note that RSk,t
(xk,t, λk;α, η) denotes a stochastic393

approximation of the true projected (reduced) gradient394

(3.5) R(xk,t, λk;α, η)
def
=

projX (xk,t − η∇xL(xk,t, λk;α))− xk,t

η
.395

Two adaptive sampling strategies have recently been proposed for the projected396

stochastic gradient method [7, 83]. Both strategies employ a mechanism for improv-397

ing the quality of the stochastic gradient approximation by updating the sample size398

|Sk,t| on the fly at each (subproblem) iteration t. In turn, they overcome a signific-399

ant limitation of fixed sample size strategies without compromising efficiency, while400

also maintaining the fast convergence of their deterministic counterparts. Indeed,401

fixed sample size strategies can only guarantee convergence to a neighborhood of the402

solution or must compromise on the convergence rate.403

Adaptive sampling strategies aim to ensure that the variance in the stochastic404

gradient is controlled by the squared norm of the projected gradient. In [83], this is405

written as follows:406

(3.6) Ek,t

[
∥∇xLSk,t

(xk,t, λk)−∇xL(xk,t, λk)∥2
]
≤ θ2g∥Ek,t[RSk,t

(xk,t, λk;α, η)]∥2 ,407

where θg > 0 is a given parameter, and408

(3.7) Ek,t[ · ] def= E[ · |λk, xk,t] ,409

denotes the expectation conditioned on the past iterates until λk, xk,t. Specifically,
Ek,t is the conditional expectation conditioned on the filtration

Tk,t = σ(λ0, x−1,0, S0,0, . . . , S0,T0
, . . . , Sk−1,0, . . . , Sk−1,Tk−1

, Sk,T0
, . . . , Sk,t) ,

where Ti denotes the number of inner iterations performed at the outer iteration i.410

Using the definition of the gradient of the augmented Lagrangian function in (3.6)411

results in the following equivalent condition:412

(3.8) Ek,t

[
∥∇FSk,t

(xk,t)−∇f(xk,t)∥2
]
≤ θ2g∥Ek,t[RSk,t

(xk,t, λk;α, η)]∥2 ,413

where414

(3.9) ∇FSk,t
(xk,t)

def
=

1

|Sk,t|
∑

ζi∈Sk,t

∇F (xk,t, ζi).415

Since the samples of ζ are i.i.d., Bienaymé’s identity may be used to simplify the416

left-hand side of (3.8). This results in the following equivalent condition:417
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Condition 3.1 (Theoretical Sampling Condition). For any given θg > 0, the418

variance in the stochastic gradient of the objective function f is controlled by the419

squared norm of the expected projected gradient RSk,t
. That is,420

(3.10)
Eζ [∥∇F (xk,t, ζ)−∇f(xk,t)∥2]

|Sk,t|
≤ θ2g∥Ek,t[RSk,t

(xk,t, λk;α, η)]∥2.421

This condition involves computing true variances and exact projected gradients that422

are unavailable in practice. Therefore, in Section 5, we also propose a practical version423

of this condition to control the sample sizes.424

We conclude this subsection with remark and the following well-known result425

(adapted to our setting) [64, Corollary 2.3.2] that is used in the coming analysis.426

Proposition 3.1. Suppose Assumptions 2.1 and 2.2 hold. Then, for any 0 <427

η < 1
L+α∥A∥2 and for all x ∈ X , λ ∈ Rm, α > 0,428

(3.11) ∥R(x, λ;α, η)∥2 ≤ 2

η
(L(x, λ, α)− L(x∗

L, λ, α)) ,429

where x∗
L ∈ argminx∈X L(x, λ, α). Moreover, if Assumption 2.3 also holds, then,430

(3.12)
µ

2
∥x− x∗

L∥2 +
η

2
∥R(x, λ;α, η)∥2 ≤ ⟨R(x, λ;α, η), x− x∗

L⟩.431

Remark 3.2 (Alternative Sampling Condition). An alternative sampling condi-432

tion is proposed in [7] that would replace the right-hand side of (3.6) by a constant433

factor times the squared norm of the projected gradient (3.5). Following the proced-434

ure above, we would then arrive at a somewhat simpler inequality taking the place of435

(3.10), namely,436

Eζ [∥∇F (xk,t, ζ)−∇f(xk,t)∥2]
|Sk,t|

≤ θ̃2g∥R(xk,t, λk;α, η)]∥2 ,(3.13)437
438

for some θ̃2g > 0. It turns out that the two conditions (3.10) and (3.13) are equivalent439

in the sense that their right-hand sides bound each other from above and below:440

(3.14)
∥R(xk,t, λk;α, η)∥

1 + θg
≤ ∥Ek,t[RSk,t

(xk,t, λk;α, η)∥ ≤
∥R(xk,t, λk;α, η)∥

1− θg
.441

Indeed, note that442

∥Ek,t[RSk,t
(xk,t, λk;α, η)−R(xk,t, λk;α, η)]∥2443

≤ Ek,t[∥RSk,t
(xk,t, λk;α, η)−R(xk,t, λk;α, η)∥2]444

= η−2Ek,t

[
∥ projX (xk,t − η∇xLSk,t

(xk,t, λk;α))445

− projX (xk,t − η∇xL(xk,t, λk;α))∥2
]

446

≤ Ek,t

[
∥∇FSk,t

(xk,t)−∇f(xk,t)∥2
]

447

≤ θ2g∥Ek,t[RSk,t
(xk,t, λk;α, η)]∥2 ,448449

where the first line follows from Jensen’s inequality, the proceeding equality is due450

to (3.3) and (3.5), the second inequality follows from the non-expansiveness property451

of projections [64], and the last inequality is due to (3.8). Rearranging terms and452

using the reverse triangle inequality, ∥a∥ − ∥b∥ ≤ ∥a− b∥, for all a, b ∈ Rn, we arrive453

at (3.14). Moreover, both conditions (3.10) and (3.13) lead to identical practical454

algorithms; cf. Section 5. We choose to work with (3.10) instead of (3.13) because it455

leads to a simpler presentation of the complexity theory in Section 4.456
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3.2. Inexactness Conditions. The efficiency of an inexact augmented Lag-457

rangian framework depends on its inexactness conditions. These conditions must458

balance the accuracy of the solution computed at each (outer) iteration and the over-459

all computational efficiency. Due to the stochastic nature of the iterates obtained460

by our choice of the subproblem solver (cf. Subsection 3.1), these inexactness condi-461

tions must also be stochastic. We now propose inexactness conditions that meet these462

requirements based on the Moreau envelope perspective developed in Subsection 2.3.463

Recall from Subsection 2.3 that the exact augmented Lagrangian method can464

be interpreted as a gradient descent method applied to the Moreau envelope of the465

(negative) dual function. Therefore, the inexact augmented Lagrangian method leads466

to inexact dual variable updates. That is, from the dual update (line 3 in Al-467

gorithm 3.1), (2.6b), and (2.23), we have,468

λk+1 = λk − αc(xk)469

= λk − αc(x∗
k) + αc(x∗

k)− αc(xk)470

= λk − α∇qα(λk) + αϵk,(3.15)471472

where x∗
k is an exact minimizer of (3.1) and ϵk

def
= c(x∗

k) − c(xk). We note that we473

have not imposed any structure on the subproblems (3.1) that would give the update474

error ϵk zero mean; i.e., Ek[ϵk] ̸= 0, where475

(3.16) Ek[ · ] = E[ · |λk]476

is the expected value operator conditioned on the iterates up until λk. Specifically,
Ek is the conditional expectation conditioned on the filtration

Tk = σ(λ0, x−1,0, S0,0, . . . , S0,T0
, . . . , Sk−1,0, . . . , Sk−1,Tk−1

) ,

where Ti denotes the number of inner iterations performed at the outer iteration i. In477

turn, we choose to view the additive update rule (3.15) as a biased stochastic gradient478

estimator update.479

It is natural to consider an additional sampling condition when the sampling error480

can control the bias; cf. [7, Condition 2]. Such additional conditions are also common481

in trust-region methods [1, 5, 15]. In the present setting, however, the error is due482

to the subproblem solver. To address this, we aim to design a tolerance condition483

for terminating the inner loop. The following condition allows us to control the484

inexactness of the Moreau envelope gradient estimates in the dual update:485

Condition 3.2 (Tolerance Condition I). For any given θe ∈ [0, 1) and τk ≥ 0486

with limk→∞ τk = 0,487

Ek

[
∥c(x∗

k)− c(xk)∥2
]
≤ θ2e∥c(x∗

k)∥2 + τk,(3.17)488489

where x∗
k is a minimizer of (3.1).490

From the Moreau envelope perspective (3.15), this condition ensures that the expected491

squared norm of the error, Ek[∥ϵk∥2], is controlled by the squared norm of the gradient492

of qα(λk) and a vanishing positive constant τk. That is, from (2.23), (3.15), and (3.17),493

it follows that494

Ek[∥ϵk∥2] = Ek

[
∥c(x∗

k)− c(xk)∥2
]
≤ θ2e∥c(x∗

k)∥2 + τk = θ2e∥∇qα(λk)∥2 + τk.495496
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Likewise, this condition ensures that inexact gradient information can be employed497

far away from the solution (i.e., when the gradient’s norm is large). Meanwhile, it also498

ensures accurate gradient information near the solution (i.e., when the gradient norm499

is small). Although this condition is derived from controlling the inexactness in the500

dual update, it directly relates to inexactness in the minimization of (3.1) (cf. (2.22)).501

Therefore, we can replace Condition 3.2 by the following alternative condition:502

Condition 3.3 (Tolerance Condition II). For any given θe ∈ [0, 1) and τk ≥ 0503

with limk→∞ τk = 0,504

Ek [L(xk, λk;α)− L(x∗
k, λk;α)] ≤

αθ2e∥c(x∗
k)∥2

2
+

ατk
2

,(3.18)505
506

where x∗
k is a minimizer of (3.1).507

Condition 3.3 controls the error in the minimization of (3.1) and directly implies508

Condition 3.2. Indeed, using (2.22) and (3.18), we find509

(3.19) Ek

[
∥c(x∗

k)− c(xk)∥2
]
≤ 2

α
Ek [L(xk, λk;α)− L(x∗

k, λk;α)] ≤ θ2e∥c(x∗
k)∥2 + τk.510

When the augmented Lagrangian functions are strongly convex, we can also control511

the norm of the projected gradient (3.5). That is, by Assumption 2.3, (2.8), and512

(3.12), we have513

(3.20) ∥c(x∗
k)− c(xk)∥2 ≤ ∥A∥2∥x∗

k − xk∥2 ≤
4∥A∥2
µ2
∥R(xk, λk;α, η)∥2.514

Therefore, we can impose the following alternate condition when f(x) is strongly515

convex.516

Condition 3.4 (Tolerance Condition III). For any given θ̃e ∈ [0, 1) and τ̃k ≥ 0517

with limk→∞ τ̃k = 0,518

Ek

[
∥R(xk, λk;α, η)∥2

]
≤ θ̃2e∥c(x∗

k)∥2 + τ̃k,(3.21)519520

where x∗
k is a minimizer of (3.1).521

Condition 3.4 also controls the error in the subproblem (3.1) and implies Condition 3.2.522

Indeed, set θ̃e ≤ µθe
2∥A∥ and τ̃k ≤ µ2τk

4∥A∥2 . Then, using (3.20) and (3.21), it holds that523

(3.22) Ek

[
∥c(x∗

k)− c(xk)∥2
]
≤ 4∥A∥2

µ2
Ek

[
∥R(xk, λk;α, η)∥2

]
≤ θ2e∥c(x∗

k)∥2 + τk.524

525

Remark 3.3. We observe that conditions similar to Conditions 3.2 through 3.4526

have been proposed in the literature (cf. [50, 56, 72, 86]). The primary advantage of527

employing our conditions lies in their adaptive control over the subproblem error.528

Although verifying Conditions 3.2 through 3.4 for a stochastic subproblem solver can529

be challenging because they each require evaluating deterministic quantities, these530

conditions can still help us gain insight into the errors permitted in the algorithm531

while retaining desirable convergence properties. Furthermore, these conditions can532

guide the development of practical algorithms.533
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4. Theory. We now establish theoretical convergence guarantees and total sam-534

ple complexity results for the proposed inexact augmented Lagrangian algorithmic535

framework when the inexactness conditions proposed in Subsection 3.2 are satisfied.536

We use the following notation for the full expectation:537

(4.1) E[ · ] = E0[E1[ · · ·Ek[ · ]]].538

4.1. Convergence Results. We start by establishing a technical lemma.539

Lemma 4.1. Suppose Assumptions 2.1 and 2.2 hold. For any x−1, λ0 and α > 0,540

let {xk, λk} be the sequence of primal-dual iterates generated by Algorithm 3.1. Then,541

for all k ∈ N,542

qα(λk+1) ≤ qα(λk)−
α

2
∥∇qα(λk)∥2 +

α

2
∥ϵk∥2,(4.2)543

544

where ϵk = c(x∗
k)− c(xk) and x∗

k is a minimizer of (3.1).545

Proof. From the dual update rule (line 3 in Algorithm 3.1), (2.6b), and (2.23),546

it follows that547

λk+1 = λk − α∇qα(λk) + αϵk .548549

Using the Lipschitz continuity of∇qα(λ) with Lipschitz constant Lα = α−1 (cf. (2.15))550

and the descent lemma [12], we have,551

qα(λk+1) ≤ qα(λk)− α⟨∇qα(λk)− ϵk,∇qα(λk)⟩+
α2Lα

2
∥∇qα(λk)− ϵk∥2552

= qα(λk)−
α

2
∥∇qα(λk)∥2 +

α

2
∥ϵk∥2 ,553

554

as necessary.555

We are now ready to establish convergence results for the inexactness conditions556

developed in Subsection 3.2.557

Theorem 4.2. Suppose Assumptions 2.1, 2.2 and 2.4 hold. For any x−1, λ0558

and α > 0, let {(xk, λk)} be the sequence of primal-dual iterates generated by Al-559

gorithm 3.1. Furthermore, let θe ∈ [0, 1) and τk ≥ 0 such that τ−1
0

∑∞
k=0 τk = a∞ <560

∞. If any of the following three statements hold at each iteration k ∈ N :561

(a) the primal iterates xk satisfy Condition 3.2;562

(b) the primal iterates xk satisfy Condition 3.3; or563

(c) Assumption 2.3 also holds and the primal iterates xk satisfy Condition 3.4564

with θ̃e ≤ µθe
2∥A∥ and τ̃k ≤ µ2τk

4∥A∥2 ;565

then566

lim
k→∞

E[∥c(xk)∥2] = 0.567
568

Moreover, for any K ∈ N, we have that,569

min
0≤k≤K−1

E[∥c(xk)∥2] ≤
4(1 + θ2e)

α(1− θ2e)K
[qα(λ0)− q∗] +

4

1− θ2e

τ0a∞
K

,(4.3)570
571

where q∗ > −∞ is defined in (2.17). In addition, if either (b) or (c) is satisfied, then572

(4.4) lim
k→∞

E

[∥∥∥∥projX (xk − η∇ℓx(xk, λk+1))− xk

η

∥∥∥∥2
]
= 0 ,573

for every 0 < η < 1
L+α∥A∥2 .574

15

This manuscript is for review purposes only.



Proof. If (a), (b), or (c) holds, then (3.17) holds as well due to (3.19) and (3.22).575

By Lemma 4.1, we have,576

qα(λk+1) ≤ qα(λk)−
α

2
∥∇qα(λk)∥2 +

α

2
∥ϵk∥2.577

578

Taking the conditional expectation (3.16) of both sides and invoking (2.23) and (3.17),579

we arrive at580

Ek [qα(λk+1)] ≤ qα(λk)−
α

2
∥∇qα(λk)∥2 +

α

2
Ek

[
∥ϵk∥2

]
581

≤ qα(λk)−
α(1− θ2e)

2
∥c(x∗

k)∥2 +
α

2
τk.(4.5)582

583

Rearranging terms, we find584

∥c(x∗
k)∥2 ≤

2

α(1− θ2e)
(qα(λk)− Ek[qα(λk+1)]) +

1

1− θ2e
τk.(4.6)585

586

Therefore,587

Ek

[
∥c(xk)∥2

]
≤ 2Ek

[
∥c(xk)− c(x∗

k)∥2
]
+ 2∥c(x∗

k)∥2588

≤ 2(1 + θ2e)∥c(x∗
k)∥2 + 2τk589

≤ 4(1 + θ2e)

α(1− θ2e)
(qα(λk)− Ek[qα(λk+1)]) +

4

1− θ2e
τk ,590

591

where the first inequality is due to ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2 for any a, b ∈ Rn, the592

second inequality is due to (3.17) and the last inequality follows from (4.6). Taking593

the full expectation (4.1), and summing the above inequality from k = 0 to K − 1,594

delivers595

K−1∑
k=0

E
[
∥c(xk)∥2

]
≤ 4(1 + θ2e)

α(1− θ2e)
E[qα(λ0)− qα(λK)] +

4

1− θ2e

K−1∑
k=0

τk596

≤ 4(1 + θ2e)

α(1− θ2e)
[qα(λ0)− q∗] +

4

1− θ2e
τ0a∞ ,597

598

where the second inequality follows from (2.16) and the assumption
∑∞

k=0 τk =599

τ0a∞ <∞. Observe that q∗ > −∞ due to (2.17), which follows from Assumption 2.2.600

Therefore,601

K−1∑
k=0

E
[
∥c(xk)∥2

]
<∞ ,602

603

which implies that604

lim
k→∞

E
[
∥c(xk)∥2

]
= 0.605

606

Moreover,607

min
0≤k≤K−1

E[∥c(xk)∥2] ≤
1

K

K−1∑
k=0

E[∥c(xk)∥2]608

≤ 4(1 + θ2e)

α(1− θ2e)K
[qα(λ0)− q∗] +

4

1− θ2e

τ0a∞
K

.609
610
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We will now analyze the stationarity error (4.4). Using (2.1), λk+1 = λk − αc(xk),611

and (2.7), it follows that,612

xk − η∇ℓx(xk, λk+1) = xk − η(∇f(xk)− ⟨λk+1,∇c(xk))⟩)613

= xk − η(∇f(xk)− ⟨λk − αc(xk),∇c(xk)⟩)614

= xk − η∇xL(xk, λk;α).615616

Therefore,617 ∥∥∥∥projX (xk − η∇ℓx(xk, λk+1))− xk

η

∥∥∥∥2 = ∥R(xk, λk;α, η)∥2 .(4.7)618
619

If statement (b) holds, then it follows from (3.11) that620

E
[
∥R(xk, λk;α, η)∥2

]
≤ 2

η
(E [L(xk, λk;α)− L(x∗

k, λk;α)])621

≤ αθ2e
η

E[∥c(x∗
k)∥2] +

α

η
τk.622

623

If statement (c) holds, then624

E
[
∥R(xk, λk;α, η)∥2

]
≤ θ̃2eE[∥c(x∗

k)∥2] + τ̃k.625
626

In turn, if either statements (b) or (c) holds, it follows that627

E
[
∥R(xk, λk;α, η)∥2

]
≤ max

{
αθ2e
η

, θ̃2e

}
E
[
∥c(x∗

k)∥2
]
+max

{
α

η
τk, τ̃k

}
.(4.8)628

629

Taking the full expectation and summing the inequality (4.6) from k = 0 to K − 1,630

and observing that q∗ > −∞, we arrive at631

K−1∑
k=0

E
[
∥c(x∗

k)∥2
]
≤ 2

α(1− θ2e)
[qα(λ0)− q∗] +

1

1− θ2e
τ0a∞ <∞,(4.9)632

633

which implies that634

lim
k→∞

E
[
∥c(x∗

k)∥2
]
= 0.(4.10)635

636

Taking limits on both sides of (4.8) and using (4.10) completes the proof.637

Theorem 4.2 establishes that the expected feasibility error vanishes as k → 0, and638

meanwhile, the smallest feasibility error converges to zero at a sublinear rate.639

Moreover, the stationarity error also converges to zero in expectation when either640

Condition 3.3 or Condition 3.4 holds. However, the theorem does not guarantee any641

rate of convergence of the stationarity error. To establish such a result, we can perform642

one additional update at the iterate at which the expected feasibility error attains a643

minimum.644

Corollary 4.3. Suppose Assumptions 2.1, 2.2 and 2.4 hold. Let k∗ be the iter-645

ation number at which min0≤k≤K−1 E[∥c(xk)∥2] is attained. That is,646

E[∥c(xk∗)∥2] = min
0≤k≤K−1

E[∥c(xk)∥2].647
648

For any given α̃ > 0, h ≥ 0, and 0 < η̃ < 1
L+α̃∥A∥2 , let x̃ be an approximate minimizer649

of minx∈X L(x, λk∗ , α̃) obtained with the starting point xk∗ that satisfies either of the650

following two statements:651
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(i) x̃ satisfies

Ek∗

[
L(x̃, λk∗ ; α̃)− L(x∗

k∗
, λk∗ ; α̃)

]
≤ α̃h

2K
; or

652

(ii) Assumption 2.3 also holds and x̃ satisfies

Ek∗

[
∥R(x̃, λk∗ ; α̃, η̃)∥2

]
≤ µ2h

4∥A∥2K .

653

Then, for λ̃ = λk∗ − α̃c(x̃), we have654

E[∥c(x̃)∥2] ≤ 2h

K
+

8(1 + θ2e)

α(1− θ2e)K
[qα(λ0)− q∗] +

8

1− θ2e

τ0a∞
K

(4.11a)655
656

and657

E

∥∥∥∥∥projX (x̃− η̃∇ℓx(x̃, λ̃))− x̃

η̃

∥∥∥∥∥
2
 ≤ b

K
,(4.11b)658

659

where b = α̃h
η̃ if (i) holds and b = µ2h

4∥A∥2 if (ii) holds.660

Proof. If either (i) or (ii) is satisfied, then using α̃ as the penalty parameter in661

(3.19) and (3.22), it follows that662

Ek∗ [∥c(x̃)− c(xk∗)∥2] ≤
h

K
.663

664

Therefore, taking the full expectation,665

E[∥c(x̃)∥2] = E[∥c(x̃)− c(xk∗) + c(xk∗)∥2]666

≤ 2E[∥c(x̃)− c(xk∗)∥2] + 2E[∥c(xk∗)∥2]667

≤ 2h

K
+

8(1 + θ2e)

α(1− θ2e)K
[qα(λ0)− q∗] +

8

1− θ2e

τ0a∞
K

,668
669

where the first inequality is due to ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2 for any a, b ∈ Rn, and670

the last inequality follows from (4.3). Now, consider the stationarity error. Similar671

to (4.7), we can show that672

E

∥∥∥∥∥projX (x̃− η̃∇ℓx(x̃, λ̃))− x̃

η̃

∥∥∥∥∥
2
 = E

[
∥R(x̃, λk∗ ; α̃, η̃)∥2

]
.(4.12)673

674

Therefore, if (i) holds, it follows from (3.11) with α̃ as the penalty parameter that675

E
[
∥R(x̃, λk∗ ; α̃, η̃)∥2

]
≤ 2

η̃

(
E
[
L(x̃, λk∗ ; α̃)− L(x∗

k∗
, λk∗ ; α̃

])
≤ α̃h

η̃K
.676

677

Likewise, if (ii) holds, then

E
[
∥R(x̃, λk∗ ; α̃, η̃)∥2

]
≤ µ2h

4∥A∥2K .

Substituting these inequalities into (4.12) completes the proof.678
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4.2. Sample Complexity. We now establish the sample complexity for our679

inexact augmented Lagrangian algorithm, i.e., we estimate the worst-case expected680

total number of stochastic gradient evaluations to reach an ϵ−accurate solution. To681

define accuracy, we specifically consider the following metric:682

max

E[∥c(x̃)∥2],E

∥∥∥∥∥projX (x̃− η̃∇ℓx(x̃, λ̃))− x̃

η̃

∥∥∥∥∥
2
 ≤ ϵ,(4.13)683

684

for some ϵ ∈ (0, 1). For the sake of brevity in this analysis, we employ Condition 3.3685

as the inexactness condition with θe = 0. At any outer iteration k, xk−1 is used as the686

starting point in the adaptive sampling proximal gradient method to solve the inner687

subproblem (3.1) until Condition 3.3 is satisfied. Recall that we define the index for688

the inner iterations as t, and the iterates in the inner loop as xk,t. Since xk−1 is used689

as the starting iterate, we set xk,0
def
= xk−1.690

The adaptive sampling projected gradient method used to solve the inner subprob-691

lems (see Subsection 3.1) converges at a sublinear rate (cf. [7, Theorem 2.11], [83, The-692

orem 3.7]). The following theorem reformulates this result for augmented Lagrangian693

subproblems (3.1).694

Theorem 4.4. Suppose Assumptions 2.1 and 2.3 hold. If η =
(1−2θ2

g)

L+α∥A∥2 with695

θg ∈ [0, 1√
2
) and Condition 3.1 is satisfied, then for any outer iteration k ∈ N and696

inner iteration t ∈ N+, it holds that697

Ek[L(xk,t, λk;α)− L(x∗
k, λk;α)] ≤

(L+ α∥A∥2)minx∗
k∈X∗

k
∥xk−1 − x∗

k∥2
2(1− 2θ2g)t

,(4.14)698

699

where X ∗
k = argminx∈X L(x, λk;α).700

Recall that Ek denotes expectation conditioned on the filtration Tk, and note that the701

initial distance to optimality is in this filtration, i.e., minx∗
k∈X∗

k
∥xk−1 − x∗

k∥2 ∈ Tk.702

Adaptive sampling methods are more efficient and robust in practice than meth-703

ods that increase the sample sizes at predetermined rates. However, their sample704

complexity analysis has proven to be difficult, and establishing an upper bound on705

the sample sizes at each iteration poses significant challenges. Therefore, we make the706

following assumption based on the sample size growth rate over inner iterations t.707

Assumption 4.1. At any given outer iteration k ∈ N, the expected sample size708

required to satisfy Condition 3.1 increases at a polynomial rate over the inner itera-709

tions t. More specifically, there exists c0 ≥ 0 and δ0 > 0 arbitrarily close to zero, such710

that711

(4.15) Ek[|Sk,t|]=
c0ω

θ2g minx∗
k∈X∗

k
∥xk−1 − x∗

k∥2
(t+ 1)1+δ0 ∀k, t ∈ N,712

where X ∗
k = argminx∈X L(x, λk;α) and ω is defined in (2.11).713

Predetermined sample growth rates similar to Assumption 4.1 are employed in un-714

constrained and constrained stochastic optimization settings [9,67]. We acknowledge715

that Assumption 4.1 pertains to algorithmic quantities and is, therefore, less than716

ideal. Nevertheless, while we cannot rigorously prove this statement, we provide the717

following set of supporting (heuristic) arguments.718
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Consider rewriting Condition 3.1 in the following way:719

bk,t
def
=

Eζ [∥∇f(xk,t, ζ)−∇F (xk,t)∥2]
θ2g∥Ek,t[RSk,t

(xk,t, λk;α, η)]∥2
≤ |Sk,t| .(4.16)720

721

This inequality is tight, i.e., |Sk,t| = bk,t when Condition 3.1 is satisfied with equality.722

In this case, due to (2.11), it follows that723

bk,t ≤
ω

θ2g∥Ek,t[RSk,t
(xk,t, λk;α, η)]∥2

.(4.17)724

725

On the other hand, using (4.14) and taking the expected value of both sides of (3.11)726

yields727

Ek[∥R(xk,t, λk;α, η)∥2] ≤
(L+ α∥A∥2)minx∗

k∈X∗
k
∥xk−1 − x∗

k∥2
η(1− 2θ2g)t

, ∀t ∈ N+.(4.18)728

729

This inequality implies that the expected squared norm of the reduced gradient goes730

to zero at a sublinear rate.731

Now, recall (3.14). In particular,732

∥Ek,t[RSk,t
(xk,t, λk;α, η)]∥2 ≤

1

(1− θg)2
∥R(xk,t, λk;α, η)]∥2 .733

734

Taking the conditional expectation Ek of both sides and invoking (4.18), it follows735

that736

Ek[∥Ek,t[RSk,t
(xk,t, λk;α, η)]∥2] ≤

(L+ α∥A∥2)minx∗
k∈X∗

k
∥xk−1 − x∗

k∥2
(1− θg)2 η(1− 2θ2g) t

, ∀t ∈ N+.737

738

This inequality implies that the expected squared norm of the stochastic reduced739

gradient goes to zero at a sublinear rate. Therefore, it is possible to replace the right-740

hand-side of Condition 3.1 with a sublinearly convergent sequence ((t+1)−(1+δ0)) for741

any t ∈ N and achieve a similar sublinear convergence result as in Theorem 4.4. In742

such a scenario, the sample sizes satisfy Assumption 4.1. For the sake of brevity, in743

the rest of our analysis, we assume δ0 = 0 since δ0 is arbitrarily close to zero.744

We now state an equation that is useful to bound finite sum expressions in the745

complexity analysis. For any δ > 0 and K ∈ N+, we have746

(4.19)

K∑
k=0

k1+δ <

∫ K+1

t=0

t1+δdt =
(K + 1)2+δ

2 + δ
.747

We are now ready to prove the main theorem about outer iteration and sample com-748

plexity.749

Theorem 4.5. Suppose Assumptions 2.1, 2.2 and 4.1 hold with δ0 = 0. For any750

x−1, λ0 and α > 0, let {(xk, λk)} be the sequence of primal-dual iterates generated by751

Algorithm 3.1 where xk satisfies Condition 3.3 at each outer iteration k with θe = 0,752

τk = τ0
(k+1)1+δ/2 , a∞ =

∑∞
k=0

1
(k+1)1+δ/2 , with τ0 ≥ 0, and δ > 0. Suppose the sample753

sizes |Sk,t| satisfy Condition 3.1 with θg ∈ [0, 1√
2
), η =

(1−2θ2
g)

L+α∥A∥2 . Under the conditions754

of Corollary 4.3 with x̃ satisfying (i) with h ≥ 0, η̃ =
(1−2θ2

g)

L+α̃∥A∥2 and α̃ > 0, the number755

of outer iterations to get an ϵ−accurate solution (x̃, λ̃) satisfying (4.13) is756

(4.20) Kϵ =

⌈
1

ϵ
max

{
8

α
[qα(λ0)− q∗] + 2(4τ0a∞ + h),

α̃h

η̃

}⌉
.757
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Moreover, if the gradients of the Lagrangian function are bounded, i.e.,758

∥∇L(xk−1, λk;α)∥2 ≤ DL for all k ∈ N, then the expected number of stochastic759

gradient evaluations is760

(4.21) E[W] ≤ B(Kϵ + 1)3+δ

α2τ20 (3 + δ)
+

B̃K2
ϵ

α̃2h2
,761

where762

B =
2c0ω

θ2g

(
(L+ α∥A∥2)2D2

(1− 2θ2g)
2

+ 4DL

)
,763

and764

B̃ =
2c0ω

θ2g

(
(L+ α̃∥A∥2)2D2

(1− 2θ2g)
2

+ 4DL

)
.765

Proof. Substituting θe = 0 into (4.11), we obtain766

E[∥c(x̃)∥2] ≤ 8

αK
[qα(λ0)− q∗] +

2(4τ0a∞ + h)

K
,767

768

and769

E

∥∥∥∥∥projX (x̃− η̃∇ℓx(x̃, λ̃))− x̃

η̃

∥∥∥∥∥
2
 ≤ α̃h

η̃K
.770

771

Therefore, for any K ≥ Kϵ defined in (4.20), (x̃, λ̃) satisfies (4.13).772

Let Tk be the first inner iteration at which Condition 3.3 is satisfied with θe = 0.773

If Tk = 0, then we would have a sufficiently accurate starting point for the algorithm774

to terminate before the first complete iteration. Therefore, without loss of generality,775

we assume that Tk > 0. By Theorem 4.4, the inner subproblem termination condition,776

Condition 3.3 with θe = 0, is satisfied at a given inner iteration t ∈ N+ if777

(L+ α∥A∥2)minx∗
k∈X∗

k
∥xk−1 − x∗

k∥2
2(1− 2θ2g)t

≤ ατk
2

.778

Thus, we have a deterministic upper bound Ωk > 0 on the random variable Tk; namely,779

(4.22) Tk ≤ Ωk
def
=

⌈
(L+ α∥A∥2)
(1− 2θ2g)ατk

min
x∗
k∈X∗

k

∥xk−1 − x∗
k∥2
⌉
.780

We now analyze the total number of expected stochastic gradient evaluations. First,781

consider the expected sample complexity at each outer iteration k:782

Ek[Wk] = Ek

[
Tk−1∑
t=0

|Sk,t|
]
≤ c0ω

θ2g minx∗
k∈X∗

k
∥xk−1 − x∗∥2

Ωk−1∑
t=0

(t+ 1)783

≤ c0ωΩ
2
k

θ2g minx∗
k∈X∗

k
∥xk−1 − x∗∥2 ,(4.23)784

785
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where the first inequality is due to Assumption 4.1 with δ0 = 0. Substituting (4.22)786

into (4.23), using ⌈x⌉ ≤ x+1 and ∥a+ b∥2 ≤ 2∥a∥2+2∥b∥2 for any a, b ∈ Rn, we have787

that788

Ek[Wk] ≤
2c0ω(L+ α∥A∥2)2 minx∗

k∈X∗
k
∥xk−1 − x∗

k∥2
θ2g(1− 2θ2g)

2α2τ2k
+

2c0ω

θ2g minx∗
k∈X∗

k
∥xk−1 − x∗∥2 .

(4.24)

789

790

Now, Tk > 0 implies that Condition 3.3 is violated at xk,0 = xk−1. That is,791

Ek [L(xk−1, λk;α)− L(x∗
k, λk;α)] >

ατk
2

.792
793

Recalling that xk−1 is in the filtration Tk, and using convexity of L, it follows that794

ατk
2

< L(xk−1, λk;α)− L(x∗
k, λk;α)795

≤ ∥∇L(xk−1, λk;α)∥∥xk−1 − x∗
k∥796

≤
√
DL∥xk−1 − x∗

k∥ ,797798

for all x∗
k ∈ X ∗

k . Therefore,799

min
x∗
k∈X∗

k

∥xk−1 − x∗
k∥2 >

α2τ2k
4DL

(4.25)800
801

Now, summing the inequality (4.24) from k = 0 to K − 1, taking full expectation,802

using (2.10) and (4.25), τk = τ0(k + 1)−1−δ/2, and (4.19), it follows that803

E

[
K−1∑
k=0

Wk

]
≤ 2c0ω(L+ α∥A∥2)2

θ2g(1− 2θ2g)
2α2

K−1∑
k=0

E[minx∗
k∈X∗

k
∥xk−1 − x∗

k∥2]
τ2k

+
8c0ωDL

θ2gα
2

K−1∑
k=0

1

τ2k
804

≤ B

α2τ20

K−1∑
k=0

(k + 1)2+δ
805

≤ B

α2τ20 (3 + δ)
(K + 1)3+δ .(4.26)806

807

We now consider the total number of stochastic gradients evaluated in the final step808

described in Corollary 4.3 with x̃ satisfying (i). Following a similar approach to the809

derivation of (4.24) and (4.25), and using (2.10), we have that810

E[W̃ ] ≤ 2c0ω(L+ α̃∥A∥2)2K2D2

θ2g(1− 2θ2g)
2α̃2h̃2

+
8c0ωK

2DL

θ2gα̃
2h̃2

=
B̃K2

α̃2h2
.(4.27)811

812

Finally, we can define the expected total number of gradient evaluations as813

E[W] = E

[
K−1∑
k=0

Wk

]
+ E[W̃](4.28)814

≤ B(K + 1)3+δ

α2τ20 (3 + δ)
+

B̃K2

α̃2h2
.(4.29)815

816

Substituting K = Kϵ into (4.29) completes the proof.817
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Remark 4.1. In Theorem 4.5, we state an additional assumption related to the818

boundedness of the gradients of the augmented Lagrangian functions at the iterates819

computed by the algorithm. We note that this is a mild assumption and can be proven820

using Assumptions 2.1 and 2.2, and if the dual variables λk are bounded. Due to the821

convergence results established in Subsection 4.1, it is reasonable to assume that the822

dual variables are bounded.823

4.3. Sample Complexity: α = O(ϵ−1). Theorem 4.5 establishes total outer824

iteration complexity, Kϵ, and expected sample complexity, E[W], for any choice of the825

penalty parameter α. If α and the other parameters (e.g., τ0, h) given in Theorem 4.5826

are chosen to be independent of the accuracy ϵ, then Kϵ = O(ϵ−1) and E[W] =827

O(ϵ−3−δ). However, this sample complexity bound is not tight as the optimal sample828

complexity for stochastic convex programs is O(ϵ−2) [51, 85]. The next corollary829

establishes that this optimal sample complexity can be achieved when α = O(ϵ−1).830

Corollary 4.6. Under the conditions of Theorem 4.5, if α = cαϵ
−1, τ0 = cτ ϵ,831

and h = chϵ for some cα, cτ , ch ∈ (0,∞). Then Kϵ = O(1) and832

E[W] = O(ϵ−2).(4.30)833834

Proof. Substituting α, τ0, and h values into (4.20), it follows that835

Kϵ ≤ 1 +
1

ϵ
max

{
8ϵ

cα
[qα(λ0)− qα(λ

∗)] + 2ϵ(4cτa∞ + ch),
α̃chϵ

η̃

}
836

= 1 +max

{
8

cα
[qα(λ0)− qα(λ

∗)] + 2(4cτa∞ + ch),
α̃ch
η̃

}
837

= O(1) .(4.31)838839

We now analyze the sample complexity. Using α, τ0, and h values, and ϵ < 1, it840

follows that841

B(Kϵ + 1)3+δ

α2τ20 (3 + δ)
=

2c0ω

θ2gc
2
αc

2
τ (3 + δ)

(
(L+ cαϵ

−1∥A∥2)2D2

(1− 2θ2g)
2

+ 4DL

)
(Kϵ + 1)3+δ

842

≤ 2c0ω

ϵ2θ2gc
2
αc

2
τ (3 + δ)

(
(L+ cα∥A∥2)2D2

(1− 2θ2g)
2

+ 4DL

)
(Kϵ + 1)3+δ,(4.32)843

844

and845

B̃K2
ϵ

α̃2h2
=

2c0ω

ϵ2θ2gα̃
2c2h

(
(L+ α̃∥A∥2)2D2

(1− 2θ2g)
2

+ 4DL

)
K2

ϵ .(4.33)846

847

Substituting (4.32) and (4.33) in (4.21), we have that,848

E[W] ≤ 2c0ω

ϵ2θ2gc
2
αc

2
τ (3 + δ)

(
(L+ cα∥A∥2)2D2

(1− 2θ2g)
2

+ 4DL

)
(Kϵ + 1)3+δ

849

+
2c0ω

ϵ2θ2gα̃
2c2h

(
(L+ α̃∥A∥2)2D2

(1− 2θ2g)
2

+ 4DL

)
K2

ϵ850

= O(ϵ−2),851852

where the last equality is due to the fact that all other constants in the inequality are853

independent of the choice of ϵ.854
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Remark 4.2. We observe that the complexity results given in Theorem 4.5 and855

Corollary 4.6 do not exploit the benefits of using the previous iterate xk−1 = xk,0856

as the starting point for solving the current subproblem. That is, the bound on857

E
[
minx∗

k∈X∗
k
∥xk−1 − x∗

k∥2
]
is not tight. The difficulty in exploiting the benefits of858

this procedure is due to the fact that the augmented Lagrangian functions are only859

convex but not necessarily strongly convex. In Subsection 4.4, we consider strongly860

convex functions and establish the advantages of this procedure.861

4.4. Sample Complexity: X = Rn. We provide improved convergence and862

complexity results when X = Rn and the objective function f is µ-strongly convex.863

Assumption 4.2. The objective function f is µ-strongly convex. That is,864

∇2f(x) ⪰ µI ∀x ∈ Rn
865866

where I ∈ Rn×n is an identity matrix.867

We should note that Assumption 4.2 implies Assumption 2.3. In this case, the inner868

subproblems are unconstrained and have unique optimal solutions. Moreover, the869

optimality conditions given in (2.3) can be written as870

∇ℓx(x, λ) = 0 and c(x) = 0.871872

It can also be shown that the negative dual function q(λ) is strongly convex in this873

setting, as stated in the following proposition (cf. [37, Propositions 3.1 and 3.3] and874

the references therein, [90, Theorem 1], [38, Proposition 2.5]).875

Proposition 4.7. If Assumptions 2.1 and 4.2 hold with X = Rn, then q(λ)876

defined in (2.12) is strongly convex with the strong convexity parameter µq = σ
µ+L877

where σ = λmin(AAT ).878

For the sake of completeness, we include the proof of this proposition in Appendix A.879

We also state the following well-known result for strongly convex functions with880

Lipschitz continuous gradients (cf. [64, Theorem 2.1.5 and Theorem 2.1.10])881

Proposition 4.8. If the function qα(λ) is strongly convex with parameter µα and882

has a Lipschitz continuous gradient with Lipschitz constant Lα, then for any λ ∈ Rm,883

it holds that884

2µα(qα(λ)− qα(λ
∗)) ≤ ∥∇qα(λ)∥2 ≤ 2Lα(qα(λ)− qα(λ

∗)),(4.34)885886

where λ∗ = argminλ qα(λ).887

Note that Lα = α−1 by Lemma 2.1. We now establish a linear rate of convergence of888

both feasibility error and stationarity error. For the sake of brevity, we only consider889

Condition 3.4.890

Theorem 4.9. Suppose Assumptions 2.1 and 4.2 hold and X = Rn. For any891

x−1, λ0 and α > 0, let {(xk, λk)} be the sequence of primal-dual iterates generated by892

Algorithm 3.1. If the primal iterates xk satisfy Condition 3.4 at each iteration k ∈ N893

with θ̃e ≤ µθe
2∥A∥ , τ̃k = µ2τk

4∥A∥2 , θe ∈ [0, 1), and τk = τ0(1/a)
k for some τ0 > 0 and a > 1,894

then895

E[∥c(xk)∥2] ≤ A1ρ
k and E

[
∥∇ℓx(xk, λk+1))∥2

]
≤ A2ρ

k,(4.35)896
897
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where A1 = 4(1 + θ2e)LαA3 + 2τ0, A2 = 2Lαθ̃
2
eA3 +

µ2τ0
4∥A∥2 ,898

A3 = max
{
qα(λ0)− qα(λ

∗), τ0
µα(1−θ2

e)

}
, ρ = max

{
1− αµα(1−θ2

e)
2 , 1

a

}
< 1, and µα =899

µq

µqα+1 .900

Proof. Using Proposition 4.7 and Lemma 2.1, it follows that the qα(λ) is a strongly901

convex function with strong convexity parameter
µq

µqα+1 . Therefore, substituting902

(4.34) into (4.5), using (2.23), subtracting qα(λ
∗) from both sides and taking full903

expectation we obtain904

E[qα(λk+1)− qα(λ
∗)] ≤

(
1− αµα(1− θ2e)

)
E[qα(λk)− qα(λ

∗)] +
ατk
2

905

≤
(
1− αµα(1− θ2e)

)
E[qα(λk)− qα(λ

∗)] +
ατ0
2ak

,906
907

where the second inequality is due to τk = τ0(1/a)
k. It is now a straightforward908

exercise in mathematical induction to show that909

(4.36) E[qα(λk)− qα(λ
∗)] ≤ A3ρ

k ∀k ∈ N.910

The statement is trivially true for k = 0. Let’s assume it is true for iteration k. For911

iteration k + 1, it follows that912

E[qα(λk+1)− qα(λ
∗)] ≤

(
1− αµα(1− θ2e)

)
E[qα(λk)− qα(λ

∗)] +
ατ0
2ak

913

≤ A3ρ
k

(
1− αµα(1− θ2e) +

ατ0
2A3(aρ)k

)
914

≤ A3ρ
k

(
1− αµα(1− θ2e) +

αµα(1− θ2e)

2

)
915

≤ A3ρ
k+1 ,916917

where the second inequality is due to the statement of the induction, third inequality918

is due to ρ ≥ 1/a and the definition of A3, and the last inequality is due to the919

definition of ρ. Hence, (4.36) is satisfied. Substituting λ = λk in (4.34), by (2.23) and920

taking expectation of both sides it follows that,921

E[∥c(x∗
k)∥2] ≤ 2LαE[qα(λk)− qα(λ

∗)]922

≤ 2LαA3ρ
k.(4.37)923924

Therefore, using the definitions of A1 and ρ, we have that925

E[∥c(xk)∥2] ≤ 2E[∥c(x∗
k)− c(xk)∥2] + 2E[∥c(x∗

k)∥2]926

≤ 2(1 + θ2e)E[∥c(x∗
k)∥2] + 2τk927

≤ ρk
(
4(1 + θ2e)LαA3 +

2τ0
(ρa)k

)
928

≤ A1ρ
k.929930

Using (4.37), Condition 3.4, and (4.7), it follows that931

E
[
∥∇ℓx(xk, λk+1))∥2

]
≤ θ̃2eE[∥c(x∗

k)∥2] + τ̃k932

≤ 2Lαθ̃
2
eA3ρ

k +
µ2τ0

4∥A∥2ak933

≤ A2ρ
k ,934935
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where the last inequality is due to definitions of A2 and ρa ≥ 1.936

We now derive the sample complexity results. We will use the fact that the metric937

(4.13) can be simplified to938

max
{
E[∥c(xk)∥2],E

[
∥∇ℓx(xk, λk+1)∥2

]}
≤ ϵ ∈ (0, 1),(4.38)939

940

since X = Rn. Moreover, the adaptive sampling projected gradient method employed941

to solve the inner subproblems converges at a linear rate as stated below (cf. [7,942

Theorem 2.10], [83, Theorem 3.7]).943

Theorem 4.10. Suppose Assumptions 2.1, 2.4 and 4.2 hold. If η =
(1−2θ2

g)

L+α∥A∥2 with944

θg ∈ [0, 1
2 ), and Condition 3.1 is satisfied. Then, for any outer iteration k ∈ N and945

inner iteration t ∈ N, it holds that946

Ek[L(xk,t, λk;α)− L(x∗
k, λk;α)] ≤ ρtL(L(xk,0, λk;α)− L(x∗

k, λk;α)) ,(4.39)947948

where ρL = 1− (1−2θ2
g)µ

L+α∥A∥2 ∈ [0, 1).949

Using Proposition 4.8, it can be shown that the gradient of the augmented Lagrangian950

function also converges to zero. That is, applying Proposition 4.8 to the augmented951

Lagrangian function, we have that952

2µ(L(xk,t, λk;α)− L(x∗
k, λ;α)) ≤ ∥∇xL(xk,t, λk;α)∥2953

≤ 2(L+ α∥A∥2)(L(xk,t, λk;α)− L(x∗
k, λ;α)).(4.40)954955

Combining (4.39) and (4.40), it follows that,956

Ek[∥∇xL(xk,t, λk;α)∥2] ≤
L+ α∥A∥2

µ
ρtL∥∇xL(xk,0, λk;α)∥2.(4.41)957

958

The next theorem establishes pessimistic upper bounds on the sample sizes employed959

at each outer iteration k ∈ N and each inner iteration t ∈ N, and the number of960

inner iterations Tk required to satisfy Condition 3.4. For the sake of brevity, in this961

complexity analysis, we employ Condition 3.4 with θ̃e = 0, and also assume that962

Assumption 2.4 holds with ω1 = 1 and ω2 = ω, i.e.,963

Eζ [∥∇F (x, ζ)−∇f(x)∥2] ≤ ω.(4.42)964965

Theorem 4.11. Suppose the conditions of Theorem 4.10 are satisfied and (4.42)966

holds. Then the number of inner iterations Tk required to satisfy Condition 3.4 with967

θ̃e = 0 are bounded from above as follows:968

Tk ≤
⌈
log1/ρL

(
2(L+ α∥A∥2)

(
α2∥A∥2∥c(xk−1)∥2 + ∥R(xk−1, λk−1;α, η)∥2

)
µτ̃k

)⌉
.

(4.43)

969

970

Moreover, for any inner iteration t < Tk, the sample sizes |Sk,t| are at most971

|Sk,t| ≤
ω

θ2g τ̃k
.(4.44)972

973
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Proof. At any outer iteration k ∈ N , let Tk denote the first inner iteration t at974

which the following condition holds:975

min
{
∥R(xk,t, λk;α, η)∥2,Ek,t

[
∥R(xk,t, λk;α, η)∥2

]}
≤ τ̃k.(4.45)976977

Hence, at t = Tk, Condition 3.4 is satisfied with θ̃e = 0 at xk = xk,t. Therefore, for978

all t < Tk, it follows that979

∥R(xk,t, λk;α, η)∥2 > τ̃k.(4.46)980981

Using (3.14), (4.42), and (4.46), and choosing the smallest sample size |Sk,t| satisfying982

(4.16), it follows that983

|Sk,t| ≤
ω(1 + θg)

2

θ2g τ̃k
.(4.47)984

985

Now, let us bound the number of inner iterations required to satisfy (4.45). Using986

(3.5) and (4.41) and X = Rn it follows that987

Ek

[
∥R(xk,t, λk;α, η)∥2

]
≤ L+ α∥A∥2

µ
ρtL ∥R(xk,0, λk;α, η)∥2 .(4.48)988

989

Substituting xk,0 = xk−1, it follows that990

∥R(xk−1, λk;α, η)∥2991

= ∥R(xk−1, λk;α, η)−R(xk−1, λk−1;α, η) +R(xk−1, λk−1;α, η)∥2992

≤ 2∥R(xk−1, λk;α, η)−R(xk−1, λk−1;α, η)∥2 + 2∥R(xk−1, λk−1;α, η)∥2(4.49)993994

where the last inequality is due to ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2 for any a, b ∈ Rn. Consider995

∥R(xk−1, λk;α, η)−R(xk−1, λk−1;α, η)∥996

= ∥∇xL(xk−1, λk;α)−∇xL(xk−1, λk−1;α)∥997

= ∥⟨λk − λk−1,∇c(xk−1)⟩∥998

≤ α∥A∥∥c(xk−1)∥(4.50)9991000

where the first equality is due to (3.5) and the inequality is due to λk = λk−1 −1001

αc(xk−1). Using (4.48), (4.49), and (4.50), it follows that1002

1003

(4.51) Ek

[
∥R(xk,t, λk;α, η)∥2

]
1004

≤ L+ α∥A∥2
µ

ρtL
(
2α2∥A∥2∥c(xk−1)∥2 + 2∥R(xk−1, λk−1;α, η)∥2

)
.1005

1006

Therefore, for any1007

t ≥
⌈
log1/ρL

(
2(L+ α∥A∥2)

(
α2∥A∥2∥c(xk−1)∥2 + ∥R(xk−1, λk−1;α, η)∥2

)
µτ̃k

)⌉
1008

1009

we have,1010

Ek

[
∥R(xk,t, λk;α, η)∥2

]
≤ τ̃k.1011

1012
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Using (4.45), it follows that,1013

Tk ≤
⌈
log1/ρL

(
2(L+ α∥A∥2)

(
α2∥A∥2∥c(xk−1)∥2 + ∥R(xk−1, λk−1;α, η)∥2

)
µτ̃k

)⌉(4.52)

1014

1015

which completes the proof.1016

We are now ready to provide the main complexity theorem for this subsection.1017

Theorem 4.12. Suppose the conditions of Theorems 4.9 and 4.10, and (4.42)1018

hold. Then the number of outer iterations to get an ϵ−accurate solution (xk, λk+1)1019

satisfying (4.38) is1020

Kϵ =

⌈
log1/ρ

(
max{A1, A2}

ϵ

)⌉
= O (log(1/ϵ)) ,(4.53)1021

1022

where A1, A2 are defined in Theorem 4.9, and the expected number of stochastic gradi-1023

ent evaluations is1024

E[W] = O
(
ϵ−1 log(1/ϵ)

)
.(4.54)10251026

Proof. Equation (4.53) directly follows from (4.35). Now, consider the sample1027

complexity at each outer iteration k1028

Wk
def
=

Tk−1∑
t=0

|Sk,t| ≤
ω(1 + θg)

2

θ2g τ̃k
Tk,(4.55)1029

1030

where the inequality is due to (4.44). Therefore, the expected total number of gradient1031

evaluations is found to be1032

E

[
K−1∑
k=0

Wk

]
≤ E

[
K−1∑
k=0

ω(1 + θg)
2

θ2g τ̃k
Tk

]
1033

≤
K−1∑
k=0

ω(1 + θg)
2

θ2g τ̃k
E[Tk]1034

≤
K−1∑
k=0

4ω(1 + θg)
2∥A∥2ak

θ2gτ0µ
2

E[Tk] ,(4.56)1035

1036

where the last inequality is due to τ̃k = µ2τk
4∥A∥2 and τk = τ0(1/a)

k. Using (4.43) and1037
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taking the full expectation of both sides, it follows that1038

E[Tk − 1]1039

≤ E

[
log1/ρL

(
2(L+ α∥A∥2)

(
α2∥A∥2∥c(xk−1)∥2 + ∥R(xk−1, λk−1;α, η)∥2

)
µτ̃k

)]
1040

= E

[
log1/ρL

(
2(L+ α∥A∥2)

(
α2∥A∥2∥c(xk−1)∥2 + ∥∇xℓ(xk−1, λk;α, η)∥2

)
µτ̃k

)]
1041

≤ log1/ρL

(
2(L+ α∥A∥2)

(
α2∥A∥2E[∥c(xk−1)∥2] + E[∥∇xℓ(xk−1, λk;α, η)∥2]

)
µτ̃k

)
1042

≤ log1/ρL

(
2(L+ α∥A∥2)

(
α2∥A∥2A1 +A2

)
ρk−1

µτ̃k

)
1043

= log1/ρL

(
8∥A∥2(L+ α∥A∥2)

(
α2∥A∥2A1 +A2

)
ρk−1ak

µ3τ0

)
= O(k) ,

(4.57)

1044

1045

where the second line is due to (4.7), third line due to Jensen’s inequality, fourth line1046

is due to Theorem 4.9, and the last line follows from τ̃k = µ2τk
4∥A∥2 and τk = τ0(1/a)

k.1047

Therefore, (4.57) shows that there exist s1 > 0 and s2 > 0 such that1048

E[Tk] ≤ s1 + s2k.(4.58)10491050

Substituting (4.58) into (4.56), we have that1051

E

[
K−1∑
k=0

Wk

]
≤

K−1∑
k=0

4ω(1 + θg)
2∥A∥2ak

θ2gτ0µ
2

(s1 + s2k)1052

≤
K−1∑
k=0

4ω(1 + θg)
2∥A∥2ak

θ2gτ0µ
2

(s1 + s2K)1053

≤ 4ω(1 + θg)
2∥A∥2aK

θ2gτ0µ
2(a− 1)

(s1 + s2K)1054

= O
(
ϵ−1 log(1/ϵ)

)
,10551056

where the last line is due to (4.53).1057

Remark 4.3. It is important to emphasize that performing sampling complexity1058

analysis for adaptive sampling methods is quite challenging with present optimization1059

techniques. However, these methods fall under a general class of increasing batch1060

size methods where one can establish theoretical sample complexity analysis that1061

shows stochastic gradient and increasing batch size mechanisms have similar total1062

sample complexity results (see, e.g., [23]). We have established pessimistic (i.e., worst-1063

case) complexity bounds where the sample sizes at each inner iteration are bounded1064

above by the largest sample size employed across all inner iterations at any given1065

outer iteration k (cf. (4.44)). Owing to this pessimistic bound on sample sizes, the1066

overall complexity bound O
(
ϵ−1 log(1/ϵ)

)
is slightly worse than the optimal sample1067

complexity O
(
ϵ−1
)
for strongly convex stochastic programming problems [19,84].1068

29

This manuscript is for review purposes only.



5. Practical Algorithm. In this section, we present a complete and practical1069

adaptive sampling augmented Lagrangian (ASAL) algorithm that uses an adaptive1070

sampling proximal gradient method to inexactly solve the augmented Lagrangian1071

subproblems. We describe the mechanism by which the sample size is selected at each1072

inner iteration and the mechanism to terminate the subproblem solver.1073

The sample size selection and inexactness conditions described in Subsections 3.11074

and 3.2 respectively are impractical as they require computing exact variances or1075

deterministic quantities such as L(xk, λk;α) and R(xk, λk;α, η). That being said,1076

these quantities can be approximated using sample variances and sampled stochastic1077

counterparts of the deterministic quantities following the ideas proposed in [7,16,83].1078

Sample Size Selection. We propose the following practical sampling test to ap-1079

proximate Condition 3.1 where the left-hand-side is the sample variance that approx-1080

imates the exact variance and the right-hand-side is the stochastic projected (reduced)1081

gradient that approximates the expectation of this quantity.1082

Test 5.1 (Practical Sampling Test). For any given θg ≥ 0, the sample size |Sk,t|1083

satisfies1084

(5.1)

1
|Sk,t|−1

∑
ζi∈Sk,t

∥∇F (xk,t, ζi)−∇FSk,t
(xk,t)∥2

|Sk,t|
≤ θ2g∥RSk,t

(xk,t, λk;α, η)∥2.1085

In our practical Algorithm 5.1, we aim to satisfy Test 5.1 at each inner iteration using1086

the following procedure. Whenever (5.1) is not satisfied at the current inner iteration1087

t, we attempt to ensure (5.1) will be satisfied at the next inner iteration t+1 by using1088

the relative variance,1089

νt
def
=

1
|Sk,t|−1

∑
ζi∈Sk,t

∥∇F (xk,t, ζi)−∇FSk,t
(xk,t)∥2

θ2g |Sk,t|∥RSk,t
(xk,t, λk;α, η)∥2

,(5.2)1090

1091

to select the next sample size. More specifically, we set |Sk,t+1| = ⌈νt|Sk,t|⌉ whenever1092

νt > 1.1093

On the other hand, if (5.1) is satisfied at the current inner iteration t (i.e., νt ≤1094

1), then keeping the sample size unchanged, |Sk,t+1| = |Sk,t|, is a simple rule to1095

maintain control over the sample variance. However, if νt ≪ 1 is sufficiently small1096

and the current sample size |Sk,t| ≫ 1 is sufficiently large, then it may be beneficial1097

to reduce cost by decreasing the sample size. We explore this possibility by providing1098

an opportunity for the sample size to decrease like |Sk,t+1| = ⌈νt|Sk,t|⌉ until |Sk,t|1099

reaches a minimum value.1 Lines 8 through 16 in Algorithm 5.1 encapsulate the1100

sample size selection procedure.1101

Inexactness Conditions. We propose a practical test to terminate the inner sub-1102

problem solver. Owing to the difficulty in computing the optimal quantities c(x∗
k)1103

and L(x∗
k, λk;α), and the equivalence of Conditions 3.2 through 3.4, we design the1104

practical test based on Condition 3.4. Following a similar procedure employed in ap-1105

proximating the sample size test conditions, we approximate the projected (reduced)1106

gradient with its stochastic counterpart and the optimal constraint violation with the1107

current constraint violation. The resulting practical test is as follows:1108

1Although the sample sizes are allowed to decrease, we do not observe sample size decreases in
our numerical experiments; cf. Remark 6.1.
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Test 5.2 (Practical Tolerance Test). For any given θ̃e ∈ [0, 1) and τ̃k ≥ 0 with1109

limk→∞ τ̃k = 0,1110

∥RSk,t
(xk,t, λk;α, η)∥2 ≤ θ̃2e∥c(xk,t)∥2 + τ̃k.(5.3)11111112

We terminate the inner subproblem whenever (5.3) is violated. Algorithm 5.1 provides1113

a complete description of the ASAL algorithm.1114

Algorithm 5.1 Adaptive Sampling Augmented Lagrangian (ASAL) Method

Input: x−1 ∈ Rn, λ0 ∈ Rm, step size η > 0, penalty parameter α > 0, initial
sample size |S0,0|, sample size test parameters (θg > 0, νl ∈ (0, 1), sl > 0, smin > 0),

inexactness tolerance parameters (θ̃e ∈ [0, 1), τ̃k ≥ 0)
Initialization: Set k ← 0

1: loop
2: Set t← 0
3: Set xk,0 ← xk−1

4: repeat
5: Choose a set Sk,t consisting of |Sk,t| i.i.d. realizations of ζ
6: Compute RSk,t

(xk,t, λk;α, η) via (3.3) and (3.4)
7: Update xk,t+1 ← xk,t + ηRSk,t

(xk,t, λk;α, η)
8: if Test 5.1 is not satisfied then
9: Set |Sk,t+1| ← ⌈νt|Sk,t|⌉

10: else
11: if νt < νl and |Sk,t| > sl then
12: Set |Sk,t+1| ← max{smin, ⌈νt|Sk,t|⌉}
13: else
14: Set |Sk,t+1| ← |Sk,t|
15: end if
16: end if
17: Set t← t+ 1
18: until Test 5.2 is satisfied
19: Set xk ← xk,t

20: Update λk+1 ← λk − αc(xk)
21: Set |Sk+1,0| ← |Sk,t|
22: Set k ← k + 1
23: end loop

6. Numerical results. In this section, we study the performance of ASAL1115

(Algorithm 5.1) using model problems from machine learning (Subsection 6.1) and1116

engineering (Subsections 6.2 and 6.3). We implement Test 5.2 with θ̃e = 0 and1117

τ̃k = τ0/(k + 1), treating τ0 as a hyperparameter for this numerical study.1118

6.1. Logistic regression with multiple disparate impact constraints. We1119

first consider a constrained logistic regression problem. A decision-making system1120

suffers from disparate impact if it provides outputs that affect a group of people sharing1121

a value of a sensitive feature more frequently than other groups [4]. In [87, Section 4.4],1122

it is shown that disparate impact can be controlled in binary classification problems1123

by applying deterministic constraints. More explicitly, we consider the optimization1124
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problem1125

(6.1)
minimize

1

N

N∑
i=1

[
log(1 + exp(−zi⟨x, yi⟩))

]
+

γ

2
∥x∥2

subject to ⟨a1, x⟩ = b1, |⟨a2, x⟩| ≤ b2,

1126

where x ∈ Rn is the optimization variable and (yi, zi) ∈ Rn×{−1, 1} are input/output1127

pairs from a classification data set. Here, γ > 0 is a fixed Tikhonov regularization1128

parameter. Meanwhile, a1, a2 ∈ Rn and b1, b2 ≥ 0 are constraint parameters. In [4],1129

it is suggested to take, e.g., a1 = Ey,s

[
(s−Es[s])y

]
, where s is a secondary observable,1130

in addition to y. However, for the purpose of demonstration, we arbitrarily set a1 and1131

a2 from samples drawn for a standard multivariate normal distribution. Likewise, we1132

set b1 = 0.1, b2 = 0.02. The initial x−1 and λ0 variables are chosen to be zero vectors,1133

and we set γ = 1/N .1134

In this experiment, we use the mushroom classification data set from the LIBSVM1135

collection [26]. The size of this data set is N = 8124, and the dimension of the problem1136

is n = 112. In order to evaluate the performance of ASAL, we record the feasibility1137

and stationarity errors (2.5) until 200 training epochs (i.e., 200N cumulative gradient1138

evaluations) have elapsed. We then compare ASAL to three separately-tuned fixed-1139

batch-size implementations of ASAL using 10%, 20%, and 50% of the data set size at1140

each iteration, respectively. In this experiment we use θg = 0.99, νl = 0.5, sl = 0.1N ,1141

and smin = 0.1N . The value of θg is not tuned and is, instead, set at an arbitrary1142

value close to the suggestion for unconstrained problems in [24,34]. The values of the1143

other three fixed hyperparameters are also set arbitrarily. Yet, they appear to have1144

little to no effect on performance; cf. Remark 6.1.1145

We treat τ0, α and the step size η as tunable hyperparameters. All of the hyper-1146

parameters are tuned using the following procedure: We run each augmented Lag-1147

rangian algorithm for all possible combinations of τ0 = 104, 103, 102, 101, 100, 10−1,1148

η = 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, and α = 102, 101, 100, 10−1, 10−2. Then,1149

for each algorithm, we select the run with the smallest average objective function1150

value in the final 5 inner iterations among all runs whose minimum feasibility error1151

in the final 30 inner iterations is less than feasibility tolerance 10−4.1152

The stationarity and feasibility errors corresponding to the best hyperparameters1153

for each algorithm are overlaid in Figure 6.1. Because the hyperparameter tuning pro-1154

cedure we have used seeks the best stationarity error among runs reaching a feasibility1155

error threshold, it is no surprise that ASAL and each of the three baseline algorithms1156

achieve a similar minimal feasibility error (around feasibility tolerance 10−4). Never-1157

theless, we observe that ASAL outperforms the three baseline algorithms with respect1158

to stationarity error. We also present similar results for australian data set from1159

the LIBSVM collection [26] in Appendix B.1160

Remark 6.1. Notice from Figure 6.1 that the ASAL sample size never decreases.1161

This is despite the safeguarding mechanism in line 17 of Algorithm 5.1. We have1162

witnessed this non-decreasing sample size property in all of our experiments with1163

ASAL after tuning the hyperparameters α, η, and τ0. Thus, we see little justification1164

for allowing sample size decreases in future implementations of ASAL and do not1165

report the hyperparameters νl, sl, and smin in the remaining experiments.1166

Remark 6.2. The starting values for the cumulative gradient evaluations in Fig-1167

ure 6.1 represent the fact that we are recording errors only after advancing a single1168

optimization step. Each algorithm began with the same initial guesses x−1 and λ0.1169
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Figure 6.1. Results of running Algorithm 5.1 on the constrained logistic regression prob-
lem (6.1) with the mushroom classification data set. Notice that ASAL achieves the lowest average
stationarity errors while matching the minimal feasibility error of the three baseline algorithms. To
generate these results, we used the algorithm parameters θg = 0.99 and individually tuned α, η, and
τ0.

Remark 6.3. Observe that the expected feasibility error with ASAL steadily1170

decreases in Figure 6.1. Meanwhile, the feasibility error in each of the other algorithms1171

plateaus after around 5×105 cumulative gradient evaluations. This is due to the stable1172

sample size growth provided by our adaptive sampling strategy and the fact that a1173

fixed number of samples are used for each of the baselines; i.e., the baseline algorithms1174

can only converge in expectation to a neighborhood of the solution. As a result, even1175

though the slopes of the stationarity errors for the baseline algorithms are higher than1176

ASAL after 200 epochs, we conclude that ASAL would remain the better practical1177

algorithm even if a larger epoch threshold had been used.1178

Remark 6.4. The tuning procedure used in this experiment is expensive and1179

impractical for more expensive problems. Owing to this fact, in the remaining sections,1180

we only compare ASAL to baseline algorithms with a shared set of hyperparameters.1181

6.2. Optimal truss design. We consider optimizing the simply supported truss1182

structure shown in Figure 6.2 in a problem inspired by an example presented in1183

[73]. The truss elements are numbered as shown in Figure 6.2, and a random force1184

F , pointing downwards, is applied in the middle of the bottom chord. The cross-1185

sections of the truss elements are denoted by xi, i = 1, 2, . . . , 7, and the yield stress1186

associated with the members with σi, i = 1, 2, . . . , 7. The first two yield stress limits1187

σi, i = 1, 2, are log-normal random variables with mean 100N/mm2 and standard1188

deviation 20N/mm2. The yield stresses for all other members are also log-normal, but1189

with mean 200N/mm2 and standard deviation 40N/mm2. The correlation coefficient1190

between σ1 and σ2 is 0.8, and between σi, i = 1, 2, and σj , j = 3, 4, 5, 6, 7, the1191

correlation coefficients are each 0.5. The correlation coefficients between each σi ̸= σj ,1192

i, j ∈ {3, 4, 5, 6, 7}, are set to 0.8. The applied force f is independent of the yield1193

stresses and is distributed log-normally with mean 1000kN and standard deviation1194

400kN. The structure will fail if any member exceeds the associated yield stress, i.e.,1195

for each member, we can define the following random limit state function:1196

(6.2) gi(x; f,σ) =
f

cixi
− σi, i ∈ {1, 2, . . . , 7},1197

where the fixed parameters ci depend on the geometry and the loads. For this struc-1198

ture, c{i=1,2} = 1/
(
2
√
3
)
and c{i=3,...,7} = 1/

√
3.1199
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Figure 6.2. Definition of the geometry and the load applied to the truss.
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Figure 6.3. Results of running Algorithm 5.1 on the truss optimization problem (6.3). Notice
that ASAL achieves the lowest average stationary and feasibility errors while simultaneously requir-
ing the smallest number of iterations. To generate these results, we used the algorithm parameters
θg = 0.99, α = 0.01, η = 1.0, and primal tolerance sequence τk = 10/k.

We pose the following stochastic optimization problem:1200

(6.3)
minimize

1

7α
E
[
ln

( 7∑
i=1

exp(αgi(x))

)]
,

subject to A ≤ x ≤ B, ⟨1, x⟩ ≤ C,

1201

where α = 1, A = 1 × 104mm2, B = 5 × 104mm2, and C = 15 × 104mm2 are1202

user-defined parameters. The components of the optimal solution are estimated to be1203

(6.4) x{i=1,2} = 4.342× 104mm2 and x{i=3,...,7} = 1.263× 104mm2 .1204

To solve this problem, we use ASAL with θg = 0.99 and compare its performance1205

to the stochastic augmented Lagrangian method with fixed sample sizes under a 11206

million cumulative sample budget. In each experiment, we use the penalty and step1207

size values α = 0.01 and η = 1.0. Figure 6.3 documents our findings. Notice that, even1208

though it used less than 25% of the total iterations, the stationarity and feasibility1209

errors from ASAL (248 iterations) are significantly lower after the sample budget1210

expires than the best-performing fixed sample size algorithm (1000 iterations).1211

6.3. Optimal design of a heat sink. We close with a non-convex optimization1212

problem of engineering interest. In this final experiment, we consider the optimal1213

design of a heat sink within a hypothetical square domain Ω = (0, 1)2 with a stochastic1214
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Figure 6.4. Three independent realizations of the Gaussian random field f(x) generated by
solving (6.5) on the square domain Ω = (0, 1)2.

heat source f(x), x ∈ Ω, described by a spatial Gaussian random field with Mátern1215

covariance. More specifically, we follow [57,58] and define1216

(6.5) − κ2∆f + f =W in Ω , ∇f · n = 0 on ∂Ω ,1217

where W is spatial additive white Gaussian noise, κ > 0 is a correlation length1218

parameter, and n denotes the outward-facing unit normal vector field on ∂Ω. Mátern1219

random fields can be used to model various random spatial phenomena [44, 45, 57],1220

which makes them reasonable for modeling the heat source in this example. Figure 6.41221

depicts three representative solutions to (6.5) for the reader’s interest.1222

We use the two-field filtered density approach to topology optimization [79, Sec-1223

tion 3.1.2] to formulate the optimal heat sink design problem. The goal is to find1224

a material distribution 0 ≤ ρ ≤ 1, where zero indicates no material, and one indic-1225

ates the complete presence of material, that induces the smallest thermal compliance,1226 ∫
Ω
uf dx, in expectation. In the aforestated expression, the temperature distribution1227

u is determined by ρ and f through the heat diffusion equation −div r(ρ̃)∇u = f ,1228

where ρ̃ is a regularized (filtered) distribution function [22, 52] and r(ρ̃) > 0 is a1229

thermal conductivity model. In this work, we use the well-known (modified) solid iso-1230

tropic material penalization (SIMP) model r(ρ̃) = ρ + ρ̃3(1− ρ ), where 0 < ρ ≪ 11231

is a nominal thermal diffusivity constant assigned to void regions in order to prevent1232

the stiffness matrix from becoming singular [2].1233

The full problem formulation is written as follows:1234

(6.6a) min
ρ∈L2(Ω), u∈H1(Ω)

{
F̂ (ρ, u) := E

[∫
Ω

uf dx

] }
,1235

subject to the constraints1236

(6.6b)


−ϵ2∆ρ̃+ ρ̃ = ρ in Ω , ∇ρ̃ · n = 0 on ∂Ω ,

−div
(
r(ρ̃)∇u

)
= f in Ω , u = 0 on Γ0 , ∇u · n = 0 on ∂Ω \ Γ0 ,∫

Ω

ρ(x)dx ≤ γ|Ω| , and 0 ≤ ρ ≤ 1 in Ω ,

1237

where 0 < γ < 1 is the volume fraction, which constrains the fraction of the domain1238

occupied by design, and ϵ > 0 is a length scale for the final design. The boundary1239

conditions and solution to the optimization problem (6.6) with ρ = 10−3, γ = 0.5,1240

ϵ = 0.01, κ = 0.2 are depicted in Figure 6.5.1241
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To remove the PDE constraints from the optimization problem, we employ a1242

reduced space formulation, often referred to in the literature as a nested formulation1243

[8], which can be written as1244

(6.7a) min
ρ∈L2(Ω)

{
F (ρ) := E

[∫
Ω

u (ρ̃ (ρ)) f dx

] }
,1245

subject to the constraints1246

(6.7b)

∫
Ω

ρ(x)dx ≤ γ|Ω| , and 0 ≤ ρ ≤ 1 in Ω .1247

In this formulation, it is understood that the temperature field u = u (ρ̃ (ρ)) solves1248

the state equation1249

(6.8) −div
(
r(ρ̃)∇u

)
= f in Ω , u = 0 on Γ0 , ∇u · n = 0 on ∂Ω \ Γ0 ,1250

and the filtered density ρ̃ = ρ̃ (ρ) solves the screened Poisson equation,1251

(6.9) − ϵ2∆ρ̃+ ρ̃ = ρ in Ω , ∇ρ̃ · n = 0 on ∂Ω .1252

Since the inequality constraint in (6.7b) is always active, it is replaced by an equality1253

constraint that our ASAL algorithm can handle. The gradients of the reduced ob-1254

jective function in (6.7a) are computed with FEM-discretized representations of the1255

temperature u and filtered density ρ̃ using standard adjoint analysis techniques [8].1256

Finally, L2(Ω) projections are used to enforce the box constraints found in (6.7b).1257

For comparison, Figure 6.5 also depicts a reference solution to (6.6) corresponding1258

to the (deterministic) uniform heat field f ≡ 1. Close examination reveals signific-1259

ant differences between the designs with deterministic and stochastic inputs. The1260

deterministic case results in an organic tree-like structure that aims to transfer the1261

heat generated at any point in the computational domain using the shortest possible1262

way to the Dirichlet boundary with zero temperature. The design does not depend1263

on the magnitude of the heat source, and any constant input will result in the same1264

material distribution if the initial material distribution is in the vicinity of the local1265

solution. On the other hand, due to the oscillatory nature of the stochastic input,1266

the heat source term can take positive and negative values. Such input distribution1267

allows the optimization process to balance the heat transfer locally without linking1268

the local subdomain directly to the boundary with a fixed temperature. Thus, the1269

role of the closed loops of material appearing in the design with stochastic input is to1270

establish a local heat equilibrium. In this case, the global tree-like structure transfers1271

only the excess heat, which cannot be balanced locally.1272

In this experiment, we use ASAL with θg = 2 and compare its performance to1273

stochastic augmented Lagrangian with fixed sample sizes, |Sk,t| = 10j , j = 1, 2, 3,1274

under a 105 cumulative sample budget. In each execution, we use the step size values1275

α = 0.1 and η = 2.0. Figure 6.6 documents our findings. ASAL achieves the lowest1276

combined average stationary and feasibility errors while requiring less than 20% of the1277

iterations of the best-performing fixed sample size run (|Sk,t| = 102). Although the1278

average feasibility errors with ASAL and this fixed sample size run are similar, the1279

variance of the fixed sample size run is much greater. Finally, the average stationarity1280

error for the best-performing fixed sample size run is significantly larger than the1281

average stationarity error with ASAL.1282
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Figure 6.5. Left: Depiction of the subsets of the domain boundary ∂Ω for the boundary con-
ditions for the heat field u in (6.5). We define u = 0 on Γ0 and ∇u · n = 0 on ∂Ω \ Γ0. Middle:
Reference density field ρ̃ for the solution of the deterministic thermal compliance optimization prob-
lem (6.6) with f ≡ 1 everywhere in Ω. Right: The filtered density ρ̃ for the solution of the expected
value thermal compliance optimization problem (6.6) with f given by (6.5). The presence of closed-
loop branches in the optimal solution on the right indicates a preference for balancing the heat locally
and transferring only the excess unbalanced heat to the external environment through Γ0.
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Figure 6.6. Results of running ASAL (Algorithm 5.1) on the topology optimization prob-
lem (6.6). Notice that ASAL achieves the lowest combined average stationary and feasibility errors
while simultaneously requiring the smallest number of iterations. Indeed, the average stationarity
error for the best-performing fixed sample size run, |Sk,t| = 10j , j = 1, 2, 3, ends up larger than the
average stationarity error with ASAL. Moreover, although the average feasibility errors of ASAL
and the best-performing fixed sample size run are similar, the variance for the fixed sample size
run is much greater. To generate these results, we used the algorithm parameters θg = 2, α = 0.1,
η = 2.0, and primal tolerance sequence τk = 1/k.

7. Final Remarks. Motivated by a growing interest in developing optimization1283

algorithms for constrained stochastic optimization problems, we introduced a frame-1284

work that combines augmented Lagrangian methods with adaptive sampling tech-1285

niques. In our framework, we employed stochastic solvers for the subproblems and1286

imposed stochastic tolerance criteria for the inexact solutions. We analyzed various1287

theoretical tolerance conditions and designed a practical test. To establish conver-1288

gence results, we first showed that our framework is equivalent to an inexact gradient1289

descent algorithm on the Moreau envelope. Second, we showed sublinear convergence1290

in the outer iterations when f is convex and linear convergence when f is strongly1291

convex with X = Rn. We also analyzed the worst-case expected work complexity of1292

our approach in terms of the number of gradient evaluations required to obtain an1293

ϵ-accurate solution. For convex f and compact X , we showed O(ϵ−3−δ) complexity1294

where δ > 0 is a user-defined parameter. This result improves to O(ϵ−2) when the1295

penalty parameter α = O(ϵ−1). If f is strongly convex and X = Rn, we proved1296

O(ϵ−1 log(1/ϵ)) complexity.1297

To evaluate our framework’s practical performance, we tested it on a constrained1298

machine learning problem and in engineering applications. Here, we observed that our1299
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method minimizes the objective function more efficiently and reaches a feasible solu-1300

tion in a more stable manner than benchmark stochastic approximation algorithms.1301

Although our analysis holds for any penalty parameter α > 0, this parameter1302

should be tuned for optimal performance in practice. The other main hyperpara-1303

meters are the step size η > 0 for the inner problems, and the subproblem tolerance1304

values τk > 0. Since tuning is computationally expensive, it would be helpful to1305

develop methods that adaptively select these hyper-parameters in order to further1306

improve the practical efficacy of our adaptive sampling framework. Two other nat-1307

ural extensions would be generalizing our methods to include nonlinear constraints1308

and chance constraints.1309

Appendix A. Proof of Proposition 4.7.1310

Proof. Due to the strong convexity of f , (2.12) has a unique optimal solution,1311

denoted as x(λ). Using [40, Corollary 4.5.3], we can show that q(λ) is differentiable1312

and1313

(A.1) ∇q(λ) = Ax(λ)− b.1314

Moreover, from the optimality conditions of (2.12), we have1315

(A.2) ∇f(x(λ))−ATλ = 0.1316

Let λ1, λ2 ∈ Rm. Consider,1317

⟨∇q(λ2)−∇q(λ1), λ2 − λ1⟩ = ⟨A(x(λ2)− x(λ1)), λ2 − λ1⟩1318

= ⟨x(λ2)− x(λ1), A
T (λ2 − λ1)⟩1319

= ⟨x(λ2)− x(λ1),∇f(x(λ2))−∇f(x(λ1)⟩1320

≥ 1

µ+ L
∥∇f(x(λ2))−∇f(x(λ1)∥21321

=
1

µ+ L
∥AT (λ2 − λ1)∥21322

≥ λmin(AAT )

µ+ L
∥λ2 − λ1∥2 ,1323

1324

where the first equality is due to (A.1), the second and the third equalities are due1325

to (A.2), and the first inequality is due to [63, Theorem 2.1.11]. Therefore, using [63,1326

Theorem 2.1.9], we can claim that q(λ) is strongly convex with parameter σ
L+µ .1327

Appendix B. Logistic regression with multiple disparate impact con-1328

straints, australian dataset.1329

We consider problem (6.1) with australian classification data set from the1330

LIBSVM collection [26]. The data set has N = 690 rows, and the dimension of1331

the problem is n = 14. Considering the budget of cumulative gradient evaluations as1332

200N , and the fixed hyperparameters as θg = 0.99, νl = 0.5, sl = 0.1N, smin = 0.1N ,1333

we compare three separately-tuned fixed-batch-size implementations of ASAL using1334

10%, 20%, and 50% of the data set size. We tune τ0, α and the step size η using the1335

same procedure described in Subsection 6.1 with the sets of τ0 = 10i−1, η = 10j−5,1336

and α = 10j−4, where i = 0, 1, 2, 3, 4, 5 and j = 0, 1, 2, 3, 4, 5, 6.1337

For each algorithm, we select the run with the smallest average objective function1338

value in the final 10 inner iterations among all runs whose minimum feasibility error1339

in the final 50 inner iterations is less than the feasibility tolerance 10−3. These1340
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Figure B.1. Results of running Algorithm 5.1 on the constrained logistic regression prob-
lem (6.1) with the australian classification data set. Notice that ASAL achieves the lowest average
stationarity errors while matching the minimal feasibility error of the three baseline algorithms. To
generate these results, we used the algorithm parameters θg = 0.99 and individually tuned α, η, and
τ0.

values (i.e., 10, 50, and 10−3, respectively) are slightly different than the values given1341

in Subsection 6.1 to ensure that the best combinations of hyperparameter values1342

correspond to a more stable set of runs. Because of the same reason, we restrict1343

α = 10−1 for the ASAL algorithm while tuning, as we observe this value results in1344

choosing runs that show a good balance between stationarity and feasibility errors.1345

The comparison of the algorithms is given in Figure B.1. Similar to Subsection 6.1,1346

we observe that ASAL and each of the three baseline algorithms achieve a similar1347

minimal feasibility error (around feasibility tolerance 10−3) and that ASAL performs1348

better than the three baseline algorithms when it comes to stationarity error.1349
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