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Information from Statement of Project Objectives (SOPO)
This award aims to increase the lifetime of c-Si modules by lowering the power degradation

rate to the goal of 0.2 %/year, while also increasing the harvested irradiance per module using bi-
facial cells to achieve the 2030 SunShot goal of $0.03/kWh. Increasing the durability and lifetime
of modules requires improved module packaging material choices and module architectures to ex-
ploit new cell improvements. Bifacial PERC cells (with backside aluminum fingers) are becoming
a primary PV technology due to their decreased rear surface recombination and increased light
absorption compared to traditional monofacial Al-BSF cells. Bifacial modules with double glass
architectures have been deployed to capture the rear-side irradiance thereby increasing the light
captured. The choice of a double glass (DG) or glass/backsheet (GB) module leads to two very
different chemical (e.g., O2, H2O) and mechanical environments (e.g., mechanical stress levels)
inside the PV module that impact the cell’s operational conditions. The recipient will fabricate
4-cell DG and GB minimodules with various module architectures or constructions (mono- & bi-
facial cells, transparent & white encapsulants), and conduct stepwise accelerated exposures and
characterization. These stepwise evaluations of degradation include evaluations for electrical, me-
chanical, and chemical degradation that would reduce the overall power output. Evaluations will
be performed stepwise during exposure giving key insights into the mechanisms driving degrada-
tion and the strength of the various degradation pathways. Samples will be retained for additional
non-destructive and destructive mechanical and chemical evaluations. Through the integration of
materials, cell, and module-level data, the recipient will quantify the impact of module architec-
ture and packaging materials on mechanistic degradation pathways and rates in both DG and GB
modules by network structural equation (netSEM) modeling. The recipient will also use advanced
statistical methods to model power and mechanistic degradation of fielded bifacial PERC DG and
GB minimodules using time-series I-V data. By developing degradation models for each type
of mini-module architecture and bill of materials, the recipient can determine the best approach
for module design when comparing DG and GB modules. The three objectives of this award: 1.
Optimize DG and GB designs for degradation rate, mechanical durability, and cost. 2. Quan-
tify degradation rates and modes specific to DG and GB mono-/bi-facial modules. 3. Identify
module architectures, packaging materials, and cell designs by cross-correlating indoor/outdoor
mini-module results to advance the industry to 50 year lifetimes.

Backsheet modules lead to a “breathable” cell environment with varying oxygen and moisture
content, which strongly influences the rates of photolysis, hydrolysis, and thermolysis inside the
module, while at the same time providing an asymmetric mechanical stress environment that
could give rise to cracking. A DG module design produces a cell environment with more constant
concentrations of oxygen and moisture and less breathability of encapsulant degradation products
such as acetic acid, while at the same time representing a more symmetrical stress state, and
potentially greater protection from mechanical impacts. This award will identify and mitigate
relevant degradation modes (corrosion and mechanical) in GB and DG modules to reduce the
power degradation rate of PV modules to the goal of 0.2%/year, toward increasing PV module
lifetimes to 50 years.

DG modules have potential advantages over GB modules, including increased rigidity and de-
creased permeability, but it is an unknown whether DG will create additional degradation mech-
anisms for cells. New degradation mechanisms may also be brought on by encapsulant choices
within the module, so the recipient will explore white, UV cutoff, and transparent encapsulant
variations of both POE and EVA. The additives in white and UV cutoff forms of these encap-
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sulants may create additional degradation risks, especially for cell corrosion. Recent accelerated
exposures show that GB modules tend to show crack propagation after thermal cycling, while DG
forms cracks at cell edges. After damp heat exposure, GB modules show busbar darkening and
dark spots in EL, while there is no significant change in DG modules. Because both mechanical
and chemical degradation are of concern for comparing DG and GB modules, this award will
include sequential tests of damp heat with thermal cycling and/or mechanical stress. The award
is structured for direct comparison of DG and GB minimodules, and cross-correlation of outdoor
and accelerated results to identify module architecture, materials, and cells to optimize module
packaging for 50 year lifetimes.
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1 Executive Summary

All the milestones, subtasks and End of Project (EOP) have been completed during Budged
Period 1 and Budged Period 2. See Section 2 for the detailed Task, Subtasks, and Milestones
from the SOPO. The objectives of this project are as follows:

•

A brief summary of the sections in the report are presented here and the relevant sections are
referenced.

Minimodule fabrication and characterization In this project, 5 different sets with varied
packaging strategies and module architectures were fabricated at CSI and CWRU manufacturing
facilities. Forty-eight minimodules each from sets #1-#4 and 40 minimodules from set #5
(including retained minimodules) were fabricated at both facilities. Across 5 sets, a total of 232
minimodules were fabricated. In addition, 120 1-cell minimodules were fabricated and shipped
to NREL for mechanical testing studies. Stepwise characterization techniques, namely I-V ,
SunsVoc, electroluminescence (EL), electroluminescence (PL), and 4-point proof loading, were
utilized to monitor degradation. More details are highlighted in Sections 3.1.1 and 3.1.2.

Minimodule exposures: Two types of exposures were implemented in this project: indoor
accelerated and outdoor exposures. There are two types of indoor accelerated exposures including:
modified damp heat (mDH) and mDH with full spectrum light (mDH + FSL). mDH is 80 ◦C
and 85 % relative humidity and FSL makes use of 420 W−2 light intensity. All the minimodule
sets were preconditioned and exposed in either accelerated conditions for a total of 2520 hours.
Thirty-two minimodules from sets #1-#4 were exposed outdoors at the SDLE SunFarm located
in Cleveland, OH. This location belongs to the Dfa climate (continental, no dry season, hot
summer) according to the Köppen-Geiger climate classification system. The outdoor exposure
was performed for 1.6 years.

T50 webinar: The T50 workshop with up-to-date results from the project was held on August
18, 2020. The title of the workshop was ’Strategies of PV Modules with Lower Performance Loss
Rates’. 127 participants registered from industry (81) and research institutions (46). Most of
the participants were from research and manufacturing fields. One of the major interests among
participants was bifacial PV modules, followed by degradation studies.

Accelerated exposure results All the minimodule sets were compared using degradation path-
way modeling (netSEM) and (predictive) confidence intervals from 0-2520 hours of accelerated
exposures. Predictive confidence intervals were used to rank-order durable/degrading variants.
Set #5 minimodules are seen to be experiencing greater power loss in comparison to the other
minimodule sets. This could be due to issues in packaging material formulation optimization
and/or quality control. The degradation mode strongly influencing this behavior is corrosion,
which is consistent from our Markovian and multiple regression analysis. There is no strong
dependence on encapsulant on the performance but manufacturer and module architecture ap-
parently play a role in the degradation behavior of minimodules. The durable variants are stable
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in mDH+FSL exposure, which is more realistic. From our rank-ordering results, the most stable
variants are GB minimodules from set #4.

Outdoor exposure results Thirty-two minimodules from sets #1-#4 were exposed in outdoor
conditions (SDLE SunFarm) for 1.6 years. Slopes from linear models obtained from degradation
pathway modeling reveals that bi POE Opaq GB, mono EVA Opaq DG and mono POE Opaq GB
degrade the most, whereas bi POE Opaq DG and bi EVA Opaq DG were found to be relatively
stable. In the degrading variants, the prominent cause of degradation is optical transmission loss.

Mechanical modeling of cells, packaging materials & minimodules Mechanical modeling
was done using simulations and 4-point proof loading experiments for bare and packaged cells.
Weibull modulus values decrease for soldered bifacial cells in both the testing orientations which
indicate a greater distribution in measurements but the fracture displacement doesn’t change,
indicating that the limiting flaw size distribution is due to soldering. One-cell minimodules with
bifacial cells have a lower characteristic fracture strain value in the ⊥ orientation compared to
||, which makes them more sensitive to loading. From finite element modeling, the tensile strain
is constant between inner spans for bare cells whereas for the minimodule 4-point bending, the
tensile strain is maximum only at the center of the cell. From numerical simulations, it was found
that the strength limiting flaws are most likely to reside on the edge area of these cells. When the
four-cell module is loaded uniformly, about 20 % reduction in characteristic strength is expected
between the packaged and bare cell. The 4-point proof loading experiment done on 4-cell GB
minimodules reveal that minimodule cells that did not have cracks before the experiment did not
develop cracks during the loading.

Characterization of rear encapsulants from set #5 minimodules The rear encapsulants
were extracted from set #5 GB minimodules after step 6 of exposure (i.e., 3024 hours of exposure)
and compared against retained samples with same specifications. Colorimetry and FTIR were
performed to track changes in the rear encapsulants. From 2000 to 3000 cm−1, EPE behaves
similarly to both POE and EPE. However, past 3000 cm−1, we observe the appearance of a small
peak in the EPE encapsulant spectra, which looks similar to the water absorption band, indicating
a potential onset of delamination due to water ingress and/or additive diffusion. This is likely
due to the lamination recipe for set #5 not being fully optimized. An increase in yellowness index
(Y I) from unexposed to exposed encapsulant samples was observed. The largest Y I increase
can be seen for the POE rear encapsulant.

Neural networks for predicting overall changes in electrical parameters Neural network
architectures were utilized to quantitatively learn spatial and temporal information and predict
the change of electrical features from spatiotemporal image datasets. Fifty-two model variants
with different input image types and image preprocessing methods were trained. Recurrent neural
networks (RNNs) performed significantly better than convolutional neural networks (CNNs).

Indoor/outdoor cross correlation
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Publications & Presentations A total of 3 journal articles, 5 conference proceedings and 10
posters have been published/presented throughout the duration of this project. In addition, 3
journal articles are currently under preparation.

March 29, 2024 8



CWRU-Towards 50 Year Modules SETO2019 Project DE-EE-0008550

2 Project Milestones and Subtasks (Budget Periods 1 &
2)

Task 1.0: Mono-facial mini-module fabrication (BP1) Task Summary: Acquire commer-
cial module components, assemble and laminate mini-modules. Mono-facial mini-modules will
be constructed with component variations including but not limited to mono- and bi-facial cells,
transparent, white, and UV cutoff versions of EVA and POE encapsulants, and glass and polymer
backsheets.

The milestones are:

• MS 1.1 (FY19Q3): Mini-module fabrication

– Success Value: At least 4 samples each of set 1 glass-backsheet and glass-glass mini-
module types fabricated by CWRU.

– Assessment Tool: Count. At least 16 mini-modules of at least 4 different types will
be fabricated at CWRU to match CSI-provided mini-modules.

– Verification Process: Initial characterization results from mini-modules and CSI equiv-
alents reported to DOE.

– Metric Justification: Immediately fabricating both glass-backsheet and double-glass
mini-modules to compare architecture performance.

• MS 1.2 (FY19Q4): Mini-module outdoor exposure

– Success Value: At least 2 mini-modules of each of at least 8 types fielded outdoors in
Cleveland, OH with Pmp, I-V time-series data.

– Assessment Tool: Count. 16 mini-modules fielded outdoors with individual module-
level I-V curve tracing.

– Verification Process: Raw outdoor Pmp, I-V time-series data reported to DOE.

– Metric Justification: Early fielding of mini-modules to obtain the maximum possible
amount of outdoor data during the 3 years of the project.

• MS 1.3 (FY20Q1): Mini-module characterization

– Success Value: Performance at least 4 characterization methods listed table 2 at each
accelerated exposure step (500 hours DH) in 2 accelerated exposures through at least
2000 hours.

– Assessment Tool: Count. Characterizations such as I-V , Suns-Voc, EL, Raman,
FTIR, or Fluorescence will be performed for each module, with data collected and
stored in a high performance computing environment.

– Verification Process: Data summary and preliminary time-series plots reported to
DOE.

– Metric Justification: At least 4 characterization to evaluate electrical, mechanical,
and chemical degradation within the minimodule.
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• MS 1.4 (FY20Q1): Mini-module accelerated exposures

– Success Value: Conclude a minimum of 1 accelerated test with a minimum of 6
measurement steps on at least 3 samples.

– Assessment Tool: Count. Stepwise measurements performed after every 500 hours
DH or equivalent for test.

– Verification Process: Data summary and time-series plots reported to DOE.

– Metric Justification: 6 measurement steps required to accurately fit a model. Multiple
samples of each type to obtain statistically relevant results.

• MS 1.5 (FY20Q1): Modeling of accelerated exposure result

– Success Value: < S|R > and < S|M |R > models for at least 4 module types in at
least 1 accelerated exposure. Rank- Ordered performance of included module types.

– Assessment Tool: < S|R > models indicate Rd of a chosen response. < S|M |R >
models indicate significant module degradation pathways. Rank-ordering a minimum
of 4 module types by power loss and by rates of observed degradation modes using
electrical, mechanical, and chemical characterization results.

– Verification Process: Raw and analyzed data reported to DOE.

– Metric Justification: < S|R > power model gives the functional form and rate of
power loss. By comparing the adjusted-R2 and RMSE of each pathway in an <
S|M |R > model, significant degradation modes can be identified.

• MS 1.6 (FY20Q3): Modeling of outdoor exposure results

– Success Value: < S|R > and < S|M |R > models of time-series I-V for at least 8
module types in at least 9 months of outdoor exposure.

– Assessment Tool: < S|R > models indicate Rd of a chosen response. < S|M |R >
models indicate significant module degradation pathways. Rank-ordering a minimum
of 8 module types by power loss and by rates of observed degradation modes.

– Verification Process: Raw and analyzed data reported to DOE.

– Metric Justification: < S|R > power model gives the functional form and rate of
power loss. By comparing the adjusted-R2 and RMSE of each pathway in an <
S|M |R > model, significant degradation modes can be identified.

• MS 1.7 (FY20Q3): Webinar/Workshop For PV Manufacturers and PV Plant Developers,
Owners, Financiers, and IEA-PVPS working group.

– Success Value: The audience includes members of the academic community, from the
industry, and financiers / insurers. A minimum of 30 industry participants from at
least 20 different companies Post- event survey/follow-up completed by a minimum
of 50% of attendees.
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– Assessment Tool: The post-event survey / follow-up will collect feedback from partic-
ipants including their assessment of the value of the results of this project as it relates
to costs, reliability and cost basis.

– Verification Process: Survey Responses and Summary sent to DOE, including changes
to the project plan, based on the feedback received, if appropriate.

– Metric Justification: Perspectives and feedback from industry will guide future project
decisions, with emphasis on economic and commercial viability.

The subtasks are:

– Subtask 1.1: Fabricate DG and GB mini-modules with mono-facial PERC cells, and
UV-cutoff EVA and POE encapsulants (Set 1).

– Subtask 1.2: Fabricate DG and GB mini-modules with bi-facial PERC cells, and
opaque EVA and POE encapsulants (Set 2).

– Subtask 1.3: Fabricate DG and GB mini-modules with mono-facial PERC cells, and
opaque EVA and POE encapsulants (Set 3).

Task 2.0: Quantify degradation rates of mono-facial DG and GB minimodules (BP1)
Task Summary: Using < Stressor|Response > predictive modeling techniques, the functional
time dependence and rates of power and mechanistic degradation for mono-facial modules will
be determined from accelerated and real-world exposure results. Accelerated tests will include
stepwise chemical, mechanical and electrical evaluations, producing a variety of variables for
time-series analysis.

The milestones are:

• MS 2.1 (FY21Q1): Mini-module accelerated exposures

– Success Value: Conclude a minimum of 1 accelerated test with a minimum of 6
measurement steps of 4+ characterizations on at least 3 samples of each of 8 module
types.

– Assessment Tool: Count. Stepwise measurements performed after every 500 hours
DH or equivalent for test.

– Verification Process: Data summary and time-series plots reported to DOE.

– Metric Justification: 6 measurement steps required to accurately fit a model. Multiple
samples of each type to obtain statistically relevant results.

• MS 2.2 (FY21Q2): Modeling of accelerated exposure results

– Success Value: < S|R > and < S|M |R > models for at least 8 module types in at
least 2 accelerated exposures. Rank-ordered performance of included module types.

– Assessment Tool: < S|R > models indicate Rd of a chosen response < S|M |R >
models indicate significant module degradation pathways. Rank-ordering a minimum
of 8 module types by power loss and by rates of observed degradation modes using
electrical, mechanical, and chemical characterization results.
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– Verification Process: Raw and analyzed data reported to DOE.

– Metric Justification: < S|R > power model gives the functional form and rate of
power loss. By comparing the adjusted-R2 and RMSE of each pathway in an <
S|M |R > model, significant degradation modes can be identified.

• MS 2.3 (FY21Q3): Modeling of outdoor exposure results

– Success Value: < S|R > and < S|M |R > models of time-series I-V for at least 12
module types in at least 20 months of outdoor exposure.

– Assessment Tool: < S|R > models indicate Rd of a chosen response. < S|M |R >
models indicate significant module degradation pathways. Rank-ordering a minimum
of 12 module types by power loss and by rates of observed degradation modes.

– Verification Process: Raw and analyzed data reported to DOE.

– Metric Justification: < S|R > power model gives the functional form and rate of
power loss. By comparing the adjusted-R2 and RMSE of each pathway in an <
S|M |R > model, significant degradation modes can be identified.

• MS 2.4 (FY21Q3): Mini-module fabrication (Set 5)

– Success Value: At least 4 samples each of a minimum of 2 new mini- module types
determined from modeling and Sets 1-4 results fabricated by CWRU.

– Assessment Tool: Count. At least 8 mini-modules of at least 2 different types will be
fabricated at CWRU to match CSI-provided mini-modules.

– Verification Process: Initial characterization results from mini-modules and CSI equiv-
alents reported to DOE.

– Metric Justification: Optimized module architectures derived from mechanical mod-
eling, and outdoor and accelerated testing results of mini-module Sets 1-4 will be
fabricated.

• MS 2.5 (FY21Q4): Mini-module characterization (Set 5)

– Success Value: Perform at least 5 characterization methods such as those listed in
Table 2 at each accelerated exposure step (500 hours DH) in 2 accelerated exposures
through at least 2000 hours.

– Assessment Tool: Count. Characterizations such as I-V, Suns-VOC, EL, Raman,
FTIR, or Fluorescence will be performed for each module, with data collected and
stored in a high performance computing environment.

– Verification Process: Data summary and preliminary time-series plots reported to
DOE.

– Metric Justification: At least 5 characterizations to evaluate electrical, mechanical,
and chemical degradation within mini-modules. 1 characterization method added
based on learnings from results of Sets 1-4.
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The subtasks are:

– Subtask 2.1: Outdoor fielding of mono- and bi-facial DG and GB mini-modules.

– Subtask 2.2: Mechanical modeling of cells, packaging materials & mini-modules.

– Subtask 2.3: Accelerated exposures of mini-modules with step-wise evaluations (Set
1).

– Subtask 2.4: < Stressor|Response > modeling of accelerated exposure time-series
results. (Set 1).

– Subtask 2.5: Accelerated exposures of mini-modules with step-wise evaluations (Set
2).

– Subtask 2.6: < Stressor|Response > modeling of accelerated exposure time-series
results (Set 2).

– Subtask 2.7: < Stressor|Response > modeling of outdoor PMP/I-V time-series
results (Sets 1-3).

– Subtask 2.8: Accelerated exposures of mini-modules with step-wise evaluations (Set
3).

– Subtask 2.9: < Stressor|Response > modeling of accelerated exposure time-series
results (Set 3).

Task 3.0: Identify degradation modes specific to DG and GB minimodules to optimize
packaging (BP1) Task Summary: Using < Stressor|Mechanism|Response > models, the
most significant degradation pathways for each minimodules architecture can be inferred. By com-
paring results between architectures with varying components, the most and least degradation-
susceptible cells and packaging materials can be identified. Comparing time-series measurements
from outdoor and accelerated testing via Indoor/Outdoor cross-correlation confirms the common-
ality of degradation modes activated in these weathering conditions.

The subtasks are:

• Subtask 3.1: < Stressor|Mechanism|Response > inferential pathway model on acceler-
ated results (Set 1).

• Subtask 3.2: < Stressor|Mechanism|Response > inferential pathway model on acceler-
ated results (Set 2).

• Subtask 3.3: < Stressor|Mechanism|Response > inferential pathway model on 1 year
of outdoor I-V /PMP (Sets 1-3).

• Subtask 3.3: Indoor/Outdoor cross-correlation with 1 year of outdoor I-V/PMP time-series
data (Sets 1-2).

• Subtask 3.4: < Stressor|Mechanism|Response > inferential pathway model (Set 3).
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Task 4.0: Stakeholder engagement and dissemination of results (BP1) Task Summary:
The recipient will engage with relevant stakeholders and disseminated the results of this award
through activities including but not limited to participation and/or presentations at technical
conference, in-person meetings, scientific or technical publications.

Task 5.0: Bi-facial and advanced mini-module fabrication (BP2) Task Summary: Ac-
quire commercial module components, assemble and laminate mini-modules. Bi-facial mini-
modules will be constructed with component variations including but not limited to bi-facial
cells, transparent EVA and POE encapsulants, and glass and polymer backsheets. Advanced
mini-module architectures will be determined from mono- and bi-facial module results.

The subtasks are:

• Subtask 5.1: Fabricate DG and GB mini-modules with bi-facial PERC cells, transparent
EVA and POE encapsulants, and transparent back glass or polymer backsheets (Set 4).

• Subtask 5.2: Fabricate DG and GB mini-modules with optimized architectures based on
the results from mono- and bi-facial mini-modules (Set 5).

Task 6.0: Quantify degradation rates of mono- and bi-facial DG and GB mini-modules
(BP2) Task Summary: Using < Stressor|Response > predictive modeling techniques, the
functional time-dependence and rates of power and mechanistic degradation for mono-facial
modules will be determined from accelerated and real-world exposure results. Accelerated tests
will include stepwise chemical, mechanical, and electrical evaluations, producing a variety of
variables for time-series analysis.

• Subtask 6.1: < Stressor|Response > modeling of outdoor PMP/I-V time-series results
(Sets 1-4).

• Subtask 6.2: Accelerated exposures of mini-modules with step-wise evaluations (Set 4).

• Subtask 6.3: < Stressor|Response > modeling of accelerated exposure time-series results
(Set 4).

• Subtask 6.4: Accelerated exposures of mini-modules with step-wise evaluations (Set 5).

• Subtask 6.5: < Stressor|Response > modeling of accelerated exposure time-series results
(Set 5).

• Subtask 6.6: < Stressor|Response > modeling of outdoor PMP/I-V time-series results
(Sets 1-4).

Task 7.0: Identify degradation modes specific to DG and GB mini-modules to optimize
packaging (BP2) Task Summary: Using < Stressor|Mechanism|Response > models, the
most significant degradation pathways for each mini-module architecture can be inferred. By com-
paring results between architectures with varying components, the most and least degradation-
susceptible cells and packaging materials can be identified. Comparing time-series measurements
from outdoor and accelerated testing via Indoor/Outdoor cross-correlation confirms the common-
ality of degradation modes activated in these weathering conditions.
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• Subtask 7.1: < Stressor|Mechanism|Response > inferential pathway model on 1.5-2
years of outdoor I-V /PMP (Sets 1-4).

• Subtask 7.2: Indoor/Outdoor cross-correlation with 1.5-2 years of outdoor I-V/PMP (Sets
1-3).

• Subtask 7.3: < Stressor|Mechanism|Response > inferential pathway model on acceler-
ated results (Set 4).

• Subtask 7.4: < Stressor|Mechanism|Response > inferential pathway model of acceler-
ated results (Set 5).

• Subtask 7.5: < Stressor|Mechanism|Response > inferential pathway model on full
project length outdoor I-V /PMP (Sets 1-4).

• Subtask 7.6 Indoor/Outdoor cross-correlation with full project length outdoor I-V /PMP
(Sets 1-4).

Task 8.0: Stakeholder engagement and dissemination of results (BP2) Task Summary:
The recipient will engage with relevant stakeholders and disseminate the results of this award
through activities including but not limited to participation and/or presentations at technical
conferences, in-person meetings, scientific or technical publications.

EOP-A (FY22Q1): Major Degradation Mechanisms vs. GB/DG, EVA/POE, mono-
/bi-facial cells and modules (BP2)

• Success Metric: < S|M |R > pathways indicate at least 3 significant degradation pathways
for at least 12 different module types in accelerated exposures.

• Assessment Tool: Rank-ordering a minimum of 3 significant degradation pathways in the
< S|M |R > models for a minimum of 12 module types in 2 accelerated exposures.

• Verification Process: Raw and analyzed data reported, sent to DOE.

• Metric Justification: Most significant degradation modes can be identified from < S|M |R >
models of each module type.

EOP-B (FY22Q1): Indoor/Outdoor Cross-correlation of Mini-module Sets 1-4 (BP2)

• Success Value: Best representative accelerated test determined from indoor/outdoor cross-
correlation. Cross-correlation scale factor (CCSF ) < 0.5, power cross-correlation coeffi-
cient (CCC) > 0.7.

• Assessment Tool: CCSF determined from scaling indoor accelerated test results to outdoor
performance. CCC calculated for power performance (Pmp) and degradation mechanisms
and responses (I-V features) between outdoor and time-scaled indoor data.

• Verification Process: Raw and analyzed data reported, sent to DOE.

March 29, 2024 15



CWRU-Towards 50 Year Modules SETO2019 Project DE-EE-0008550

• Metric Justification: CCSF indicates whether an accelerated test degrades a module
“faster” than outdoor exposure. CCSF=0.5 indicates twice as fast. Power CCC is the
metric for module performance. CCC for mechanistic I-V features indicates whether the
accelerated test induces the same degradation modes as outdoor fielding.

EOP-C: Rev. 2.0 Module Architectures (BP2)

• Success Value: < S|R > power models and < S|M |R > models quantifying at least 3 sig-
nificant degradation modes for at least 12 different module types in accelerated exposures.

• Assessment Tool: < S|R > models indicate Rd of a chosen response. < S|M |R >
models indicate significant module degradation pathways. Rank-ordering a minimum of 12
module types by power loss and by rates of 3+ significant degradation modes resulting
from accelerated exposures.

• Verification Process: Raw and analyzed data reported, sent to DOE.

• Metric Justification: < S|R > power model gives the functional form and rate of power loss.
< S|M |R > models of each degradation pathway compared for different module types,
and rank-ordered to determine the best combination of module components to mitigate
each degradation mode..

EOP-D: Dissemination: Publications (Journals & trade articles and Tools) (BP2)

• Success Value: 2 additional articles or proceedings, and participation in 2 conferences.

• Assessment Tool: Count. A minimum of 2 peer-reviewed journal articles or conference
proceedings papers (in addition to those from BP1) disseminating project findings. Partic-
ipation in a minimum of 2 national or international conferences.

• Verification Process: Articles/proceedings sent to DOE.

• Metric Justification: Published results in the form of journal articles or conference proceed-
ings will communicate findings with the community. Participation in conferences ensures
timely and accurate industry views on project tasks.
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3 Narrative on Tasks, Subtasks, Milestones and End Of
Project (Budget Periods 1 & 2)

The narrative is divided into broader topics in which the specific tasks, subtasks, and milestones
are highlighted. The completion and relevant budget periods are included where applicable.

3.1 Minimodule fabrication and characterization

3.1.1 Fabrication process

The minimodule fabrication in this project was completed in BP1 and BP2 as part of:

• MS 1.1, 2.4

• ST 1.1, 1.2, 1.3, 5.1, 5.2

Four-cell PV minimodules were fabricated for studying degradation behavior under different
exposure conditions. Five different sets of minimodules were fabricated with variations in the
cell type, encapsulation, and backsheet (in the case of GB minimodules). This includes novel
packaging strategies like co-extruded EPE that have only been recently introduced in the industry.

The fabrication process during BP1 and BP2 took place at two manufacturing facilities: CSI
and CWRU. The fabrication processes were slightly different across CSI and CWRU. CSI adopted
a more automated soldering process and maintained greater uniformity in the fabrication process
and recipes. CWRU, on the other hand, tried to be consistent with the methods used by CSI but
due to instrumentation differences, there were differences in soldering and lamination recipes.

The process of fabrication done by CSI includes the following steps in order: cell sorting,
automatic soldering, soldering tabs for a specific layout, lamination, checking electroluminescence
(EL) images, checking electrical properties and junction boxes installation. Figure 1 shows how
several steps are carried in the production line.

(a) Cell transportation for sorting.
(b) Automatic soldering for

ribbons.

(c) Hand-soldering for tabs.

Figure 1: CSI minimodule fabrication assembling line.

The process of fabrication done by CWRU includes the following steps in order: hand-
soldering, lamination, electroluminescence (EL) image check and junction box installation.

Both CSI and CWRU were responsible for fabricating 48 minimodules each from sets #1-#4
and 40 minimodules from set #5 (including retained minimodules) combined. Across 5 sets, 232
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Figure 2: Module Fabrication Process at CWRU

minimodules were fabricated. Table 1 shows the minimodule quantities and specifications across
all the sets. In addition, we fabricated 120 1-cell minimodules for mechanical testing studies
conducted at NREL. Figure 3 shows the front and back view of a 4-cell minimodule from the
study.

Figure 3: Representative 4-cell minimodule with front and back views.

In the fabrication process across different manufacturers, we used various materials such as
glass, encapsulants, backsheets, PERC silicon cells, ribbon and bus wires, flux, junction boxes,
and junction box potting materials. The details of the specific components used are summarized
below.

• Glass: Based on the glass choice for commercial modules from several large companies and
through internal team discussions, we decided to use 3.2mm tempered glass for GB mini-
modules and 2.5mm heat-strengthened glass for DG minimodules. Irrespective of thickness,
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Table 1: Quantities and specifications of minimodules fabricated and tested. mDH represents modified
damp heat, mDH+FSL represents the sequential exposure of modified damp heat with full-spectrum

light.

Set MM # of MMs # # # # Cell Encap. Rear Architecture Module
# Variant Brand A Brand B Retained Outdoor mDH mDH+FSL Type Material Encap. Type
1 1 6 6 2 2 4 4 mono-facial EVA UV-Cut GB monofacial
1 2 6 6 2 2 4 4 mono-facial EVA UV-Cut DG monofacial
1 3 6 6 2 2 4 4 mono-facial POE UV-Cut GB mono-facial
1 4 6 6 2 2 4 4 mono-facial POE UV-Cut DG monofacial
2 5 6 6 2 2 4 4 bi-facial EVA Opaque GB monofacial
2 6 6 6 2 2 4 4 bi-facial EVA Opaque DG monofacial
2 7 6 6 2 2 4 4 bi-facial POE Opaque GB monofacial
2 8 6 6 2 2 4 4 bi-facial POE Opaque DG monofacial
3 9 6 6 2 2 4 4 mono-facial EVA Opaque GB monofacial
3 10 6 6 2 2 4 4 mono-facial EVA Opaque DG monofacial
3 11 6 6 2 2 4 4 mono-facial POE Opaque GB monofacial
3 12 6 6 2 2 4 4 mono-facial POE Opaque DG monofacial
4 13 6 6 2 2 4 4 bi-facial EVA UV-Cut GB bifacial
4 14 6 6 2 2 4 4 bi-facial EVA Transparent DG bifacial
4 15 6 6 2 2 4 4 bi-facial POE UV-Cut GB bifacial
4 16 6 6 2 2 4 4 bi-facial POE Transparent DG bifacial
5 17 0 6 2 0 2 2 bi-facial (new) POE UV-Cut GB bifacial
5 18 3 6 3 0 2 4 bi-facial (new) POE Transparent DG bifacial
5 19 0 6 2 0 2 2 bi-facial (new) EPE UV-Cut GB bifacial
5 20 3 6 3 0 2 4 bi-facial (new) EPE Transparent DG bifacial

the glass used for minimodules has textured side on the side facing the encapsulant, but has
no texture on the air side. We have utilized small rectangular glass for making 1-cell mini-
modules for 4-point bend testing at NREL, which helped in deciding the loading conditions
for the 4-point proof loading studies at CWRU, and enabled correlation with mechanical
tests of bare cells. The dimensions of the glass were different (square versus rectangular).

• Encapsulants & backsheets: We ordered various encapsulants frequently in small rolls to
avoid expiration. We kept the encapsulant weights consistent across manufacturing facili-
ties. The encapsulants used in minimodules were ethylene vinyl acetate (EVA), polyolefin
elastomer (POE) and co-extruded EPE, which is a multilayered EVA-POE-EVA encapsu-
lant. The front side encapsulation for all minimodules was transparent. Depending on
the set #, we used transparent/UV-cutoff/opaque rear encapsulation. We used KPf (sets
#1-3), transparent backsheet with white grids (set #4) and transparent backsheet with no
white grids (set #5).

• Cells: We used monofacial & bifacial multi-Si full-size PERC cells. CSI has provided 550
cells of each type for fabricating sets #1-#4 4-cell minimodules at CWRU. All of these
cells have 5 busbars and are boron-doped. The cell size is about 150 mm. Additionally,
CSI provided 120 mono-facial multi-Si full size PERC cell, 120 bi-facial multi-Si full size
PERC cells and 120 mono-facial multi-Si full size Al-BSF cell for Weibull modulus testing
carried out at NREL. This enabled the testing of cell durability of bare versus soldered
cells, as well as in 1-cell minimodules. For set #5, we utilized the monofacial-Si bifacial
P-type gallium-doped cells with 9 busbars. The cell size is about 167 mm. In comparison
to the regular PERC cells utilized in the project, the cells used in set #5 had a short-circuit
current value of about 11 A.
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• Miscellaneous materials: This includes ribbon and bus wires, flux, junction boxes, and
junction box potting materials. The dimension of the ribbons used were 0.85 × 0.27mm,
and the dimension of tab is 4 × 0.23mm, which are the same dimensions used in CSI
minimodules. At CWRU, we used a pen to apply organic flux to ribbons and tabs before
soldering. After discussing with CSI, we decided to adopt their isopropanol flux application
method which is to first soak the cut ribbons in the flux for about 20 minutes, then put it
into the dryer, and finally put it on the cell for soldering. The junction boxes used were the
same as CSI and shown in Fig 4. These small rectangular shaped junction box are easier
to install and require less sealant.

(a) Front (b) Back

Figure 4: Picture of junction box

We have received samples of junction box junction and sealant from CSI. We have also
purchased two types of caulk guns (Figure 5) for application.

Figure 5: Caulk guns for potting materials and sealant

3.1.2 Mini-module characterization

The minimodule characterization in this project was completed in BP1 and BP2 as part of:

• MS 1.3, 2.5
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The minimodule characterization techniques implemented in this project are I-V , Suns Voc,
electroluminescence (EL), electroluminescence (PL), and 4-point proof loading test. Stepwise
characterization was performed using these techniques at the end of each exposure step (at 504
hours, equivalent to 21 days). In addition, extracted encapsulants from retained and exposed set
#5 minimodules were characterized using colorimetry and Fourier-transform infrared spectroscopy
(FTIR). This will be covered in Section 3.4.5.

• I-V : Current-voltage (I − V ) curves provide information about the current and voltage
at which the PV modules can be operated at fixed irradiance and temperature. Several
different features can be extracted from I − V curves including maximum power (Pmp),
short circuit current (Isc) (current at zero voltage), open circuit voltage (Voc) (voltage at
zero current), series resistance (Rs), fill factor (FF ) (measure of ’squareness’ of the I−V
curve), voltage at maximum power (Vmp), etc. Using I − V curves and the extracted
features, various losses can be tracked [1, 2].

At each step, we measured the current-voltage (I-V ) curves at three irradiance levels (1000
Wm−2, 500 Wm−2 and 250 Wm−2). The series resistance (Rs,IV ) is extracted using all
three I-V curves by following IEC 60891 [3]. The maximum power (Pmp,IV ), short-circuit
current (Isc,IV ) are extracted from the I-V curve measured at 1000 W/m2 using the ddiv
package [4].

• Suns-Voc: Suns-Voc method measures the Voc at different illumination levels. From Suns-
Voc curves, we could get an implied photovoltaic I-V curve and the curve of effective
lifetime versus minority carrier density [5].

In order to quantitatively compare the results, we extracted two features from implied
photovoltaic I-V curves, Pmp and FF , and another two features from the curve, namely
effective lifetime versus minority carrier density, they are the maximal effective lifetime
in the unit of us and the corresponding minority carrier density under log10 scale. The
Suns-Voc measurements are taken for each cell in a minimodule.
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Figure 6: Implied I-V curve from Suns-Voc curve.

Figure 7: Effective lifetime vs. minority carrier density.

• EL/PL: Every EL & PL measurement contains 8 images in total- they are EL images
taken at Isc, 0.5Isc and 0.25Isc, corresponding dark images (the same camera setting with
no current input) and PL images at about 2 Suns irradiance and corresponding dark image
(at the same irradiance and short-circuited conditions). For each signal of the minimodule
image, first the corresponding dark image has to be subtracted followed by processing using
the cell extraction pipeline with planar indexing[6]. After we obtain the cell images, for EL
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measured at Isc, we extract normalized busbar width (NBW ) [7] and average intensity.
Figure 8 shows the setup of EL/PL system.

Figure 8: EL/PL system setup

• 4-point proof loading: 4-point bending was done on rectangular minimodules with GB
architecture. The corresponding load versus load line displacement plots were constructed.
These minimodules have two layouts: || and ⊥. || is for the module with the busbars
parallel to the width of the minimodule (short edge) and ⊥ is for the ones with the busbars
perpendicular to the width of the minimodule. This is illustrated in Figure 9. The 4-point
proof loading setup is shown
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(a) || orientation

(b) ⊥ orientation

Figure 9: The 4-cell minimodule layouts used in the 4-point proof loading.

3.2 Minimodule exposures

3.2.1 Indoor accelerated exposures

The minimodule indoor exposures in this project was completed as part of:

• MS 1.5, 2.1, 2.5
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• ST 2.3, 2.5, 2.8, 6.2, 6.4

Before accelerated exposures, both CWRU and CSI minimodules were preconditioned to make
sure the performance of the minimodules were able to achieve stability before being exposed. CSI
preconditioning procedure includes two steps: outdoor exposure up to 40 kW · h/m2 and then
current-induced degradation (CID) at current at maximum power (Imp) for 48 hours at room
temperature. CWRU preconditioning procedure was carried indoors since the minimodules that
were fabricated were no longer suitable for outdoor preconditioning. The CWRU preconditioning
procedure also includes two steps: indoor light exposure up to 40 kW · h/m2 and then current-
induced degradation (CID) at current at maximum power (Imp) for 48 hours at 80 ◦C and 40 %
relative humidity. The minimodules from both suppliers were able to achieve stable status after
preconditioning based on IEC 61215 draft (2019). Both CWRU and CSI minimodules achieved
values of less than 1%.

The two types of accelerated exposures in this project are modified damp heat (mDH) and
mDH with full spectrum light (mDH + FSL). mDH is 80 ◦C and 85 % relative humidity and FSL
makes use of 420 W/m2 light intensity. The total exposure time was 2520 hours, divided into
five exposure steps. During the 504 hours (21 days) of each step, mDH took two-thirds of the
exposure time (14 days), and FSL took one-third of the exposure time (7 days). The full spectrum
light exposure was conducted with a class C solar simulator based on specialized HID lamps from
Iwasaki Electric. The average light intensity on the front and back side of the exposed MM were
420.4 W/m2 and 85.1 W/m2 (due to reflection from walls of the chamber), respectively. A 0.5 Ω
load resistor was connected to each MM to make it operate around the maximum power Pmp,IV .
The minimodule temperature was controlled below 70 ◦C under FSL. The primary purpose of FSL
was to make the module fully operational, with the packages probably containing degradation
products initiated from mDH. The number of minimodules exposed in either exposure conditions
is listed in Table 1.

3.2.2 Outdoor exposure in SunFarm, Cleveland, OH

The minimodule outdoor exposures in this project was completed in BP1 and BP2 as part of:

• MS 1.2

• ST 2.1

Thirty-two minimodules of 16 variants with 2 minimodules under each variant were mounted
on a tilted rack at an outdoor testing site in Cleveland in May 2020. We analyzed the data
until December 2021, amounting to a total exposure period of 1.6 years. Only sets #1-#4
minimodules fabricated by CSI were exposed in outdoor conditions.

The 16 module variants have differences in encapsulant materials (EVA or POE), rear en-
capsulant types (transparent, UV-cutoff, or opaque), module architectures (GB or DG), and cell
types (monofacial or bifacial). The backsheet used for monofacial GB minimodules is KPf, and
that for bifacial GB minimodules including the transparent PVF-based backsheet. The detailed
specifications are listed in Table 2.

The rack faced south with a tilted angle of 23◦. The minimodules were arranged on the
rack into three rows and eleven columns. So the distance from the minimodule to the ground
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Table 2: Quantities and specifications of minimodules exposed in outdoor conditions.

Set MM # Cell Encap. Rear Architecture Module
# Variant Outdoor Type Material Encap. Type
1 1 2 mono-facial EVA UV-Cut GB monofacial
1 2 2 mono-facial EVA UV-Cut DG monofacial
1 3 2 mono-facial POE UV-Cut GB mono-facial
1 4 2 mono-facial POE UV-Cut DG monofacial
2 5 2 bi-facial EVA Opaque GB monofacial
2 6 2 bi-facial EVA Opaque DG monofacial
2 7 2 bi-facial POE Opaque GB monofacial
2 8 2 bi-facial POE Opaque DG monofacial
3 9 2 mono-facial EVA Opaque GB monofacial
3 10 2 mono-facial EVA Opaque DG monofacial
3 11 2 mono-facial POE Opaque GB monofacial
3 12 2 mono-facial POE Opaque DG monofacial
4 13 2 bi-facial EVA UV-Cut GB bifacial
4 14 2 bi-facial EVA Transparent DG bifacial
4 15 2 bi-facial POE UV-Cut GB bifacial
4 16 2 bi-facial POE Transparent DG bifacial

varies according to rows from 25 cm to 100 cm. The longitude and latitude of the testing site
are -81.616◦ and 41.511◦, respectively. This location belongs to the Dfa climate (continental,
no dry season, hot summer) according to the Köppen-Geiger climate classification system. The
time-series I-V curve for each module was recorded by the Daystar MT5 Multi-tracer in every ten
minutes. A thermocouple was attached to each minimodule on the rear side around the center
position of a cell to monitor module temperatures. A pyranometer was installed nearby to record
the plane of array irradiance (POA). Both thermocouples and the pyranometer were connected
to a data logger with the recording frequency as one minute. Both sources of data were merged
using the closest measurement time. A POA limitation of 5 W/m2 was applied to remove night
observations.

3.3 Webinar/Workshop For PV Manufacturers and PV Plant Develop-
ers, Owners, Financiers, and IEA-PVPS working group

Organizing the T50 webinar is related to MS 1.7. The T50 workshop with up-to-date results
from the project was held on August 18, 2020. The title of the workshop was ’Strategies of
PV Modules with Lower Performance Loss Rates’. Some of the topics covered were PV Market
Share of Glass/Backsheet and Double Glass Modules, Manufacturing Defects, Failure Modes,
& Degradation Mechanisms in Modules, Cell Mechanics and Cracking, Towards 50: Results to
Date, Instrumentation and Tools for PV Research. The workshop had 127 registered participants
from both industry (81) and research institutions (46).
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Figure 10 shows which PV fields people are associated with. The responses are gathered
from people who responded to the survey questions. Some of the categories include PV systems,
research, management, materials, operations and management, etc. More than 30% of the people
who responded are from research and about 20% of the people are from manufacturing.

Figure 10: PV fields that registered participants are associated with. Only a certain number of people
(97) from registered participants responded to this question.

Figure 11 shows the PV interests among registered participants. The most popular interest
among participants is bifacial PV modules.

Figure 11: PV interests that registered participants have. Only a certain number of people (95) from
registered participants responded to this question.

3.4 Results in the project

3.4.1 Accelerated exposure results

The minimodule characterization in this project was completed in BP1 and BP2 as part of:
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• MS 1.5, 2.2

• ST 2.4, 2.6, 2.9, 3.1, 3.2, 3.4, 6.3, 6.5, 7.3, 7.4

• EOP-A, EOP-C

Most of these results will be part of our future publication. The results of all minimodule
sets from #1 through #5 are compared. Statistical analysis using confidence intervals (CIs)
and degradation pathway modeling using the Markovian principle will be shown using examples.
Rank-ordering of the best- and worst-performing variants will be done using predictive 83.4% CIs.

Figure 12: 83.4 % and 95 % CIs of nPmp,IV at final exposure step (i.e., step 5) for minimodule variants
fabricated by Manufacturer A.

83.4 % (orange) and 95 % (blue) CIs were constructed for various minimodule variants.
Here,we show results for set #5 minimodules as an example. Figure 12 shows the results for
the set #5 DG minimodules, which were exposed in mDH+FSL conditions and fabricated by
Manufacturer A. The average power loss for DG with POE is more than the one with EPE.
Due to overlap in the 83.4 % and 95 % CIs, the minimodules may be behaving similarly as per
inference by eye [8, 9].

Figure 13 shows the results for set #5 minimodule variants fabricated by Manufacturer B. The
average power loss for DG with EPE exposed in mDH+FSL is greater than the rest of the variants.
There is significant CI overlap between minimodule variants. In some cases, there is widening of
CIs (especially for DG with POE in mDH and GB with EPE in mDH+FSL), suggesting that the
data points may have high variability and do not provide a precise population mean estimate [9].

Rank-ordering of minimodule variants was done using predictive 83.4 % CIs using the Marko-
vian principle. Predictive CIs can provide insights into how degradation occurs throughout the
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Figure 13: 83.4 % (orange) and 95 % (blue) CIs of nPmp,IV at final exposure step (i.e., step 5) for
minimodule variants fabricated by Manufacturer B.

exposure cycle by providing uncertainty in estimated mean [10]. Figs 14 and 15 show the pre-
dictive CIs for various minimodule variants from sets #1-#5. Some of the variants do not have
a predictive CI due to the absence of pathway from exposure time (dy) to nPmp,IV . A similar
analysis was done in our previous work [10].

For set #5, the estimated means from the predictive CIs are lower than the 83.4% CI estimated
means and the predictive CIs are also wider in comparison. The predictive CIs have a significant
overlap across encapsulants, which seems to indicate that the degradation behavior is similar
throughout the exposure cycle. Set #5 appears to be degrading the most over the exposure
cycle. There is variability in the widths of CIs of variants made by different manufacturers,
indicating some differences in the quality control. Based on the estimated means from predictive
CIs, we can rank-order variants to identify durable and degrading variants. Table 3 shows the
durable and degrading variants along with estimated mean values across all the sets. In addition,
the top five variants in each category are displayed.

We observe that there are three variants that have no direct pathway between dy and nPmp,IV :
this signifies stability. The three most durable variants are GB-based and were fabricated by
Manufacturer A. Most of the durable variants are from sets #1 and #4. There seems to be
no strong trend of any particular encapsulant or module architecture being better by considering
durable categories in Table 3. mDH+FSL is a realistic exposure in which high temperature,
high humidity, and exposure to light are included: most of the durable variants appear to be
stable in mDH+FSL conditions. There is an apparent dependence of manufacturer and exposure
conditions on the performance of minimodules from the rank-ordering results.

Figure 16 shows the < Stressor|Mechanism|Response > (< S|M |R >) model of a de-
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Figure 14: Predictive 83.4 % confidence intervals for minimodule variants fabricated by Manufacturer A.

Table 3: Rank-ordering durable and degrading variants based on predictive 83.4% confidence intervals.
The variants with no degradation pathway indicates that there is no direct pathway between dy and

nPmp,IV .

Set Manufacturer Encapsulant Architecture Exposure Estimated mean Category
4 A EVA GB mDH - Durable (no degr. path)
4 A POE GB mDH - Durable (no degr. path)
3 A POE GB mDH+FSL - Durable (no degr. path)
1 B EVA DG mDH+FSL 0.98 Durable
1 B POE DG mDH+FSL 0.98 Durable
1 A EVA GB mDH+FSL 0.96 Durable
4 A EVA DG mDH+FSL 0.96 Durable
4 A POE DG mDH+FSL 0.95 Durable
5 B POE GB mDH 0.76 Degrading
5 B POE DG mDH+FSL 0.76 Degrading
5 A EPE DG mDH+FSL 0.72 Degrading
5 B EPE DG mDH+FSL 0.66 Degrading
5 A POE DG mDH+FSL 0.62 Degrading
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Figure 15: Predictive 83.4 % confidence intervals for minimodule variants fabricated by Manufacturer B.
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Figure 16: < Stressor|Mechanism|Response > model of DG with EPE in mDH+FSL fabricated by
Manufacturer A obtained using Markovian principle. dy is exposure time (stressor) and nPmp,IV is

maximum power, which is the response. nIsc,IV indicates short-circuit current, nRs,IV indicates series
resistance, and nVmp,PIV indicates voltage at maximum power (IV means that the measurement is

from current-voltage data whereas PIV means it is a Suns-Voc measurement). The blue boxes indicate
the degradation mode that the variable tracks: nIsc,IV tracks optical transmission loss, nRs,IV

monitors corrosion, and nVmp,PIV tracks recombination and shunting.
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grading set #5 minimodule variant, DG with EPE in mDH+FSL, which was fabricated by Manu-
facturer A. The pathway between dy and nPmp,IV is referred to as the direct pathway or < S|R >.
The pathway between dy and any mechanistic variable (Mi) is < S|M | whereas the pathway
between Mi and nPmp,IV is < M |R >. This model was obtained from the netSEM package using
the Markovian principle. In order for the variant to be strongly impacted by a time-dependent
mechanistic variable, the R2

adj values should be significant in < S|M | and < M |R >. It is
apparent that the dominant degradation pathway is nRs,IV as there is a well-defined < S|M |
and < M |R >. The rest of the mechanistic variables do not have < M |R > due to R2

adj being
less than 0.01.

Figure 17 shows how nPmp,IV changes with dy for set #5 minimodule variants. This is
referred to as the < S|R > pathway in the < S|M |R > model. It can be observed that all of
the minimodule variants, irrespective of whether they were fabricated by Manufacturer A or B,
experience some extent of power loss. On average, the power loss is at least 10 % across all
variants. Among the DG minimodules fabricated by Manufacturer A and exposed in mDH+FSL,
the one with EPE has greater stability than the one with POE. Under the influence of mDH+FSL,
GB minimodules fabricated by Manufacturer B seem to have similar power loss. In mDH exposure,
DG with POE fabricated by manufacturer B has the least amount of power loss among the other
variants.

Figure 17: Variation of nPmp,IV with dy (< S|R >) fabricated by Manufacturers A and B for set #5
minimodules. The best model equation line and name in text, data points, and 83.4% CIs (orange) at

the end of exposure cycle are shown.

Figure 18 shows how nPmp,IV changes with dy for durable/degrading variants that have been
rank-ordered using predictive 83.4% CIs. Each plot represents a particular minimodule variant
named in the order of manufacturer, encapsulant, module architecture, exposure type, and set
number. The plots are arranged in the order of durable to degrading. The results are consistent
between < S|R > and statistical analysis.
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Figure 18: Variation of nPmp,IV with dy (< S|R >) for durable and degrading variants based on 83.4
% predictive CIs. The best model equation line and name in text, data points, and 83.4 % CIs

(orange) at the end of exposure cycle are shown.

To compare between minimodule sets, the variant DG with POE fabricated by Manufacturer A
was chosen as an example (this will be referred to as minimodule variant from here on). Figure 19
shows how the variant changes with each set. Even though the variant name is the same across
all the sets, the cell type and the rear encapsulant are different. Set #5 minimodule variant
seems to undergo a higher power loss over the exposure cycle compared to other sets. Set #1
minimodule variant seems to have the least amount of power loss. Sets #3 and #4 minimodules
have similar variation in nPmp,IV with exposure time.

Multiple regression analysis was done using netSEM, similar to the procedure outlined in our
previous study [9]. The purpose of multiple regression analysis is to identify the causes behind
the power loss occurring in degrading minimodule variants. One of the capabilities of multiple
regression analysis is service lifetime prediction (SLP) by considering the impact of multiple
mechanistic variables and stressors on the power [9].

Two of the degrading minimodule variants, DG with EPE and POE exposed in mDH+FSL,
fabricated by Manufacturer A, were chosen from Table 3. Figure 20 and Figure 21 shows the
results for both variants. In both the cases, nPmp,IV and nCs,IV drop in value with time, whereas
nIsc,IV and nVmp,PIV remain nearly constant. nCs,IV is the inverse of nRs,IV (series resistance).
nCs,IV is considered so that range of values for nCs,IV is comparable to that of other variables. An
increase in series resistance negatively impacts solder joints, interconnects, resistance in junction
box connections and emitter/base regions of the cell, and/or cell metallization, causing an increase
in corrosion [9, 11, 12, 13]. Multiple regression analysis reveals that the dominant degradation
mode in these minimodules is corrosion.
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Figure 19: Variation of normalized power (nPmp,IV ) with exposure time (dy) (< S|R >) for
minimodule variant DG with POE in mDH+FSL exposure fabricated by Manufacturer A for all sets.

The best model equation line is shown for each set.

Figure 20: Variation of mechanistic variables (nIsc,IV , nRs,IV , and nVmp,PIV ) and power (nPmp,IV )
with exposure time (dy) using multiple regression network structural equation modeling for DG with

EPE manufactured by A in mDH+FSL (set #5).
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Figure 21: Variation of mechanistic variables (nIsc,IV , nRs,IV , and nVmp,PIV ) and power (nPmp,IV )
with exposure time (dy) using multiple regression network structural equation modeling for DG with

POE manufactured by A in mDH+FSL (set #5).

3.4.2 Outdoor exposure results

The minimodule characterization in this project was completed in BP1 and BP2 as part of:

• MS 1.6, 2.3

• ST 2.7, 3.3, 6.1, 6.6, 7.1, 7.5

Thirty-two minimodules from sets #1-#4 were exposed in outdoor conditions (SDLE Sun-
Farm) for 1.6 years. The variants exposed are highlighted in Table 2. I-V features were extracted
from each I-V curve using the ddiv package in CRAN [14], including the maximum power (Pmp),
the current at Pmp (Imp), the voltage at Pmp (Vmp), the short-circuit current (Isc), the open-
circuit voltage (Voc), the series resistance (Rs), and the shunting resistance (Rsh). The module
temperature, POA irradiance, and these I-V features except Rsh were processed by the Suns-Voc
package[15] to obtain the predicted electrical features at reference conditions for each defined
period as one week. These predicted features for modeling in the next step include Pmp,IV , Isc,IV ,
Rs,IV , and Vmp,PIV . PIV is the short name for the Pseudo I-V curve. The reference conditions
were 1000 W/m2 POA irradiance and corresponding median annual module temperature, which
was estimated as 45 ◦C using the data of the first year and a POA irradiance range of 1000 ±
10 W/m2. Usually, a seasonal decompose should be applied to remove the seasonality and noise
to obtain the trend. However, such methods can not be applied due to the requirement of more
than two years of data that can not be met by the available outdoor data in this study.
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< S|R > results were obtained for outdoor minimodules exposed in SDLE SunFarm, Cleveland
OH. The data collected corresponds to the full module measurements. Normalization was done
based on the first 90 days for all the modules except sa43014 (normalized based on 90-120
days) and sa43022 (normalized based on 120 days). These two modules had problems with the
connection at the beginning of the exposure.

The variations in outdoor minimodules are based on module architectures (GB/DG), en-
capsulant materials (EVA/POE), cell types (mono-facial/bi-facial),and rear encapsulant types
(transparent, opaque, UV-cutoff).

Figure 22: Outdoor minimodule facet plot with dy as the stressor and nPmp,IV as the response. Each
facet grid has normalized data points and simple linear model fit.

The slope values from linear models are summarized in Table 4. It can be seen that there are
variants with slope values decreasing more than -0.01; such variants are degrading. Some of the
variants that are degrading are bi POE Opaq GB, mono EVA Opaq DG and mono POE Opaq GB.
The stable variants are the ones that have nearly zero slope; for example, bi POE Opaq DG and
bi EVA Opaq DG are considered stable.
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Table 4: Slopes from linear fitted models (dy versus nPmp,IV ).

Variant Slope
bi EVA Opaq DG 0.003
bi EVA Opaq GB -0.01
bi EVA Trans DG -0.01
bi EVA Trans GB 0.03
bi POE Opaq DG 0.006
bi POE Opaq GB -0.06
bi POE Trans DG 0.03
bi POE Trans GB -0.03

mono EVA Cut DG -0.01
mono EVA Cut GB 0.01

mono EVA Opaq DG -0.07
mono EVA Opaq GB 0.01
mono POE Cut DG -0.02
mono POE Cut GB 0.2

mono POE Opaq DG 0.02
mono POE Opaq GB -0.04

< S|M |R > models for 16 variants were obtained. Figure 23 shows an < S|M |R > model
for GB with EVA with bi-facial PERC and opaque rear encapsulant.

Figure 23: < S|M |R > model of GB with EVA with bifacial PERC and opaque rear encapsulant. Each
pathway has a specific best model/functional form and corresponding adjusted R2 value. The blue

boxes represent short-hand description of degradation mode.

The slope values of linear model fits from < S|M | results are summarized in Table 5. It can be
seen that for the three degrading module types bi POE Opaq GB, mono EVA Opaq DG () and
mono POE Opaq GB, the prominent degradation mode is optical transmission loss (tracked by
nIsc,IV ). nRs,IV and nVmp,PIV do not contribute to degradation as much in these three variants.
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Table 5: Slopes from linear fitted models (dy versus mechanistic variables nIsc,IV , nRs,IV , nVmp,PIV ).

Variant Slope of < S|M |
nIsc,IV

nRs,IV
nVmp,PIV

bi EVA Opaq DG -0.02 0.02 -0.008
bi EVA Opaq GB -0.002 0.02 -0.003
bi EVA Trans DG -0.009 0.01 -0.008
bi EVA Trans GB -0.02 0.08 -0.0003
bi POE Opaq DG 0.02 0.002 0.002
bi POE Opaq GB -0.03 0.05 -0.004
bi POE Trans DG 0.003 0.02 -0.002
bi POE Trans GB -0.01 0.01 0.0001

mono EVA Cut DG -0.03 0.01 0.0008
mono EVA Cut GB -0.008 0.07 -0.0005

mono EVA Opaq DG -0.014 0.07 -0.001
mono EVA Opaq GB -0.008 -0.007 -0.001
mono POE Cut DG 0.003 0.02 -0.0003
mono POE Cut GB 0.006 0.02 0.005

mono POE Opaq DG -0.02 -0.02 -0.0009
mono POE Opaq GB -0.01 -0.01 -0.003

3.4.3 Mechanical modeling of cells, packaging materials & mini-modules

The minimodule outdoor exposure in this project was completed in BP1 and BP2 as part of:

• MS 1.3, 2.5

• ST 2.2

The main subtask associated with this topic is ST 2.2: Mechanical modeling of cells, packaging
materials & mini-modules.

In this section, an overview of the steps involved in mechanical modeling, bare and soldered
cell testing, Weibull analysis, FEM results, proof load calculation and 4-point proof loading results
for rectangular GB minimodules will be discussed.

PV modules in real-world exposure conditions develop internal mechanical stresses induced by
wind, rain, temperature fluctuations, hail, etc. which can lead to cell cracking and further decrease
the power output. The changes in mechanical properties of polymeric packaging materials can
influence cell cracking: if the encapsulant becomes harder (stiffer), it would transfer more external
load to the solar cells, leading to cell cracking. Conversely, if the encapsulant is relatively soft,
the strain would not be transmitted to solar cells and there would be no danger of cell cracking.
4-point proof loading is a technique we use in the project to track changes in the encapsulants
under accelerated exposure conditions by the cell fracture probability.

There are several steps followed in mechanical modeling studies. Initially, bare and soldered
monofacial and bifacial multicrystalline Si PERC cells were tested in parallel and perpendicular
testing directions to see if there is any introduction of a new flaw size distribution. Weibull
analysis was performed on these bare and soldered cells to obtain Weibull moduli and characteristic
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fracture displacements (which scale up with characteristic fracture strains). The cells from the
same population were then used in 1-cell minimodules and 4-point proof loading was done to
obtain Weibull moduli and characteristic fracture strains (ε0). Then, the next step was to use finite
element modeling (FEM) to obtain the conversion factor for translating from 1-cell minimodules
to 4-cell minimodules, which is the minimodule we used under mDH+FSL accelerated exposures.
Proof loads were calculated such that the probability of fracture is less than 5% in the undegraded
state. During the course of indoor accelerated exposure, 4-point proof loading was done on
rectangular GB minimodules at the end of each mDH+FSL exposure step using the calculated
proof load values. Figure 24 shows a Weibull plot with the sequence of steps in the T50 project.

The figure captures the effect of soldering of bare cells: it would lead to the introduction of
a new flaw size distribution that would change the slope and flexural displacement. The results
from FEM analysis are necessary to be able to calculate the proof load (proof load is the load
at which there is negligible failure in undegraded minimodules and a high probability of failure in
degraded minimodules). Using the proof load, the changes in packaging materials of minimodules
can be tracked at the end of each exposure step. Once the cells are packaged, they are capable
of detecting changes in the polymer layers of the minimodules if the encapsulant become harder
enough.

Figure 24: Weibull plot showing the steps in the T50 project.

Weibull analysis was done for both bare and soldered monofacial and bifacial PERC cells in
different testing directions (i.e. parallel and perpendicular). The Weibull modulus (b) character-
izes the variation in material strength and distribution. For example, a higher Weibull modulus
indicates a tighter and narrower distribution.

From Table 6, it can be seen that the Weibull modulus values decrease for soldered bifacial
cells in both the testing orientations which indicate a greater distribution in measurements but
the fracture displacement doesn’t change. This shows that there is an introduction of strength-
limiting flaw size distribution due to the soldering process and hence they are the most influenced
by soldering. Also, note that the X-axis is fracture displacement which scales up with fracture
strain and can be obtained from classical beam theory for 4-point bending. For monofacial
multi-Si cells, the flaw size distribution increases in the parallel direction after soldering.
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Table 6: Weibull modulus and characteristic fracture displacement values for monofacial and bifacial
PERC cells (bare and soldered).

Type Weibull Modulus (b) Characteristic Fracture Displacement (mm)
Monofacial PERC, bare, parallel 12 12.3

Monofacial PERC, bare, perpendicular 12 11.6
Monofacial PERC, soldered, parallel 7.5 12.3

Monofacial PERC, soldered, perpendicular 11 11.5
Bifacial PERC, bare, parallel 13 14.7

Bifacial PERC, bare, perpendicular 9.6 11.7
Bifacial PERC, soldered, parallel 7.7 15.0

Bifacial PERC, soldered, perpendicular 6.4 11.3

Weibull analysis was done on 120 40 x 19 cm Glass/Backsheet (GB) 1-cell minimodules after 4-
point bending flexure. Two cell types were used: monofacial and bifacial. The encapsulants used
in fabricating these minimodules were transparent and UV-cutoff EVA and POE. The backsheet
used was KPf. Table 7 summarizes these the Weibull moduli and characteristic fracture strains
(ε0).

Table 7: Weibull modulus and characteristic fracture strain values for 1-cell minimodules with EVA and
POE encapsulation.

Type Weibull Modulus (b) Characteristic Fracture Strain (ε0)
Bifacial PERC, EVA, parallel 9.8 6.2E-4

Bifacial PERC, EVA, perpendicular 13 4.9E-4
Monofacial PERC, EVA, parallel 6.8 6.3E-4

Monofacial PERC, EVA, perpendicular 20.7 5.8E-4
Bifacial PERC, POE, parallel 11.3 6.9E-4

Bifacial PERC, POE, perpendicular 13.4 5.0E-4
Monofacial PERC, POE, parallel 10.2 7.3E-4

Monofacial PERC, POE, perpendicular 17.4 5.7E-4

It can be seen that in the parallel (||) direction, the characteristic fracture strains (ε0) are
similar across all cell types and encapsulants in the minimodules. For each encapsulant type,
the 1-cell minimodules with bifacial cells have a lower characteristic fracture strain value in
the perpendicular orientation compared to ||, which makes them more sensitive to loading. In
addition, there’s not much of a difference between EVA and POE samples as they lie in a similar
range of ε0 values. This is due to the fact that the encapsulants have similar stiffness at room
temperature and the loading rate are similar. Even after grouping minimodules having EVA and
POE encapsulation together and separating only on the basis of cell type and orientation as shown
in Figure 25, bifacial minimodules in the perpendicular orientation have lower fracture strain and
an overall lower fracture strength. They appear to be more sensitive in the perpendicular direction.
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Figure 25: Weibull plots for 1-cell minimodules after grouping encapsulants and separating on the basis
of cell and orientation.

A short experiment was done using a 1-cell minimodule to detect cell cracking events using
load versus displacement data. It was observed that if there is a cell cracking event, there would
be a sharp drop in the load, which can be easily identifiable in a load versus displacement plot.
Figure 26 shows this result. This result is useful in identifying cell cracking due to proof loading.
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Figure 26: Cell cracking events in a 1-cell minimodule as observed on load versus displacement plots.

Finite element analysis is useful to translate the proof load from 1-cell minimodules to 4-cell
minimodules. This is done using a conversion factor specific to each type of minimodule.

Figure 27 shows the finite element analysis for 1-cell and 4-cell minimodules. It was observed
that for bare cell 4-point bending, the tensile strain is constant between inner spans whereas for
the minimodule 4-point bending, the tensile strain is maximum only at the center of the cell. The
values of the conversion factors (designated as m) is shown in the next section for each case.

Figure 27: FEM results for (a) quarter of a 1-cell minimodule and (b) A quarter of 4-cell minimodule.

The part of the work is taken from the published article named ’Employing Weibull Analysis
and Weakest Link Theory to Resolve Crystalline Silicon PV Cell Strength Between Bare Cells and
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Reduced- and Full-Sized Modules’ [16]. In this work, Weibull analysis and weakest link theory are
employed to resolve the probability of crystalline silicon PV cell fracture when measured as bare
cells and when stressed in reduced 1-cell PV minimodules and full-sized 4-cell PV minimodules.
The ability to measure the strength distribution of bare cells and accurately predict their probability
of fracture once packaged into a module is demonstrated in this work. Some of the results from
the article are highlighted in this section.

A single population of bare multicrystalline silicon bifacial PERC PV cells (156.75 × 156.75
× 0.17 mm) were evaluated in this study. All cells were tabbed (application of soldered ribbon
interconnects) on the production line of a Tier 1 PV manufacturer, and a subset of these bare
cells was packaged into 20 × 40 cm one-cell modules of a glass/polymer backsheet construction.
Four-point flexure (4PF) testing was performed to evaluate the strength distribution of the bare
cells and once packaged into the one-cell modules. Cell-level testing was conducted with a loading
(140 mm) to support span ratio of about 0.5 and at a load-line displacement rate of 200 µms−1

until cell fracture. All cells were evaluated such that the rear (nonsun-facing) side of the cell was
put into tension and in both a parallel (flexural strain direction parallel with tabbing direction)
and perpendicular orientation. One-cell module-level 4PF testing with cells both in the parallel
and perpendicular orientations was similarly conducted with a loading to support span ratio of
0.5, where the packaged cell was totally contained within the inner loading span, and a load-
line displacement rate of 20 µms−1 until cell fracture was detected by live electroluminescence
imaging (no cell cracks were detected prior to loading).

Figure 28 shows the results of similar numerical simulations to calculate the Weibull effective
volume, area, and edge area of the cell when both loaded in 4PF as a bare cell and packaged
within the experimental one-cell module are presented as the computed characteristic strength
ratio as a function of Weibull modulus. Volume and areas calculated in this study are utilized to
address the potential for the strength limiting flaw distribution to reside in one of these locations.
The shaded region of Figure 28 highlights the experimentally measured space of packaged to
bare cell characteristic stress ratio (σm/σc = 0.8–0.85) and Weibull modulus (m = 16–20). The
intersection of this experimentally measured space with the characteristic strength ratios predicted
by both the Weibull effective volume and edge area suggests the population of strength limiting
flaws resides in one of these locations. Considering the very high quality of the silicon feed stock
used to produce PV cells, and the relatively abrasive nature of the subsequent sectioning and
processing steps, we conclude that the strength limiting flaws are most likely to reside on the
edge area of these cells.
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Figure 28: Packaged to bare cell characteristic strength ratios according to Weibull effective area, edge
area, and volume calculations for the experimental one-cell modules. The shaded region represents the

experimentally measured space.

Figure 29 reveals the characteristic strength ratios between the simulated fourcell modules
loaded uniformly and in 4PF, and the bare cell loaded in 4PF. The ratios are close to unity for
the four-cell module loaded in 4PF, implying that the characteristic fracture strength of the cell
will be similar when measured as a bare or packaged cell in 4PF. When the four-cell module is
loaded uniformly, however, about 20% reduction in characteristic strength is expected between
the packaged and bare cell. A similar comparison between the uniformly loaded full-sized module
and bare cell loaded in 4PF is presented in Figure 30. In Figure 30, the results from only the
center-most row of cells are presented as these cells experience the highest absolute stress with
loading. This analysis demonstrates that for cell strength distributions with Weibull moduli greater
than 10, the characteristic strength is reduced by 10%–20% once the cells are packaged into a
full-sized module and uniformly loaded.
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Figure 29: Characteristic strength ratios based on effective edge area between the simulated packaged
cells within four-cell modules loaded uniformly and in 4PF, and the bare cell loaded in 4PF.
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Figure 30: Characteristic strength ratios based on effective edge area between the center row of
packaged cells in the simulated uniformly loaded 72-cell module and a bare cell loaded in 4PF.

The main takeaway from this study is that the characteristic cell strength is reduced by about
20% once packaged into the laminate of a one-cell module and loaded in 4PF. This experimental
observation was shown consistent with a weakest link theory prediction that the strength limiting
flaws reside on the surface of the cell’s edge.

For the calculation of proof loads for different minimodule combinations, Eq. 1 was used,
where Pf is the probability of failure, λ is the discount term, mε0 is the characteristic failure load
(where m is the conversion factor from 1-cell to 4-cell minimodule and ε0 is the characteristic
fracture strain). λ is the discount term that changes the distribution function in such a way that
an undegraded sample has a negligible probability of failure and a large probability of fracturing a
degraded sample. For example, an λ value of 0.7 means there’s 30% degradation in the sample;
essentially, λ captures the effect of degradation in the sample. The values of b, ε0 are obtained
from 1-cell minimodule Weibull plots.

Pf = 1− exp(−(
load

λ.mε0
)b (1)

The proof load was calculated by using 5% fracture probability and λ = 1. The proof loads for
all GB minimodules are listed in Table 8. Here, || means parallel layout and ⊥ means perpendicular
layout.
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Table 8: Proof load values calculated for each minimodule set.

Set Layout Proof Load (N)
1 || 439.9
1 ⊥ 447.3
1 || (wrong front glass thickness (2.5 mm)) 209.4
1 ⊥ (wrong front glass thickness (2.5 mm)) 205.9
2 || 439.9
2 ⊥ 360.9
3 || 439.9
3 ⊥ 447.3
4 || 439.9
4 ⊥ 360.9
5 || 439.9
5 ⊥ 360.9

3.4.4 Four-Point Proof Loading Results for GB Minimodules

Four-point proof loading was done on 4-cell rectangular GB minimodules at end of each exposure
step. Using the proof loads listed in Table 8, the load and displacement data was collected for
minimodules. EL images were collected before, during and after loading as shown in Figure ??.

Offset load versus load line displacement plots were generated to monitor changes in min-
imodules. Offset load is defined as load at which the load line displacement is zero before it
turns nonzero subtracted from load. By defining offset load, we ensure that all the line plots
start from a common zero. Load line displacement is the displacement subtracted from the first
displacement value in the data frame. This is done to set the displacement range from 0-5 mm.
These definitions have been adopted with Si cracking event as a reference (refer to Figure 26).

In this section, the results from sets #1-#4 will be shown. Due to some issues in data
syncing in our high performance computing cluster, set #5 data did not get synced properly. The
complete set of results will be included in our future publication.
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Figure 31: EL instrument setup with images shown before, during and after proof loading. The
grayscale image represents the EL image taken using EL/PL system.

The offset load versus load line displacement plots are shown in Figs. 32, 33, 34 and 35.
Note that in Figure 32, 3 of the minimodules had incorrect front glass thickness (2.5 mm glass
instead of 3.2 mm glass), which increased the compliance of the overall minimodule. From sets
#1-#4 results, we observed that cell cracking was not induced due to the 4-point proof loading
experiment. In other words, minimodule cells that did not have cracks before the experiment
did not develop cracks during the loading. In the presence of pre-existing cracks before the
experiment, the cracks open up to reveal electrically isolated regions in the cells as shown in
Figure 31 (image (b)). There is no strong dependence in the encapsulant type or orientation in
these results.

Figure 32: Offset load versus load line displacement plots for minimodules in set #1. Baseline and
exposure step 5 results are shown.
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Figure 33: Offset load versus load line displacement for minimodules in set #2. Baseline and exposure
step 5 results are shown.

Figure 34: Offset load versus load line displacement for minimodules in set #3. Baseline and exposure
step 5 results are shown.

Figure 35: Offset load versus load line displacement for minimodules in set #4. Baseline and exposure
step 5 results are shown.
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3.4.5 Characterization of rear encapsulants from set #5 minimodules

This topic does not correspond to any particular task, subtask or milestone. However, this will
be part of our future publication.

For materials characterization, the rear encapsulants were extracted from GB minimodules
after step 6 of exposure (i.e., 3024 hours of exposure). Fourier-transform infrared (FTIR) spec-
troscopy was performed on EPE and POE rear encapsulants from unexposed and exposed min-
imodules. An FTIR spectrometer (Spectrum One, Perkin Elmer) was used to record IR spectra
using 16 scans at a resolution of 1 cm−1 with attenuated total reflectance (ATR). The encapsu-
lant changes were monitored in the range of 650-4000 nm using Spectrum One software. Mea-
surements were taken for each retrieved encapsulant to identify changes at the encapsulant-cell
interface (cell-side).

Colorimetry was used for obtaining yellowness index (Y I) values to monitor changes in the
encapsulants. Y I changes in POE and EPE rear encapsulants from unexposed and exposed
minimodules were investigated. A HunterLab UltraScan PRO instrument was used along with
the Easy Match QC software to organize the results.

In this section, we compare changes in the UV-cutoff POE and EPE rear encapsulants across
exposed and unexposed minimodules. We selected two GB minimodules, with either EPE or POE,
exposed in mDH conditions for 3024 hours. Similarly, we selected two unexposed GB counterparts
to compare if there were any chemical changes in the rear encapsulants. To understand the peaks
in EPE, unexposed minimodule with EVA encapsulation was used; the rear encapsulant was UV-
cutoff EVA.

This analysis helps us assess the extent of degradation and chemical modifications in the
encapsulant materials due to exposure. We were particularly interested in identifying any unique
peaks present in the spectra of the exposed EPE samples compared to the unexposed POE and
EVA. Figure 36 shows the baseline FTIR-ATR spectra for cell-side EPE, POE, and EVA rear
encapsulants. It can be seen that the unexposed and exposed spectra for each encapsulant are
quite similar. From 650 to 2000 cm−1, EPE behaves similarly to EVA. From 2000 to 3000
cm−1, EPE behaves similarly to both POE and EPE. However, past 3000 cm−1, we observe the
appearance of a small peak in the EPE encapsulant spectra, which looks similar to the water
absorption band [17]. This indicates a potential onset of delamination due to water ingress
and/or additive diffusion [18] as the lamination recipe used to manufacture modules in set #5 is
not optimized.

In addition, yellowness index (Y I) values were obtained for the rear encapsulants to mon-
itor optical transmission changes. Table 9 shows the Y I values for the EPE and POE rear
encapsulants.

There is an increase in Y I from unexposed to exposed encapsulant samples. The largest Y I
increase can be seen for the POE rear encapsulant: the increase is comparable for both cell- and
rear-sides.

3.4.6 Neural Network Models for Predicting Overall Parameters’ Change

This particular topic is not related to any specific task, subtask or milestone. This is part of the
work done by Jiqi Liu for her PhD thesis.

This work utilizes convolutional neural network (CNN) and recurrent neural network (RNN)
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Figure 36: Fourier transform infrared spectra of rear encapsulants (EPE and POE) taken on the
cell-side. The EVA spectrum is for an unexposed retrieved sample.

Table 9: Yellowness index values for retrieved encapsulants from unexposed and exposed minimodules.

Encapsulant Side Exposure Y I
POE Cell-side Unexposed 2.48
POE Cell-side mDH 5.34
POE Rear-side Unexposed 3.97
POE Rear-side mDH 6.77
EPE Cell-side Unexposed 5.35
EPE Cell-side mDH 5.45
EPE Rear-side Unexposed 3.84
EPE Rear-side mDH 4.93
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to quantitatively learn spatial and temporal information from spatiotemporal image datasets. As
a showcase, we use image data of PV modules to train neural network models and predict the
change of electrical features, which is enabled by the extensive data collected in the project,
including I-V measurements and EL images of many cells in the laminated module.

We demonstrate how to quickly obtain the best local neural network model by running Slurm
jobs in our high performance computing cluster to parallelly train 52 model variants with different
input image types and image preprocessing methods, and output feature scaling methods. We
find a significant performance improvement of RNN over CNN, indicating that it is beneficial to
take advantage of measurements for the same sample taken at different exposure times to make
a more accurate prediction from the local dataset collected in this project.

The data were obtained from set #1 - #4 minimodules under the two indoor accelerated
exposures as mDH and mDH+FSL, with step-wise measurements of six steps, including the
baseline step.

PV images: Electroluminescence (EL) and Photoluminescence (PL) images The model
inputs contains eight images were collected per module, consisting of three electroluminescence
(EL) images with three different forwarding currents, three corresponding dark images with the
same camera settings and no forwarding current, and two PL images. The three forwarding
currents were 9.4 A (Io), 4.7 A (0.5 Io), and 2.4 A (0.25 Io). The camera exposure time was
adjusted for each EL image to reasonably utilize the range of allowed image intensity. One
PL image denoted as PL@OC was measured under illumination with the module’s current set
as zero, i.e., open-circuit status. Another PL image denoted as PL@SC was measured under
illumination with the module’s voltage set as zero, i.e., short-circuit status. One more PL image
denoted as PL@OC−SC was obtained by subtracting PL@SC from PL@OC. The illumination
was about twice as intense as the green light peak in the solar spectrum, provided by ten green
LED lamps arranged in two columns in the imaging chamber.

I-V Features: nPmp,IV and nRs,IV The output is the normalized maximum power (nPmp,IV )
and the normalized series resistance (nRs,IV ). These features were obtained from the I-V mea-
surement. Each I-V measurement contains three I-V curves at different irradiance levels, includ-
ing 1000 W/m2, 500 W/m2, and 250 W/m2. The Pmp,IV was extracted from the 1000 W/m2

I-V curve using the ddiv package on CRAN[14], and the Rs,IV was obtained using the three
irradiance I-V curves followed the IEC 60891. The normalization was implemented by dividing
the value obtained from the same cell at baseline.

Different model variants in categories of CNN, RNN, and CNN+RNN were developed to
predict the normalized power and series resistance using PV images as the input. The influences
of input image types and preprocessing, output feature scaling, and model categories on the
modeling performance are investigated.

Model Input Image Types and Preprocessing We used a cell extraction python pipeline[19]
to extract four cell images from each module image. Cell images were used directly as the input,
meanwhile other types of images were constructed to investigate potential model performance
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improvements, such as the baseline subtraction images, the enhanced signal-to-noise (S/N) EL
images, and some hyper images.

• Raw image: EL image after subtracting the corresponding dark image. Raw EL images
with different forwarding current are denoted as EL@Io, EL@0.5Io, and EL@0.25Io.

• Baseline subtraction image: EL image after subtracting from EL of the same sample
at baseline (initial state without aging). Then the difference was normalized by dividing
the average intensity of the baseline image. Therefore, the baseline subtraction image
highlights a cell area that becomes darker after some time under an accelerated exposure.

• Enhanced S/N image: weighted average of the three EL images measured with different
forwarding currents. The weights are the reciprocal of their corresponding camera exposure
times. Figure 37 shows the extracted EL@Io cell image of one solar cell after five steps of
mDH exposure, the corresponding baseline subtraction image, and the enhanced S/N EL
image.

• Hyper image: Constructed image by putting different types of EL and PL images into
multiple channels. Double-channel hyper images using the combination of EL@Io and
EL@0.25Io, and EL@Io and PL@OC after the baseline subtraction were constructed in
the study.

(a) Raw (b) Baseline subtraction (c) Enhanced S/N EL

Figure 37: The raw EL@Io image (a), the baseline subtraction image (b), and the enhanced S/N EL
image (c), for a solar cell in a laminated module after five steps of mDH exposure.

Convolution Neural Network (CNN) CNN is designed to automatically and adaptively learn
spatial hierarchies of features through backpropagation by using multiple building blocks, such
as convolution layers, pooling layers, and dense layers. In this study, multiple modifications were
applied to CNN models to explore potential model performance improvements, including adding
dropout layers, changing the number of neurons in dense layers, alternating the grid size in max
pooling layers, adding different regularization and batch normalization, and changing convolution
structures. The simplest and the most complex CNN models in this study contain two and seven
convolution layers shown in Figure 38. For CNN model expressions, the letter ”c” stands for the
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convolution layer, and the letter ”p” stands for the max pooling layer with the following number
as the layer order.

(a) c1c2p1

(b) c1c2p1c3c4p2c6c7p3

Figure 38: The model architecture for the simplest and most complex CNN models.

Recurrent Neural Networks (RNN) RNN is a class of artificial neural networks (ANNs)
where connections between neurons form a directed or indirect graph along the sequence of
input. A sequence is a particular order in which one thing follows another. The most common
sequential input is timeseries data such as audio, video, and the daily stock price. A usual RNN
neuron takes the current input like a typical feedforward neural network and information from
the previous input to predict the current output. So it exhibits temporal dynamic behavior and
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owns a memory. It is well known that a very deep feedforward neuron network suffers from the
vanishing gradient problem. A usual RNN neuron will easily encounter the same issue, which
causes its internal state to keep a short-term memory since its depth is decided by the length of
the input sequence, which can be long in nature.

Besides dividing a long input sequence into multiple short input sequences, two specially
designed RNN neurons are applied more often to enable long-term memory. They are long
short-term memory unit (LSTM)[20] and gated recurrent unit (GRU)[21] which can balance the
contribution to predicting the current output from the long-term memory, the short-term memory,
and the current input.

GRU is used here due to its concise structure and fewer parameters. The number of parameters
in a GRU neuron is decided by the input dimension and the specified output dimension, defined
in the ”units” parameter in the ”tf.keras.layers.GRU” function. Performance of RNN models was
investigated with units changed as 2, 20, and 200 for a single GRU layer and numbers of GRU
layers chosen from 1 to 3. The image dataset needs to be reorganized into a video format to
train an RNN model. The video is for each solar cell with frames of images following the order
of exposure steps.

CNN+RNN The combined model takes all layers in CNN#1 described in Table ?? except the
output layer, followed by the RNN#1 model structure described in Table ?? without the input
layer.

Model Output Feature Scaler The normalized Pmp (nPmp,IV ) and Rs (nRs,IV ) were chosen
as the predicted output feature. The normalization was done by dividing the feature value by
the value measured from the same cell at baseline. Two kinds of scaling methods were applied
for the output for the potential improvement in model performance, including the minimum-
maximum scaler (MMS) shown in Eq. 2 and the standard scaler STS) shown in Eq. 3. The
scaler translates each feature individually, denoted as X in Eq. 2 and Eq. 3 using the statistics
obtained from the training dataset, such as the range, the average (µ), and the standard deviation
(σ).

Xscaled =
X −min(X)

max(X)−min(X)
(2)

Xscaled = (x− µ)/σ (3)

Model Performance Matrix The data of 396 solar cell samples were partitioned into training,
validation, and testing datasets according to the ratio of 75 %, 15 %, and 15 % based on randomly
selected cells. Then rotations of 90◦, 180◦, and 270◦ were applied to each image to increase the
number of observations and make the model generalized across different image orientations.

• Training: 1108 videos or 6648 images

• Validation: 236 videos or 1416 images
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• Testing: 240 videos or 1440 image

Therefore, there were for training, for validation, and s for testing. Mean squared error (MSE)
calculated by Eq. 4 was used as the loss function in the training process. The model performance
was evaluated using the root-mean-square error (RMSE) shown in Eq. 5 obtained from the testing
dataset. In both Equation 4 and Equation 5, n is the number of observations in the dataset, Yi
is the actual output feature value, and Ŷi is the predicted output feature value.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (4)

RMSE =

√∑n
i=1(Yi − Ŷi)2

n
(5)

The number of epochs in the training process is denoted by a number in parentheses following
the model expression. Models returned from checkpoints, denoted by a letter ”c” following the
defined training epoch number, were sometimes used to obtain models before overfitting. The
checkpoint was set to continuously save model objects with a smaller MSE for the validation
dataset in the training process.

Model Training Environment: Tensorflow 2.6.1 library was used for building the neural net-
work model[22]. The model was trained and tested on Intel(R) Xeon(R) CPU E5-2630 v4 @
2.20GHz, 64 GB memory, 8 CPU cores, and 12 GB Nvidia GeForce RTX 2080 GPU card.

Slurm: stands for Simple Linux Utility for Resource Management, which was initially developed
at the Lawrence Livermore National Laboratory. Slurm is a full-featured job scheduler with a
multi-threaded core scheduler and substantially high scalability that was used for parallel neural
network model training.

The Slurm workload manager is used to submit fleets of jobs in HPC to speed up the process
and improve fault tolerance. Figure 39 [23] indicates how a Slurm scheduler takes jobs from a
workstation that can be run through its cores and submits them to compute-nodes with robust
specifications. The compute and login nodes have access to the storage environment of the home,
scratch, and work directories.

Summary: The specification of all cases with differences in the model structure, input, and
output is described in Table 10 with the testing RMSE. A baseline model was made by guessing
values of output features as one, and its testing RMSE is 0.0958. ”Raw” is for the original image
in the input column, and ”BS” is for the baseline subtraction image. ”Hyper” is for the image
with multiple channels for different image characterizations, and ”EH” is for the enhanced S/N
EL image constructed by the three EL images with different forwarding currents. The normalized
electrical features were used directly as the output if the output column was left empty. Otherwise,
a scaler was applied, where MMS represents the minimum-maximum scaler as Eq. 2 and STS
represents the standard scaler as Eq. 3.
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Figure 39: Slurm jobs workflow for parallel model training.

This section explores neural network models to predict the normalized power and series resis-
tance based on EL and PL images for PV modules under accelerated exposures. Figure 40 shows
that the baseline subtraction EL@Io image brings the lowest testing RMSE for the CNN model,
and the raw EL@Io image brings the lowest testing RMSE for the RNN model.

Figure 40: Comparison of the testing RMSE of CNN, RNN and CNN+RNN model examples with three
kinds of input images, including the raw EL@Io images, the baseline subtraction EL@Io images, and

the enhanced S/N EL images.

Incorporating other image characterizations into the input, such as using the enhanced S/N
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Table 10: The specification of each modeling experiment and its resulting testing RMSE.

Case Model Expression Comments Input Output # of Parameters RMSE
1 CNN#1(50) BS(EL@Io) 12,918,090 0.0844
2 CNN#1+0.5D(50) add dropout layer (50%) following each dense layer BS(EL@Io) 12,918,090 0.0735
3 CNN#1+0.5D+RF1(50) reduce neurons in the first dense layer from 256 to 128 BS(EL@Io) 6,462,666 0.0758
4 CNN#1+0.5D+RF2(50) reduce neurons in the second dense layer from 256 to 128 BS(EL@Io) 12,884,938 0.0741
5 CNN#1+0.5D+MP3(50) change the grid in max pooling as 3 × 3 BS(EL@Io) 2,633,034 0.0777
6 CNN#1+0.5D+MP4(50) change the grid in max pooling as 4 × 4 BS(EL@Io) 875,850 0.0780
7 CNN#1+0.5D+KR(50) add kernel regularization to each convolution layer BS(EL@Io) 12,918,090 0.0742
8 CNN#1+0.5D+AR(50) add activation regularization to each convolution layer BS(EL@Io) 12,918,090 0.0788
9 CNN#1+0.5D+BNB16(50) add BNB with a batch size of 16 BS(EL@Io) 12,918,186 0.0783

10 CNN#1+0.5D+BNB64(50) add BNB with a batch size of 64 BS(EL@Io) 12,918,186 0.1154
11 CNN#1+0.5D+BNB256(50) add BNB with a batch size of 256 BS(EL@Io) 12,918,186 0.1154
12 CNN#1+0.5D+BNB512(50) add BNB with a batch size of 512 BS(EL@Io) 12,918,186 0.2017
13 CNN#1+0.5D+BNB1024(50) add BNB with a batch size of 1024 BS(EL@Io) 12,918,186 0.5036
14 CNN#1+0.5D+BN16(50) add BN with a batch size of 16 BS(EL@Io) 12,918,346 0.0779
15 CNN#1+0.5D+BN64(50) add BN with a batch size of 64 BS(EL@Io) 12,918,346 0.0783
16 CNN#1+0.5D+BN256(50) add BN with a batch size of 256 BS(EL@Io) 12,918,346 0.0792
17 CNN#1+0.5D+BN512(50) add BN with a batch size of 512 BS(EL@Io) 12,918,346 0.0851
18 CNN#1+0.5D+BN1024(50) add BN with a batch size of 1024 BS(EL@Io) 12,918,346 0.3259
19 CNN#1+0.5D(50) add dropout layer (50%) following each dense layer BS(EL@Io) STS 12,918,090 0.0778
20 CNN#1+0.5D+BNB512(50) add BNB with a batch size of 512 BS(EL@Io) STS 12,918,186 0.0738
21 CNN#1+0.5D+BN512(50) add BN with a batch size of 512 BS(EL@Io) STS 12,918,346 0.0778
22 CNN#1+0.5D(50) add dropout layer (50%) following each dense layer BS(EL@Io) MMS 12,918,090 0.0757
23 CNN#1+0.5D+BNB512(50) add BNB with a batch size of 512 BS(EL@Io) MMS 12,918,186 0.0788
24 CNN#1+0.5D+BN512(50) add BN with a batch size of 512 BS(EL@Io) MMS 12,918,346 0.0951
25 CNN#1+0.5D+BNB512(250) add BNB with a batch size of 512 BS(EL@Io) 12,918,186 0.0787
26 CNN#1+0.5D+BN512(250) add BN with a batch size of 512 BS(EL@Io) 12,918,346 0.0798
27 CNN#1+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 12,918,090 0.0749
28 CNN#2+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 25,757,338 0.0730
29 CNN#3+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 25,757,922 0.0742
30 CNN#4+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 12,912,866 0.0738
31 CNN#5+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 12,918,674 0.0737
32 CNN#6+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 12,916,354 0.0752
33 CNN#7+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 12,915,770 0.0754
34 CNN#8+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 6,494,879 0.0737
35 CNN#9+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 6,507,130 0.0738
36 CNN#10+0.5D(50c) add dropout layer (50%) following each dense layer BS(EL@Io) 6,516,378 0.0734
37 VGG16(T)+0.5D(50c) trainable VGG16 with the same top layers structure BS(EL@Io) 21,203,778 0.0756
38 VGG16(NT)+0.5D(50c) non-trainable VGG16 with the same top layers structure BS(EL@Io) 21,203,778 0.0777
39 CNN#1+0.5D(50c) Raw(EL@Io) 12,918,090 0.0768
40 CNN#1+0.5D(50c) EH 12,918,090 0.0860
41 CNN#1+0.5D(50c) channel 0: BS(EL@Io); channel 1: BS(EL@0.25Io) Hyper 12,918,162 0.0923
42 CNN#1+0.5D(50c) channel 0: BS(EL@Io); channel 1: BS(PL@OC) Hyper 12,918,162 0.0922
43 RNN#1(50c) one GRU layer with units as two Raw(EL@Io) 301,236 0.0593
44 RNN#2(50c) one GRU layer with units as 20 Raw(EL@Io) 3,013,332 0.0597
45 RNN#3(50c) one GRU layer with units as 200 Raw(EL@Io) 30,241,212 0.0631
46 RNN#4(50c) two GRU layer with units for each layer as two Raw(EL@Io) 301,272 0.0593
47 RNN#5(50c) three GRU layer with units for each layer as two Raw(EL@Io) 301,308 0.0605
48 RNN#1(50c) one GRU layer with units as two BS(EL@Io) 301,236 0.0616
49 RNN#1(50c) one GRU layer with units as two EH 301,236 0.0593
50 CNN#1+0.5D+RNN#1(50c) combine CNN#1 before the output layer and RNN#1 BS(EL@Io) 12,919,292 0.0599
51 CNN#1+0.5D+RNN#1(50c) combine CNN#1 before the output layer and RNN#1 Raw(EL@Io) 12,919,292 0.0593
52 CNN#1+0.5D+RNN#1(50c) combine CNN#1 before the output layer and RNN#1 EH 12,919,292 0.0593

EL image or the hyper image, harms CNN models’ performance but does not influence the
performance of RNN and CNN+RNN models. The lowest testing RMSE for all CNN model
variants is 0.0730, and for all RNN model variants is 0.0593. Compared to the performance of
the baseline model, the testing RMSE is reduced by 23.8% for CNN models and 38.1% for RNN
models at most. Combining the RNN model with one GRU layer, which has the output dimension
specified as two, and the raw EL@Io images as the input is proposed as the best combination
to predict the normalized electrical features.
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3.5 Indoor/Outdoor Cross-correlation of Minimodule Sets 1-4

The minimodule characterization in this project was completed in BP1 and BP2 as part of:

• ST 3.3, 7.6

• EOP-B

The cross-correlation algorithm was developed in the project to quantify the similarity in the
degradation behavior for a module variant under indoor accelerated and outdoor exposure. It
took the < S|R > and < S|M models for a module variant under different exposures, their
exposure times, and the guessing range of the returned cross-correlation scale factor as inputs.
These models described how power and other features change over time. The algorithm returns
the optimal cross-correlation scale factor (CCSF ∗) to quantify the ratio of the changing rate
for power for modules under indoor accelerated and outdoor exposures, and the cross-correlation
coefficient (CCC) for each feature to evaluate the similarity in trends for the overlapping expo-
sure time between the scaled indoor and outdoor exposures. The cross-correlation scale factor
(CCSF ) is defined as the indoor exposure time divided by the equivalent outdoor exposure time,
so it is usually smaller than one, considering that indoor accelerated exposures leading to faster
degradation.

The algorithm first compared the two < S|R > models for indoor accelerated and outdoor
exposures to solve CCSF ∗. The y-intercept of the two models were shifted to one to represent a
change starting exactly from 100%. Then a value in the guessing range is picked as the CCSF to
scale the indoor model. Figure 41 shows the indoor model scaled by two different CCSF values.
Next, the overlapping time range between the indoor scaled model and the outdoor model is
calculated, and a hundred time points are evenly generated within it. These time points are then
input to the scaled indoor and outdoor models to obtain two predicted value sequences, and the
root-mean-square error (RMSE) between these two value sequences is calculated. The above
process is repeated for every value in the guessing range of CCSF with an interval specification.
Finally, the optimal cross-correlation scale factor is decided by the minimum RMSE. In summary,
the indoor model is scaled along the time axis to get closest to the outdoor model in their common
exposure time, and the corresponding scale factor is CCSF ∗.

The CCSF ∗ is then applied to all indoor models, including < S|R > model and various
< S|M models. Similar value sequences were generated within the overlapping time range from
a pair of outdoor models and the indoor model scaled by CCSF ∗. Then Pearson correlation
coefficient is then calculated instead of RMSE between the two value sequences and named
the cross-correlation coefficient (CCC). It can quantify the similarity in trends of the outdoor
model and the scaled indoor model in their overlapping time region. When their trends are more
identical, the CCC is closer to one, and when they are more opposite, the CCC is closer to
minus one. The CCC can be obtained for each pathway. In this study, we set the guessing
range of CCSF as from 0.04 to 2, which means that the indoor model can be compressed into
half of its original exposure time and stretched into 25 times its original exposure time. The
< S|R > model was < Time|nPmp,IV >, and the mechanism features were nIsc,IV , nRs,IV , and
nVmp,PIV . It is worth noting that when using CCC to evaluate the similarity of degradation
behavior under different exposures, the CCC of the activated degradation mechanism feature
should be the focus due to its significant contribution to the total power loss. In our study,
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Figure 41: Illustration of the process to obtain the optimal cross-correlation scale factor (CCSF ∗) by
comparing the scaled indoor model and outdoor model in their overlapping exposure time.

outdoor modules experienced changes in both nIsc,IV and nRs,IV , but indoor modules only had
prominent changes only in nRs,IV . Therefore, only the nRs,IV is for the activated degradation
mechanism in common. Even if the CCC results for nIsc,IV and nVmp,PIV turn out to be close
to one, the degradation behavior between exposures can not be concluded as similar due to the
difference in activated degradation mechanisms.

The CCSF ∗ and CCC of each pathway for comparing the degradation behavior of each
module variant between mDH and the outdoor exposure is shown in Table 11. According to the
success criteria listed in project SOPO, we had five module variants satisfying the requirements
of CCSF ∗ smaller than 0.5 and CCC of nPmp,IV higher than 0.7. When the < S|R > models
have opposite trends or one < S|R > model exhibits much slower change than the other, the
indoor < S|R > model tends to continuously compress or stretch itself to get close to the outdoor
model. As can be seen from the results in table 11, all cases with a negative CCC for nPmp,IV

also have a CCSF ∗ appearing at the guessing boundaries. Ten module variants have a CCSF ∗

not appearing on the guessing boundaries. Their CCSF ∗ varies from 0.122 to 1.08, with an
average of 0.4739. Their average CCC for nPmp,IV and nRs,IV were 0.94 and 0.89, respectively,
which were much higher than those for nIsc,IV and nVmp,PIV as 0.11 and -0.43, respectively.

The cross-correlation results comparing module degradation under mDH+FSL and the out-
door exposure are listed in Table 12. There were six module variants satisfying the criteria of a
CCSF ∗ lower than 0.5 and a CCC for nPmp,IV higher than 0.7. There were ten module variants
with the CCSF ∗ not appearing on the guessing boundaries, which were identical to those found
in comparing mDH and the outdoor exposure. Their average CCSF ∗ is 0.4298, and the CCC
for nPmp,IV and nRs,IV are still much closer to one than those of the other two features. The
average CCC for nPmp,IV and nRs,IV are 0.82 and 0.78. Compared to the results of mDH, the
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Table 11: The results of CCSF ∗ and CCC comparing the models for each module variant under mDH
and the outdoor exposure.

Module variant CCSF ∗ CCC
< Time|nPmp,IV > < Time|nIsc,IV < Time|nRs,IV < Time|nVmp,PIV

1 2.000 0.804 0.999 0.968 1.000
2 2.000 0.374 0.307 0.783 0.968
3 2.000 -0.858 -0.925 0.968 1.000
4 0.169 0.726 0.561 0.259 0.068
5 0.511 0.959 0.716 0.968 -1.000
6 2.000 0.778 0.968 0.962 -0.860
7 0.210 1.000 -0.112 0.888 -0.515
8 0.792 0.935 -0.747 0.884 -0.586
9 0.398 0.972 0.893 0.999 0.231

10 0.122 0.885 -0.461 0.979 0.601
11 0.584 0.999 0.648 0.999 -0.649
12 2.000 -1.000 -0.775 -1.000 0.586
13 0.040 -0.696 -0.658 0.913 0.998
14 0.210 0.994 -0.918 1.000 -0.448
15 1.089 0.953 0.673 0.968 -1.000
16 0.654 1.000 -0.127 0.979 -0.994

difference is mainly due to the results of module variant 9. The average CCC for nIsc,IV and
nVmp,PIV are 0.29 and 0.01. The CCC for nIsc,IV is higher when comparing mDH+FSL and the
outdoor exposure than that when comparing mDH, which is caused by a slightly more decrease
in nIsc,IV for modules under mDH+FSL.
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Table 12: The results of CCSF ∗ and CCC comparing the models for each module variant under
mDH+FSL and the outdoor exposure.

Module variant CCSF ∗ CCC
< Time|nPmp,IV > < Time|nIsc,IV < Time|nRs,IV < Time|nVmp,PIV

1 2.000 0.999 0.978 0.944 0.846
2 2.000 0.378 0.414 0.783 0.868
3 2.000 -0.968 -1.000 0.999 0.645
4 0.168 0.862 -0.602 0.439 0.524
5 0.599 0.968 0.612 0.968 -0.129
6 2.000 0.800 0.968 0.937 -1.000
7 0.207 1.000 -0.183 0.978 -0.670
8 0.475 0.964 0.981 0.968 -0.948
9 0.063 -0.308 -0.006 -0.406 0.260

10 0.188 0.864 0.349 0.988 0.275
11 0.576 0.968 0.995 0.968 0.821
12 2.000 -0.939 -0.975 -1.000 -1.000
13 0.040 -0.560 0.678 0.918 -0.979
14 0.357 1.000 -0.865 1.000 0.038
15 0.448 0.985 0.899 0.968 -0.616
16 1.217 0.932 0.731 0.940 0.563
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4 Publications/Presentations

This is part of Task 4 and EOP-D. The complete set of publications and presentations are listed
below.

• Statistical Analysis and Degradation Pathway Modeling of PERC PV Minimodules with
Different Packaging Strategies in Indoor Accelerated Exposures

Figure 42: Poster presentation at PVSC 50th in Puerto Rico.

• Statistical analysis and degradation pathway modeling of photovoltaic minimodules with
varied packaging strategies

• Quantitative Learning from Spatiotemporal Image Datasets: Application to Degradation of
Silicon Photovoltaic Modules

– poster, 8th Annual Data science in Eng & Life Sci Symposium 2022 44.
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Figure 43: Journal article published.

– poster, MDS-Rely Rely Center 2022 Spring Meeting 44
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Figure 44: A poster in Data science in Eng & Life Sci Symposium 2022 and MDS-Rely 2022.
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• Materials Data Science Research with SDLE Lab, Poster, Biomedical Engineering Society
2022 45

Figure 45: A poster in Biomedical Engineering Society 2022.
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• Performance Losses and Activated Mechanisms in Monofacial and Bifacial, Double Glass
and Glass-backsheet Photovoltaic Modules with PERC Cells, under Accelerated Exposures,
poster, PVRW 2022 46

Figure 46: A poster in PVRW 2022.
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• Overall Performance Losses and Activated Mechanisms in Double Glass and Glass-backsheet
Photovoltaic Modules with Monofacial and Bifacial PERC Cells, under Accelerated Expo-
sures, conference proceeding, PVSC 49th 47

Figure 47: A conference proceeding article in PVSC 49th.
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• Degradation Pathway Modeling of PV Minimodule Variants with Different Packaging Ma-
terials Under Indoor Accelerated Exposures, conference proceeding, PVSC 49th 48

Figure 48: A conference proceeding article in PVSC 49th.
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• Representative Modules for Accelerated Thermal Cycling and Static Load Testing, confer-
ence proceeding, PVSC 48th 49

Figure 49: A conference proceeding article in PVSC 47th.
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• Employing Fracture Statistics to Track Cell Reliability Through Module Fabrication, peer-
reviewed journal, IEEE JPV. 50.

Figure 50: Peer Review Journal Accepted.
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• Degradation Mechanisms and Partial Shading of Glass-backsheet and Double Glass Photo-
voltaic Modules in Three Climate Zones Determined by Remote Monitoring of Time-series
Current-voltage and Power Datastreams, peer-reviewed journal, Solar Energy. 51.

Figure 51: Peer Review Journal Submitted.
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• Mechanistic Insights to Degradation of PERC Minimodules with Differentiated Packaging
Materials & Module Architectures, conference proceeding, PVSC 46th, Chicago, IN. 52.

Figure 52: Conference proceeding in PVSC 46th.
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• Employing Fracture Statistics to Track Cell Reliability Through Module Fabrication, con-
ference proceeding, PVSC 46th, Chicago, IN. 53.

Figure 53: Conference proceeding in PVSC 46th.
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• Towards 50 Year Module Lifetimes: Impact of Module Architecture and Packaging Mate-
rials, NREL workshop in Lakewood CO, 2020 54.

Figure 54: Towards 50 Year Module Lifetimes: Impact of Module Architecture and Packaging
Materials, NREL workshop in Golden, CO, 2020.
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• Impact of packing materials and module architectures for PERC bi- and mono- facial mod-
ules: Towards 50 year module lifetimes, in Lakewood CO, 2020 55.

Figure 55: Impact of packaging materials and module architectures for PERC bi- and mono- facial
modules: Towards 50 year module lifetimes, SETO Poster Presentation Denver CO, February 2020.
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• Towards 50 Year Modules, SETO Poster Presentation at the 46th PVSC meeting in Chicago,
201956.

Figure 56: Towards 50 Year Modules, SETO Poster Presentation at the 46th PVSC meeting in
Chicago, 2019.

March 29, 2024 78



CWRU-Towards 50 Year Modules SETO2019 Project DE-EE-0008550

• Towards 50 Year Lifetime PV Modules: Double Glass vs. Glass/Backsheet, 6th Annual
Data Science Symposium in CWRU, 2019 57.

Figure 57: Towards 50 Year Lifetime PV Modules: Double Glass vs. Glass/Backsheet, 6th Annual Data
Science Symposium in CWRU, 2019.

In addition, three manuscripts are currently being prepared.

• Statistical Analysis and Degradation Pathway Modeling of PERC PV Minimodules with
Different Packaging Strategies in Indoor Accelerated Exposures

• Four-Point Proof Testing of Glass/Backsheet PV Minimodules for Monitoring Exposure-
Induced Changes in Packaging Materials

• Quantitative Learning from Spatiotemporal Image Datasets: Application to Degradation of
Silicon Photovoltaic Modules

The first manuscript is based off on the indoor accelerated exposure results from sets #1-
#5. The second manuscript will focus on mechanical 4-point proof loading results for all the
minimodule sets. The third manuscript focuses on predicting changes in electrical features from
spatiotemporal image datasets.
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Students working on this project Over the years and during the extension period, faculty
members, students, staff and collaborators have contributed greatly to the smooth functioning of
Towards50 project. Some students who have been an active part of this project have successfully
graduated from their degree programs. A brief update on the recent graduates and current
members (students and postdoc) will be provided in this section.

• Xuanji Yu

Xuanji is a postdoc working in the T50 project. He has a PhD in Materials Science
and Engineering from Boston University and has worked as the Chief Reliability Engineer at
Canadian Solar Inc. for two years before joining CWRU. His focus areas include < S|M |R >
Multiple Regression Prediction Model in netSEM (Principle 2) and joint inference of trained
neural network model among heterogeneous Spatiotemporal (Stepwise) Image Datasets.

• Sameera Nalin Venkat

Sameera is a PhD student working in the T50 project. She is pursuing her PhD in mate-
rials science and engineering at CWRU. Her focus areas in T50 include feature extraction,
statistical analysis and data-driven modeling using netSEM. For her PhD work, she is in-
volved in analyzing crystallization kinetics of fluoroelastomer films and is currently exploring
spatiotemporal graph neural networks.

• Ange Dominique Yao

Dominique is a BS/MS student majoring in Chemical Engineering. She has been work-
ing in the T50 project during the extension period. She has greatly contributed to the
characterization of minimodules and extracted encapsulants and the ongoing manuscript
preparation.

• Jiqi Liu

Jiqi graduated with a PhD in Materials Science and Engineering from CWRU in May 2022.
She has been an active member in the T50 project since its inception in 2019 and she has
greatly contributed to both the experimental and data analysis aspects of the project. Her
focus areas in the project were fabrication of minimodules, feature extraction and analysis
along with development of federated inference. She has begun her new career role as a
Packaging Reliability Engineer at Apple.

• William Oltjen

William is a Macromolecular Science and Engineering MS student at the SDLE Research
Center. He is involved in FAIRification of data, multiscale characterization of PV modules.
In the T50 project, he has helped immensely in coordinating the measurements after each
exposure step. He has also been the point of contact for exposing minimodules in exposure
chambers.

• Raymond Wieser

Raymond is a Materials Science and Engineering PhD student at the SDLE Research Cen-
ter. His focus areas are studying backsheet degradation using spatiotemporal studies and
constructing spatiotemporal graph neural networks for PV performance loss rate prediction.
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In the T50 project, he has helped a lot in coordinating measurements and ensuring that the
scheduled personnel are able to complete measurements as per the schedule in the initial
stages of the project.

• Hein Htet Aung

Hein is a Materials Science and Engineering PhD student. He has been actively developing
the netSEM R package and helped extensively in discussing ideas with respect to the
multiple regression analysis work in the project. For his PhD work, he is focusing on
degradation of polymer systems (acrylics) and working on polymer additive manufacturing.

• Leean Jo

Leean is an BS/MS majoring in Chemical Engineering. She has been helped extensively in
doing the electrical measurements for PV minimodules after each exposure step. Her focus
areas are development of the netSEM package and chemical characterization of polymer
coupons.

• Jakob Wegmueller

Jakob graduated with a BS in Mechanical Engineering from CWRU in May 2022. As an
undergraduate, he started off with helping in the experimental side of the project, eventually
transitioning to remote work during the pandemic and started exploring netSEM. His focus
areas have been to help in the analysis of statistical results and data-driven modeling
along with generalizing code for generating netSEM results. He will be beginning his
graduate studies at the Department of Mechanical Engineering, Massachusetts Institute of
Technology.

• Kemal Ozdemirli

Kemal is an undergraduate pursuing BS in Mechanical Engineering at CWRU. His focus area
is the development of an automated analysis pipeline for < S|M |R > Multiple Regression
Prediction Model in netSEM (Principle 2).

We acknowledge the efforts and co-operation of the following SDLE Center graduate stu-
dents and undergraduates in coordinating as well as doing measurements on 4-cell PV
minimodules.

Other undergraduates who have recently helped with measurements and exposures include:

• Jube Augustino

• Adam Goodman

• Gabriel Ponon

• Christelle Yameogo

• Summer Sun
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Issues, Risks, and Mitigation:

We anticipate no critical problems or delays at this time.

Changes in Approach:

We have not instituted any changes to our approach at this stage of the project.

Key Personnel:

There have been no changes in Key Personnel or teaming.

Recipient and Principal Investigator Disclosures:

There are no Recipient or Principal Investigator Disclosures at this time. None of the sponsored
persons or entities have been debarred, suspended, or found insolvent. Similarly, there have
been no fraud convictions, violations of export control laws and regulations, or violations of the
Drug-Free Workplace Act of 1988 to report.

Conflicts of Interests Within Project Team:

There are no Conflicts of Interest within the Project Team to report at this time.

Performance of Work in the United States:

There is no work funded under this award being performed outside the United States.

5 References

*

[1] Guide To Interpreting I-V Curve Measurements of PV Arrays, Application Note PVA-600-1,
Solmetric (Mar. 2011).
URL http://resources.solmetric.com/get/Guide%20to%20Interpreting%20I-V%

20Curves.pdf

[2] S. Nalin Venkat, Network Structural Equation Modeling of PV Minimodule Variants Under
Indoor Accelerated Exposures, Master’s thesis, Case Western Reserve University, tex.ids=
nalinvenkatNetworkStructuralEquation (May 2021).

[3] IEC 60891:2021.
URL https://webstore.iec.ch/publication/61766

[4] W.-H. Huang, X. Ma, J. Liu, M. Wang, A. J. Curran, J. S. Fada, J.-N. Jaubert, J. Sun,
J. L. Braid, J. Brynjarsdottir, R. H. French, ddiv: Data Driven I-V Feature Extraction (Sep.
2018).
URL https://CRAN.R-project.org/package=ddiv

March 29, 2024 82

http://resources.solmetric.com/get/Guide%20to%20Interpreting%20I-V%20Curves.pdf
http://resources.solmetric.com/get/Guide%20to%20Interpreting%20I-V%20Curves.pdf
http://resources.solmetric.com/get/Guide%20to%20Interpreting%20I-V%20Curves.pdf
https://webstore.iec.ch/publication/61766
https://webstore.iec.ch/publication/61766
https://CRAN.R-project.org/package=ddiv
https://CRAN.R-project.org/package=ddiv


CWRU-Towards 50 Year Modules SETO2019 Project DE-EE-0008550

[5] R. A. Sinton, A. Cuevas, A quasi-steady-state open-circuit voltage method for solar cell char-
acterization, in: Proceedings of the 16th European Photovoltaic Solar Energy Conference,
Vol. 1152, Glasgow, UK, 2000, p. 4.

[6] A. M. Karimi, J. S. Fada, M. A. Hossain, S. Yang, T. J. Peshek, J. L. Braid, R. H. French,
Automated Pipeline for Photovoltaic Module Electroluminescence Image Processing and
Degradation Feature Classification, IEEE Journal of Photovoltaics 9 (5) (2019) 1324–1335,
conference Name: IEEE Journal of Photovoltaics. doi:10.1109/JPHOTOV.2019.2920732.

[7] A. M. Karimi, J. S. Fada, N. A. Parrilla, B. G. Pierce, M. Koyutürk, R. H. French, J. L.
Braid, Generalized and Mechanistic PV Module Performance Prediction From Computer
Vision and Machine Learning on Electroluminescence Images, IEEE Journal of Photovoltaics
10 (3) (2020) 878–887, conference Name: IEEE Journal of Photovoltaics. doi:10.1109/

JPHOTOV.2020.2973448.

[8] G. Cumming, S. Finch, Inference by Eye: Confidence Intervals and How to Read Pictures
of Data, American Psychologist 60 (2) (2005) 170–180. doi:10.1037/0003-066X.60.2.
170.

[9] Sameera Venkat, Xuanji Yu, Jiqi Liu, Jakob Wegmueller, Jayvic Cristian Jimenez, Erika
I. Barcelos, Hein Htet Aung, Xinjun Li, Jean-Nicolas Jaubert, Roger H. French, Laura
S. Bruckman, Statistical Analysis and Degradation Pathway Modeling of Photovoltaic
Minimodules with Varied Packaging Strategies, Frontiers in Energy Research 11 (2023).
doi:10.3389/fenrg.2023.1127796.
URL https://www.frontiersin.org/articles/10.3389/fenrg.2023.1127796

[10] S. N. Venkat, J. Liu, J. Yu, Xuanji Wegmueller, K. Rath, X. Li, J.-N. Jaubert, J. L.
Braid, L. S. Bruckman, R. H. French, Evaluation of PV Module Packaging Strate-
gies of Monofacial and Bifacial PERC Using Degradation Pathway Network Modeling,
in: 2022 IEEE 49th Photovoltaic Specialists Conference (PVSC), 2022, pp. 1020–1027.
doi:10.1109/PVSC48317.2022.9938854.

[11] E. E. van Dyk, A. R. Gxasheka, E. L. Meyer, Monitoring current–voltage characteristics and
energy output of silicon photovoltaic modules, Renewable Energy 30 (3) (2005) 399–411.
doi:10.1016/j.renene.2004.04.016.
URL https://www.sciencedirect.com/science/article/pii/S0960148104002447

[12] E.E.van Dyk, E.L.Meyer, Analysis of the effect of parasitic resistances on the perfor-
mance of photovoltaic modules, Renewable Energy 29 (3) (2004) 333–344. doi:10.1016/
S0960-1481(03)00250-7.

[13] E.L. Meyer, E.E. van Dyk, Assessing the reliability and degradation of photovoltaic module
performance parameters, IEEE Transactions on Reliability 53 (1) (2004) 83–92. doi:10.

1109/TR.2004.824831.

[14] W.-H. Huang, Xuan Ma, Jiqi Liu, Menghong Wang, Alan J. Curran, J. S. Fada, Jean-Nicolas
Jaubert, Jing Sun, Jennifer L. Braid, Jenny Brynjarsdottir, Roger H. French, Ddiv: Data
Driven I-v Feature Extraction, Comprehensive R Archive Network (CRAN) (Apr. 2021).

March 29, 2024 83

https://doi.org/10.1109/JPHOTOV.2019.2920732
https://doi.org/10.1109/JPHOTOV.2020.2973448
https://doi.org/10.1109/JPHOTOV.2020.2973448
https://doi.org/10.1037/0003-066X.60.2.170
https://doi.org/10.1037/0003-066X.60.2.170
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1127796
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1127796
https://doi.org/10.3389/fenrg.2023.1127796
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1127796
https://doi.org/10.1109/PVSC48317.2022.9938854
https://www.sciencedirect.com/science/article/pii/S0960148104002447
https://www.sciencedirect.com/science/article/pii/S0960148104002447
https://doi.org/10.1016/j.renene.2004.04.016
https://www.sciencedirect.com/science/article/pii/S0960148104002447
https://doi.org/10.1016/S0960-1481(03)00250-7
https://doi.org/10.1016/S0960-1481(03)00250-7
https://doi.org/10.1109/TR.2004.824831
https://doi.org/10.1109/TR.2004.824831


CWRU-Towards 50 Year Modules SETO2019 Project DE-EE-0008550

[15] M. Wang, Tyler J. Burleyson, Jiqi Liu, Alan J. Curran, Abdulkerim Gok, Eric J. Schneller,
Kristopher O. Davis, Jennifer L. Braid, Roger H. French, SunsVoc: Constructing Suns-Voc
from Outdoor Time-Series I-V Curves, Comprehensive R Archive Network (CRAN) (Apr.
2021).

[16] N. Bosco, M. Springer, J. Liu, S. N. Venkat, R. H. French, Employing Weibull Anal-
ysis and Weakest Link Theory to Resolve Crystalline Silicon PV Cell Strength Be-
tween Bare Cells and Reduced- and Full-Sized Modules, IEEE Journal of Photovoltaics
(2021) 1–11Tex.ids= boscoEmployingWeibullAnalysis2021a, boscoEmployingWeibullAnaly-
sis2021b, nickboscoEmployingWeibullAnalysis2021 conferenceName: IEEE Journal of Pho-
tovoltaics. doi:10.1109/JPHOTOV.2021.3056673.

[17] M. Bora, S. Pop, R. Schulze, M. Rowell, D. Harwood, Moisture content imaging in glass-glass
and glass-backsheet photovoltaic mini-modules, in: 2020 47th IEEE Photovoltaic Specialists
Conference (PVSC), 2020, pp. 1485–1488, iSSN: 0160-8371. doi:10.1109/PVSC45281.

2020.9300346.

[18] D. C. Miller, J. G. Bokria, D. M. Burns, S. Fowler, X. Gu, P. L. Hacke, C. C. Honeker,
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