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ABSTRACT

Quantifying the radioactive sources present in gamma spectra is an ever-present and growing
national security mission and a time-consuming process for human analysts. While machine
learning models exist that are trained to estimate radioisotope proportions in gamma spectra, few
address the eventual need to provide explanatory outputs beyond the estimation task. In this
work, we develop two machine learning models for a Nal detector measurements: one to perform
the estimation task, and the other to characterize the first model’s ability to provide reasonable
estimates. To ensure the first model exhibits a behavior that can be characterized by the second
model, the first model is trained using a custom, semi-supervised loss function which constrains
proportion estimates to be explainable in terms of a spectral reconstruction. The second auxiliary
model is an out-of-distribution detection function (a type of meta-model) leveraging the proportion
estimates of the first model to identify when a spectrum is sufficiently unique from the training
domain and thus is out-of-scope for the model. In demonstrating the efficacy of this approach, we
encourage the use of meta-models to better explain ML outputs used in radiation detection and
increase trust.
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ACRONYMS & DEFINITIONS

ANN Artificial neural network

BG Background, a gamma spectrum with counts only from one or more background sources
cps Counts per second

DRF Detector Response Function

FG Foreground, a gamma spectrum with counts only from one or more non-background sources
FNR False Negative Rate

FPR False Positive Rate

GADRAS Gamma Detector Response and Analysis Software

HPGe High Purity Germanium, a type of semiconductor radiation detector

IND In-Distribution, gamma spectra within the scope of a model or algorithm

JSD Jensen-Shannon Distance

LPE Label Proportion Estimation

MAE Mean Absolute Error

ML Machine Learning

MLP Multi-Layer Perceptron

Nal Sodium Iodide, a type of scintillating radiation detector

OOD Out-Of-Distribution, gamma spectra outside the scope of a model or algorithm
PVT Polyvinyltoluene, a type of plastic scintillating radiation detector

PyRIID Sandia’s Open-Source Python package of RIID-related software utilities
RIID Radioisotope Identification

SNL Sandia National Laboratories

SNM Special Nuclear Material
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1. INTRODUCTION

Radioisotope identification (RIID) of the radioactive sources present in gamma spectra, as well as
quantifying them, is a continued focus of environmental monitoring for industry, medicine, and
energy production, as well as national security concerns related to border monitoring, arms control,
treaty verification, emergency response, and consequence management. Measured gamma spectra
from these applications can contain contributions from multiple sources simultaneously, in which
case a multi-class identification model may not be sufficient to fully explain a measurement as only
the most prominent source would be predicted. Furthermore, simply detecting the presence of
multiple sources, while helpful, may be inadequate if the relative isotopic proportions are key to
assess urgency. For human subject-matter experts (SMEs), estimating the relative contributions of
different sources is often conducted in a time-intensive, software assisted process. The process, at a
high level, amounts to finding a selection of source signatures which best explains the measurement,
or from another perspective, finding the explanation which minimizes some goodness-of-fit metric.
To assist in reducing analysis time, which is particularly important when faced with large quantities
of data, machine learning (ML) is becoming more frequently employed to fit models to a space of
spectra rather than perform a search of that space later to find the best fit. What remain missing from
prior ML-based isotopic analysis solutions, and underpins continued criticism of ML in radiation
detection, are user-facing explanatory results that are key to establishing trust between human
analysts and their software. As such, we contend that incorporating traditional goodness-of-fit tests
or distance metrics into ML, whether to explain or train them better, is the most constructive path
forward.

To address this challenge, we fit a machine learning (ML) model to perform label proportion
estimation (LPE) (where labels are radioisotopes) on a predefined space of possible gamma spectra
(carried out as an optimization problem not unlike the aforementioned search procedure), along with
an auxiliary model which alerts a user if an encountered gamma spectrum is sufficiently different
from training, i.e., out-of-distribution (OOD). The first model which performs isotopic proportion
estimation is a neural network, or more specifically a multilayer perceptron (MLP) acting as a
regressor, which from this point forward we will simply refer to as the LPE model. The auxiliary
model used for OOD detection is a cubic polynomial fit (via a U-spline function) which leverages
the output of the LPE model, which from this point forward we will simply refer to as the OOD
detection model or OOD detector. Both models are trained and tuned on a synthetically-defined
problem space, and are then tested on lab-measured data. Our approach is novel as we utilize a
custom learning objective to train the LPE model which constrains its estimates to be explainable
in terms of a spectral reconstruction error from comparing a reconstruction to the input sample. In
particular, this is done by minimizing a semi-supervised loss function consisting of a supervised
term for the LPE task and an unsupervised term to promote spectra reconstruction and the ability
to fit an OOD detection model. The OOD detector is based on the hypothesis that in-distribution
(IND) samples and their reconstructions exhibit a trend noticeably different from OOD spectral

15



reconstructions given sufficient signal-to-noise, and leverages the outputs of the LPE model to make
a decision.

The technique presented here is a Nal-based validation using measured data of the work conducted
in [1]], which, to the authors’ knowledge, is the first time a semi-supervised learning technique
had been applied to this problem space for increased explain-ability of radioisotopes estimates.
However, the technique presented here differs in that a poorer resolution detector is used (Nal) to
assess the isotopic analysis capabilities on a relatively inexpensive detector, and while significantly
fewer sources are considered, a greater number of measured spectra are used in testing to validate
the method. While various other machine learning (ML) methods have been applied to identifying
multiple isotopes, none have attempted to unify the isotopic analysis with OOD as we have done
here.

The remainder of this report is organized as follows:

* Section 2] briefly discusses gamma spectroscopy, useful tools for synthesizing physics-based
gamma spectra, concepts related to the presented methods, and related works.

Section 3] describes all methods in terms of real and synthetic detectors, environments, and
data, as well as the models themselves and how they were trained.

Section [ presents the results of the trained models on measured spectra.

Section [5 offers our recommendation regarding usage scenarios for the models.

Section [6] provides commentary on conclusions to be drawn from the results.
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2. BACKGROUND

2.1, Gamma Spectroscopy

Radioisotopes, which exist in an unstable or excited state, spontaneously decay to a more stable
state which can include transformation into another element. During this transformation, various
types of radiation can be emitted including neutrons, alphas, betas, and photons. For this study we
are only concerned with high energy electromagnetic radiation from about 40 keV to 3 MeV, which
includes some hard X-rays and gamma rays. Gammas can be used for radioisotope identification
because when emitted, they are of discrete energies, and can typically be resolved in spectra from
a gamma detector. A gamma detector, such as the sodium-iodide (Nal) detector used for this study,
collects the energy deposited by gammas and converts it to an electrical signal proportional to
the original deposited energy. Each energy deposition, colloquially referred to as a count, is then
binned by energy level to build up a histogram known as a gamma spectrum.

Gamma spectra analysis can be very complicated due to the nature of photon interactions and
other physical phenomena observable with modern detectors. All of these phenomena cause the
detector to be sensitive to the scattering environment, source location, gain changes, and background
radiation fields, among others. Each sensitivity can interact in complicated, additive and subtractive
ways that confound human and algorithmic analyses alike. The details and physics around gamma
spectrometry are well-described in Knoll [2].

With all of these challenges in mind, gamma spectrum analysis generally still relies on experienced
subject-matter experts (SME), called gamma spectroscopists, who have, over time, become more
software-assisted. Increased use of software is a necessity due to the increasing complexity of
problems that gamma spectroscopists are employed to solve. Software automation has worked its
way into their workflow to save time on nearly all steps of analysis such as photo-peak identification,
background subtraction, and template matching [3]], which has moved the field toward a traditional,
artificial intelligence approach. Even optimization processes, the core of ML, are already common
in radiation detection and transport software which seek to minimize some useful objective function,
such as chi-squared [4].

2.2, Software

In the last decade, ML approaches to RIID have become increasingly popular in research and
have shown promise in a number of problem spaces (section [2.5)), potentially serving as yet another
supplement to analysis workflows. Such research has been accelerated by the availability of modern
software tools which can generate the large amounts of synthetic gamma spectra that ML requires.
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This section discusses two such pieces of software that were used to carry out the work in this
report.

2.2.1. GADRAS

The Gamma Detector Response and Analysis Software (GADRAS) uses Detector Response Func-
tions (DRFs) to simulate the output of real gamma and neutron detectors when they are exposed to
sources of photon and neutron radiation. Characterization of a physical detector to obtain a DRF is
performed by fitting various detector-describing parameters to well-formed gamma spectra based
on long collects of calibration sources with photopeaks spanning the full range of energy. More
about DRFs can be found in [4].

2.2.2. PyRIID

PyRIID (pronounced: PIE-rid) is a Python package that facilitates gamma spectrum synthesis,
model training, and visualizations for ML-based radioisotope identification [S)]. Synthetic data
generation occurs in three stages:

1. Seed Synthesis: the first step is to obtain source templates (without Poisson noise) on which
to fit or test a model. PyRIID does this by providing a Python wrapper around the GADRAS
API which accesses its Inject capabilities. While assumptions about sources, detector, and
environment are all made here, the ability to vary any parameter is provided. From this stage,
the user will end up with two sets of seeds: those intended as foregrounds and those intended
as backgrounds. The eventual goal is to combine these seeds to form gross spectra. From
this standpoint, PyRIID’s terminology is that foreground is source-only and background is
background-only. The authors recognize that in some circles foreground is synonymous with
gross, but not here.

2. Seed Mixing (optional): the obtained seeds are then summed together in proportions ran-
domly generated from a Dirichlet distribution. The most common use of the mixer is to
construct a variety of background samples from base seeds of PotassiumInSoil, ThoriumlIn-
Soil, UraniumInSoil, and Cosmic.

3. Static Synthesis: seeds, or mixed versions of them if that was desired, are then randomly
varied in terms of signal-to-noise ratio and live time for an expected background rate to
obtain gross spectra. Poisson noise is applied by default. Sample-wise background spectra
are also readily available to make it easy to obtain background-subtracted (AKA, foreground)
samples via a simple arithmetic operation.

Throughout the synthetic process, careful ground truth tracking is performed to preserve the source
or sources which have contributed to each spectrum and the precise proportions in which they have
done so. Moreover, source descriptions are, at the time of writing, tracked at three levels forming a
source hierarchy: category (SNM, medical, industrial, etc.), isotope, and seed. Through standard
data transformations, this information can be collapsed to combine contributors in order to create
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models which target a specific level of detail. Following this, preprocessing or normalization is
typical before training or testing a model with the synthesized data.

2.3. Machine Learning

In the last decade, ML approaches to RIID have become increasingly popular and have shown
promise in a number of problem spaces (section[2.5)), potentially serving as yet another supplement
to analysis workflows. The research has been accelerated by the availability of modern software
tools which can generate the large amounts of synthetic gamma spectra that ML requires [4) S]]

2.3.1. Neural Networks

Machine learning, which falls under the broader field of artificial intelligence (Al), can be thought
of in its most fundamental form as a set of statistical methods used to define nonlinear systems.
This section serves to provide a basic understanding of the principles of machine learning models
as they pertain to this study. For more detailed information we direct readers to the works of Hastie
et al. [6], Murphy [7] (for a more statistical perspective), Mohri et al. [8], Bishop et al. [9]], and
Shalev-Shwartz et al. [[10]].

Any machine learning method begins with a set of observations x which are drawn i.i.d. from some
domain or distribution P(X) which is defined by a set of physical processes. These observations,
which consist of sets of observed features, can be represented through various modalities such as
images/videos, sets of scalar/categorical descriptors, spectra (which is the case for this study), etc.
The aim of ML models is to learn a (generally nonlinear) function, f, which maps observations,
X, to an associated label space, Y,

f=X-UV.

For the problem targeted in this study, which can be thought of a type of regression problem,
raw gamma spectra form the feature space (X) and the label space (V) consists of a vector of the
corresponding isotope proportions.

This relation between observations and labels can be learned in several fashions, including in a
supervised or unsupervised manner. For supervised learning, the ML model learns using a dataset,
D, consisting of n pairs of observations and labels,

D = {(x1,y1), (x2,¥2), -+, (Xn, Yn) }-

ML models learn through an optimization problem called empirical risk minimization (ERM). This
involves minimizing the error (or risk) between the model’s predictions f(x) and the corresponding
true labels y, which is defined via some error metric known as a loss function. For a loss function,
L, this optimization problem can be expressed as a learning objective,

argJEnin Z L(f(x:), yi)-
i=1
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For this study a neural network model was used. Neural network models, which consist of multiple
layers connected in various fashions, are nonlinear models which can be applied to many problem
types including (but not limited to) classification and regression. Neural networks, in their simplest
form, are structured in three stages.

1. An input layer receives as inputs the vector of features corresponding with an observation.

2. Subsequent hidden layers (called this because they are not directly observed) represent internal
features, where each layer’s features are the linear combination of features in the preceding
layer.

3. A final output layer returns the prediction of the neural network which are found as a linear
combination of features from the penultimate layer.

Every layer in a neural network (excluding the input layer) consists of a set of features (or nodes)
modeled using the features of the previous layer. Each node, being fully connected, is derived as
a linear combination of all the nodes in the preceding layer, where each input from the preceding
layer is multiplied by a learned weight. Generally the output of every hidden layer is passed through
an activation function to normalize the features, before they are carried forward. A neural network
learns by adjusting its weights such that the loss from the aforementioned learning objective is
reduced. This is done during a step called backpropagation where the weights are updated via
an optimization algorithm such as gradient descent. Mathematically speaking, neural networks
are simply large, nonlinear functions which are well-defined in terms of their learned weights.
However, the way in which the weights are learned as well as the complex relationships between
various features is mostly unknown. This mystery motivates the need of additional explain-ability
for ML models.

2.3.2. Loss Functions

ML models rely on loss functions when training to estimate the quality of their predictions and
in order to calculate a loss used to perform back propagation on their weights. In this section we
introduce a few loss functions which are relevant to this study.

2.3.21. Cross-Entropy

The cross-entropy loss, also known as the logistic loss or log loss, is one of the most commonly used
loss functions in ML, and is used to measure the difference between two probability distributions.
The cross-entropy loss is based on the softmax activation function which maps the non-normalized
outputs of a neural network (called logits) to valid probabilities (such that they are non-negative
and sum to one). For a vector of logits x € R”, softmax activation is defined as,

e

softmax(x)i = Z:n—lexl
J:
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The cross-entropy loss function aims to minimize the difference between the predicted distribution
and the true distribution. Suppose that § € R" is a model’s softmax-activated predictions and
y € R" is the true distribution. Then the cross-entropy loss is defined as,

Lee(y,§) == ) yjlog(5)).
j=1

The cross-entropy loss uses a logarithmic penalty which leads to a large loss for errors close to one
and a small loss for errors close to zero.

Although the cross-entropy loss is typically used for multi-class classification tasks, it can also be
used for LPE as it minimizes the variance between probability distributions.

2.3.2.2. Sparsemax

The recently proposed sparsemax loss [11] for LPE is very similar to the cross-entropy loss, and
is optimal when the true label proportions are known to be sparse (as in most of the proportions
are exactly zero). While the cross-entropy loss relies on softmax activation, which maps logits to a
dense distribution, sparsemax loss relies on sparsemax activation which maps logits to a generally
sparse distribution.

For a vector of logits x € R”, sparsemax activation is defined as,

sparsemax(x) = argmin || p — x ||,
peAr-l

which is the Euclidean projection of the logits onto the probability simplex. In other words,
sparsemax activation will map a vector of logits to the closest valid probability distribution, which
generally being on the boundary of the simplex, will be sparse.

The paper provides a closed-form solution of the sparsemax activation which is defined as,
sparsemax(x); = [x; — 7(X)]+,

where [-]; is the soft-thresholding function ([7]; = max{0, ¢}) and 7(x) is defined as,

where S(x) = {j € [n] | sparsemax;(x) > 0} is the support of sparsemax (x).

The sparsemax loss for the LPE task is based off the sparsemax activation and is defined as
follows,

. L1 . . 1
Lsparsemax(y, y) = _yTy + 5 Z ())3 - TZ(Y)) + 5 Il'y ||2 .
JES(Y)
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2.3.2.3. Jensen-Shannon Distance

The Jensen-Shannon distance is a measure of distance between two probability distributions and
can be used as a metric of similarity between them. The Jensen-Shannon distance is based
off the Kullback-Leibler divergence which is also a measure of similarity between probability
distributions. However, unlike the Kullback-Leibler divergence, the Jensen-Shannon distance
enjoys the guarantees of being symmetric and bounded (between 0 and 1). For two distributions,
P and Q, the Jensen-Shannon distance is defined as,

KL(P || M) + KL(Q || M)

JSD(P || Q) = : ,

where KL is the Kullback-Leibler divergence and M = %(P + Q) is the average mixture of P and

0.

2.4. Dirichlet Distribution

The Dirichlet distribution, a multivariate generalization of the beta distribution, can be used to
randomly sample a discrete probability distribution and is useful for randomly sampling mix-
ture proportions (section [3.4.1). The Dirichlet distribution can be thought of a distribution of
distributions and is defined on the probability simplex for some x € A"~ ! as,

. 1177 e
Dir(x|a) = @ | |X§h 1,
i=1

where B(-) is the multivariate beta function and « is a vector which controls the variance and shape
of the distribution. In particular, if @) = a2 = ... = @, then all the mixture proportions will be
sampled evenly, while @ = 2, = 1, a3 = 1,...,@, = 1 would generate a skewed distribution
with the first term having a greater proportion on average. Also, the magnitude of « is inversely
related to the variance of the distribution. For example a1 = a; = ... = @, — oo will generate a
distribution converging on all equal proportions. However, a1 = a2 = ... = @, — 0 will generate
a distribution with a single, random positive proportion equal to 1.

2.5. Related Works

In 2019, Kamuda et al. trained a neural network model to perform isotope identification and quan-
tification [12]]. Their model was trained with synthetic gamma spectra from a 2"x2" Nal detector
which spanned 29 sources with a fixed background composition. Their primary contribution was to
demonstrate that machine learning approaches could be successfully used to estimate isotope pro-
portions in small mixtures. However, their technique differs from this report as they only consider
two, smaller mixture combinations (with contributions from 2 and 3 sources), train their model
with a conventional loss function (cross-entropy), test their model solely on synthetic spectra, and
do not consider OOD detection.
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In 2019, Kim et al. trained a neural network to perform multi-isotope identification of various
isotope combinations [13]]. Their model was trained with synthetic and measured gamma spectra
from a PVT detector which including isotope combinations spanning 4 sources with various
background measurements. Their primary contribution was to demonstrate how an ANN could
be used to predict isotope mixtures with a classification approach, and to show how such a model
performed on real gamma spectra. However, their technique differs from that of this report as their
model performs classification and can only identify combinations of present isotopes, not their
proportions. They also do not consider OOD detection.

In 2022, Ghawaly et al. characterized their Autoencoder Radiation Anomaly Detection (ARAD)
model to detect anomalies from background as a binary classifier [14]. The model was trained and
evaluated on a set of measured gamma spectra collected over three years using a Nal detector near
the HFIR/REDC complex at Oak Ridge National Laboratory (ORNL). The primary contribution
was the introduction of the first use of a deep neural autoencoder for anomaly detection from gamma
spectra. While both ARAD and the OOD detector of this report are similar in that they aim to
detect anomalies from a pre-defined problem space, they differ in several ways:

* ARAD focused on anomalies from background signatures while our model focuses on anoma-
lies from a set of foreground signatures in the presence of an LPE task.

* ARAD used an autoencoder to first learn a latent feature representation of input spectra which
is poorly reconstructed in the presence of anomalies. The model of this paper does not learn
a latent feature space in the same way, but rather the two tasks of reconstruction and LPE are
treated as complementary and learned together.

* ARAD set a JSD anomaly threshold based on a target false-positive rate (1 per 2 hours)
related to a ROC curve obtained from a test dataset, whereas our OOD detector adapts its
JSD threshold as a function of a sample’s SNR while maintaining a false-positive rate no
higher than 0.01, which was similarly learned from a test dataset.

In 2023, Khatiwada et al. explored the performance of various machine learning models (deci-
sion tree, random forest, gradient boosted trees, K-nearest neighbors regression, Gaussian process
regression, MLP, and convolutional neural network) for isotope proportion estimation [15]. Their
models were trained using synthetically generated mixtures of uranium and plutonium based on an
HPGe detector with varied backgrounds and shielding configurations. The primary contribution of
their work was to compare the performance of various machine learning algorithms for isotope pro-
portion estimation and evaluate the effects of source/shielding geometries on model performance.
Their work differs from this study as they apply a number of off-the-shelf ML approaches to isotope
proportion estimation, and do not consider OOD detection. They also focus on a different problem
space, predicting the relative isotope proportions of uranium and plutonium in various shielding
configurations.

In 2023, Van Omen produced, as part of their master’s thesis, a semi-supervised neural network
that incorporated concepts from dictionary learning to perform LPE and OOD detection [1]. The
LPE model was trained on synthetically-generated fission spectra based on an HPGe response to
estimate the proportional contribution of up to 30 distinct radioisotopes. The primary contribution
was to demonstrate the efficacy of a semi-supervised approach to radioisotope proportion estimation
that incorporates a single semi-supervised loss function in the training process [1]. However, the
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technique of that thesis differs from that of this report in that a lower resolution detector (Nal)
is utilized, fewer sources are considered, and a greater number of measured spectra are used in
testing.

In 2023, Stomps et al. apply various semi-supervised ML models to perform binary classification of
SNM identification [[16]. Their models were trained with data collected from the MINOS test-bed
project at ORNL which monitored nuclear material transfers throughout two test sites using Nal
detectors. The primary contribution of their work was to demonstrate how semi-supervised ML
methods could successfully utilize both labeled and unlabeled data to improve on supervised ML
techniques in cases where labeled data is expensive to obtain. Their approach and problem differ
from that of this report in several key ways:

* Their paper uses a different type of semi-supervised learning. In particular, they mean
semi-supervised learning in the sense that they leverage both labeled and unlabeled data
when training their model. However, the model in this paper only utilized labeled data but
combined a supervised and unsupervised loss term to form the learning objective.

* They performed binary classification of SNM while we are solving an LPE problem.

* They did not consider OOD detection.
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3. METHOD

This study investigates the capabilities of synthetically trained ML models on real gamma spectra.
The detector hardware, detection environment, and sources are introduced, for both the synthetic
and real gamma spectra generation. Numerous subsections distinguish between real vs. synthetic
and IND vs. OOD aspects of the problem to make clear the models’ priors as well as how they
were tested. In short, models are tested on all of these aspects, but trained only on synthetic, IND
data.

3.1. Detector

3.1.1. Real

Real gamma spectra measurements were taken with a 3" X 3" Nal scintillation detector.

3.1.2. Synthetic
The synthetic spectral signatures for the target sources, referred to as “seeds,” were obtained via

GADRAS Inject [4] using the specific detector response function (DRF) associated with the detector
used to collect measurements with a 10 us dead time.

3.2. Environment

3.2.1. Real

Gamma spectra were measured with the Nal detector in a lab setting under controlled conditions.
The room itself was about 4m X 8m X 2.5m with concrete flooring, aluminum walls, and a dropped
ceiling. The detector was placed on its side on the floor so that its major axis aligned with the
direction of the target source, as shown in figure 3-1]
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Figure 3-1. Lab floor layout

3.2.2. Synthetic

The synthetic seeds produced with GADRAS were generated for a fixed scattering environment at
a distance of 50 cm distance and a height of 1 cm.

3.3. Sources

3.3.1. Real

Measured sources were held at 100 cm above the floor, except in case of Co60 which was placed on
the floor to get closer to the detector due to its low activity. The distance between the detector and
source was varied to understand count rate per cm, but ultimately only the highest SNR samples
would be used for pseudo-measured mixtures. It is also worth noting that in some cases the closest
distance did not yield the highest SNR. This is most likely because of the arm holding the source
from underneath which acted as shielding between the source and the detector. Figures and[3-3]
provide a visual reference for the lab setup used to measure the radioactive sources.
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Figure 3-2. Lab setup for collecting gamma measurements of sources (viewed from above)
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Figure 3-3. Lab setup for collecting gamma measurements of sources (viewed from side)

Sixteen measurements were taken of 4 IND sources (Am241, Bal33, Co60, U232) in the lab. The
detector-source distance, live time, and SNR of each IND measurement is shown in Table [3-1]
Six measurements were also taken of 2 OOD sources (Bi207, Cs137) which are shown in Table
[3-2] A long-collect background measurement was also taken with a live time of 611.7 sec yielding
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a background count rate of 421 counts per second. The long-collect background measurement
was used to perform background subtraction on the measured spectra and produce approximate
foreground measurements. All the measured spectra (IND, OOD, and BG) are plotted in Appendix
A

Table 3-1. Real IND source measurements

Source | Distance (cm) | Live Time (sec) | SNR
Am241 | 316.2 60.4 4
Am241 | 223.6 62.7 12
Am241 | 1414 60.4 23
Am241 | 111.8 59.7 10
Bal33 | 316.2 61.0 14
Bal33 | 223.6 60.6 27
Bal33 | 1414 62.3 58
Bal33 | 111.8 60.1 42
Co60 111.8 60.3 10
Co60* | 100.0 60.72 16
Co60* | 50.0 60.2 65
Co60* | 25.0 59.8 194
U232 316.2 60.4 19
U232 223.6 59.9 30
U232 141.4 60.0 71
U232 111.8 60.2 86

* source placed on the ground in line with detector

Table 3-2. Real OOD source measurements

Source | Distance (cm) | Live Time (sec) | SNR
Bi207 | 316.2 59.6 24
Bi207 | 223.6 60.1 47
Bi207 | 1414 60.6 97
Cs137 | 316.2 62.0 13
Cs137 | 223.6 61.5 25
Cs137 | 111.8 60.0 48

3.3.2. Synthetic

Synthetic seeds obtained via GADRAS Injects, which are used to create training data, are generated
for 6 IND sources: Am241, Bal33, Co60, U232, Cf252, and Eul52. Two of these isotopes (Cf252
and Eul52) were not available to measure in the lab, but were still included in synthetic training
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data. This was done in order to provide an extra challenge for the models by expanding the scope
of the training data.

Synthetic seeds were also generated for 4 background sources: K40 (PotassiumiInSoil), Ra226
(UraniumInSoil), Th232 (ThoriumInSoil), and cosmic radiation. These background seeds were
randomly combined to generate representative background spectra when creating training datasets,
and they were also used as synthetic OOD sources when testing the OOD detection model.

3.3.3. Comparison

The success of our approach for estimating isotope proportions from real measurements relies
on the synthetic training data accurately representing the real spectra encountered. This can
be challenging as numerous real-world effects, which are not accounted for when training, can
change the shape of measured gamma spectra. Some of these include the specific geometry of
the scattering environment in which spectra were measured, flaws or particular characteristics of
the detector that were not accounted for in the DRF, changes in temperature (which can affect
the detector’s calibration), and differences in the background environment, just to name a few. In
order to mitigate some of these discrepancies, the gain and offset values of the energy calibration
were manually tuned on the measured spectra so that the spectral peaks visually aligned with the
corresponding peaks in the synthetic seeds. Background subtraction was also applied to the gross
measurements using the long-collect background measurement in order to obtain approximate
foreground spectra. And lastly, the first four energy channels of the resulting foreground signatures
were set to zero as these channels were found to only contain X-ray noise. To illustrate the degree to
which the energy calibration of measurements match their corresponding synthetic seeds, overlays

of the spectra are shown in Figures [3-4] [3-5] [3-6] and
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Figure 3-5. Comparison between synthetic seed and foreground measurements for Ba133
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Figure 3-6. Comparison between synthetic seed and foreground measurements for Co60
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Figure 3-7. Comparison between synthetic seed and foreground measurements for U232
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Understanding the relative similarity between various source signatures is important, not only to
validate the quality of the synthetic seeds, but also to understand the models’ behavior (Section
[6). While Figure 3-7] qualitatively shows the agreement between some synthetic and measured
source signatures, these similarities can also be described quantitatively using the Jensen-Shannon
distance which is used to describe the similarity between two probability distributions. The spectral
distances between the various normalized seeds (synthetic vs. real, IND vs. OOD) are represented
using spectral distance matrices shown in Figure 3-8 and [3-9] Each element in a spectral distance
matrix represents the Jensen-Shannon distance between two particular sources, where smaller
values indicate closeness.
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Figure 3-8. Spectral distance matrix comparing IND synthetic and measured seeds (a dashed square
denotes the measured column source most similar to the synthetic row source).
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Figure 3-9. Spectral distance matrix comparing IND synthetic seeds and OOD sources (a dashed square
denotes the OOD column source most similar to the IND row source).

3.4. Semi-Supervised LPE Model

3.4.1. Generating Training Data

The model used to perform isotope proportion estimation was trained and fine-tuned solely with
synthetic gamma spectra. With the seeds (foreground and background) obtained from GADRAS,
a synthetic training dataset was generating using PyRIID (2.2.2)). The process to generate realistic
synthetic spectra can be broken down into four distinct steps:

1. Down-sample Raw Spectra
Initially, the synthetic foreground and background seeds contain 1024 distinct energy chan-
nels. The seed spectra are down-sampled to 256 channels by uniformly summing every
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4 channels. This serves to (1) reduce noise contained in the spectra and (2) reduce the
computation cost of synthesizing subsequent data and training models.

2. Generate Random Mixtures

The next step is to randomly sample mixture proportions and mix the synthetic seeds together
to create noiseless mixtures. Both the foreground and background seeds were mixed together
separately in order to create foreground and background mixtures. This was done using the
SeedMixer in PyRIID which randomly samples proportions using the Dirichlet distribution
(section [2.4)). Each background mixture contains a random mixture of all four background
constituents. For the foreground mixtures, a mixture size of 3 was used so that each mixture
contains 1-3 foreground sources simultaneously.

3. Static Synthesis of Mixture Spectra
Taking the pure mixtures from the previous step, realistic gamma spectra can be simulated
using the StaticSynthesizer in PyRIID. The StaticSynthesizer receives both the foreground and
background mixtures as inputs and returns realistic gamma spectra by (1) generating gross
spectra by randomly sampling the SNR, (2) applying Poisson noise to the counts in each
energy channel, and (3) performing imperfect background subtraction using a long-collect
Poisson-sampled background mixture.

4. Additional Preprocessing Steps
Before the spectra are ready to be used for training, several preprocessing steps are applied. As
a result of the imperfect background subtraction, it is common for some low-SNR foreground
spectra to have negative counts in some channels. These negative values are clipped at zero,
allowing the spectrum to be L1-normalized. This is done by dividing through each spectrum
by its total counts such that each spectrum sums to one. This ensures that all the training data
is on the same scale.

Following these steps a synthetic training dataset was generated containing 900k spectra (900k =
15 BG mixtures * 300 FG mixtures * 200 samples per seed). All the parameters used to generate
the training dataset are shown in Table [3-3
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Table 3-3. Parameters for generating synthetic training data

Parameter Value
FG sources (synthetic) | Am241, Bal33, Co60, Cf252, Eul52, U232
target bins 256
BG mixture size 4
BG mixture samples 15
BG Dirichlet alpha 1
FG mixture size 3
FG mixture samples 300
FG Dirichlet alpha 1
BG counting rate (cps) | 300
samples per seed 200
SNR range (5, 100)
SNR sampling style log10
live time range (sec) (60, 60)
normalization L1

Once the training set was generated, the distribution of mixture proportions for each source can
be visually inspected to ensure the dataset is balanced. Figure [3-10] shows these distributions for
each source in the training dataset which verifies our training data is balanced. Note only the

non-negative proportions are shown as zero proportions dominate the dataset.

Am241

Bal33 Cf252

Co60

Eulb2 U232

Counts

Figure 3-10. Distribution of mixture proportions for each isotope present in training spectra

Source Proportion
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Figure [3-T1] shows the distribution of mixture sizes (ranging from 1 to 3) present in the training
dataset. Here the mixture size of a spectrum is defined as the number of contributing sources with
proportions greater than 10%. The plots show that the training dataset is dominated by mixtures of
size 2 and 3, although a handful of single-isotope spectra are present. To illustrate mixtures fully,
a randomly drawn spectrum from the training dataset is shown in Figure [3-12]
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Figure 3-11. Distribution of mixture sizes in training data
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Figure 3-12. A random sample from the training dataset with an SNR of 9.5 (1273 foreground source
counts) and approximately composed of 17% Am241, 40% Ba133, and 43% U232
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Randomly sampling of mixture proportions was conducted consistently for each source to ensure
the dataset did not favor any particular source. However, due to the nature of the Dirichlet sampling
technique, the dataset was not balanced in terms of mixture size as targeting a mixture size of 3
does not guarantee that every sample will contain a significant contribution from all sources. Using
a definition of mixture size that counts the number of sources contributing more than 10% of the
counts in a spectral sample, the numbers of samples for each mixture size were observed as follows:
15k 1-mixture samples, 207k 2-mixture samples, and 678k 3-mixture samples.

3.4.2. Generating Testing Data
3.4.2.1. Synthetic Test Data

First a dataset of synthetic test spectra was created, which was used to evaluate performance for the
hyperparameter search (Section [3.4.3.3)), tune 3 (Section [3.4.3.4)), train the OOD detector (Section
[3.5.1), and compare against the models’ performance on measured data (Section 4.2). In order
to simulate the scenario tested in the lab, only the four seeds corresponding to the four IND lab
sources (Section [3.3.2)) were used to generate the synthetic test set. The test spectra were generated
in the same way was as the training spectra, using the SeedMixer and StaticSynthesizer in PyRIID.
To ensure that the test set is IND, the background mixtures were sampled from the background
mixtures generated for the training dataset. All the parameters used to generate the test dataset are
shown in Table [3-4, The synthetic test dataset contained 100k spectra (100k = 5 BG mixtures *
200 FG mixtures * 100 samples per seed).

Table 3-4. Parameters for generating synthetic test data

Parameter Value
FG sources (synthetic) | Am241, Bal33, Co60, U232
target bins 256
BG mixture size 4
BG mixture samples 5
BG Dirichlet alpha 1
FG mixture size 3

FG mixture samples 200

FG Dirichlet alpha 1

BG counting rate (cps) | 300
samples per seed 100
SNR range (5, 100)

SNR sampling style log10
live time range (sec) (60, 60)
normalization L1

37



Table 3-5. Parameters for generating measured test data

Parameter Value
FG sources (real) Am?241, Bal33, Co60, U232
target bins 256
BG mixture size 4
BG mixture samples 5
BG Dirichlet alpha 1
FG mixture size 3
FG mixture samples 200
FG Dirichlet alpha 1
BG counting rate (cps) | 300
samples per seed 100
SNR range (5, 100)
SNR sampling style log10
live time range (sec) (60, 60)
normalization L1

3.4.2.2. Pseudo-Measured Test Data

Collecting a sufficiently large measured test set in the lab and calculating all the true isotope
proportions would have been prohibitively expensive. In order to evaluate the models’ performance
on measured mixture spectra, a large pseudo-measured test set was generated using the highest-SNR
measurement of each source as seeds. In particular, the foreground spectra for each lab source
was estimated by performing background subtraction on the highest-SNR lab samples. With these
measured seeds in hand a test dataset was generated in the same way as the synthetic test dataset
using PyRIID. Note we refer to these spectra as “pseudo-measured” because they were synthetically
generated by randomly sampling off of real measurements treated as seeds. From this point forward
we will refer to this data as measured test data to simplify terminology. The measured test data
also contains the same number of samples and was generated using the same parameters as the
synthetic test dataset, the only difference being that measured seeds were used in place of synthetic
ones (Table [3-5).

3.4.3. Creating the Model

3.43.1. Semi-Supervised Loss Function

The main idea behind our approach is to train an ML model for isotopic proportion estimation with
a custom semi-supervised loss function that is designed to produce accurate proportion estimates
while simultaneously encouraging reliable OOD detection by constraining overconfidence inherent
to neural networks. Our proposed loss function contains two terms, a supervised term and an
unsupervised term, and is based off [1]] except with the unsupervised loss term now being Jensen-
Shannon distance. This approach leverages the fact that L1-normalized gamma spectra can be
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viewed as discrete probability distributions, as all the values are non-negative and sum to one
(utilizing negative clipping). Moreover, every target spectrum can be viewed as a mixture of the
pure signatures associated with each class, which we call seeds.

This approach relies on the assumption that we have access to the seed associated with each
class a priori. This assumption is reasonable as isotope identification algorithms typically target a
specific set of isotopes, and the spectral shape for each isotope can be easily simulated with radiation
transport and detector response software, such as GADRAS. The assumption can be formally stated
using a dictionary matrix D € R“, where each column is the seed associated with a particular
class. Here ¢ = 256 represents the number of energy channels in our spectra and d = 6 represents
the number of target classes. Using this representation, any measured spectrum, x € R, should be
approximately represented as a mixture of the dictionary columns,

Xx=D=*y+n,

where y € R? is a vector of the true source proportions and n € R€ is noise.

For a data pair (x,y) and LPE model f : R — R, the semi-supervised loss function takes the
following form,

L(x,y:D,B) = (1 = B) * Laup(y, f(x))+
:3 * Lunsup(D * f(X),X),

where Ly, , represents a supervised loss function which compares the true isotope proportions y to
the predicted isotope proportions f(x), and L, represents an unsupervised loss function which
compares the reconstructed input spectrum D * f(x) to the actual input spectrum x. Thus, the
unsupervised loss function is referred to as the reconstruction error and 8 € [0, 1] represents a
scalar hyperparameter which controls the trade-off between the two loss terms.

For the supervised loss a bounded version of the Sparsemax loss [[11] was selected, as the true
isotope proportions were known to be sparse. Alternatively, the cross-entropy loss could also
be used if sparsity cannot be assumed. The Sparsemax loss in an unbounded, non-negative loss
function, so to ensure it remained on the same scale as the unsupervised term the hyperbolic tangent
function was used to bound its values between 0 and 1. In particular, the supervised loss function
is given as follows,

Lyup(y, f(x)) = tanh(5 = sparsemax(y, f(x))),

where a scalar multiple of 5 was used to change the shape of the hyperbolic tangent, such that the
supervised and unsupervised loss returned values approximately equal in magnitude.

For the unsupervised loss the Jensen-Shannon distance was chosen. The JSD is a bounded,
symmetric version of the Kullback-Leibler divergence and is used to compare the similarity between
two probability distributions, making it ideal for this use case. The unsupervised term of the loss
function is given as follows,

Lunsup(D * f(x),x) = JSD(D * f(x),X).
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Then putting both loss terms together we have the final semi-supervised learning objective used to
train the LPE model,

L(x,y;D,B) = (1 — ) = tanh(5 * sparsemax(y, f(x)))+
B JSD(D = f(x),X).

3.4.3.2. Model Architecture and Implementation

The isotope proportion estimation is performed with an ML model. Various types of ML models
were explored, including random forests, gradient-boosted decision trees, convolutional neural
networks, and MLPs. An MLP (a shallow feedforward neural network, to be more specific)
was ultimately chosen as it exhibited similar performance to the other models and can be easily
embedded in various compute systems.

The neural network model was constructed in TensorFlow [[17] and trained using the Adam optimizer
[18]]. The architecture consisted of a dense neural network with two hidden layers.

3.4.3.3. Model Hyperparameter Search

The size of the hidden layers as well a number of the training parameters were selected using an
automated hyperparameter search. The hyperparameter search was conducted with the Optuna
[19] framework which uses a Tree-Structured Parzen Estimator to efficiently navigate the search
space and sample hyperparameters expected to provide the most improvement. The hyperparameter
search was set up to minimize the MAE on the synthetic test set and was conducted with 100 trials.
Table [3-6shows the hyperparameter search space and the final hyperparameters used for the model.
For this hyperparameter search, § was held constant at 0.5 as it was selected based not only on the
MAE but also the reconstruction error (Section[3.4.3.4). Early stopping and learning rate annealing
were also used to reduce training time.

Table 3-6. The search space and final selection of training hyperparameters

Parameter Search Space Final Value

hidden layer 1 nodes (16, 256) 173
hidden layer 2 nodes (16, 64) 63
batch size (32, 512) 86
hidden layer activation {mish, relu, softplus, tanh} | relu
initial learning rate (0.005, 0.015) 0.012
epsilon (for optimizer) (0.0, 0.05) 0.017
dropout (0.0, 0.05) 0.04
kernel L1 regularization | (0.0, 0.001) 8.1e-4
kernel L2 regularization | (0.0, 0.001) 8.2e-5
activity L1 regularization | (0.0, 0.001) 8.4e-4
activity L2 regularization | (0.0, 0.001) 4.7e-4
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3.4.34. Tuning 8

The relative performance of the model for LPE and OOD detection can be optimized by properly
tuning S, which controls the trade-off between the two loss terms in the learning objective. The
supervised loss term minimizes the difference between the true and predicted isotope proportions,
and thus primarily serves to minimize the MAE of the proportion estimations. The unsupervised
loss term minimizes the difference between the reconstructed spectrum and the input spectrum,
and thus it primarily serves to improve the reconstruction error of the proportion estimates. In the
loss function, S is applied such that 5 = 0 only uses the supervised loss and 5 = 1 only uses the
unsupervised loss.

In order to select an optimal value for 8, 105 models were trained across a range of 8 € [0, 1] using
the hyperparameters found in the previous section. Figures[3-13]and [3-14]show the performance of
the models on the synthetic test set in terms of the MAE and reconstruction error as a function of .
From the figures we can visually see that by selecting 5 = 0.85 we can obtain low reconstruction
errors without significantly raising the MAE of the predicted proportions.
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Figure 3-13. MAE as a function of 3 on synthetic test data, blue band represents standard deviation.
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3.4.35. Learning Curves

The final model was trained using the parameters found from the hyperparameter search in Section
[3.4.3.3]and using 8 = 0.85 found in Section [3.4.3.4] The learning curves for the model are shown

in Figure [3-15]
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Figure 3-15. Training and validation curves from model training.
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3.5. OOD Detection Model

The OOD detector is based on the fact the reconstruction error can be calculated for test spectra
as it does not depend on the true label proportions. By including the reconstruction error in the
loss function the LPE model is encouraged to predict proportions that yield reconstructions that are
consistent with the dictionary (as in yield good reconstructions). When a spectrum is OOD due to
the presence of an anomalous source, then the OOD detection model will not be able to generate a
close reconstruction as the dictionary is missing the spectral signature associated with the anomaly.
Thus, an OOD spectrum should yield a large reconstruction error. The more unique the anomaly
is, the harder it will be for the OOD detection model to produce a close reconstruction, and the
larger the reconstruction error should be. Increasing S when training the model should promote
lower IND reconstruction errors, making OOD reconstruction errors easier to identify.

3.5.1. Training

The OOD detector is a decision function that classifies each input spectrum as either IND or
OQOD based on its reconstruction error. In practice, we have found that a simple threshold for the
reconstruction error at some scalar value is insufficient for OOD detection, as the reconstruction
error correlates with SNR. The reconstructed spectrum is created by mixing together the dictionary
seeds with the predicted proportions. For low SNR, the LPE model does not have enough counts to
accurately predict the isotope proportions, which results in a worse reconstruction. To account for
this, we propose a OOD detector function which uses both the reconstruction error and the SNR to
make a decision.

The exact nature of OOD reconstruction errors is unknown, a form of epistemic uncertainty
introduced by such as factors as the similarity between an anomaly and IND seeds and the number
of counts from the anomaly relative to other sources. As a practical matter, because one does not
know the OOD sources to be encountered, OOD thresholds can only be characterized in terms
of IND synthetic data. The way this is done is by identifying the region of IND reconstruction
errors.

Specifically, the reconstruction error threshold is determined as a function of SNR for a desired
FPR using an Interpolated Univariate Spline function (U-Spline). This was done in two steps based
on the IND synthetic test set:

1. Bin SNR
First all the spectra contained in the synthetic test set were binned by SNR into 15 equal-sized
quantiles. For the spectra in each quantile, two values were calculated: (1) the average SNR
and (2) the 0.99 quantile of the reconstruction errors (this corresponds to a 1% FPR).

2. Fit Spline Function
Then using the average SNRs as the x-values and the 0.99 reconstruction error quantiles as
the y-values, an Interpolated Univariate Spline function was fit to the data. A cubic spline
function was used. The Interpolated Univariate Spline function guarantees that the spline
will pass through each data points and be smooth.
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Figure [3-16 plots the reconstruction errors as a function of SNR for the IND synthetic test spec-
tra, along with the 0.99 reconstruction error quantile for each SNR bin, and the fitted threshold
function.
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Figure 3-16. U-spline OOD threshold function for a 1% FPR along with reconstruction error vs. SNR for
synthetic test samples.

3.5.2. Testing

To test the OOD detector on measured gamma spectra two OOD datasets were created using
different types of OOD sources: OOD synthetic background sources (K40, Th232, Ra226, cosmic)
and OOD measured lab sources (Cs137 and Bi207). Both OOD datasets were generated from the
measured seeds, similar to the measured IND test data, along with one of the OOD seeds. The
OOD dataset using the synthetic OOD seeds contains 4 million samples and the OOD dataset using
the measured OOD seeds contains 2 million samples. The data generation parameters for these two
datasets are shown in Tables[3-7] and
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Table 3-7. Parameters for generating OOD test data with synthetic BG OOD sources

Parameter Value
FG sources (real) Am?241, Bal33, Co60, U232
OOD sources (synthetic) | K40, Th232, Ra226, cosmic
target bins 256
BG mixture size 4
BG mixture samples 5
BG Dirichlet alpha 1
FG mixture size 5
FG mixture samples 200
FG Dirichlet alpha 1
BG counting rate (cps) 300
samples per seed 100
SNR range (5, 100)
SNR sampling style log10
live time range (sec) (60, 60)
normalization L1

Table 3-8. Parameters for generating OOD test data with measured OOD sources

Parameter Value
FG sources (real) Am?241, Bal33, Co60, U232
OOD sources (real) Bi207, Cs137
target bins 256
BG mixture size 4

BG mixture samples 5
BG Dirichlet alpha 1

FG mixture size 5

FG mixture samples 200

FG Dirichlet alpha 1

BG counting rate (cps) | 300
samples per seed 100
SNR range (5, 100)

SNR sampling style log10
live time range (sec) (60, 60)
normalization L1

3.6. Study Reproduction

The code, data, and best, pre-trained models produced in this study can be found online [20].
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4, RESULTS

4.1. Performance on Single-Isotope Measurements

The behavior of the LPE model can be validated by first predicting isotope proportions on the
single-isotope lab measurements. The predictions of the LPE model on all 16 IND measurements
and 6 OOD measurements are shown in figure d-1] Although the LPE model is primarily trained
to predict on mixture spectrum containing 2 or 3 isotopes there are a few single-isotope samples
in the training dataset which is shown in figure 3-T1] This result shows that the LPE model can
successfully generalize to this test case, as it correctly identified the dominant source in each
measurement.

The estimates from figure [d-1] also show that the LPE model seems to detect high proportions of
Cf252 in the Bal33 measurements. This confusion is likely due to the fact that Bal33 and Cf252
have a similar spectral shape, which is supported by the small JSD between them shown in figure

3-8
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Figure 4-1. Isotope proportion estimates of single-isotope lab measurements
4.2. Performance on Multi-Isotope Spectra
4.2.1. Performance on Multi-Isotope Measurements

The LPE model was used to predict isotope proportions on both the synthetic and measured test
datasets, on which it achieved a MAE of 0.035 and 0.07, respectively. Figures4-2]and 4-3|compare
the true and predicted isotope proportion estimates for a subset of both the synthetic and measured
test spectra.
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4.2.2. MAE vs. SNR

The prediction errors were found to depend highly on the SNR of the test samples. Figures4-4)and
[4-5| show the MAE of the LPE model decreases as a function of SNR for both the synthetic and
measured test spectra. Beyond about 50 SNR, the LPE model does not seem to gain any additional
spectral information that would further lower the MAE. These plots also indicate that the LPE
model performs better on synthetic spectra than real spectra, which is to be expected given the
observed differences illustrated in Section[3.3.3]
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Figure 4-4. MAE vs. SNR for synthetic test spectra. Boxes represent inner quartile range (IQR), whiskers
extend to the farthest sample within 1.5x the IQR, and outliers are shown as black circles.
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Figure 4-5. MAE vs. SNR for measured test spectra
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4.2.3. Reconstruction Error and OOD Detection

Figure 4-6] shows the distribution of reconstruction errors for both the synthetic and measured test
spectra. This plot shows that the reconstruction error distribution peaks are slightly offset, but still
on the same scale.
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Figure 4-6. Distribution of reconstruction errors for synthetic and measured test spectra

To test the performance of the OOD detectors on measured test data the models were used with
both OOD test datasets. Figure -7 and [4-§ show the reconstruction error for the OOD spectra as
a function of the OOD contribution. From the figure it is clear that the reconstruction error grows
larger with a higher OOD proportion, which was the expected behavior. However, this trend is most
noticeable for the measured OOD sources (Bi207 and Cs137), and much smaller for the background
OOD sources (K40, Ra226, Th232, and Cosmic). This is likely because the background signatures
are relatively similar to nearly all the IND seeds which is supported by the spectral distance matrices

in Figure[3-9]

52



0.30 A

0.25 A i |

0.20 A

-GN O
-G
-GEDO
@00

0.15 A

0.10 A

5

0.00 A

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
OOD Contribution

Reconstruction Error
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Figure [4-9) and B-10] demonstrate the performance of the OOD detector on both OOD datasets in
terms of the FNR as a function of SNR and OOD proportion. From Figure -9 we can see that
at 50 SNR the OOD detector can detect nearly all OOD spectra with an OOD proportion greater
than 50%. From Figure @-10 we also confirm that OOD detector has a harder time identifying the
background sources as OOD, and only achieves a 0% FNR at an SNR > 80 and OOD proportion
> 70%. This is again explained by the high similarity between the BG signatures and the IND
training seeds (Figure [3-9).
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Figure 4-9. Heatmap showing the OOD FNR as a function of OOD proportion and SNR for the measured
OO0D test spectra generated from lab measurements (OOD sources: Bi207, Cs137)
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4.3. Computational Reference

The LPE and OOD detection models are not computationally expensive and should capable of
better than real-time performance on synthetic and measured spectra. The models, which were run
on a 2.4 GHz 8-core Intel Core 19 processor with 32 GB of memory, were able to process spectra
at speeds > 50 kHz. This is well above the required speed threshold for most realistic scenarios.
The LPE model itself is relatively small (55807 parameters) and should be easily embedded in a
lightweight compute system. The LPE and OOD detection models took about 10 minutes to train
on the aforementioned computer.
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5. RECOMMENDED USAGE

In Section[3.6] the reproduction of this study is discussed which also indirectly empowers the reader
to create similar models for their own problems. This is, in fact, the purpose of the PyRIID package:
to enable both ML practitioners and nuclear SMEs to create ML solutions for RIID as quickly,
correctly, and easily as possible. To that end, this section provides additional recommendations
from the authors with respect to how such models are intended to be used.

The most straight-forward way we see to incorporate this technology is as a supplemental tool
SMEs use to perform an initial, batch screening of large quantities of gamma spectra. As illustrated
in Figure this technique could be used to generate an alarm under specific scenarios (based
on the OOD detector and sample SNR) which would indicate further investigation is required by
a spectroscopist. In the case that the spectrum of interest is detected as IND, the radioisotope
proportion estimates can serve as an initial estimate of the true isotopic proportions.

Innocuous Estimates Concerning Estimates

Low SNR  High SNR Low SNR  High SNR

In-Distribution

Ignore Low Priority High Priority | High Priority

Low SNR  High SNR

Out-of-Distribution

Ignore Low Priority

Figure 5-1. Prioritization matrix for samples analyzed by LPE and OOD models

The threshold of low versus high SNR is a simplification which can be adjusted to represent
multiple levels of severity, all of which most often relate to dose-related, safety concerns. How
estimates are interpreted as innocuous vs. concerning is application-specific, and likely related to
post-processing of estimates into more useful quantities such as source activity or activity ratios
between specific sources.
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6. CONCLUSION

This study demonstrates that the LPE model, trained and tuned solely using synthetic gamma
spectra, successfully performed LPE on real gamma spectra. Additionally, by properly tuning
the trade-off parameter () between the two terms of the custom, semi-supervised loss function
the model was able to achieve reasonable OOD detection performance without compromising the
isotope proportion estimates. Having a built-in method for OOD detection enables the model to
know when to not trust its output because the input spectrum is OOD, which improves confidence
in the model.

In particular, the LPE model successfully identified the dominant isotope in each of the lab
measurements (Figure @-1)) even though it was primarily trained to predict on mixture spectra
(Figure [3-T1). The LPE model also achieved a MAE of 0.07 on the measured test set which was
imbalanced towards low SNR samples. The OOD detection model correctly identified measured
OOD spectra which contained the OOD sources Bi207 and Cs137 (Section[4.2.3)) with a 0% FPR
for OOD proportions above 50% at 50 SNR or higher.

The cases where the models seemed to perform worse are predictable and can be explained in
terms of the spectral uniqueness of the sources used in this study (Section [3.3.3). For example,
although correctly identifying measurements of Bal33, the LPE model consistently predicted non-
zero proportions of Cf252 which was not present (Figure 4-1). This confusion, however, can be
explained as Bal33 and Cf252 have a similar spectral shape and small JSD between them. The
OOD detection model also had a difficult time detecting pure background components (K40, Ra226,
Th232, and Cosmic) as OOD (Fig. -10). This too can be explained as these background sources
are much more similar to the IND synthetic seeds than Bi207 or Cs137 (Section [3.3.3)). Practical
consideration aside, potential remedies we surmise for improving OOD detection on measurements
include, but are not limited to, the following: (1) region-specific reconstruction instead of full
spectrum reconstruction; (2) increasing overall measurement SNR; and (3) using a detector with
better resolution.

The performance of the models (in terms of both isotope proportion estimation and OOD detection)
will only be as good as the spectral signatures used to generate training data, and to be more specific,
how similar those signatures are to the actual source signatures in the models’ natural habitat. When
generating a training dataset many assumptions must be made to create the synthetic seeds, and
although effort was made to ensure they matched as close as possible for this study (such as adjusting
the energy calibration and using an appropriate DRF for our detector), it would be unrealistic to
expect perfect alignment with the testing environment. Moreover, there are also unpredictable,
real-world effects that change the shape of measured gamma spectra (Section [2.1)). This dilemma,
known as the sim-to-real gap, will always be a challenge for ML approaches to RIID, which will
heavily rely on synthetic training data if they are to be applied to complex problem spaces. In light
of this predicament, the ability of an ML model to "know what it does not know" (OOD detection)
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is absolutely crucial and should be given a reasonable degree of consideration at all times. Having
built-in OOD detection capabilities enables our method to identify when a spectrum is sufficiently
different from training such that it should not be used, and is critical for having a sense of confidence
in the estimated proportions.
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APPENDIX A. Spectral Plots

A.1. Measured

This appendix contains the plots of all the spectral measurements taken in the lab including both
the gross measurements of sources and the long-collect background measurement.
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Figure A-1. Gross measurements of Am241 source
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Figure A-2. Gross measurements of Ba133 source
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Figure A-3. Gross measurements of Bi207 source
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Figure A-5. Gross measurements of Cs137 source
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Figure A-7. Long-collect background measurement
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A.2. Synthetic

This appendix contains the plots of all the synthetic seeds used in this study including the FG and
BG seeds.
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Figure A-8. Synthetic seed for Am241
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Figure A-9. Synthetic seed for Ba133
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Figure A-10. Synthetic seed for Co60

68



log(Counts)

log(Counts)

10-24

10-34

.i

15}
L
.

H

<
&
;

105 4

10-74

10-8 4

— Cf252

500

1000 1500 2000
Energy (keV)

Figure A-11. Synthetic seed for Cf252
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Figure A-12. Synthetic seed for Eu152
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Figure A-13. Synthetic seed for U232
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Figure A-14. Synthetic seed for K40
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Figure A-15. Synthetic seed for Ra226
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Figure A-16. Synthetic seed for Th232
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Figure A-17. Synthetic seed for Cosmic Radiation
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